[go: up one dir, main page]

JP7094118B2 - Sintered metal dynamic pressure bearing - Google Patents

Sintered metal dynamic pressure bearing Download PDF

Info

Publication number
JP7094118B2
JP7094118B2 JP2018041844A JP2018041844A JP7094118B2 JP 7094118 B2 JP7094118 B2 JP 7094118B2 JP 2018041844 A JP2018041844 A JP 2018041844A JP 2018041844 A JP2018041844 A JP 2018041844A JP 7094118 B2 JP7094118 B2 JP 7094118B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
radial
sintered metal
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041844A
Other languages
Japanese (ja)
Other versions
JP2019157918A (en
Inventor
正志 山郷
冬木 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2018041844A priority Critical patent/JP7094118B2/en
Publication of JP2019157918A publication Critical patent/JP2019157918A/en
Application granted granted Critical
Publication of JP7094118B2 publication Critical patent/JP7094118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、焼結金属製動圧軸受に関する。 The present invention relates to a sintered metal dynamic pressure bearing.

焼結金属軸受は、例えばその内部気孔に潤滑油を含浸させて使用されるものであって、内周に挿入された軸部の相対回転に伴い内部気孔に含浸された潤滑油が軸部との摺動部に滲み出して油膜を形成し、この油膜を介して軸部を回転支持するものである。このような焼結金属軸受は、その優れた回転精度および静粛性から、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDDや、CD、DVD、ブルーレイディスク用のディスク駆動装置におけるスピンドルモータ軸受用途として、あるいは、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、ファンモータ等の軸受用途として好適に利用されている。 Sintered metal bearings are used, for example, by impregnating their internal pores with lubricating oil, and the lubricating oil impregnated in the internal pores with the relative rotation of the shaft portion inserted in the inner circumference is used as the shaft portion. An oil film is formed by exuding to the sliding portion of the bearing, and the shaft portion is rotationally supported through the oil film. Due to its excellent rotational accuracy and quietness, such sintered metal bearings are more specifically used as bearing devices for motors mounted on various electric devices such as information devices, such as HDDs, CDs, and DVDs. , It is suitably used as a spindle motor bearing application in a disk drive device for a Blu-ray disk, or as a bearing application for a polygon scanner motor, a fan motor, etc. of a laser beam printer (LBP).

この種の焼結金属軸受においては、更なる静音性向上並びに高寿命化を狙って、当該軸受の内周面及び/又は軸方向端面に動圧発生部としての動圧溝(ラジアル動圧溝及び/又はスラスト動圧溝)を所定の態様で配列したものが知られている。この場合、動圧溝を成形する方法として、いわゆる動圧溝サイジングが提案されている。このサイジングでは、例えば軸受素材となる焼結体をダイの内周に圧入すると共に、上下パンチで焼結体を軸方向に圧迫することで、予め焼結体の内周に挿入しておいたサイジングピン外周の成形型に焼結体を食い付かせる。これにより、焼結体の内周面に成形型の形状、すなわちラジアル動圧溝に対応した形状が転写され、ラジアル動圧溝が所定の形状に成形される。また、この手段で形成されるラジアル動圧溝の溝深さは、通常、2~4μmである(例えば、特許文献1や特許文献2を参照)。 In this type of sintered metal bearing, a dynamic pressure groove (radial pressure groove) as a dynamic pressure generating portion is formed on the inner peripheral surface and / or the axial end surface of the bearing with the aim of further improving quietness and extending the life. And / or thrust dynamic pressure grooves) are arranged in a predetermined manner. In this case, so-called dynamic pressure groove sizing has been proposed as a method for forming the dynamic pressure groove. In this sizing, for example, the sintered body, which is the bearing material, is press-fitted into the inner circumference of the die, and the sintered body is pressed in the axial direction with the upper and lower punches, so that the sintered body is inserted into the inner circumference of the sintered body in advance. The sintered body is made to bite into the mold around the sizing pin. As a result, the shape of the molding die, that is, the shape corresponding to the radial dynamic pressure groove is transferred to the inner peripheral surface of the sintered body, and the radial dynamic pressure groove is formed into a predetermined shape. Further, the groove depth of the radial dynamic pressure groove formed by this means is usually 2 to 4 μm (see, for example, Patent Document 1 and Patent Document 2).

特許第3607492号公報Japanese Patent No. 3607492 特許第3602318号公報Japanese Patent No. 3602318

近年、上述した各種モータの消費電力の低減化のため、軸受のトルク低減が求められている。軸受のトルクは、例えば回転支持すべき軸部との間のラジアル軸受隙間を大きくすることで、低減化することができるが、単にラジアル軸受隙間を大きくしただけでは、軸受剛性(ここでいう軸受剛性とは、回転支持すべき軸部のラジアル方向への振れにくさをいう。)の低下を招く。一方で、軸受剛性については、軸受内周面に設けた動圧溝(ラジアル動圧溝)の溝深さを、ラジアル軸受隙間の大きさに近づけるほど軸受剛性が高まるものと考えられる。この考えに則れば、軸受のトルク低減のためには、ラジアル軸受隙間を広げるだけでなく、ラジアル軸受隙間に面するラジアル動圧溝の溝深さをこれまで以上に大きくする必要がある。 In recent years, in order to reduce the power consumption of the various motors described above, it has been required to reduce the torque of the bearing. The bearing torque can be reduced, for example, by increasing the radial bearing clearance between the shaft and the shaft to be rotationally supported, but simply increasing the radial bearing clearance will result in bearing rigidity (bearing here). Rigidity refers to the difficulty of swinging the shaft portion to be rotationally supported in the radial direction.) On the other hand, regarding the bearing rigidity, it is considered that the bearing rigidity increases as the groove depth of the dynamic pressure groove (radial pressure groove) provided on the inner peripheral surface of the bearing approaches the size of the radial bearing gap. According to this idea, in order to reduce the torque of the bearing, it is necessary not only to widen the radial bearing gap but also to increase the groove depth of the radial dynamic groove facing the radial bearing gap more than ever.

ここで、特許文献2には、焼結金属軸受の真密度比と、溝成形後のスプリングバック量(直径量)との関係を実験的に求めた結果が記載されている(特許文献2の図8を参照)。ラジアル動圧溝を傷つけることなく軸受を成形金型から取り出すためには、スプリングバック量の半径量がラジアル動圧溝の溝深さよりも大きい必要があるが、スプリングバック量は、軸受の真密度比と相関関係にある。軸受の真密度比は、軸受自体の強度や焼結後の成形性に影響するため、現実的にとり得る範囲はある程度決まっている。よって、現実的にとり得る範囲内で軸受のスプリングバック量を設定した場合には、成形可能なラジアル動圧溝の溝深さは最大で4μm程度(軸受のサイズによってはそれ以下)となり、これ以上溝深さを大きくすることは困難であった。 Here, Patent Document 2 describes the result of experimentally obtaining the relationship between the true density ratio of the sintered metal bearing and the springback amount (diameter amount) after groove formation (Patent Document 2). See FIG. 8). In order to remove the bearing from the molding die without damaging the radial dynamic pressure groove, the radius of the springback amount must be larger than the groove depth of the radial dynamic pressure groove, but the springback amount is the true density of the bearing. It correlates with the ratio. Since the true density ratio of a bearing affects the strength of the bearing itself and the formability after sintering, the range that can be realistically determined is determined to some extent. Therefore, when the springback amount of the bearing is set within the range that can be realistically taken, the groove depth of the radial dynamic pressure groove that can be formed is about 4 μm at the maximum (or less depending on the size of the bearing), which is more than this. It was difficult to increase the groove depth.

以上の実情に鑑み、本発明では、軸受を傷つけることなく現行レベルよりも大きな溝深さのラジアル動圧溝を形成することで、軸受剛性の確保と軸受トルクの低減化を共に達成可能とすることを、解決すべき技術課題とする。 In view of the above circumstances, in the present invention, it is possible to secure the bearing rigidity and reduce the bearing torque by forming the radial dynamic pressure groove having a groove depth larger than the current level without damaging the bearing. This is a technical issue to be solved.

前記課題の解決は、本発明に係る焼結金属製動圧軸受によって達成される。すなわち、この軸受は、焼結金属で形成され、内周にラジアル軸受面を備えた焼結金属製動圧軸受であって、ラジアル軸受面に、被支持部との間のラジアル軸受隙間に潤滑流体の動圧作用を生じるラジアル動圧溝が型成形により形成される焼結金属製動圧軸受において、ヤング率が75GPa以下でかつ40GPa以上であって、ラジアル動圧溝の溝深さが4μmより大きい点をもって特徴付けられる。 The solution to the above problems is achieved by the sintered metal dynamic pressure bearing according to the present invention. That is, this bearing is a sintered metal dynamic pressure bearing formed of sintered metal and having a radial bearing surface on the inner circumference, and lubricates the radial bearing surface and the radial bearing gap between the supported portion. In a sintered metal dynamic pressure bearing in which the radial dynamic pressure groove that causes the dynamic pressure action of the fluid is formed by molding, the young ratio is 75 GPa or less and 40 GPa or more, and the groove depth of the radial pressure groove is 4 μm. Characterized by a larger point.

このように、本発明は、基本的に被支持部(軸部など)と非接触の状態で使用されるが故に、これまであまり考慮されることのなかった焼結金属製動圧軸受のヤング率に着目し、ヤング率とラジアル動圧溝の溝深さとが所定の関係を満たす場合に、当該軸受を傷つけることなく従来よりも深いラジアル動圧溝を得ることができる、との知見に基づいて成されたものである。すなわち、ヤング率を所定の範囲内に調整し、型成形により形成されるラジアル動圧溝の溝深さを4μmより大きくした焼結金属製の動圧軸受であれば、ラジアル動圧溝を精度よく成形でき、かつ溝深さが4μmを超える場合であっても、ラジアル動圧溝をなるべく傷付けることなく、動圧軸受を成形金型から取り出すことができる。以上より、本発明に係る焼結金属製動圧軸受によれば、軸受を傷つけることなく現行レベルよりも大きな溝深さのラジアル動圧溝を形成することができるので、ラジアル軸受隙間を現行レベルよりも広げて、軸受トルクの低減化を図りつつも、ラジアル軸受隙間の拡張に伴う軸受剛性の低下を、ラジアル動圧溝深さの増大化により補うことができる。従って、軸受剛性の確保と軸受トルクの低減化を共に達成することが可能になる。 As described above, since the present invention is basically used in a non-contact state with the supported portion (shaft portion, etc.), the Young's modulus of a sintered metal dynamic pressure bearing, which has not been considered so far, has not been considered so much. Focusing on the rate, based on the finding that when the Young's modulus and the groove depth of the radial dynamic pressure groove satisfy a predetermined relationship, a deeper radial dynamic pressure groove can be obtained without damaging the bearing. It was made. That is, if the dynamic pressure bearing is made of sintered metal in which the Young's ratio is adjusted within a predetermined range and the groove depth of the radial dynamic pressure groove formed by die forming is made larger than 4 μm, the radial pressure groove is accurate. Even when the molding can be performed well and the groove depth exceeds 4 μm, the dynamic pressure bearing can be taken out from the molding die without damaging the radial dynamic pressure groove as much as possible. From the above, according to the sintered metal dynamic pressure bearing according to the present invention, it is possible to form a radial dynamic pressure groove having a groove depth larger than the current level without damaging the bearing. It is possible to compensate for the decrease in bearing rigidity due to the expansion of the radial bearing gap by increasing the depth of the radial dynamic groove while expanding the bearing torque. Therefore, it is possible to both secure the bearing rigidity and reduce the bearing torque.

また、本発明に係る焼結金属製動圧軸受においては、ラジアル動圧溝の溝深さが5μm以上であってもよい。 Further, in the sintered metal dynamic pressure bearing according to the present invention, the groove depth of the radial dynamic pressure groove may be 5 μm or more.

本発明のように、ヤング率が75GPa以下でかつ40GPa以上を示す焼結金属製動圧軸受であれば、溝深さが5μm以上のラジアル動圧溝であっても、ラジアル動圧溝をなるべく傷つけることなく、動圧軸受を成形金型から取り出すことができる。よって、ラジアル動圧溝の溝深さを5μm以上にすることで、その分、ラジアル軸受隙間を現行レベルよりも広げることができ、これにより軸受トルクの更なる低減化を図ることが可能となる。 In the case of a sintered metal dynamic pressure bearing having a Young ratio of 75 GPa or less and 40 GPa or more as in the present invention, even if the groove depth is 5 μm or more, the radial dynamic pressure groove can be formed as much as possible. The dynamic pressure bearing can be taken out from the molding die without damaging it. Therefore, by setting the groove depth of the radial dynamic pressure groove to 5 μm or more, the radial bearing gap can be widened from the current level by that amount, which makes it possible to further reduce the bearing torque. ..

また、本発明に係る焼結金属製動圧軸受においては、ラジアル動圧溝の溝深さに対するラジアル軸受隙間の大きさの比が、0.7以上でかつ1.3以下であってもよい。 Further, in the sintered metal dynamic pressure bearing according to the present invention, the ratio of the size of the radial bearing gap to the groove depth of the radial dynamic pressure groove may be 0.7 or more and 1.3 or less. ..

このようにラジアル軸受隙間の大きさを、ラジアル動圧溝の溝深さに応じて所定の幅をもたせて設定することにより、例えば量産品におけるラジアル動圧溝の溝深さのばらつきを踏まえつつ、軸受トルクの低減化と、ラジアル軸受隙間の拡張に伴う軸受剛性の低下抑制を効果的に図ることが可能となる。 By setting the size of the radial bearing gap with a predetermined width according to the groove depth of the radial dynamic pressure groove in this way, for example, while taking into account the variation in the groove depth of the radial dynamic pressure groove in mass-produced products. It is possible to effectively reduce the bearing torque and suppress the decrease in bearing rigidity due to the expansion of the radial bearing gap.

また、本発明に係る焼結金属製動圧軸受においては、真密度比が80%以上でかつ95%以下であってもよい。ここでいう「真密度比」とは、焼結金属製動圧軸受をなす多孔質体の密度を、その多孔質体に気孔がないとした仮定した場合の密度で除した値(百分率)を意味する。 Further, in the sintered metal dynamic pressure bearing according to the present invention, the true density ratio may be 80% or more and 95% or less. The "true density ratio" here is a value (percentage) obtained by dividing the density of a porous body made of a sintered metal dynamic pressure bearing by the density assuming that the porous body has no pores. means.

焼結金属製動圧軸受の真密度比を80%以上にすることで、当該軸受の強度を高めることができると共に、軸受の寸法(特に内径寸法)の変動を抑えることができる。また、真密度比を95%以下に留めることで、焼結後の成形性を確保すると共に、内部気孔が独立気孔となる事態を可及的に防止して、内部気孔に所要量の潤滑油を含浸させることができる。また、真密度比を上記範囲内に設定することで、軸受を傷つけることなく4μmを超える溝深さのラジアル動圧溝を成形可能なだけのスプリングバック量を確保することが可能となる。 By setting the true density ratio of the sintered metal dynamic pressure bearing to 80% or more, the strength of the bearing can be increased and fluctuations in the bearing dimensions (particularly the inner diameter dimension) can be suppressed. In addition, by keeping the true density ratio to 95% or less, moldability after sintering is ensured, and the situation where the internal pores become independent pores is prevented as much as possible, and the required amount of lubricating oil is added to the internal pores. Can be impregnated. Further, by setting the true density ratio within the above range, it is possible to secure a springback amount sufficient to form a radial dynamic pressure groove having a groove depth exceeding 4 μm without damaging the bearing.

また、本発明に係る焼結金属製動圧軸受においては、軸方向端面に、被支持部との間のスラスト軸受隙間に潤滑流体の動圧作用を生じるスラスト動圧溝が型成形により形成されてもよい。 Further, in the sintered metal dynamic pressure bearing according to the present invention, a thrust dynamic pressure groove that causes a dynamic pressure action of the lubricating fluid is formed in the thrust bearing gap between the supported portion and the end face in the axial direction by molding. You may.

本発明のように、ヤング率が75GPa以下でかつ40GPa以上を示す焼結金属製動圧軸受であれば、ラジアル動圧溝だけでなく、スラスト動圧溝についても精度よく型成形で形成することができる。よって、ラジアル軸受性能とスラスト軸受性能の双方に優れた動圧軸受を得ることが可能となる。 In the case of a sintered metal dynamic pressure bearing having a Young's modulus of 75 GPa or less and 40 GPa or more as in the present invention, not only the radial dynamic pressure groove but also the thrust dynamic pressure groove should be formed by molding with high accuracy. Can be done. Therefore, it is possible to obtain a dynamic pressure bearing having excellent both radial bearing performance and thrust bearing performance.

また、本発明に係る焼結金属製動圧軸受においては、銅と鉄を主成分とする銅鉄系の焼結金属で形成されていてもよい。 Further, the sintered metal dynamic pressure bearing according to the present invention may be formed of a copper-iron-based sintered metal containing copper and iron as main components.

このように軸受を、銅と鉄を主成分とする銅鉄系の焼結金属で形成することによって、銅(純銅組織又は銅合金組織)が有する成形性の良さと、鉄(純鉄組織又は鉄合金組織)が有する高い硬度を上記軸受に付与することができる。よって、ラジアル動圧溝を型成形により精度よく形成しつつ、ラジアル動圧溝を含むラジアル軸受面の耐摩耗性を高めることが可能となる。 By forming the bearing from a copper-iron-based sintered metal containing copper and iron as main components in this way, the good formability of copper (pure copper structure or copper alloy structure) and iron (pure iron structure or The high hardness of the iron alloy structure) can be imparted to the above bearing. Therefore, it is possible to improve the wear resistance of the radial bearing surface including the radial dynamic pressure groove while accurately forming the radial dynamic pressure groove by molding.

また、本発明に係る焼結金属製動圧軸受においては、潤滑流体としての潤滑油が内部気孔に含浸されてなるものであってもよい。 Further, in the sintered metal dynamic pressure bearing according to the present invention, the internal pores may be impregnated with lubricating oil as a lubricating fluid.

このように、内部空孔に潤滑油を含浸させた構造とすれば、上記軸受の表面開孔からの潤滑油の滲み出しにより、ラジアル軸受隙間及びその周辺を潤沢な潤滑油で満たすことができる。よって、ラジアル軸受性能を安定的に維持することが可能となる。 In this way, if the internal pores are impregnated with lubricating oil, the radial bearing gap and its surroundings can be filled with abundant lubricating oil due to the exudation of the lubricating oil from the surface openings of the bearing. .. Therefore, it is possible to stably maintain the radial bearing performance.

以上の説明に係る焼結金属製動圧軸受は、上述のように、軸受剛性の確保と軸受トルクの低減化を共に達成可能であるから、例えば上記焼結金属製動圧軸受と、焼結金属製動圧軸受の内部に挿入される被支持部としての軸部とを備えた流体動圧軸受装置として、さらにはこの流体動圧軸受装置を備えたモータとして、好適に提供可能である。 As described above, the sintered metal dynamic pressure bearing according to the above description can both secure the bearing rigidity and reduce the bearing torque. Therefore, for example, the sintered metal dynamic pressure bearing and the sintered metal dynamic pressure bearing are sintered. It can be suitably provided as a fluid dynamic bearing device provided with a shaft portion as a supported portion inserted inside the metal dynamic pressure bearing, and further as a motor provided with the fluid dynamic pressure bearing device.

以上より、本発明によれば、軸受を傷つけることなく現行レベルよりも大きな溝深さのラジアル動圧溝を形成することで、軸受剛性の確保と軸受トルクの低減化を共に達成可能とすることが可能となる。 Based on the above, according to the present invention, it is possible to secure bearing rigidity and reduce bearing torque by forming a radial dynamic pressure groove having a groove depth larger than the current level without damaging the bearing. Is possible.

本発明の一実施形態に係るモータの断面図である。It is sectional drawing of the motor which concerns on one Embodiment of this invention. 図1に示す流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus shown in FIG. 図2に示す動圧軸受の断面図である。It is sectional drawing of the dynamic pressure bearing shown in FIG. 図3のX-X断面図である。FIG. 3 is a cross-sectional view taken along the line XX of FIG. 図3に示す動圧軸受の軸方向端面図である。FIG. 3 is an axial end view of the dynamic pressure bearing shown in FIG. 図3に示すラジアル動圧溝を型成形する工程を説明するための図で、(a)はサインジングピンを挿入する前、(b)は焼結体のダイへの圧入開始時における焼結体の断面図である。It is a figure for demonstrating the process of molding a radial dynamic pressure groove shown in FIG. 3, (a) is before inserting a signing pin, (b) is sintering at the start of press-fitting into a die of a sintered body. It is a cross-sectional view of a body. 図3に示すラジアル動圧溝を型成形する工程を説明するための図で、(a)は焼結体への圧入動作が完了した時点、(b)は焼結体をダイから脱型した時点における断面図である。It is a figure for demonstrating the process of molding a radial dynamic pressure groove shown in FIG. It is a cross-sectional view at a time point.

以下、本発明の一実施形態を図面に基づき説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態に係るスピンドルモータの一構成例を示している。このスピンドルモータは、例えばHDDのディスク駆動装置に用いられるもので、流体動圧軸受装置1と、流体動圧軸受装置1の軸部材2に固定されたディスクハブ3と、例えば半径方向のギャップを介して対向しているステータコイル4a及びロータマグネット4bとからなる駆動部4と、ブラケット5とを備えている。ステータコイル4aはブラケット5に固定され、ロータマグネット4bはディスクハブ3に固定される。流体動圧軸受装置1は、ブラケット5の内周に固定される。ディスクハブ3には、所定枚数(図1では2枚)のディスク6が保持される。ステータコイル4aに通電すると、ロータマグネット4bが回転し、これに伴って、ディスクハブ3に保持されたディスク6が軸部材2と一体に回転する。 FIG. 1 shows an example of a configuration of a spindle motor according to the present embodiment. This spindle motor is used, for example, in a disk drive device of an HDD, and has a gap between a fluid dynamic pressure bearing device 1 and a disk hub 3 fixed to a shaft member 2 of the fluid dynamic pressure bearing device 1, for example, in a radial direction. It includes a drive unit 4 including a stator coil 4a and a rotor magnet 4b facing each other, and a bracket 5. The stator coil 4a is fixed to the bracket 5, and the rotor magnet 4b is fixed to the disc hub 3. The fluid dynamic bearing device 1 is fixed to the inner circumference of the bracket 5. A predetermined number of discs (two in FIG. 1) 6 are held in the disc hub 3. When the stator coil 4a is energized, the rotor magnet 4b rotates, and along with this, the disk 6 held by the disk hub 3 rotates integrally with the shaft member 2.

図2は、本発明の一実施形態に係る流体動圧軸受装置1の断面図を示している。この流体動圧軸受装置1は、焼結金属製の動圧軸受8と、動圧軸受8の内周に挿入され、動圧軸受8に対して回転する軸部材2と、動圧軸受8を内周に保持した有底筒状のハウジング7と、ハウジング7の開口部をシールするシール部材9とを備える。ハウジング7の内部空間には、潤滑流体としての潤滑油(密な散点ハッチングで示す)が充填されている。以下の説明においては、便宜上、シール部材9が設けられた側を下側、その軸方向反対側を下側とする。 FIG. 2 shows a cross-sectional view of the hydrodynamic bearing device 1 according to the embodiment of the present invention. This fluid dynamic pressure bearing device 1 includes a dynamic pressure bearing 8 made of sintered metal, a shaft member 2 inserted in the inner circumference of the dynamic pressure bearing 8 and rotating with respect to the dynamic pressure bearing 8, and the dynamic pressure bearing 8. A bottomed tubular housing 7 held on the inner circumference and a sealing member 9 for sealing the opening of the housing 7 are provided. The internal space of the housing 7 is filled with lubricating oil (indicated by dense scattered spot hatching) as a lubricating fluid. In the following description, for convenience, the side on which the seal member 9 is provided is referred to as the lower side, and the side opposite to the axial direction thereof is referred to as the lower side.

ハウジング7は、円筒状の筒部7aと、筒部7aの下端開口を閉塞する底部7bとを一体に有する有底筒状をなしている。筒部7aと底部7bの境界部には段部7cが設けられており、この段部7cの上端面に動圧軸受8の下端面8bを当接させることにより、ハウジング7に対する動圧軸受8の軸方向位置が設定される。 The housing 7 has a bottomed tubular shape having a cylindrical tubular portion 7a and a bottom portion 7b that integrally closes the lower end opening of the tubular portion 7a. A stepped portion 7c is provided at the boundary between the tubular portion 7a and the bottom portion 7b, and the dynamic pressure bearing 8 with respect to the housing 7 is provided by abutting the lower end surface 8b of the dynamic pressure bearing 8 on the upper end surface of the stepped portion 7c. The axial position of is set.

底部7bの内底面7b1には、対向する軸部材2のフランジ部2bの下端面2b2との間にスラスト軸受部T2のスラスト軸受隙間を形成する円環状のスラスト軸受面が設けられている。このスラスト軸受面には、スラスト軸受部T2のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)が設けられている。図示は省略するが、このスラスト動圧発生部は、後述するスラスト動圧発生部Bと同様に、例えば、スパイラル形状の動圧溝と、この動圧溝を区画する凸状の丘部とを円周方向に交互に配して構成される(図5を参照)。 The inner bottom surface 7b1 of the bottom portion 7b is provided with an annular thrust bearing surface that forms a thrust bearing gap of the thrust bearing portion T2 with the lower end surface 2b2 of the flange portion 2b of the facing shaft member 2. The thrust bearing surface is provided with a dynamic pressure generating portion (thrust dynamic pressure generating portion) for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap of the thrust bearing portion T2. Although not shown, the thrust dynamic pressure generating portion has, for example, a spiral-shaped dynamic pressure groove and a convex hill portion for partitioning the dynamic pressure groove, similarly to the thrust dynamic pressure generating portion B described later. It is configured by alternately arranging it in the circumferential direction (see FIG. 5).

シール部材9は円環状に形成され、例えばハウジング7の筒部7aの内周面7a1に適宜の手段で固定される。シール部材9の内周面9aは、下方に向けて漸次縮径したテーパ面状に形成され、対向する軸部材2の外周面2a1との間に下方に向けて径方向寸法を漸次縮小させたシール空間Sを形成する。シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間Sの軸方向範囲内に保持する。 The seal member 9 is formed in an annular shape, and is fixed to, for example, the inner peripheral surface 7a1 of the tubular portion 7a of the housing 7 by an appropriate means. The inner peripheral surface 9a of the seal member 9 is formed in a tapered surface shape whose diameter is gradually reduced downward, and the radial dimension is gradually reduced downward between the inner peripheral surface 9a and the outer peripheral surface 2a1 of the opposing shaft member 2. The seal space S is formed. The seal space S has a buffer function of absorbing the amount of volume change due to the temperature change of the lubricating oil filled in the internal space of the housing 7, and always seals the oil level of the lubricating oil within the range of the assumed temperature change. It is kept within the axial range of the space S.

軸部材2は、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備える。軸部2aの外周面2a1のうち、動圧軸受8の内周面8aと対向する部分は、相対的に小径な円筒面状の中逃げ部2cが設けられている点を除いて凹凸のない平滑な円筒面に形成されている。また、フランジ部2bの上端面2b1及び下端面2b2は平滑な平坦面状に形成されている。 The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. Of the outer peripheral surface 2a1 of the shaft portion 2a, the portion facing the inner peripheral surface 8a of the dynamic pressure bearing 8 is not uneven except that a cylindrical escape portion 2c having a relatively small diameter is provided. It is formed on a smooth cylindrical surface. Further, the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b are formed in a smooth flat surface shape.

動圧軸受8は、焼結金属の多孔質体で円筒状に形成される。この多孔質体を構成する金属組織は、後述するヤング率の規定を満たす限りにおいて、任意に採用可能であり、例えば、純銅(工業用純銅を含む)又は銅合金の金属組織と、純鉄(工業用純鉄を含む)又はステンレス鋼などの鉄合金の金属組織とを主に含む金属組織が採用可能である。また、動圧軸受8の内部気孔には、潤滑油が含浸されていてもよい。 The dynamic pressure bearing 8 is formed of a porous body of sintered metal in a cylindrical shape. The metal structure constituting this porous body can be arbitrarily adopted as long as it satisfies the regulation of the Young ratio described later, and for example, a metal structure of pure copper (including industrial pure copper) or a copper alloy and pure iron (pure iron (including industrial pure copper)). A metal structure mainly containing the metal structure of an iron alloy such as (including industrial pure iron) or iron alloy such as stainless steel can be adopted. Further, the internal pores of the dynamic pressure bearing 8 may be impregnated with lubricating oil.

動圧軸受8の内周面8aには、対向する軸部2aの外周面2a1との間にラジアル軸受部R1,R2のラジアル軸受隙間を形成する円筒状のラジアル軸受面が軸方向の二箇所に離間して設けられている。2つのラジアル軸受面には、図3に示すように、ラジアル軸受隙間内の潤滑油に動圧作用を発生させるためのラジアル動圧発生部A1,A2がそれぞれ形成されている。ラジアル動圧発生部A1,A2はそれぞれ、軸方向に対して傾斜した複数の上側動圧溝Aa1と、上側動圧溝Aa1とは反対方向に傾斜した複数の下側動圧溝Aa2と、これらラジアル動圧溝Aa1,Aa2を区画する凸状の丘部とで構成され、ラジアル動圧溝Aa1,Aa2は全体としてヘリングボーン形状に配列されている。丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下のラジアル動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。 On the inner peripheral surface 8a of the hydraulic bearing 8, there are two cylindrical radial bearing surfaces forming radial bearing gaps of the radial bearing portions R1 and R2 between the inner peripheral surface 8a of the shaft portion 2a facing each other and the outer peripheral surface 2a1 of the shaft portion 2a. It is provided apart from each other. As shown in FIG. 3, radial dynamic pressure generating portions A1 and A2 for generating a dynamic pressure action on the lubricating oil in the radial bearing gap are formed on the two radial bearing surfaces, respectively. The radial dynamic pressure generating portions A1 and A2 each have a plurality of upper dynamic pressure grooves Aa1 inclined in the axial direction and a plurality of lower dynamic pressure grooves Aa2 inclined in the direction opposite to the upper dynamic pressure groove Aa1. It is composed of convex hills that partition the radial dynamic pressure grooves Aa1 and Aa2, and the radial dynamic pressure grooves Aa1 and Aa2 are arranged in a herringbone shape as a whole. The hills are provided between the inclined hills Ab provided between the adjacent dynamic pressure grooves in the circumferential direction and the upper and lower radial dynamic pressure grooves Aa1 and Aa2, and the annular hills Ac having substantially the same diameter as the inclined hills Ab. It consists of.

ここで、図4に示すように、動圧軸受8の内周面8a(ラジアル軸受面)に設けられたラジアル動圧溝Aa1,Aa2の溝深さd1,d2はともに4μmより大きい。また、図4中の二点鎖線で示す軸部2aの外周面2a1との間のラジアル軸受隙間の大きさG(半径量)は、ラジアル動圧溝Aa1,Aa2の溝深さd1,d2を1としたとき、0.7以上でかつ1.3以下に設定され、好ましくは0.8以上でかつ1.2以下に設定される。なお、ラジアル動圧溝Aa1,Aa2の溝深さd1,d2は、例えば真円度測定機を用いて内周面8aの真円度形状(閉ループ状の曲線)を測定した後、測定した真円度形状を内周面8aが平担面となるように展開し、互いに隣り合う傾斜丘部Abとラジアル動圧溝Aa1(Aa2)との高低差を溝深さd1(d2)として読み取ることにより取得することができる。 Here, as shown in FIG. 4, the groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2 provided on the inner peripheral surface 8a (radial bearing surface) of the dynamic pressure bearing 8 are both larger than 4 μm. Further, the size G (radial amount) of the radial bearing gap between the shaft portion 2a and the outer peripheral surface 2a1 shown by the two-dot chain line in FIG. 4 is the groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2. When it is 1, it is set to 0.7 or more and 1.3 or less, and preferably 0.8 or more and 1.2 or less. The groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2 are measured after measuring the roundness shape (closed loop-shaped curve) of the inner peripheral surface 8a using, for example, a roundness measuring machine. The circular shape is developed so that the inner peripheral surface 8a becomes a flat bearing surface, and the height difference between the inclined hill portion Ab adjacent to each other and the radial dynamic pressure groove Aa1 (Aa2) is read as the groove depth d1 (d2). Can be obtained by.

動圧軸受8の下端面8bには、対向するフランジ部2bの上端面2b1との間にスラスト軸受部T1のスラスト軸受隙間を形成する円環状のスラスト軸受面が設けられている。このスラスト軸受面には、図5に示すように、スラスト軸受部T1のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)Bが形成されている。図示例のスラスト動圧発生部Bは、スパイラル形状のスラスト動圧溝Baと、スラスト動圧溝Baを区画する凸状の丘部Bbとを円周方向に交互に配列することで構成される。 The lower end surface 8b of the dynamic pressure bearing 8 is provided with an annular thrust bearing surface that forms a thrust bearing gap of the thrust bearing portion T1 between the lower end surface 8b and the upper end surface 2b1 of the facing flange portion 2b. As shown in FIG. 5, a dynamic pressure generating portion (thrust dynamic pressure generating portion) B for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap of the thrust bearing portion T1 is formed on the thrust bearing surface. ing. The thrust dynamic pressure generating portion B of the illustrated example is configured by alternately arranging a spiral-shaped thrust dynamic pressure groove Ba and a convex hill portion Bb for partitioning the thrust dynamic pressure groove Ba in the circumferential direction. ..

上記構成の動圧軸受8は、ヤング率が75GPa以下でかつ40GPa以上となるように作製される。ここで、ヤング率は、JPMA M 10-1997 に規定される方法で測定することができる。また、真密度比は、80%以上でかつ95%以下となるように作製される。以下、上記構成の動圧軸受8の製造方法の一例を説明する。 The dynamic pressure bearing 8 having the above configuration is manufactured so that the Young's modulus is 75 GPa or less and 40 GPa or more. Here, Young's modulus can be measured by the method specified in JPMA M 10-1997. Further, the true density ratio is manufactured so as to be 80% or more and 95% or less. Hereinafter, an example of a method for manufacturing the dynamic pressure bearing 8 having the above configuration will be described.

本発明に係る動圧軸受8は、原料粉末を圧縮成形して圧粉体を得る圧粉成形工程(S1)と、圧粉体を焼結して焼結体8’を得る焼結工程(S2)と、焼結体8’にサイジングを施して、焼結体8’の少なくとも内周面8aに動圧発生部としてのラジアル動圧溝Aa1,Aa2を成形する動圧溝サイジング工程(S3)とを主に備える。必要に応じて、焼結工程(S2)の後で動圧溝サイジング工程(S3)の前に、焼結体8’に寸法サイジングを施す寸法サイジング工程と、焼結体8’の内周面8aに回転サイジングを施す回転サイジング工程とを設けてもよい。 The dynamic pressure bearing 8 according to the present invention has a compaction forming step (S1) in which a raw material powder is compression-molded to obtain a green compact, and a sintering step (S1) in which the green compact is sintered to obtain a sintered body 8'. S2) and the dynamic pressure groove sizing step (S3) in which the sintered body 8'is sized to form radial dynamic pressure grooves Aa1 and Aa2 as dynamic pressure generating portions on at least the inner peripheral surface 8a of the sintered body 8'. ) And mainly. If necessary, a dimensional sizing step of sizing the sintered body 8'after the sintering step (S2) and before the dynamic pressure groove sizing step (S3), and an inner peripheral surface of the sintered body 8'. 8a may be provided with a rotation sizing step for applying rotation sizing.

(S1)圧粉成形工程
まず、最終的な製品となる動圧軸受8の材料となる原料粉末を用意し、これを金型プレス成形により所定の形状に圧縮成形する。具体的には、図示は省略するが、ダイと、ダイの孔内に挿入配置されるコアピンと、ダイとコアピンとの間に配設され、ダイに対して昇降可能に構成された下パンチ、および、ダイと下パンチの何れに対しても相対変位(昇降)可能に構成された上パンチとで構成される成形金型を用いて原料粉末の圧縮成形を行う。この場合、ダイの内周面とコアピンの外周面、および、下パンチの上端面とで区画形成される空間に原料粉末を充填し、然る後、下パンチを固定した状態で上パンチを下降させ、充填状態の原料粉末を軸方向に加圧する。そして、加圧しながら所定の位置まで上パンチを下降させ、原料粉末を所定の軸方向寸法にまで圧縮することで、圧粉体が成形される。
(S1) Powder forming step First, a raw material powder used as a material for a dynamic pressure bearing 8 to be a final product is prepared, and this is compression-molded into a predetermined shape by die press forming. Specifically, although not shown, a lower punch, which is arranged between the die, the core pin inserted in the hole of the die, and the die and the core pin, and is configured to be able to move up and down with respect to the die. The raw material powder is compression-molded using a molding die composed of an upper punch configured to be relatively displaced (elevated) with respect to both the die and the lower punch. In this case, the raw material powder is filled in the space formed by the inner peripheral surface of the die, the outer peripheral surface of the core pin, and the upper end surface of the lower punch, and then the upper punch is lowered with the lower punch fixed. Then, the raw material powder in the filled state is pressurized in the axial direction. Then, the upper punch is lowered to a predetermined position while pressurizing, and the raw material powder is compressed to a predetermined axial dimension, whereby the green compact is formed.

ここで、原料粉末には、任意の金属粉末を一種類又は二種類以上含むものが使用される。本実施形態では、純銅粉末と、鉄合金粉末としてのステンレス鋼粉末とを主に含む原料粉末が使用される。もちろん、ステンレス鋼粉末に代えて純鉄粉末を使用してもよいし、ステンレス鋼以外の鉄合金粉末を使用してもよい。あるいは、ステンレス鋼粉末等の鉄合金粉末と純鉄粉末との混合粉末を、純銅粉末に加えたものを原料粉末として使用してもよい。また、上述した金属粉末の配合比は、動圧軸受8のヤング率が、本発明に規定の数値範囲(75GPa以下でかつ40GPa以上)内である限りにおいて任意に設定可能である。例えば、原料粉末が、純銅粉末と、ステンレス鋼粉末とを含む場合、純銅粉末:30~85wt%、ステンレス鋼粉末:15~70wt%となるように配合比を定めるのがよい。あるいは、原料粉末が、純銅粉末と、ステンレス鋼粉末、及び純鉄粉末とを含む場合、純銅粉末+純鉄粉末:30~85wt%、ステンレス鋼粉末:15~70wt%となるように配合比を定めるのがよい。もちろん、原料粉末には、上述した金属粉末以外の物質を配合することもでき、例えば黒鉛や、アミドワックス系の固体潤滑剤粉末などを配合してもよい。 Here, as the raw material powder, one containing one kind or two or more kinds of arbitrary metal powders is used. In this embodiment, a raw material powder mainly containing pure copper powder and stainless steel powder as an iron alloy powder is used. Of course, pure iron powder may be used instead of stainless steel powder, or iron alloy powder other than stainless steel may be used. Alternatively, a mixture powder of an iron alloy powder such as stainless steel powder and pure iron powder added to pure copper powder may be used as a raw material powder. Further, the compounding ratio of the metal powder described above can be arbitrarily set as long as the Young's modulus of the dynamic pressure bearing 8 is within the numerical range (75 GPa or less and 40 GPa or more) specified in the present invention. For example, when the raw material powder contains pure copper powder and stainless steel powder, it is preferable to set the blending ratio so that the pure copper powder: 30 to 85 wt% and the stainless steel powder: 15 to 70 wt%. Alternatively, when the raw material powder contains pure copper powder, stainless steel powder, and pure iron powder, the blending ratio is adjusted so that pure copper powder + pure iron powder: 30 to 85 wt% and stainless steel powder: 15 to 70 wt%. It is better to determine. Of course, a substance other than the above-mentioned metal powder may be blended in the raw material powder, and for example, graphite or an amide wax-based solid lubricant powder may be blended.

(S2)焼結工程
上述のようにして、圧粉体を得た後、この圧粉体を原料粉末、特に原料粉末に含まれる金属粉末の組成に応じた温度で焼結することにより、焼結体8’を得る(図6を参照)。例えば、上述のように原料粉末が純銅粉末を含む場合、焼結時の温度は750℃以上でかつ銅の融点未満の温度に設定される。
(S2) Sintering Step After obtaining the green compact as described above, the green compact is baked by sintering at a temperature corresponding to the composition of the raw material powder, particularly the metal powder contained in the raw material powder. Obtain a bundling 8'(see Figure 6). For example, when the raw material powder contains pure copper powder as described above, the temperature at the time of sintering is set to a temperature of 750 ° C. or higher and lower than the melting point of copper.

(S3)動圧溝サイジング工程
上記工程S1,S2を経て得られた焼結体8’に対して所定の型成形(動圧溝サイジング)を施すことで、焼結体8’の内周面8aにラジアル動圧発生部A1,A2をなすラジアル動圧溝Aa1,Aa2配列領域を形成する。ここで使用する成形装置20は、図6に示すように、焼結体8’の圧入穴21aを有するダイ21と、ダイ21の圧入穴21aに挿入可能に配置されるサイジングピン22と、ダイ21とサイジングピン22との間に配設され、ダイ21に対して相対的に昇降可能に構成された下パンチ23、および、ダイ21と下パンチ23の何れに対しても昇降可能に構成された上パンチ24とを有する。この場合、ダイ21の圧入穴21aの内径寸法は、サイジングすべき焼結体8’の圧入代に応じて適宜設定される。また、サイジングピン22の外周面には、成形すべき内周面8aのラジアル動圧溝Aa1,Aa2配列領域に対応する形状の第1成形型22aが設けられると共に(図6を参照)、下パンチ23の上端面23aには、成形すべき下端面8bのスラスト動圧溝Ba配列領域に対応する形状の第2成形型が設けられる(図示は省略)。ここで、第1成形型22aは、ラジアル動圧溝Aa1,Aa2を型成形する凸状成形部22a1と、傾斜丘部Ab及び環状丘部Acを型成形する凹状成形部22a2とで構成される。この場合、凸状成形部22a1の外径寸法と、サイジングピン22の外周面のうち第1成形型22a以外の領域の外径寸法とは同一に設定される。また、凸状成形部22a1と凹状成形部22a2の外径寸法差の半分の値が、例えば成形すべきラジアル動圧溝Aa1,Aa2の溝深さd1,d2の狙い値(例えば5~7μm)よりも大きくなるように、凸状成形部22a1の外径寸法と凹状成形部22a2の外径寸法をそれぞれ設定するのがよい。
(S3) Dynamic Pressure Groove Sizing Step The inner peripheral surface of the sintered body 8'is formed by performing a predetermined mold forming (dynamic pressure groove sizing) on the sintered body 8'obtained through the above steps S1 and S2. The radial dynamic pressure grooves Aa1 and Aa2 arrangement regions forming the radial dynamic pressure generating portions A1 and A2 are formed in 8a. As shown in FIG. 6, the molding apparatus 20 used here includes a die 21 having a press-fitting hole 21a of the sintered body 8', a sizing pin 22 inserted into the press-fitting hole 21a of the die 21, and a die. The lower punch 23, which is arranged between the 21 and the sizing pin 22 and is configured to be able to move up and down relative to the die 21, and is configured to be able to move up and down to any of the die 21 and the lower punch 23. It also has an upper punch 24. In this case, the inner diameter of the press-fitting hole 21a of the die 21 is appropriately set according to the press-fitting allowance of the sintered body 8'to be sizing. Further, on the outer peripheral surface of the sizing pin 22, a first molding die 22a having a shape corresponding to the radial dynamic pressure grooves Aa1 and Aa2 arrangement regions of the inner peripheral surface 8a to be molded is provided (see FIG. 6), and the bottom The upper end surface 23a of the punch 23 is provided with a second molding die having a shape corresponding to the thrust dynamic pressure groove Ba arrangement region of the lower end surface 8b to be formed (not shown). Here, the first forming die 22a is composed of a convex forming portion 22a1 for forming the radial dynamic pressure grooves Aa1 and Aa2, and a concave forming portion 22a2 for forming the inclined hill portion Ab and the annular hill portion Ac. .. In this case, the outer diameter dimension of the convex molding portion 22a1 and the outer diameter dimension of the region other than the first molding die 22a on the outer peripheral surface of the sizing pin 22 are set to be the same. Further, the value of half of the outer diameter dimensional difference between the convex forming portion 22a1 and the concave forming portion 22a2 is, for example, the target value (for example, 5 to 7 μm) of the groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2 to be formed. It is preferable to set the outer diameter dimension of the convex forming portion 22a1 and the outer diameter dimension of the concave forming portion 22a2 so as to be larger than the above.

次に、上記構成の成形装置20を用いた動圧溝サイジングの一態様を説明する。まず、図6(a)に示すように、ダイ21の上端面21bに焼結体8’を配置した状態で、その上方から上パンチ24とサイジングピン22を下降させる。これにより、焼結体8’の内周にサイジングピン22を挿入し、サイジングピン22の外周に設けておいた第1成形型22aを内周面8aと半径方向で対向させる。そして、第1成形型22aが内周面8aの軸方向所定位置にまで到達したら、上パンチ24のみを引き続き下降させて焼結体8’の上端面8cを押圧する(図6(b)を参照)。これにより、焼結体8’がダイ21の圧入穴21aに押込まれ、焼結体8’の外周面8dが圧迫されると共に、予め内周に挿入したサイジングピン22の第1成形型22aに内周面8aが食い付く。また、この状態から、さらに上パンチ24を下降させて、焼結体8’を上パンチ24と下パンチ23とで挟持し、外径方向への変形をダイ21により拘束された状態の焼結体8’を軸方向に圧迫することで、さらに内周面8aが第1成形型22aに食い付く(図7(a)を参照)。なお、サイジングピン22は第1成形型22aに焼結体8’の内周面8aが食い付くことで、焼結体8’の下降に伴って下降する。このようにして、第1成形型22aの形状、具体的には凸状成形部22a1と凹状成形部22a2の形状がそれぞれ内周面8aに転写されることで、ラジアル動圧溝Aa1,Aa2と各丘部Ab,Acが成形される(図7(b)を参照)。また、この際、下パンチ23の上端面23aに設けた第2成形型が焼結体8’の下端面8bに食い込むことで、下端面8bに第2成形型の形状が転写され、対応するスラスト動圧溝Baと丘部Bbとが成形される。 Next, one aspect of the dynamic pressure groove sizing using the molding apparatus 20 having the above configuration will be described. First, as shown in FIG. 6A, the upper punch 24 and the sizing pin 22 are lowered from above the sintered body 8'arranged on the upper end surface 21b of the die 21. As a result, the sizing pin 22 is inserted into the inner circumference of the sintered body 8', and the first molding die 22a provided on the outer periphery of the sizing pin 22 faces the inner peripheral surface 8a in the radial direction. Then, when the first molding die 22a reaches a predetermined position in the axial direction of the inner peripheral surface 8a, only the upper punch 24 is continuously lowered to press the upper end surface 8c of the sintered body 8'(FIG. 6B). reference). As a result, the sintered body 8'is pushed into the press-fitting hole 21a of the die 21, the outer peripheral surface 8d of the sintered body 8'is pressed, and the first molding mold 22a of the sizing pin 22 inserted in advance in the inner circumference is pressed. The inner peripheral surface 8a bites. Further, from this state, the upper punch 24 is further lowered, the sintered body 8'is sandwiched between the upper punch 24 and the lower punch 23, and the deformation in the outer diameter direction is restrained by the die 21. By pressing the body 8'in the axial direction, the inner peripheral surface 8a further bites into the first molding die 22a (see FIG. 7A). The sizing pin 22 descends as the sintered body 8'descends because the inner peripheral surface 8a of the sintered body 8'bites against the first molding die 22a. In this way, the shape of the first molding die 22a, specifically the shapes of the convex molding portion 22a1 and the concave molding portion 22a2, are transferred to the inner peripheral surface 8a, respectively, thereby forming the radial dynamic pressure grooves Aa1 and Aa2. The hills Ab and Ac are formed (see FIG. 7 (b)). At this time, the second molding die provided on the upper end surface 23a of the lower punch 23 bites into the lower end surface 8b of the sintered body 8', so that the shape of the second molding die is transferred to the lower end surface 8b, which corresponds to the corresponding shape. The thrust dynamic pressure groove Ba and the hill portion Bb are formed.

このようにして焼結体8’の内周面8a及び下端面8bに所定のラジアル動圧溝Aa1,Aa2配列領域とスラスト動圧溝Ba配列領域を成形した後、ダイ21を下パンチ23に対して相対的に下降させて、ダイ21による焼結体8’の拘束状態を解除する(図7(b))。これにより、焼結体8’は外径方向へのスプリングバックを生じ、外周面8dの外径寸法及び内周面8aの内径寸法が増加する。また、上パンチ24を上昇させて、上パンチ24と下パンチ23とによる焼結体8’の軸方向の拘束状態を解除することで(図7(b))、焼結体8’は軸方向へのスプリングバックを生じ、外周面8d及び内周面8aの軸方向寸法が増加する。このように、ダイ21の下降後、焼結体8’が外径方向へのスプリングバックを生じることで、内周面8aが拡径するので、ラジアル動圧溝Aa1,Aa2との干渉を可及的に回避して、サイジングピン22を焼結体8’から抜き取ることができる。これにより、内周面8aにラジアル動圧溝Aa1,Aa2が形成された焼結体8’、すなわち、図3~図5に示す形態の動圧軸受8を得ることができる。なお、上記サイジングを経て製造される動圧軸受8の内径寸法は例えば1~5mm、外径寸法は3~8mm、軸方向寸法は2~15mmである。 After forming the predetermined radial dynamic pressure groove Aa1 and Aa2 arrangement regions and the thrust dynamic pressure groove Ba arrangement region on the inner peripheral surface 8a and the lower end surface 8b of the sintered body 8'in this way, the die 21 is used as the lower punch 23. On the other hand, it is relatively lowered to release the restrained state of the sintered body 8'by the die 21 (FIG. 7 (b)). As a result, the sintered body 8'causes springback in the outer diameter direction, and the outer diameter dimension of the outer peripheral surface 8d and the inner diameter dimension of the inner peripheral surface 8a increase. Further, by raising the upper punch 24 to release the restrained state of the sintered body 8'in the axial direction by the upper punch 24 and the lower punch 23 (FIG. 7 (b)), the sintered body 8'has a shaft. Springback occurs in the direction, and the axial dimensions of the outer peripheral surface 8d and the inner peripheral surface 8a increase. In this way, after the die 21 descends, the sintered body 8'causes springback in the outer diameter direction, so that the inner peripheral surface 8a expands in diameter, so that interference with the radial dynamic pressure grooves Aa1 and Aa2 is possible. The sizing pin 22 can be removed from the sintered body 8'while avoiding it. As a result, it is possible to obtain a sintered body 8'in which radial dynamic pressure grooves Aa1 and Aa2 are formed on the inner peripheral surface 8a, that is, a dynamic pressure bearing 8 in the form shown in FIGS. 3 to 5. The dynamic pressure bearing 8 manufactured through the above sizing has, for example, an inner diameter dimension of 1 to 5 mm, an outer diameter dimension of 3 to 8 mm, and an axial dimension of 2 to 15 mm.

上記構成の動圧軸受8は、例えば圧入、接着等によりハウジング7の内周(筒部7aの内周面)に固定される。もちろん、これ以外の手段を採用してもよく、例えば図示は省略するが、シール部材9をハウジング7に圧入しながら動圧軸受8を軸方向に押込み、ハウジング7の段部7cとシール部材9とで動圧軸受8を軸方向に挟持することによっても、動圧軸受8をハウジング7の内周に保持することができる。なお、この際、動圧軸受8の外周面8dとハウジング7の内周面との間に所定の半径方向隙間を設けてもよい。 The dynamic pressure bearing 8 having the above configuration is fixed to the inner circumference of the housing 7 (inner peripheral surface of the tubular portion 7a) by, for example, press fitting or adhesion. Of course, other means may be adopted. For example, although not shown, the dynamic pressure bearing 8 is pushed in the axial direction while the seal member 9 is press-fitted into the housing 7, and the step portion 7c of the housing 7 and the seal member 9 are used. The dynamic pressure bearing 8 can also be held on the inner circumference of the housing 7 by sandwiching the dynamic pressure bearing 8 in the axial direction. At this time, a predetermined radial gap may be provided between the outer peripheral surface 8d of the dynamic pressure bearing 8 and the inner peripheral surface of the housing 7.

以上の構成を有する流体動圧軸受装置1において、軸部材2と動圧軸受8との相対回転開始前、動圧軸受8の内周面8aに設けた二つのラジアル軸受面と、これらに対向する軸部2aの外周面2a1との間にはラジアル軸受隙間がそれぞれ形成された状態にある。そして軸部材2と動圧軸受8の相対回転が開始されるのに伴い、両ラジアル軸受隙間に形成される油膜の圧力がラジアル動圧発生部A1,A2(動圧溝Aa1,Aa2)の動圧作用によって高められ、その結果、軸部材2をラジアル方向に相対回転自在に非接触支持するラジアル軸受部R1,R2が軸方向に離間した二箇所に形成される。このとき、軸部2aの外周面2a1に中逃げ部2cを設けたことにより、二つのラジアル軸受隙間間には円筒状の潤滑油溜りが形成される。そのため、ラジアル軸受隙間における油膜切れ、すなわちラジアル軸受部R1,R2の軸受性能低下を可及的に防止することができる。 In the fluid dynamic bearing device 1 having the above configuration, two radial bearing surfaces provided on the inner peripheral surface 8a of the dynamic bearing 8 before the start of relative rotation between the shaft member 2 and the dynamic bearing 8 and facing them. Radial bearing gaps are formed between the shaft portion 2a and the outer peripheral surface 2a1. Then, as the relative rotation between the shaft member 2 and the dynamic pressure bearing 8 is started, the pressure of the oil film formed in the gap between both radial bearings is the movement of the radial dynamic pressure generating portions A1 and A2 (dynamic pressure grooves Aa1 and Aa2). It is enhanced by the pressure action, and as a result, the radial bearing portions R1 and R2 that non-contactly support the shaft member 2 in a relative rotatable manner in the radial direction are formed at two positions separated in the axial direction. At this time, by providing the middle relief portion 2c on the outer peripheral surface 2a1 of the shaft portion 2a, a cylindrical lubricating oil reservoir is formed between the two radial bearing gaps. Therefore, it is possible to prevent the oil film from running out in the radial bearing gap, that is, the deterioration of the bearing performance of the radial bearing portions R1 and R2 as much as possible.

また、軸部材2と動圧軸受8の相対回転前、動圧軸受8の下端面8bに設けたスラスト軸受面と、スラスト軸受面に対向するフランジ部2bの上端面2b1との間、及び、ハウジング7の底部7bの内底面7b1と、内底面7b1に対向するフランジ部2bの下端面2b2との間にはスラスト軸受隙間がそれぞれ形成された状態にある。そして、軸部材2の相対回転が開始されるのに伴い、両スラスト軸受隙間に形成される油膜の圧力が下端面8bのスラスト動圧発生部B(動圧溝Ba)と内底面7b1のスラスト動圧発生部の動圧作用によってそれぞれ高められ、その結果、軸部材2をスラスト一方向及び他方向に相対回転自在に非接触支持するスラスト軸受部T1,T2が形成される。 Further, before the relative rotation of the shaft member 2 and the dynamic pressure bearing 8, between the thrust bearing surface provided on the lower end surface 8b of the dynamic pressure bearing 8 and the upper end surface 2b1 of the flange portion 2b facing the thrust bearing surface, and A thrust bearing gap is formed between the inner bottom surface 7b1 of the bottom portion 7b of the housing 7 and the lower end surface 2b2 of the flange portion 2b facing the inner bottom surface 7b1. Then, as the relative rotation of the shaft member 2 is started, the pressure of the oil film formed in the gap between the two thrust bearings is the thrust of the thrust dynamic pressure generating portion B (dynamic pressure groove Ba) of the lower end surface 8b and the thrust of the inner bottom surface 7b1. Each of them is enhanced by the dynamic pressure action of the dynamic pressure generating portion, and as a result, thrust bearing portions T1 and T2 that non-contactly support the shaft member 2 in relative rotatability in one direction and the other direction of the thrust are formed.

以上述べたように、本発明に係る焼結金属製の動圧軸受8によれば、すなわち、ヤング率が75GPa以下でかつ40GPa以上となるように調整し、かつ型成形により形成されるラジアル動圧溝Aa1,Aa2の溝深さd1,d2を4μmより大きくした焼結金属製の動圧軸受8であれば、ラジアル動圧溝Aa1,Aa2を精度よく成形でき、かつ溝深さd1,d2が4μmを超える場合であっても、ラジアル動圧溝Aa1,Aa2をなるべく傷付けることなく、動圧軸受8を成形金型(本実施形態でいえばダイ21、サイジングピン22)から取り出すことができる。以上より、本発明に係る動圧軸受8によれば、軸受を傷つけることなく現行レベルよりも大きな溝深さのラジアル動圧溝Aa1,Aa2を形成することができるので、ラジアル軸受隙間Gを現行レベルよりも広げて、軸受トルクの低減化を図りつつも、ラジアル軸受隙間Gの拡張に伴う軸受剛性の低下を、ラジアル動圧溝Aa1,Aa2の溝深さd1,d2の増大化により補うことができる。従って、軸受剛性の確保と軸受トルクの低減化、ひいてはモータの低消費電力化を共に達成することが可能になる。 As described above, according to the sintered metal dynamic pressure bearing 8 according to the present invention, that is, the radial motion formed by adjusting the young ratio to be 75 GPa or less and 40 GPa or more and forming a mold. If the dynamic pressure bearing 8 made of sintered metal has the groove depths d1 and d2 of the pressure grooves Aa1 and Aa2 larger than 4 μm, the radial pressure grooves Aa1 and Aa2 can be formed with high accuracy, and the groove depths d1 and d2. The dynamic pressure bearing 8 can be taken out from the molding die (die 21 and sizing pin 22 in this embodiment) without damaging the radial dynamic pressure grooves Aa1 and Aa2 as much as possible even when the pressure exceeds 4 μm. .. From the above, according to the dynamic pressure bearing 8 according to the present invention, the radial dynamic pressure grooves Aa1 and Aa2 having a groove depth larger than the current level can be formed without damaging the bearing. To compensate for the decrease in bearing rigidity due to the expansion of the radial bearing gap G by increasing the groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2, while expanding the bearing torque beyond the level to reduce the bearing torque. Can be done. Therefore, it is possible to secure the bearing rigidity, reduce the bearing torque, and further reduce the power consumption of the motor.

以上、本発明の一実施形態を説明したが、本発明に係る焼結金属製動圧軸受は上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得る。 Although one embodiment of the present invention has been described above, the sintered metal dynamic pressure bearing according to the present invention is not limited to the above-exemplified form, and any form can be adopted within the scope of the present invention.

例えば、上記実施形態では、互いに逆向きに傾斜しヘリングボーン形状をなす一対のラジアル動圧溝Aa1,Aa2を内周面8aに設けた場合を例示したが、もちろんこれ以外の形状をなすラジアル動圧溝を型成形で内周面8aに設ける場合も本発明を適用することは可能である。 For example, in the above embodiment, a case where a pair of radial dynamic pressure grooves Aa1 and Aa2 that are inclined in opposite directions and form a herringbone shape is provided on the inner peripheral surface 8a is illustrated, but of course, the radial dynamics having other shapes are illustrated. The present invention can also be applied when the pressure groove is provided on the inner peripheral surface 8a by molding.

また、以上の説明に係る流体動圧軸受装置1は、図1に示す用途(HDDをはじめとしたディスク装置用)に限らず、他の用途にも適用可能である。例えば図示は省略するが、レーザビームプリンタ(LBP)用のポリゴンスキャナモータや、PC用のファンモータなどのモータに流体動圧軸受装置1を組み込んで使用することができる。なお、ポリゴンスキャナモータに組み込んで使用する場合、例えば、軸部材2にポリゴンミラーが一体又は別体に設けられ、ファンモータに組み込んで使用する場合、例えば、軸部材2に羽根を有するファンが一体又は別体に設けられる。 Further, the fluid dynamic bearing device 1 according to the above description is not limited to the application shown in FIG. 1 (for a disk device such as an HDD), and can be applied to other applications. For example, although not shown, the fluid dynamic bearing device 1 can be incorporated into a motor such as a polygon scanner motor for a laser beam printer (LBP) or a fan motor for a PC. When used by incorporating it into a polygon scanner motor, for example, when a polygon mirror is integrally or separately provided on the shaft member 2, and when used by incorporating it into a fan motor, for example, a fan having blades is integrated with the shaft member 2. Or it is provided separately.

以下、本発明の作用効果を検証するための実験(実施例)について詳述する。 Hereinafter, experiments (examples) for verifying the action and effect of the present invention will be described in detail.

この実験では、ヤング率が相互に異なる五種類の焼結金属製動圧軸受8を作製し、各動圧軸受8について図6に示す共通の成形装置20を用いてラジアル動圧溝Aa1,Aa2(図3を参照)の型成形を施した際に、各軸受の内周面8aに実際に形成されたラジアル動圧溝Aa1,Aa2の溝深さd1,d2(図4を参照)の大きさを測定した。ここで、各動圧軸受8の真密度比は86~88%となるように調整した。各動圧軸受8のサイズは何れも内径寸法:4mm、外径寸法:7.5mm、軸方向寸法:9.2mmとした。また、何れの動圧軸受8(実施例1,2、比較例1~3)についても、サイジングピン22の溝深さ(すなわち凸状成形部22a1と凹状成形部22a2の外径寸法差の半分の値)が8μmである成形装置20を用いて、ラジアル動圧溝Aa1,Aa2の型成形を行った。表1に、ヤング率の測定結果と、ラジアル動圧溝Aa1,Aa2の溝深さd1,d2の測定結果を示す。なお、表1におけるラジアル動圧溝Aa1,Aa2の溝深さd1,d2の値は、n=10の測定結果の平均値を示している。 In this experiment, five types of sintered metal dynamic pressure bearings 8 having different Young ratios were manufactured, and radial pressure grooves Aa1 and Aa2 were used for each dynamic pressure bearing 8 using the common molding device 20 shown in FIG. The size of the groove depths d1 and d2 (see FIG. 4) of the radial dynamic pressure grooves Aa1 and Aa2 actually formed on the inner peripheral surface 8a of each bearing when the molding (see FIG. 3) was performed. Was measured. Here, the true density ratio of each dynamic pressure bearing 8 was adjusted to be 86 to 88%. The size of each dynamic bearing 8 was set to an inner diameter dimension of 4 mm, an outer diameter dimension of 7.5 mm, and an axial dimension of 9.2 mm. Further, for any of the dynamic pressure bearings 8 (Examples 1 and 2, Comparative Examples 1 to 3), the groove depth of the sizing pin 22 (that is, half the difference in outer diameter between the convex molded portion 22a1 and the concave molded portion 22a2). The radial dynamic pressure grooves Aa1 and Aa2 were molded using the molding apparatus 20 having a value of 8 μm. Table 1 shows the measurement results of Young's modulus and the measurement results of the groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2. The values of the groove depths d1 and d2 of the radial dynamic pressure grooves Aa1 and Aa2 in Table 1 indicate the average value of the measurement results of n = 10.

Figure 0007094118000001
Figure 0007094118000001

表1に示すように、ヤング率が75GPa以下を示す動圧軸受8(実施例1,2)に動圧溝サイジングを施した場合、成形型の溝深さ(8μm)に近いサイズ、具体的には5.5~6.7μmの溝深さd1,d2のラジアル動圧溝Aa1,Aa2を得ることができた。これに対して、ヤング率が75GPaを超える動圧軸受8(比較例1~3)に動圧溝サイジングを施した場合、成形型の溝深さ(8μm)に近いとはいえないサイズ、具体的は3.5~5.1μmの溝深さd1,d2のラジアル動圧溝Aa1,Aa2しか得ることができなかった。なお、銅(Cu)粉末の比率が増えてもヤング率がほとんど変わらず、ステンレス鋼(SUS)粉末の配合比が増えるほどヤング率は低くなる理由として、例えば、ステンレス鋼粉末の表面には酸化被膜が存在するため、銅の一般的な焼結温度では、銅粉末や鉄(Fe)粉末に比べると焼結が進行しにくいことがその一因として考えられる。 As shown in Table 1, when the dynamic pressure bearing 8 (Examples 1 and 2) having a Young's modulus of 75 GPa or less is subjected to dynamic pressure groove sizing, the size is close to the groove depth (8 μm) of the molding die, specifically. Radial dynamic pressure grooves Aa1 and Aa2 having groove depths d1 and d2 of 5.5 to 6.7 μm could be obtained. On the other hand, when the dynamic pressure groove sizing is applied to the dynamic pressure bearings 8 (Comparative Examples 1 to 3) having a Young's modulus of more than 75 GPa, the size and concreteness cannot be said to be close to the groove depth (8 μm) of the molding die. The target was only radial dynamic pressure grooves Aa1 and Aa2 with groove depths d1 and d2 of 3.5 to 5.1 μm. The Young's modulus does not change even if the ratio of copper (Cu) powder increases, and the Young's modulus decreases as the compounding ratio of stainless steel (SUS) powder increases. For example, the surface of stainless steel powder is oxidized. Due to the presence of the coating film, it is considered that one of the reasons is that at the general sintering temperature of copper, the sintering is less likely to proceed than that of copper powder or iron (Fe) powder.

1 流体動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
3 ディスクハブ
4a ステータコイル
4b ロータマグネット
5 ブラケット
6 ディスク
7 ハウジング
7a 筒部
7b 底部
7c 段部
8 動圧軸受
8’ 焼結体
8a 内周面
9 シール部材
20 成形装置
21 ダイ
22 サイジングピン
22a 成形型
22a1 凸状成形部
22a2 凹状成形部
A1,A2 ラジアル動圧発生部
Aa1,Aa2 ラジアル動圧溝
B スラスト動圧発生部
Ba スラスト動圧溝
G ラジアル軸受隙間の大きさ(半径量)
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
1 Fluid dynamic bearing device 2 Shaft member 2a Shaft part 2b Flange part 3 Disc hub 4a Stator coil 4b Rotor magnet 5 Bracket 6 Disc 7 Housing 7a Cylindrical part 7b Bottom part 7c Step part 8 Dynamic bearing 8'Sintered body 8a Inner circumference Surface 9 Sealing member 20 Molding device 21 Die 22 Sizing pin 22a Molding mold 22a1 Convex molding part 22a2 Concave molding part A1, A2 Radial dynamic pressure generating part Aa1, Aa2 Radial dynamic pressure groove B Thrust dynamic pressure generation part Ba Thrust dynamic pressure groove G Radial bearing clearance size (radial amount)
R1, R2 Radial bearing T1, T2 Thrust bearing S Seal space

Claims (5)

焼結金属で形成され、内周にラジアル軸受面を備えた焼結金属製動圧軸受であって、前記ラジアル軸受面に、被支持部との間のラジアル軸受隙間に潤滑流体の動圧作用を生じるラジアル動圧溝が型成形により形成される焼結金属製動圧軸受において、
銅と鉄を主成分とする銅鉄系の焼結金属で真密度比が80%以上でかつ95%以下となるように形成され、
ヤング率が75GPa以下でかつ40GPa以上であって、前記ラジアル動圧溝の溝深さに対する前記ラジアル軸受隙間の大きさの比が、0.7以上でかつ1.3以下であると共に、前記ラジアル動圧溝の溝深さが5μm以上であることを特徴とする焼結金属製動圧軸受。
A sintered metal dynamic pressure bearing formed of sintered metal and having a radial bearing surface on the inner circumference. The dynamic pressure action of a lubricating fluid on the radial bearing surface and in the radial bearing gap between the supported portion. In a sintered metal dynamic pressure bearing in which a radial pressure groove is formed by molding.
It is a copper-iron sintered metal whose main components are copper and iron, and is formed so that the true density ratio is 80% or more and 95% or less.
The Young's modulus is 75 GPa or less and 40 GPa or more, and the ratio of the size of the radial bearing gap to the groove depth of the radial dynamic pressure groove is 0.7 or more and 1.3 or less, and the radial. A sintered metal dynamic pressure bearing characterized in that the groove depth of the dynamic pressure groove is 5 μm or more .
軸方向端面に、前記被支持部との間のスラスト軸受隙間に前記潤滑流体の動圧作用を生じるスラスト動圧溝が型成形により形成される請求項に記載の焼結金属製動圧軸受。 The sintered metal dynamic pressure bearing according to claim 1 , wherein a thrust dynamic pressure groove that causes a dynamic pressure action of the lubricating fluid is formed on an axial end surface in a thrust bearing gap between the supported portion and the supported portion. .. 前記潤滑流体としての潤滑油が内部気孔に含浸されてなる請求項1又は2に記載の焼結金属製動圧軸受。 The sintered metal dynamic pressure bearing according to claim 1 or 2 , wherein the internal pores are impregnated with lubricating oil as the lubricating fluid. 請求項1~の何れか一項に記載の焼結金属製動圧軸受と、前記焼結金属製動圧軸受の内周に挿入される前記被支持部としての軸部とを備えた流体動圧軸受装置。 A fluid comprising the sintered metal dynamic pressure bearing according to any one of claims 1 to 3 and a shaft portion as a supported portion inserted into the inner circumference of the sintered metal dynamic pressure bearing. Dynamic pressure bearing device. 請求項に記載の流体動圧軸受装置を備えたモータ。 A motor provided with the fluid dynamic bearing device according to claim 4 .
JP2018041844A 2018-03-08 2018-03-08 Sintered metal dynamic pressure bearing Active JP7094118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041844A JP7094118B2 (en) 2018-03-08 2018-03-08 Sintered metal dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041844A JP7094118B2 (en) 2018-03-08 2018-03-08 Sintered metal dynamic pressure bearing

Publications (2)

Publication Number Publication Date
JP2019157918A JP2019157918A (en) 2019-09-19
JP7094118B2 true JP7094118B2 (en) 2022-07-01

Family

ID=67994715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041844A Active JP7094118B2 (en) 2018-03-08 2018-03-08 Sintered metal dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JP7094118B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172384A (en) 2014-03-11 2015-10-01 Ntn株式会社 Sintered bearing, fluid dynamic-pressure bearing device and motor having the bearing, and sintered bearing manufacturing method
JP2016180496A (en) 2015-03-25 2016-10-13 Ntn株式会社 Bearing member and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191945A (en) * 1997-12-25 1999-07-13 Ntn Corp Spindle motor and rotary shaft support device of hard disc drive
JP4233771B2 (en) * 2001-04-27 2009-03-04 Ntn株式会社 Hydrodynamic bearing unit
JP5318619B2 (en) * 2009-03-19 2013-10-16 Ntn株式会社 Sintered metal bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172384A (en) 2014-03-11 2015-10-01 Ntn株式会社 Sintered bearing, fluid dynamic-pressure bearing device and motor having the bearing, and sintered bearing manufacturing method
JP2016180496A (en) 2015-03-25 2016-10-13 Ntn株式会社 Bearing member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019157918A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6199675B2 (en) Sintered metal bearing and fluid dynamic pressure bearing device provided with the bearing
JP5674495B2 (en) Fluid dynamic bearing device
JP6858508B2 (en) Dynamic pressure bearings and their manufacturing methods
JP6347929B2 (en) Sintered metal bearing
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP6461483B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2017166575A (en) Dynamic pressure bearing and process of manufacture thereof
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
WO2024057868A1 (en) Hydrodynamic bearing, hydrodynamic bearing device, and motor
JP5606831B2 (en) Bearing member and manufacturing method thereof
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
WO2024048202A1 (en) Sintered oil-impregnated bearing
JP5819078B2 (en) Fluid dynamic bearing device
WO2019065719A1 (en) Fluid dynamic pressure bearing device and motor having same
CN116888373A (en) Sintered oil-impregnated bearing and fluid dynamic bearing device provided with same
JP4739247B2 (en) Hydrodynamic bearing device
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2018179018A (en) Porous dynamic pressure bearing
JP2005172244A (en) Dynamic pressure type bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220621

R150 Certificate of patent or registration of utility model

Ref document number: 7094118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150