[go: up one dir, main page]

JP7095606B2 - Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy - Google Patents

Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy Download PDF

Info

Publication number
JP7095606B2
JP7095606B2 JP2019005909A JP2019005909A JP7095606B2 JP 7095606 B2 JP7095606 B2 JP 7095606B2 JP 2019005909 A JP2019005909 A JP 2019005909A JP 2019005909 A JP2019005909 A JP 2019005909A JP 7095606 B2 JP7095606 B2 JP 7095606B2
Authority
JP
Japan
Prior art keywords
nickel
sulfide
cobalt
final solution
oxide ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019005909A
Other languages
Japanese (ja)
Other versions
JP2020114936A (en
Inventor
真 杉之原
勝輝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019005909A priority Critical patent/JP7095606B2/en
Priority to PCT/JP2019/050726 priority patent/WO2020149122A1/en
Priority to PH1/2021/551984A priority patent/PH12021551984B1/en
Publication of JP2020114936A publication Critical patent/JP2020114936A/en
Application granted granted Critical
Publication of JP7095606B2 publication Critical patent/JP7095606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、湿式製錬法によるニッケル酸化鉱石からのニッケルコバルト混合硫化物の製造方法に関し、特に硫化水素ガスの添加により該ニッケル酸化鉱石に含まれる亜鉛や銅を硫化物として分離除去する脱亜鉛工程を有するニッケルコバルト混合硫化物の製造方法に関する。 The present invention relates to a method for producing a nickel-cobalt mixed sulfide from a nickel oxide ore by a wet smelting method, and in particular, dezincination for separating and removing zinc and copper contained in the nickel oxide ore as sulfide by adding hydrogen sulfide gas. The present invention relates to a method for producing a nickel-cobalt mixed sulfide having a step.

ニッケル酸化鉱石の湿式製錬法として、高温高圧下で硫酸を用いて該鉱石原料を浸出処理するHPAL(High Pressure Acid Leaching)とも称される高圧酸浸出法が知られている。この高圧酸浸出法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬法と異なり、還元工程や乾燥工程を経ることなく一貫した湿式工程で原料のニッケル酸化鉱石を処理するので、エネルギー的及びコスト的に有利であるうえ、ニッケル品位を50~60質量%まで高純度化したニッケルとコバルトを含む硫化物(以下、ニッケルコバルト混合硫化物とも称する)を得ることができるという利点を有している。 As a hydrometallurgical method for nickel-oxidized ore, a high-pressure acid leaching method also called HPAL (High Pressure Acid Leaching), in which the ore raw material is leached using sulfuric acid under high temperature and high pressure, is known. This high-pressure acid leaching method is different from the dry smelting method, which is a conventional general method for smelting nickel oxide ore, and treats the raw material nickel oxide ore in a consistent wet process without going through a reduction step or a drying step. Therefore, it is advantageous in terms of energy and cost, and it is possible to obtain a smelter containing nickel and cobalt (hereinafter, also referred to as nickel-cobalt mixed smelter) having a high purity of nickel grade of 50 to 60% by mass. Has advantages.

上記高圧酸浸出法は、一般的には、原料としてのニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理する浸出工程と、該浸出工程で得た浸出スラリーを多段洗浄しながら浸出残渣を分離することでニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程と、該浸出液のpHを調整することで不純物元素を含む中和澱物を生成し、その沈降速度促進のため、上記中和澱物を含むスラリーに、上記固液分離工程で分離した浸出残渣の一部を凝集剤や凝結剤と共に添加して該中和澱物を沈降分離することでニッケル及びコバルトを含む中和終液を得る中和工程と、該中和終液を硫化水素ガスで処理して亜鉛や銅の硫化物を生成し、これを分離除去して脱亜鉛終液を得る脱亜鉛工程と、該脱亜鉛終液を硫化水素ガスで処理してニッケル及びコバルトを含む混合硫化物を生成し、これを回収するニッケル回収工程とを含んでいる。 In the above high-pressure acid leaching method, generally, a leaching step of adding sulfuric acid to a slurry of nickel oxide ore as a raw material and leaching treatment under high temperature and high pressure, and a multi-stage washing of the leaching slurry obtained in the leaching step are performed. A solid-liquid separation step of obtaining a leachate containing an impurity element together with nickel and cobalt by separating the leachate residue, and a neutralized starch containing an impurity element by adjusting the pH of the leachate to promote the sedimentation rate. Therefore, to the slurry containing the neutralized starch, a part of the leachate residue separated in the solid-liquid separation step is added together with a coagulant and a coagulant, and the neutralized starch is precipitated and separated to obtain nickel and cobalt. A neutralization step of obtaining a neutralized final solution containing the mixture, and a dezincination step of treating the neutralized final solution with hydrogen sulfide gas to generate zinc or copper sulfide, which is separated and removed to obtain a dezincinated final solution. And, the dezincification final liquid is treated with hydrogen sulfide gas to produce a mixed sulfide containing nickel and cobalt, and the nickel recovery step of recovering the mixed sulfide is included.

ところで、上記脱亜鉛工程における亜鉛硫化物の生成条件では、一部のニッケルも硫化物として沈澱することがあり、ニッケルの回収率が低減することがあった。そこで特許文献1には、上記脱亜鉛工程において、中和終液に含まれる亜鉛を硫化物の形態で固定して分離する硫化処理を促進するため、該中和終液の濁度を高く維持して硫化処理する技術が提案されている。これにより、亜鉛硫化物を粗大化して中和澱物を含むスラリーの濾過性を向上させると共に、ニッケル回収率を高めることが可能となる。また、特許文献2には、脱亜鉛工程において直列に接続した複数の反応槽に中和終液を供給すると共に、これら反応槽への硫化水素の添加比率を調整する技術が提案されている。これにより、亜鉛や銅などの不純物と共沈するニッケルの量を減少させてニッケル回収率を高めることが可能となる。 By the way, under the conditions for producing zinc sulfide in the dezincination step, some nickel may also precipitate as sulfide, and the recovery rate of nickel may be reduced. Therefore, Patent Document 1 states that in the dezincination step, the turbidity of the neutralized final liquid is maintained high in order to promote the sulfurization treatment in which zinc contained in the neutralized final liquid is fixed and separated in the form of sulfide. A technique for sulfurization treatment has been proposed. This makes it possible to coarsen the zinc sulfide to improve the filterability of the slurry containing the neutralized starch and to increase the nickel recovery rate. Further, Patent Document 2 proposes a technique for supplying a neutralizing final solution to a plurality of reaction tanks connected in series in a dezincification step and adjusting the addition ratio of hydrogen sulfide to these reaction tanks. This makes it possible to reduce the amount of nickel coprecipitating with impurities such as zinc and copper and increase the nickel recovery rate.

特開2010-37626号公報Japanese Unexamined Patent Publication No. 2010-37626 特開2018-90889号公報Japanese Unexamined Patent Publication No. 2018-90889

しかしながら、特許文献1の方法は、浸出液に含まれる不純物濃度に応じて中和工程と脱亜鉛工程の条件を適切に組み合わせる必要があり、これが不十分になると脱亜鉛工程を経て得たニッケル回収用の母液となる脱亜鉛終液にはかえって不純物が多く残存する場合が生じやすく、この母液(硫化反応始液)を硫化処理して得たニッケルコバルト混合硫化物には不純物が多く含まれてしまう。また、特許文献2の方法は、中和工程で得た中和終液の液組成によって脱亜鉛工程で生じるニッケルの沈澱量にばらつきが生ずることがあった。 However, in the method of Patent Document 1, it is necessary to appropriately combine the conditions of the neutralization step and the dezincification step according to the concentration of impurities contained in the leachate, and if this is insufficient, the nickel can be recovered obtained through the dezincification step. The dezincified final solution, which is the mother liquor, tends to have a large amount of impurities remaining, and the nickel-cobalt mixed sulfide obtained by sulphurizing this mother liquor (sulfurization reaction starting solution) contains a large amount of impurities. .. Further, in the method of Patent Document 2, the amount of nickel precipitated in the dezincification step may vary depending on the liquid composition of the neutralization final solution obtained in the neutralization step.

上記のように、ニッケルの硫化澱物の生成条件と亜鉛の硫化澱物の生成条件とは互いに近似しており、脱亜鉛工程において生成した亜鉛澱物中にニッケルが共沈してロスする場合があった。ニッケルがロスすると、プロセスの経済性に大きく影響するニッケル回収率が低減するので、ニッケルのロスをできるだけ低減することが望まれている。 As described above, the conditions for producing nickel sulfide starch and the conditions for producing zinc sulfide starch are close to each other, and nickel coprecipitates and loses in the zinc starch produced in the dezincification step. was there. Since the loss of nickel reduces the nickel recovery rate, which greatly affects the economic efficiency of the process, it is desired to reduce the loss of nickel as much as possible.

本発明はかかる状況に鑑みてなされたものであり、高圧酸浸出法によるニッケル酸化鉱石の湿式製錬において、該ニッケル酸化鉱石に含まれる亜鉛や銅などの不純物を除去する際に該不純物と共沈するニッケルの量を減少させ、これによりニッケル回収率を高めることが可能なニッケルコバルト混合硫化物の製造方法を提供することを目的とする。 The present invention has been made in view of this situation, and is used in wet smelting of nickel oxide ore by a high-pressure acid leaching method when removing impurities such as zinc and copper contained in the nickel oxide ore. It is an object of the present invention to provide a method for producing a nickel-copper mixed sulfide capable of reducing the amount of nickel that sinks and thereby increasing the nickel recovery rate.

上記目的を達成するため、本発明に係るニッケルコバルト混合硫化物の製造方法は、原料としてのニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理して浸出スラリーを得る浸出工程と、前記浸出スラリーを多段洗浄しながら浸出残渣を分離することでニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程と、前記浸出液のpHを調整することで不純物元素を含む中和澱物を生成し、その沈降速度促進のため前記浸出残渣の一部を凝集剤と共に添加して該中和澱物を沈降分離することでニッケル及びコバルトを含む中和終液を得る中和工程と、前記中和終液を硫化水素ガスで処理することで亜鉛及び銅の硫化物を生成した後、該硫化物を分離して脱亜鉛終液を得る脱亜鉛工程と、前記脱亜鉛終液を硫化水素ガスで処理することでニッケル及びコバルトを含む混合硫化物を生成した後、該混合硫化物を回収するニッケル回収工程とを含む高圧酸浸出法によるニッケル酸化鉱石からのニッケルコバルト混合硫化物の製造方法であって、前記中和工程で得た中和終液のFe(III)濃度を0.18g/L以下に調整することを特徴とする。 In order to achieve the above object, the method for producing a nickel-cobalt mixed sulfide according to the present invention is a leaching step in which sulfuric acid is added to a slurry of nickel oxide ore as a raw material and leached under high temperature and high pressure to obtain a leached slurry. A solid-liquid separation step of obtaining a leachate containing an impurity element together with nickel and cobalt by separating the leachate residue while washing the leachate slurry in multiple stages, and a neutralized starch containing an impurity element by adjusting the pH of the leachate. A neutralization step of obtaining a neutralized final solution containing nickel and cobalt by adding a part of the leachate residue together with a flocculant to precipitate and separate the neutralized starch in order to promote the sedimentation rate. After producing sulfides of zinc and copper by treating the neutralized final solution with hydrogen sulfide gas, a dezincination step of separating the sulfides to obtain a dezincified final solution and sulfurizing the dezincinated final solution. Production of nickel-cobalt mixed sulfide from nickel oxide ore by high-pressure acid leaching method including a nickel recovery step of recovering the mixed sulfide after producing a mixed sulfide containing nickel and cobalt by treatment with hydrogen gas. The method is characterized in that the Fe (III) concentration of the neutralization final solution obtained in the neutralization step is adjusted to 0.18 g / L or less.

本発明によれば、脱亜鉛工程において共沈によりニッケルがロスするのを抑えることができ、よってニッケル回収率を高めることができる。 According to the present invention, it is possible to suppress the loss of nickel due to coprecipitation in the dezincification step, and thus it is possible to increase the nickel recovery rate.

本発明のニッケルコバルト混合硫化物の製造方法の実施形態を示すプロセスフローである。It is a process flow which shows embodiment of the manufacturing method of the nickel-cobalt mixed sulfide of this invention. 本発明の製造方法の実施形態が有する中和工程において得られる中和終液のORPとFe(III)濃度との関係を表すグラフである。It is a graph which shows the relationship between the ORP and the Fe (III) concentration of the neutralization final liquid obtained in the neutralization step which an embodiment of the manufacturing method of this invention has. 本発明の製造方法の実施形態が有する中和工程において得られる中和終液のFe(III)濃度と脱亜鉛工程S4における硫化水素添加当量との関係を表すグラフである。It is a graph which shows the relationship between the Fe (III) concentration of the neutralization final liquid obtained in the neutralization step which an embodiment of the manufacturing method of this invention has, and the hydrogen sulfide addition equivalent in a dezincification step S4. 本発明の製造方法の実施形態が有する脱亜鉛工程における硫化水素添加当量とニッケル沈澱率との関係を表すグラフである。It is a graph which shows the relationship between the hydrogen sulfide addition equivalent and the nickel precipitation rate in the dezincification step which the embodiment of the manufacturing method of this invention has.

1.ニッケルコバルト混合硫化物の製造方法
以下、本発明に係る高圧酸浸出法によるニッケルコバルト混合硫化物の製造方法の実施形態について、図1のプロセスフローを参照しながら説明する。この図1に示すニッケルコバルト混合硫化物の製造方法は、原料としてのニッケル酸化鉱石に対して粉砕及び篩別等により所定の粒度に調整すると共に水を加えることで得たニッケル酸化鉱石スラリーに、硫酸を添加して高温高圧下で浸出処理を施す浸出工程S1と、該浸出工程S1で得た浸出スラリーを直列に連続する複数の沈降分離槽で多段洗浄しながら浸出残渣を分離することでニッケル及びコバルトと共に不純物を含む粗硫酸ニッケル溶液からなる浸出液を得る固液分離工程S2と、該浸出液に中和剤を添加することで不純物を含む中和澱物を生成し、これを分離除去してニッケル及びコバルトと共に亜鉛等の不純物を含む中和終液を得る中和工程S3と、該中和終液に硫化剤を添加することで亜鉛硫化物を生成し、これを分離除去してニッケル及びコバルトを含む脱亜鉛終液(ニッケル回収用母液)を得る脱亜鉛工程S4と、該脱亜鉛終液に硫化剤を添加することでニッケル及びコバルトを含むニッケルコバルト混合硫化物を生成した後、固液分離により該ニッケルコバルト混合硫化物を回収するニッケル回収工程S5とを有している。以下、これら工程の各々について説明する。
1. 1. Method for Producing Nickel-Cobalt Mixed Sulfide Hereinafter, an embodiment of a method for producing a nickel-cobalt mixed sulfide by the high-pressure acid leaching method according to the present invention will be described with reference to the process flow of FIG. The method for producing the nickel-cobalt mixed sulfide shown in FIG. 1 is to adjust the nickel oxide as a raw material to a predetermined particle size by pulverization and sieving, and to add water to the nickel oxide slurry. Nickel is separated by separating the leaching residue by performing the leaching step S1 in which sulfuric acid is added and the leaching treatment is performed under high temperature and high pressure, and the leaching slurry obtained in the leaching step S1 is washed in multiple stages in a plurality of continuous settling separation tanks in series. In the solid-liquid separation step S2 for obtaining a leachate consisting of a crude nickel sulfate solution containing impurities together with cobalt, and by adding a neutralizing agent to the leachate, a neutralized starch containing impurities is produced, and this is separated and removed. Zinc sulfide is produced by adding a sulfide agent to the neutralization step S3 for obtaining a neutralization final solution containing nickel and cobalt and impurities such as zinc, and this is separated and removed to obtain nickel and nickel. A dezincification step S4 for obtaining a dezincification final solution (mother solution for recovering nickel) containing cobalt, and a nickel-cobalt mixed sulfide containing nickel and cobalt are produced by adding a sulfide agent to the dezincification final solution, and then solidified. It has a nickel recovery step S5 for recovering the nickel-cobalt mixed sulfide by liquid separation. Hereinafter, each of these steps will be described.

(1)浸出工程
浸出工程S1では、前工程の前処理工程において粉砕及び湿式分級処理により調製された所定の粒度を有するニッケル酸化鉱石を含む鉱石スラリーがオートクレーブと称する圧力容器に硫酸と共に装入され、ここで該鉱石スラリーは攪拌されながら3~4.5MPaG程度、220~280℃程度の高温高圧条件下で高圧酸浸出処理が施される。これにより、浸出反応及び高温熱加水分解反応が生じ、ニッケル、コバルト等の硫酸塩としての浸出と、浸出された硫酸鉄のヘマタイトとしての固定化が行われ、浸出液と浸出残渣とからなる浸出スラリーが生成される。
(1) Leaching Step In the leaching step S1, an ore slurry containing nickel oxide ore having a predetermined particle size prepared by pulverization and wet classification treatment in the pretreatment step of the previous step is charged into a pressure container called an autoclave together with sulfuric acid. Here, the ore slurry is subjected to high-pressure acid leaching treatment under high-temperature and high-pressure conditions of about 3 to 4.5 MPaG and about 220 to 280 ° C. while being stirred. As a result, a leaching reaction and a high-temperature thermal hydrolysis reaction occur, leaching of nickel, cobalt, etc. as sulfate and immobilization of leached iron sulfate as hematite are performed, and a leaching slurry consisting of a leaching solution and a leaching residue is performed. Is generated.

この浸出工程S1で処理される原料としてのニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が用いられる。ラテライト鉱のニッケル含有量は、一般に0.8~2.5質量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含まれている。このニッケル酸化鉱石は、鉄の含有量が10~50質量%であり、これは主として3価の水酸化物(ゲーサイト)の形態を有しており、一部2価の鉄がケイ苦土鉱物に含まれている。なお、上記原料には上記のラテライト鉱のほか、ニッケル、コバルト、マンガン、銅等の有価金属を含有する例えば深海底に賦存するマンガン瘤等の酸化鉱石が用いられることがある。 As the nickel oxide ore as a raw material to be treated in the leaching step S1, so-called laterite ore such as limonite ore and saprolite ore is mainly used. The nickel content of the laterite ore is generally 0.8 to 2.5% by mass, and is contained as a hydroxide or a siliceous earth (magnesium silicate) mineral. This nickel oxide ore has an iron content of 10 to 50% by mass, which is mainly in the form of trivalent hydroxide (goethite), and some divalent iron is caustic. It is contained in minerals. In addition to the above-mentioned laterite ore, an oxide ore such as a manganese aneurysm present on the deep sea bottom containing valuable metals such as nickel, cobalt, manganese, and copper may be used as the raw material.

上記オートクレーブに装入する硫酸の添加量には特に限定はないが、硫酸使用量が過度に多くならないように、上記原料の鉱石に含まれる回収対象物である有価金属のニッケルやコバルトが効率的に浸出される程度に経済的に添加するのが好ましい。なお、上記の固定化により生ずるヘマタイトを含む浸出残渣が、後工程の固液分離工程S2において固液分離性を低下させることがないように、浸出液のpHを0.1~1.0に調整することが好ましい。また、この浸出工程S1で得た浸出スラリーを後工程の固液分離工程S2で処理する前に、該浸出スラリーに含まれるフリー硫酸(浸出反応に関与しなかった余剰の硫酸、以下遊離硫酸ともいう)を中和処理する予備中和処理を行ってもよい。 The amount of sulfuric acid added to the autoclave is not particularly limited, but nickel and cobalt, which are valuable metals contained in the ore of the raw material, are efficient so that the amount of sulfuric acid used does not become excessively large. It is preferable to add it economically to the extent that it is leached into the water. The pH of the leachate is adjusted to 0.1 to 1.0 so that the leachate residue containing hematite generated by the above immobilization does not reduce the solid-liquid separability in the solid-liquid separation step S2 in the subsequent step. It is preferable to do so. Further, before the leaching slurry obtained in the leaching step S1 is treated in the solid-liquid separation step S2 in the subsequent step, the free sulfuric acid contained in the leaching slurry (excess sulfuric acid not involved in the leaching reaction, hereinafter referred to as free sulfuric acid) is also used. You may perform a pre-neutralization treatment for neutralizing (referred to as).

(2)固液分離工程
固液分離工程S2では、好適には直列に連結した複数基の沈降分離槽に上記浸出スラリーと洗浄液とを互いに向流になるように連続的に導入する向流洗浄法(CCD法)により、浸出スラリーを多段洗浄しながら上記浸出残渣を重力沈降により分離させる。これにより、最下流の沈降分離槽の底部から濃縮スラリーの形態で浸出残渣スラリーが抜き出されると共に、最上流の沈降分離槽のオーバーフロー口から上澄液としてニッケル及びコバルトのほか亜鉛等の不純物元素を含む粗硫酸ニッケル溶液からなる浸出液が得られる。
(2) Solid-Liquid Separation Step In the solid-liquid separation step S2, the leachate slurry and the cleaning liquid are continuously introduced into a plurality of sedimentation separation tanks connected in series so as to be countercurrent to each other. By the method (CCD method), the leaching residue is separated by gravity sedimentation while washing the leaching slurry in multiple stages. As a result, the leachate residue slurry is extracted from the bottom of the most downstream sedimentation separation tank in the form of a concentrated slurry, and nickel, cobalt, and other impurity elements such as zinc are used as the supernatant as the supernatant from the overflow port of the most upstream sedimentation separation tank. A leachate consisting of a crude nickel sulfate solution containing the above is obtained.

上記の浸出残渣スラリーは、一部が後工程の中和工程S3に移送され、その残りは必要に応じて中和剤の添加による無害化処理を施すことで重金属の除去処理が施された後、テーリングダムに移送される。なお、上記洗浄液にはpH1.0~3.0程度の水溶液を用いることが好ましく、後工程のニッケル回収工程S5から排出される貧液を好適に用いることができる。また、上記複数基の沈降分離槽には、必要に応じて凝集剤や下記中和工程S3で分離した中和澱物スラリーの一部を添加してもよい。 A part of the above-mentioned leachate residue slurry is transferred to the neutralization step S3 in the subsequent step, and the rest is detoxified by adding a neutralizing agent as necessary to remove heavy metals. , Transferred to the tailing dam. It is preferable to use an aqueous solution having a pH of about 1.0 to 3.0 as the cleaning liquid, and a poor liquid discharged from the nickel recovery step S5 in the subsequent step can be preferably used. Further, a flocculant or a part of the neutralized starch slurry separated in the following neutralization step S3 may be added to the plurality of sedimentation separation tanks as needed.

(3)中和工程
中和工程S3では、攪拌機を備えた少なくとも1基の中和反応槽に、上記固液分離工程S2において浸出残渣から分離された浸出液を装入し、更にこの浸出液に上記固液分離工程S2から排出された浸出残渣スラリーの一部と、炭酸カルシウム等の中和剤とを添加する。これによりpHが調整されて、該浸出液中に含まれる主に3価の鉄イオンやアルミニウムイオンが中和澱物として析出される。
(3) Neutralization Step In the neutralization step S3, the leachate separated from the leachate residue in the solid-liquid separation step S2 is charged into at least one neutralization reaction tank equipped with a stirrer, and the leachate is further charged with the above-mentioned leachate. A part of the leachate residue slurry discharged from the solid-liquid separation step S2 and a neutralizing agent such as calcium carbonate are added. As a result, the pH is adjusted, and mainly trivalent iron ions and aluminum ions contained in the leachate are precipitated as neutralized starch.

これ中和澱物を含むスラリーは、所定量の凝集剤や凝結剤と共にシックナー等の沈降分離槽に導入されて沈降分離が行われる。これにより、該沈降分離槽の底部から濃縮スラリーの形態の中和澱物スラリーが抜き出されると共に、該沈降分離槽のオーバーフロー口からニッケル及びコバルトのほか主に亜鉛からなる不純物元素を含む中和終液が上澄液として回収される。上記中和澱物スラリーは、必要に応じてその一部を上記固液分離工程S2に繰り返してもよい。 The slurry containing the neutralized starch is introduced into a sedimentation separation tank such as a thickener together with a predetermined amount of a flocculant and a coagulant, and sedimentation separation is performed. As a result, the neutralized starch slurry in the form of a concentrated slurry is extracted from the bottom of the sedimentation separation tank, and neutralization containing nickel and cobalt as well as impurity elements mainly composed of zinc from the overflow port of the sedimentation separation tank. The final liquid is collected as a supernatant liquid. If necessary, a part of the neutralized starch slurry may be repeated in the solid-liquid separation step S2.

(4)脱亜鉛工程
脱亜鉛工程S4では、微加圧された硫化反応槽内に上記中和工程S3で得た中和終液を導入し、更に該硫化反応槽内の気相中に硫化水素ガスを吹き込むことにより該中和終液に硫化処理を施す。これにより、ニッケル及びコバルトに対して亜鉛が選択的に硫化されるので、亜鉛硫化物が生成される。この亜鉛硫化物は、フィルタープレス等の濾過装置により分離除去され、濾液としてニッケル及びコバルトを含む硫酸溶液からなる脱亜鉛終液(ニッケル回収用母液)が得られる。
(4) Dezincification step In the dezincification step S4, the neutralization final solution obtained in the neutralization step S3 is introduced into the slightly pressurized sulfurization reaction tank, and further sulfurized in the gas phase in the sulfurization reaction tank. The neutralized final liquid is sulfurized by blowing hydrogen gas. As a result, zinc is selectively sulfurized with respect to nickel and cobalt, so that zinc sulfide is produced. This zinc sulfide is separated and removed by a filtration device such as a filter press, and a dezincified final solution (mother solution for nickel recovery) consisting of a sulfuric acid solution containing nickel and cobalt is obtained as a filtrate.

(5)ニッケル回収工程
ニッケル回収工程S5では、上記硫化反応槽に比べてやや高めに加圧された反応槽に上記脱亜鉛終液を導入し、更に該脱亜鉛終液に対して硫化水素ガス等の硫化剤を添加して硫化処理を行うことで、ニッケルコバルト混合硫化物を生成させる。生成したニッケルコバルト混合硫化物は濾過などの固液分離により回収することができる。この固液分離により液相側に排出されるニッケル貧液には、鉄、アルミニウム、マンガン等の不純物金属イオンのほか、未反応のNiイオンを含むので一部を上記の固液分離工程S2に繰り返してもよい。
(5) Nickel Recovery Step In the nickel recovery step S5, the dezincification final solution is introduced into the reaction tank pressurized slightly higher than the sulfurization reaction tank, and hydrogen sulfide gas is further applied to the dezincification final solution. By adding a sulfurizing agent such as the above and performing a sulfurization treatment, a nickel-cobalt mixed sulfurized product is produced. The produced nickel-cobalt mixed sulfide can be recovered by solid-liquid separation such as filtration. The nickel-poor liquid discharged to the liquid phase side by this solid-liquid separation contains impurity metal ions such as iron, aluminum, and manganese, as well as unreacted Ni ions. It may be repeated.

2.脱亜鉛工程におけるニッケル沈澱量低減方法
上記のような高圧酸浸出法によるニッケル酸化鉱石の湿式製錬では、中和工程で得られる中和終液は、一般的に、Ni濃度3.0~4.0g/L、Zn濃度0.06~0.10g/L、全Fe濃度0.4~2.0g/L、Fe(III)濃度0.3g/L以下の液組成を有しており、そのpHは2.6~3.4程度、ORPは320~440mV程度である。また、脱亜鉛工程で得られる脱亜鉛終液は、Ni濃度3.0~4.0g/L、Zn濃度0.001~0.005g/L、全Fe濃度0.4~2.0g/Lの液組成を有しており、そのpHは2.6~3.4程度である。
2. 2. Method for reducing the amount of nickel precipitate in the dezincification step In the wet smelting of nickel oxide ore by the high-pressure acid leaching method as described above, the neutralized final solution obtained in the neutralization step generally has a Ni concentration of 3.0 to 4 to 4. It has a liquid composition of 0.0 g / L, Zn concentration of 0.06 to 0.10 g / L, total Fe concentration of 0.4 to 2.0 g / L, and Fe (III) concentration of 0.3 g / L or less. Its pH is about 2.6 to 3.4, and ORP is about 320 to 440 mV. The final dezincified liquid obtained in the dezincification step has a Ni concentration of 3.0 to 4.0 g / L, a Zn concentration of 0.001 to 0.005 g / L, and a total Fe concentration of 0.4 to 2.0 g / L. It has the liquid composition of, and its pH is about 2.6 to 3.4.

これに対して、本発明の実施形態のニッケルコバルト混合硫化物の製造方法においては、原料のニッケル酸化鉱石の調整等により、中和工程S3で得た中和終液のORPを好ましくは370mV以下に調整することで、該中和終液のFe(III)濃度を0.18g/L以下になるように調整する。これにより、脱亜鉛工程S4のニッケル沈澱率を1.0%以下に抑えることが可能になる。 On the other hand, in the method for producing a nickel-cobalt mixed sulfide according to the embodiment of the present invention, the ORP of the neutralized final solution obtained in the neutralization step S3 is preferably 370 mV or less by adjusting the nickel oxide ore as a raw material. The Fe (III) concentration of the neutralizing final solution is adjusted to 0.18 g / L or less. This makes it possible to suppress the nickel precipitation rate in the dezincification step S4 to 1.0% or less.

具体的に説明すると、本発明者は、上記の高圧酸浸出法による湿式製錬設備に送液する鉱石スラリーに含まれるニッケル酸化鉱石中の炭素品位を調整することにより、中和工程S3で得た中和終液の酸化還元電位(ORP)を調整することを試みた。その結果、該ORPを良好に調整することができるうえ、該中和終液においてORPとFe(III)濃度との間に図2に示すような正の相関関係があることが分かった。 Specifically, the present inventor obtains in the neutralization step S3 by adjusting the carbon grade in the nickel oxide ore contained in the ore slurry to be sent to the hydrometallurgical facility by the above-mentioned hydrometallurgy method. Attempts were made to adjust the redox potential (ORP) of the neutralized final solution. As a result, it was found that the ORP could be satisfactorily adjusted and that there was a positive correlation between the ORP and the Fe (III) concentration in the neutralized final solution as shown in FIG.

すなわち、酸化力を有するFe(III)濃度が高いほどORPが高くなるため、ORPを370mV以下に調整することにより、Fe(III)濃度を0.18g/L以下に抑えることが可能になる。上記のORPの下限値については特に制約はないが、300mV以上が好ましい。また、上記のFe(III)濃度の下限値についても特に制約はないが、0.05g/L以上が好ましい。なお、本明細書中において示す酸化還元電位は、標準電極に銀-塩化銀電極を用いて測定したものである。 That is, the higher the concentration of Fe (III) having oxidizing power, the higher the ORP. Therefore, by adjusting the ORP to 370 mV or less, the Fe (III) concentration can be suppressed to 0.18 g / L or less. The lower limit of the ORP is not particularly limited, but is preferably 300 mV or more. Further, the lower limit of the Fe (III) concentration is not particularly limited, but is preferably 0.05 g / L or more. The redox potential shown in the present specification is measured using a silver-silver chloride electrode as a standard electrode.

ところで、中和工程S3で得られる中和終液中のFe(III)濃度とZn濃度のオーダーはほぼ同じ程度であり、脱亜鉛工程S4において添加される硫化水素ガスは、下記式1に示す亜鉛の硫化反応と、下記式2に示すFe(III)の還元反応とに主に消費される。
[式1]
Zn2++HS=ZnS+2H
[式2]
2Fe3++HS=2Fe2++S+2H
By the way, the order of Fe (III) concentration and Zn concentration in the neutralization final liquid obtained in the neutralization step S3 is almost the same, and the hydrogen sulfide gas added in the dezincification step S4 is shown in the following formula 1. It is mainly consumed in the zinc sulfide reaction and the Fe (III) reduction reaction represented by the following formula 2.
[Equation 1]
Zn 2+ + H 2 S = ZnS + 2H +
[Equation 2]
2Fe 3+ + H 2 S = 2Fe 2+ + S + 2H +

従って、上記のように中和終液中のFe(III)濃度を下げることにより、Fe(III)の還元反応に消費される硫化水素ガス量が減少するので、脱亜鉛工程S4において亜鉛の硫化処理のために必要な硫化水素ガスの添加量を大幅に減らすことができる。このように、脱亜鉛工程S4において硫化水素ガスの添加量を大幅に減らすことにより、硫化剤の供給過剰により局所的に発生するニッケルの硫化反応を抑制することができ、よって脱亜鉛工程S4のニッケル沈澱量を減らすことができる。 Therefore, by lowering the concentration of Fe (III) in the final neutralizing liquid as described above, the amount of hydrogen sulfide gas consumed in the reduction reaction of Fe (III) is reduced, so that zinc sulfide is sulfided in the dezincination step S4. The amount of hydrogen sulfide gas added for the treatment can be significantly reduced. As described above, by significantly reducing the amount of hydrogen sulfide gas added in the dezincification step S4, the sulfurization reaction of nickel locally generated due to the excessive supply of the sulfurizing agent can be suppressed, and thus the sulfurization reaction of nickel in the dezincification step S4 can be suppressed. The amount of nickel precipitation can be reduced.

図3に、中和工程S3で得た中和終液中に含まれるZn1モルの硫化処理に必要な硫化水素の添加当量(mol-HS/mol-Zn)と該中和終液のFe(III)濃度との関係を示す。この図3から、中和終液中のFe(III)濃度が低下するに伴い、硫化水素添加当量を低減できることが分かる。なお、上記の硫化水素添加当量では、脱亜鉛工程S4で得た脱亜鉛終液(ニッケル回収用母液)のZn/Ni質量濃度比を0.0004以上0.0005以下にするために必要な硫化水素ガスのモル量とする。 FIG. 3 shows the addition equivalent of hydrogen sulfide (mol H 2S / mol—Zn) required for the sulfurization treatment of 1 mol of Zn contained in the neutralization final solution obtained in the neutralization step S3, and the neutralization final solution. The relationship with the Fe (III) concentration is shown. From FIG. 3, it can be seen that the hydrogen sulfide addition equivalent can be reduced as the Fe (III) concentration in the neutralized final liquid decreases. In the above hydrogen sulfide addition equivalent, the sulfide required to reduce the Zn / Ni mass concentration ratio of the dezincified final solution (mole solution for nickel recovery) obtained in the dezincification step S4 to 0.0004 or more and 0.0055 or less. The molar amount of hydrogen gas.

図4に、脱亜鉛工程S4における上記硫化水素添加当量と、脱亜鉛工程S4におけるニッケル沈澱率との関係を示す。この図4から、硫化水素添加当量が増加すると、ニッケル沈澱率が上昇することが分かる。なお、この図4の縦軸で示すニッケル沈澱率は、脱亜鉛工程S4の始液である中和終液のニッケル濃度をN[g/L]、脱亜鉛工程S4で得た脱亜鉛終液のニッケル濃度をN[g/L]としたとき、下記式3で計算される。
[式3]
ニッケル沈澱率[%]=(N-N)/N×100
FIG. 4 shows the relationship between the hydrogen sulfide addition equivalent in the dezincification step S4 and the nickel precipitation rate in the dezincification step S4. From FIG. 4, it can be seen that the nickel precipitation rate increases as the hydrogen sulfide addition equivalent increases. The nickel sedimentation rate shown on the vertical axis of FIG. 4 is the nickel concentration of the neutralized final solution, which is the starting solution of the dezincination step S4, N 1 [g / L], and the dezincification final solution obtained in the dezincification step S4. When the nickel concentration of the liquid is N 2 [g / L], it is calculated by the following formula 3.
[Equation 3]
Nickel precipitation rate [%] = (N 1 -N 2 ) / N 1 × 100

また、本発明者は、炭素は還元剤としての働きを有しているため、原料としてのニッケル酸化鉱石中の炭素品位と、中和工程S3で得た中和終液のORPとの間には負の相関があり、よって炭素品位が高いほど該中和終液のORPが低下する傾向があることを見出した。そこで本発明者は更に鋭意研究を重ねた結果、上記の中和終液において、ORPを370mV以下に調整するためには、炭素品位の異なる複数のニッケル酸化鉱石ロットの混合比を適宜調整したものを原料として用いることにより調整できることが分かった。具体的には、複数のニッケル酸化鉱石ロットを混合して得た混合原料の炭素品位が好ましくは0.20質量%以上、より好ましくは0.18質量%以上となるように調整する。 Further, in the present invention, since carbon has a function as a reducing agent, between the carbon grade in the nickel oxide ore as a raw material and the ORP of the neutralization final solution obtained in the neutralization step S3. It was found that there is a negative correlation, and therefore, the higher the carbon grade, the lower the ORP of the neutralized final solution. Therefore, as a result of further diligent research, the present inventor appropriately adjusted the mixing ratio of a plurality of nickel oxide ore lots having different carbon grades in order to adjust the ORP to 370 mV or less in the above neutralized final solution. It was found that it can be adjusted by using the above as a raw material. Specifically, the carbon grade of the mixed raw material obtained by mixing a plurality of nickel oxide ore lots is adjusted to be preferably 0.20% by mass or more, more preferably 0.18% by mass or more.

上記の脱亜鉛工程S4での硫化水素ガスの添加量は、中和工程S3で得た中和終液のZn濃度やFe3+濃度が上昇した場合、前述したように硫化水素添加当量が増加するため、該中和終液のZn濃度及びFe3+濃度と脱亜鉛工程S4で得た脱亜鉛終液のZn濃度との測定値に応じて適宜調整するのが好ましい。次に、実施例及び比較例によって本発明を更に詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。 As for the amount of hydrogen sulfide added in the dezincification step S4, the hydrogen sulfide addition equivalent increases as described above when the Zn concentration or Fe 3+ concentration of the neutralization final solution obtained in the neutralization step S3 increases. Therefore, it is preferable to appropriately adjust according to the measured values of the Zn concentration and Fe 3+ concentration of the neutralized final solution and the Zn concentration of the dezincinated final solution obtained in the dezincification step S4. Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

複数のニッケル酸化鉱石ロットをブレンドすることで、様々な炭素品位を有する試料1~15の鉱石原料を用意し、それらの各々を図1に示すプロセスフローに沿って処理してニッケルコバルト混合硫化物を製造した。なお、脱亜鉛工程S4では、中和工程S3で得た中和終液のZn濃度及びFe3+濃度と、脱亜鉛工程S4で得た脱亜鉛終液のZn濃度との測定結果に基づいて硫化水素ガスを添加した。その際の中和工程S3で得た中和終液のORP(Ag/AgCl標準電極)及びpHを、該中和終液のFe3+濃度、Zn濃度、Ni濃度と共に下記表1に示す。 By blending multiple nickel oxide ore lots, the ore raw materials of Samples 1 to 15 having various carbon grades are prepared, and each of them is treated according to the process flow shown in FIG. 1 to prepare a nickel-cobalt mixed sulfide. Manufactured. In the dezincification step S4, sulfurization is performed based on the measurement results of the Zn concentration and Fe 3+ concentration of the neutralization final solution obtained in the neutralization step S3 and the Zn concentration of the dezincification final solution obtained in the dezincification step S4. Hydrogen gas was added. The ORP (Ag / AgCl standard electrode) and pH of the neutralization final solution obtained in the neutralization step S3 at that time are shown in Table 1 below together with the Fe 3+ concentration, Zn concentration and Ni concentration of the neutralization final solution.

Figure 0007095606000001
Figure 0007095606000001

上記表1から分かるように、中和終液のFe(III)濃度が0.18g/L以下の条件を満たす試料1~10では、いずれにおいてもニッケル沈澱率が1.0%以下であった。一方、中和終液のFe3+濃度が0.18g/Lを超えた試料11~15では、いずれにおいてもニッケル沈澱率が1.0%を超えた。なお、上記の炭素品位は酸素気流燃焼-赤外線吸収法(LECO社 CS-230)を用いて測定した。また、Fe3+濃度は酸化還元滴定法(Aqua Counter Automatic Titrator COM-1700)を用いて測定し、Zn濃度及びNi濃度はICP発光分光分析法(Thermo scientific iCAP 6000)により測定した。 As can be seen from Table 1 above, the nickel precipitation rate was 1.0% or less in all of the samples 1 to 10 satisfying the condition that the Fe (III) concentration of the neutralization final solution was 0.18 g / L or less. .. On the other hand, in the samples 11 to 15 in which the Fe 3+ concentration of the neutralization final solution exceeded 0.18 g / L, the nickel precipitation rate exceeded 1.0% in each of the samples. The carbon grade was measured by using an oxygen airflow combustion-infrared absorption method (LECO CS-230). The Fe 3+ concentration was measured by the oxidation-reduction titration method (Aqua Counter Autumn Titrator COM-1700), and the Zn concentration and the Ni concentration were measured by the ICP emission spectroscopic analysis method (Thermo scientific iCAP 6000).

S1 浸出工程
S2 固液分離工程
S3 中和工程
S4 脱亜鉛工程
S5 ニッケル回収工程
S1 Leaching process S2 Solid-liquid separation process S3 Neutralization process S4 Dezincification process S5 Nickel recovery process

Claims (3)

原料としてのニッケル酸化鉱石のスラリーに硫酸を添加して高温高圧下で浸出処理して浸出スラリーを得る浸出工程と、前記浸出スラリーを多段洗浄しながら浸出残渣を分離することでニッケル及びコバルトと共に不純物元素を含む浸出液を得る固液分離工程と、前記浸出液のpHを調整することで不純物元素を含む中和澱物を生成し、その沈降速度促進のため前記浸出残渣の一部を凝集剤と共に添加して該中和澱物を沈降分離することでニッケル及びコバルトを含む中和終液を得る中和工程と、前記中和終液を硫化水素ガスで処理することで亜鉛及び銅の硫化物を生成した後、該硫化物を分離して脱亜鉛終液を得る脱亜鉛工程と、前記脱亜鉛終液を硫化水素ガスで処理することでニッケル及びコバルトを含む混合硫化物を生成した後、該混合硫化物を回収するニッケル回収工程とを含む高圧酸浸出法によるニッケル酸化鉱石からのニッケルコバルト混合硫化物の製造方法であって、前記中和工程で得た中和終液のFe(III)濃度を0.18g/L以下に調整することを特徴とするニッケルコバルト混合硫化物の製造方法。 Sulfide is added to a slurry of nickel oxide ore as a raw material and leached under high temperature and high pressure to obtain a leached slurry, and the leached residue is separated while cleaning the leached slurry in multiple stages to separate impurities together with nickel and cobalt. A solid-liquid separation step for obtaining a leachate containing an element and a neutralized starch containing an impurity element are produced by adjusting the pH of the leachate, and a part of the leachate residue is added together with a flocculant to promote the sedimentation rate. Then, a neutralization step of obtaining a neutralized final solution containing nickel and cobalt by precipitating and separating the neutralized starch, and a sulfide of zinc and copper by treating the neutralized final solution with hydrogen sulfide gas. After the formation, a dezincification step of separating the sulfide to obtain a dezincified final solution and a mixed sulfide containing nickel and cobalt by treating the dezincinated final solution with hydrogen sulfide gas are produced, and then the sulfide is formed. A method for producing a nickel-cobalt mixed sulfide from nickel oxide ore by a high-pressure acid leaching method including a nickel recovery step for recovering the mixed sulfide, wherein Fe (III) of the neutralized final solution obtained in the neutralization step is used. A method for producing a nickel-cobalt mixed sulfide, which comprises adjusting the concentration to 0.18 g / L or less. 前記原料としてのニッケル酸化鉱石中の炭素品位を調整することで、前記中和終液の酸化還元電位(Ag/AgCl標準電極)を370mV以下に調整することを特徴とする、請求項1に記載のニッケルコバルト混合硫化物の製造方法。 The first aspect of claim 1, wherein the redox potential (Ag / AgCl standard electrode) of the neutralized final solution is adjusted to 370 mV or less by adjusting the carbon grade in the nickel oxide ore as a raw material. A method for producing a nickel-cobalt mixed sulfide. 炭素品位が異なる複数のニッケル酸化鉱石ロットの混合比を変えることにより、前記原料としてのニッケル酸化鉱石中の炭素品位を調整することを特徴とする、請求項2に記載のニッケルコバルト混合硫化物の製造方法。 The nickel-cobalt mixed sulfide according to claim 2, wherein the carbon grade in the nickel oxide ore as a raw material is adjusted by changing the mixing ratio of a plurality of nickel oxide ore lots having different carbon grades. Production method.
JP2019005909A 2019-01-17 2019-01-17 Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy Active JP7095606B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019005909A JP7095606B2 (en) 2019-01-17 2019-01-17 Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy
PCT/JP2019/050726 WO2020149122A1 (en) 2019-01-17 2019-12-24 Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method
PH1/2021/551984A PH12021551984B1 (en) 2019-01-17 2019-12-24 Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005909A JP7095606B2 (en) 2019-01-17 2019-01-17 Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy

Publications (2)

Publication Number Publication Date
JP2020114936A JP2020114936A (en) 2020-07-30
JP7095606B2 true JP7095606B2 (en) 2022-07-05

Family

ID=71614376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005909A Active JP7095606B2 (en) 2019-01-17 2019-01-17 Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy

Country Status (3)

Country Link
JP (1) JP7095606B2 (en)
PH (1) PH12021551984B1 (en)
WO (1) WO2020149122A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476740B2 (en) 2020-09-23 2024-05-01 住友金属鉱山株式会社 Manufacturing method of nickel-cobalt mixed sulfide with low zinc sulfide content
JP7508977B2 (en) 2020-09-29 2024-07-02 住友金属鉱山株式会社 Dezincification treatment method, nickel oxide ore hydrometallurgy method
JP7585894B2 (en) 2021-03-11 2024-11-19 住友金属鉱山株式会社 Hydrometallurgical process for nickel oxide ore
CN114590850B (en) * 2022-03-17 2023-04-18 中国长江三峡集团有限公司 Vulcanized positive electrode material for sulfide all-solid-state lithium battery and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116279A1 (en) 2004-05-27 2005-12-08 Pacific Metals Co., Ltd. Method of recovering nickel and cobalt
JP2010037626A (en) 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2016194124A (en) 2015-04-01 2016-11-17 住友金属鉱山株式会社 Manufacturing method of mixed sulfide of nickel and cobalt and wet type refining method of nickel oxide ore
JP2018059167A (en) 2016-10-07 2018-04-12 住友金属鉱山株式会社 Wet type smelting method of nickel oxide ore
JP2018090889A (en) 2016-11-30 2018-06-14 住友金属鉱山株式会社 Wet type refining method for nickel oxide ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116279A1 (en) 2004-05-27 2005-12-08 Pacific Metals Co., Ltd. Method of recovering nickel and cobalt
JP2010037626A (en) 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2016194124A (en) 2015-04-01 2016-11-17 住友金属鉱山株式会社 Manufacturing method of mixed sulfide of nickel and cobalt and wet type refining method of nickel oxide ore
JP2018059167A (en) 2016-10-07 2018-04-12 住友金属鉱山株式会社 Wet type smelting method of nickel oxide ore
JP2018090889A (en) 2016-11-30 2018-06-14 住友金属鉱山株式会社 Wet type refining method for nickel oxide ore

Also Published As

Publication number Publication date
PH12021551984B1 (en) 2023-07-21
JP2020114936A (en) 2020-07-30
PH12021551984A1 (en) 2022-08-22
WO2020149122A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
JP7095606B2 (en) Method for producing nickel-cobalt mixed sulfide from nickel oxide ore by hydrometallurgy
JP5644878B2 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
AU2017218246B2 (en) Sulfuration treatment method, sulfide production method, and hydrometallurgical process for nickel oxide ore
CN113215399B (en) Oxygen pressure leaching method of nickel sulfide concentrate
JP5692458B1 (en) Solid-liquid separation treatment method and nickel oxide ore hydrometallurgy method
AU2012297844B2 (en) Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
WO2018066638A1 (en) Hydrometallurgical method for refining nickel oxide ore
CA2977456C (en) Wet smelting method for nickel oxide ore
JP5892301B2 (en) Neutralization method in the hydrometallurgy of nickel oxide ore
JP7005909B2 (en) Neutralization treatment method and turbidity reduction method of neutralization final liquid
JP6996328B2 (en) Dezincification method, wet smelting method of nickel oxide ore
JP2020076129A (en) Wet smelting method for nickel oxide ore suppressing precipitation of gypsum scale
JP2008231470A (en) Method for controlling reaction in sulphidizing process
JP2020028858A (en) Final neutralization method in wet refining process for nickel oxide ore
JP7200698B2 (en) Hydrometallurgical method for nickel oxide ore
JP7147362B2 (en) Method for reducing odor in hydrometallurgy of nickel oxide ore
JP2019157236A (en) Solid liquid separation treatment method, and wet refining method of nickel oxide ore
JP6981206B2 (en) Nickel sulfate aqueous solution dezincification system and its method
JP7585921B2 (en) Hydrometallurgical process for nickel oxide ore
JP2019077928A (en) Neutralization treatment method and wet refining method of nickel oxide ore
JP7035735B2 (en) Method for producing nickel-cobalt mixed sulfide from low nickel grade oxide ore
JP2019049020A (en) Wet type smelting method of nickel oxide ore
JP7508977B2 (en) Dezincification treatment method, nickel oxide ore hydrometallurgy method
JP7585928B2 (en) Hydrometallurgical process for nickel oxide ore
JP2025008671A (en) Method for controlling particle size of zinc sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150