[go: up one dir, main page]

JP7092323B2 - LED drive method and lighting equipment using the LED drive method - Google Patents

LED drive method and lighting equipment using the LED drive method Download PDF

Info

Publication number
JP7092323B2
JP7092323B2 JP2017134824A JP2017134824A JP7092323B2 JP 7092323 B2 JP7092323 B2 JP 7092323B2 JP 2017134824 A JP2017134824 A JP 2017134824A JP 2017134824 A JP2017134824 A JP 2017134824A JP 7092323 B2 JP7092323 B2 JP 7092323B2
Authority
JP
Japan
Prior art keywords
led
current
value
voltage
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017134824A
Other languages
Japanese (ja)
Other versions
JP2019016561A (en
Inventor
洋治 椋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017134824A priority Critical patent/JP7092323B2/en
Priority to PCT/JP2018/025152 priority patent/WO2019013036A1/en
Publication of JP2019016561A publication Critical patent/JP2019016561A/en
Application granted granted Critical
Publication of JP7092323B2 publication Critical patent/JP7092323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、交流入力を用いてLED列を駆動するためのLED駆動技術に関し、より詳細には、交流入力を用いてLED列を駆動するためのLED駆動方法及び該駆動方法を備えた照明機器ないし照明器具に関する。 The present invention relates to an LED driving technique for driving an LED row using an AC input, and more particularly, an LED driving method for driving an LED row using an AC input and a lighting device provided with the driving method. Or about lighting equipment.

発光ダイオード(LED)を使用したLED照明器具は、蛍光灯や白熱電球といった従来の照明器具に比べ、長寿命かつ低消費電力であるという特徴を有しており、環境への配慮に優れた次世代の照明機器として期待されている。他方、短期的な課題として電波として放射される雑音(以下、「雑音」という。)や交流入力に流れる高調波(以下、「高調波」という。)の低減に関する問題・電源の寿命・コスト等の諸問題が指摘されている。これらの問題は、現在多くのLED照明機器が交流を直流に一旦変換し、内部的には直流にて駆動させるため、電源回路を含む複雑なLED周辺回路が必要となることがその一因と考えられている。 LED lighting fixtures that use light emitting diodes (LEDs) have the characteristics of longer life and lower power consumption than conventional lighting fixtures such as fluorescent lamps and incandescent lamps. It is expected as a generation of lighting equipment. On the other hand, as short-term issues, problems related to reduction of noise radiated as radio waves (hereinafter referred to as "noise") and harmonics flowing through AC input (hereinafter referred to as "harmonics"), power supply life, cost, etc. Problems have been pointed out. One of the reasons for these problems is that many LED lighting devices currently convert alternating current to direct current and internally drive it with direct current, which requires a complicated LED peripheral circuit including a power supply circuit. It is considered.

交流入力を用いてLED列を駆動するためのLED駆動方法として、直列接続された複数のLEDを有するLED列を駆動するLED駆動回路が開示されている(特許文献1)。より具体的には、特許文献1に開示されたLED駆動回路は、交流入力を整流する整流器と、オペアンプと該オペアンプの出力段に分圧抵抗を介して接続された複数の駆動用トランジスタとを有する定電流駆動回路と、前記複数の駆動用トランジスタのエミッタ間にそれぞれ挿入された電流検出器としての抵抗とを備え、前記整流器の出力側の一端を前記LED列の入力側に接続し、前記複数のトランジスタの出力側の一端をそれぞれ、前記LED列における異なるLED段数の接続ポイントに接続することにより、前記交流入力の電圧に応じて前記複数のトランジスタが選択的に前記LED列を駆動されると共に、前記選択的に駆動される前記LED列を流れる電流も前記交流入力の電圧に応じて変動するように作動し、交流入力電圧が低い時には段数の少ない数でLED列のLEDを点灯する事で交流入力の電圧が低い時から高い時までLED列の点灯維持を可能とする。 As an LED driving method for driving an LED train using an AC input, an LED driving circuit for driving an LED train having a plurality of LEDs connected in series is disclosed (Patent Document 1). More specifically, the LED drive circuit disclosed in Patent Document 1 includes a rectifier that rectifies an AC input, and a plurality of drive transistors connected to the operational capacitor and the output stage of the operational capacitor via a voltage dividing resistor. It has a constant current drive circuit and a resistor as a current detector inserted between the emitters of the plurality of drive transistors, and one end of the output side of the rectifier is connected to the input side of the LED row. By connecting one end on the output side of the plurality of transistors to connection points having different numbers of LED stages in the LED row, the plurality of transistors are selectively driven in the LED row according to the voltage of the AC input. At the same time, the current flowing through the selectively driven LED row also operates so as to fluctuate according to the voltage of the AC input, and when the AC input voltage is low, the LEDs of the LED row are turned on with a small number of stages. The LED train can be kept lit from low to high AC input voltage.

図6を用いて従来のLED駆動方法1についてさらに説明する。図6に示すように、LED駆動回路1において、交流入力(交流電源)からブリッジダイオード等の全波整流器FR1で全波整流された脈流VoがLED列D1~D9に入力される。図6に示されるとおり、LED列は、例示的に9個のLED(D1~D9)から構成されている。LED駆動回路1のMOSFETであるQ1~Q3は、スイッチを兼ねた定電流源として動作し、LED列に流れる電流波形を正弦波に近似する事で交流の入力に流れる高調波を抑止するという作用効果も奏する。 The conventional LED driving method 1 will be further described with reference to FIG. As shown in FIG. 6, in the LED drive circuit 1, the pulsating current Vo rectified by the full-wave rectifier FR1 such as a bridge diode is input to the LED rows D1 to D9 from the AC input (AC power supply). As shown in FIG. 6, the LED row is exemplifiedly composed of nine LEDs (D1 to D9). The MOSFETs Q1 to Q3 of the LED drive circuit 1 operate as a constant current source that also serves as a switch, and by approximating the current waveform flowing in the LED train to a sine wave, the action of suppressing harmonics flowing in the AC input is suppressed. It also has an effect.

まず、Q1のゲートには、電流I1が流れる時のQ1のゲート・ソース間電圧VGS値にその時のQ1のソース電圧(Rs1+Rs2+Rs3)×I1を加えた電圧、即ちVGS1+(Rs1+Rs2+Rs3)×I1以上の電圧を印加し、Q1が導通できる状態とし、電流I2及びI3が流れるQ2、Q3各々のVGSの値にその時のQ2、Q3の各ソース電圧を各々加算した電圧値より大きな値を印加してQ1、Q2を導通できる状態にしておく。脈流Voが0Vから徐々に上昇し、電流I1が第1~第4段目のLED(D1~D4)を経てQ1に流れる事が可能となる電圧以降は、第1段目~第4段目のLED(D1~D4)が点灯するが、第5段目以降のLED(D5~D9)とQ2、Q3には電流が流れず、Q2、Q3には引き続き電流は流れないままの状態となる。この時、オペアンプOP1の出力電圧Vopは、Vop={VGS1+I1×(Rs1+Rs2+Rs3)}×(R1+R2+R3)/R3となり、電流値を定める基準電圧Vrefとの関係式は、Vref×(Rf1+Rf2)/Rf1=I1×(Rs1+Rs2+Rs3)=一定となる。 First, at the gate of Q1, the voltage obtained by adding the source voltage (Rs1 + Rs2 + Rs3) × I1 of Q1 at that time to the gate-source voltage VGS value of Q1 when the current I1 flows, that is, the voltage of VGS1 + (Rs1 + Rs2 + Rs3) × I1 or more. To make Q1 conductive, and apply a value larger than the voltage value obtained by adding the source voltages of Q2 and Q3 at that time to the VGS values of Q2 and Q3 through which the currents I2 and I3 flow. Keep Q2 in a state where it can conduct electricity. After the voltage at which the pulsating current Vo gradually rises from 0V and the current I1 can flow to Q1 via the first to fourth stage LEDs (D1 to D4), the first to fourth stages The LEDs (D1 to D4) of the eyes light up, but no current flows through the LEDs (D5 to D9) and Q2 and Q3 of the fifth and subsequent stages, and no current continues to flow through Q2 and Q3. Become. At this time, the output voltage Vop of the operational amplifier OP1 is Vop = {VGS1 + I1 × (Rs1 + Rs2 + Rs3)} × (R1 + R2 + R3) / R3, and the relational expression with the reference voltage Vref that determines the current value is Vref × (Rf1 + Rf2) / Rf1 = I1. × (Rs1 + Rs2 + Rs3) = constant.

脈流Voが上昇して、電流I2が第1段目~第7段目のLED(D1~D7)を経てQ2に流れることが可能となる電圧以降は、LED列のD1~D7が点灯するが、第8段及び第9段のLED(D8、D9)とQ3には引き続き電流が流れないままの状態となる。この時、オペアンプOP1の出力電圧VopはVop={VGS2+I2×(Rs2+Rs3)}×(R1+R2+R3)/(R2+R3)となる。また、基準電圧Vrefとの関係式は、Vref×(Rf1+Rf2)/Rf1=I2×(Rs2+Rs3)となる。このときMOSFTE(Q1)が電流I1を流す時と流さない時のVGSの差δVGSよりもI1×Rs1+(R2の電圧降下)が大きくなる様に抵抗R2及びR3の値を定め、Q2動作時にQ1に電流が流れないようにしておく。 After the voltage at which the pulsating current Vo rises and the current I2 can flow to Q2 via the LEDs (D1 to D7) in the first to seventh stages, the LEDs D1 to D7 light up. However, no current continues to flow through the 8th and 9th stage LEDs (D8, D9) and Q3. At this time, the output voltage Vop of the operational amplifier OP1 becomes Vop = {VGS2 + I2 × (Rs2 + Rs3)} × (R1 + R2 + R3) / (R2 + R3). The relational expression with the reference voltage Vref is Vref × (Rf1 + Rf2) / Rf1 = I2 × (Rs2 + Rs3). At this time, the values of the resistors R2 and R3 are set so that I1 × Rs1 + (voltage drop of R2) is larger than the difference δVGS of VGS when the current I1 is passed and when the MOSFTE (Q1) is not passed, and Q1 is set during Q2 operation. Make sure that no current flows through.

さらに電圧Voが上昇して、電流I3が第1段目~第9段目のLED(D1~D9)を経てQ3に流れる事が可能となる電圧以降は全LEDが点灯する。この時、オペアンプOP1の出力電圧Vopは、Vop=(VGS3+I3×Rs3)となる。また、基準電圧Vrefとの関係式は、Vref×(Rf1+Rf2)/Rf1=I3×Rs3となる。ここで、MOSFTE(Q2)が電流I2を流す時と流さない時のVGSの差δVGSよりも、I2×Rs2+(R1の電圧降下)が大きくなる様に抵抗R1の値を定め、Q3動作時にQ2に電流が流れないようにしておく。Q2が不動作状態のとき、R2の電圧降下も加わる為、Q1も不動作となっている。以上の説明により、基準電圧Vrefを制御する事でLEDに流す電流値を制御し、よってLEDの輝度を制御することが可能なことも理解できるであろう。
なお、電圧が減少するときは上記の逆の動作となる。
Further, the voltage Vo rises, and all the LEDs are lit after the voltage at which the current I3 can flow to Q3 via the first-stage to ninth-stage LEDs (D1 to D9). At this time, the output voltage Vop of the operational amplifier OP1 becomes Vop = (VGS3 + I3 × Rs3). The relational expression with the reference voltage Vref is Vref × (Rf1 + Rf2) / Rf1 = I3 × Rs3. Here, the value of the resistance R1 is set so that I2 × Rs2 + (voltage drop of R1) is larger than the difference δVGS of VGS when the current I2 is passed and when the MOSFTE (Q2) is not passed, and Q2 is set during Q3 operation. Make sure that no current flows through. When Q2 is in an inoperable state, the voltage drop of R2 is also added, so that Q1 is also inoperable. From the above description, it can be understood that it is possible to control the current value flowing through the LED by controlling the reference voltage Vref, and thus control the brightness of the LED.
When the voltage decreases, the operation is the reverse of the above.

特許第5486698号明細書Japanese Patent No. 5486698

しかしながら、特許文献1に記載のLED駆動方法は、交流入力が変動し、LED列に印加される電圧が標準電圧値から低下(例えば-10%)した場合であっても、そのような電圧の低下を見越して全てのLEDが点灯できるように、LED列のLEDの個数を設定している。この構成の場合、LED搭載個数は、交流入力が変動せず標準電圧状態にあれば問題無く点灯することができる個数より少なく、標準電圧状態では、いつも減らした数のLED分の電圧域が使用されず、本駆動方法におけるエネルギー損失の主要因となっている。 However, the LED drive method described in Patent Document 1 has such a voltage even when the AC input fluctuates and the voltage applied to the LED train drops from the standard voltage value (for example, -10%). The number of LEDs in the LED row is set so that all the LEDs can be turned on in anticipation of a decrease. In this configuration, the number of LEDs mounted is less than the number that can be turned on without problems if the AC input does not fluctuate and is in the standard voltage state, and in the standard voltage state, the voltage range for the reduced number of LEDs is always used. However, it is the main cause of energy loss in this drive method.

より具体的には、従前の交流駆動方式においては、電圧の高低に応じて点灯させるLED列の長さ(LEDの個数)を変えるという考え方で設計されており、かかる設計の一番の問題点は、電圧が一番高いときに点灯させるLED列を一番長くするよう制御されていることである。この場合、電圧が最長のLED列を点灯できない値まで低くなると1列に配置されたLED列のうち交流電圧の1波形区間(各脈流周期内)において全消灯のままというLEDが表れてしまう(つまり、かかる現象は消費者からはLEDの不良と解されかねない)。一方で、かかる現象を防止すべく電圧の変動分を見繕って電圧低下時にも全LEDを点灯させるように制御すると、電源変動分に起因する損失が常時生じることになる。 More specifically, in the conventional AC drive method, it is designed with the idea of changing the length of the LED row (the number of LEDs) to be lit according to the voltage level, and the biggest problem of this design is. Is controlled so that the LED row to be lit when the voltage is the highest is the longest. In this case, when the voltage drops to a value at which the longest LED row cannot be turned on, an LED that remains completely off appears in one waveform section (within each pulsating current cycle) of the AC voltage among the LED rows arranged in one row. (That is, such a phenomenon may be perceived by consumers as a defective LED). On the other hand, if the voltage fluctuation is monitored and controlled so that all the LEDs are turned on even when the voltage drops in order to prevent such a phenomenon, a loss due to the power supply fluctuation will always occur.

これを別の視点から見ると、従来の交流駆動法は入力電圧の許容変動範囲が狭いと言う大きな問題があるとも言える。一方世界に目を転じると、国内でいわゆるAC100Vと称される電圧でも、世界では100Vのみならず、110V、115V、120V等、多種多様の値が存在しており、AC200Vでも同じ状況にある。従来の交流駆動法によってこれらに対処しようとすると、各電圧に応じて製品を都度開発する必要が有り開発コストや製品在庫管理上でも大きな問題ともなっていた。 From another point of view, it can be said that the conventional AC drive method has a big problem that the allowable fluctuation range of the input voltage is narrow. On the other hand, looking at the world, even with the so-called AC100V voltage in Japan, there are various values such as 110V, 115V, 120V as well as 100V in the world, and the situation is the same even with AC200V. When trying to deal with these by the conventional AC drive method, it is necessary to develop a product each time according to each voltage, which has become a big problem in terms of development cost and product inventory management.

上記課題に鑑み、本発明は、LED列に印加される交流入力の電圧域を効率よく(有効に)利用するよう電圧値に応じてLED列を点滅するタイミングとその位置を制御し、電源変動に起因する損失の低減(あるいは、電源使用率の向上)を実現するLED駆動方法及び該LED駆動方法を備えた照明機器を提供することを目的とする。 In view of the above problems, the present invention controls the timing and position of blinking the LED row according to the voltage value so as to efficiently (effectively) utilize the voltage range of the AC input applied to the LED row, and changes the power supply. It is an object of the present invention to provide an LED driving method that realizes reduction of loss (or improvement of power supply usage rate) due to the above, and a lighting device provided with the LED driving method.

さらに、本発明は、LED列に印加される電圧が標準電圧値から一定値低下した場合のみならず、交流の入力電圧範囲を広くして低い電圧から高い電圧まで動作可能とするLED駆動方法及び該LED駆動方法を備えた照明機器を提供することを目的とする。 Further, the present invention provides an LED driving method capable of operating from a low voltage to a high voltage by widening the AC input voltage range as well as when the voltage applied to the LED train drops by a constant value from the standard voltage value. It is an object of the present invention to provide a lighting device provided with the LED driving method.

本発明の一実施形態は、全波整流された脈流により駆動される、給電端を一端とする直列接続されたLED列に於いて、給電端を起点とするLED列の異なる複数個所を各々異なるLED駆動部と接続し、脈流の瞬時値に応じて必要なLED駆動部を動作させて給電端から前記LED駆動部接続箇所までのLEDを点灯制御するとともに、前記LED列の給電端から見て最遠端のLED端子を駆動部に接続し、前記LED列の予め設定された単数あるいは複数個所でLED端子間を導通または短絡して脈流の瞬時値に応じて点灯LED数を制御することを特徴とするLED駆動方法である。 In one embodiment of the present invention, in a series-connected LED train having a feeding end as one end, which is driven by a full-wave rectified pulse flow, a plurality of different LED rows starting from the feeding end are set at different locations. It is connected to a different LED drive unit, and the required LED drive unit is operated according to the instantaneous value of the pulsation to control the lighting of the LED from the power supply end to the LED drive unit connection point, and from the power supply end of the LED row. The farthest LED terminal is connected to the drive unit, and the number of lit LEDs is controlled according to the instantaneous value of the pulsation by conducting or short-circuiting between the LED terminals at a preset single or multiple locations in the LED row. It is an LED driving method characterized by doing.

本発明の一実施形態にかかるLED駆動方法及び該LED駆動方法を備えた照明装置によれば、交流駆動によるLED列の点灯制御において、LED列に印加される交流入力の電圧域を効率よく(有効に)利用するよう電圧値に応じてLED列を点滅するタイミングとその位置を制御し、交流電圧の1波形区間(各脈流周期内)において全消灯してしまうLEDの発生を防止するとともに、電源変動に起因する損失の低減、あるいは、電源使用率の向上を実現するという効果を奏する。
さらに、本発明の一実施形態にかかるLED駆動方法及び該LED駆動方法を備えた照明装置によれば、LED列に印加される電圧が標準電圧値から一定値低下した場合のみならず、交流の入力電圧範囲を拡大せしめて低い電圧から高い電圧まで動作可能とするLED駆動方法及び該LED駆動方法を備えた照明機器を提供することができ、これによって僅少の製品群で多種多様な電圧に対応することが可能となる。
According to the LED driving method according to the embodiment of the present invention and the lighting device provided with the LED driving method, the voltage range of the AC input applied to the LED row is efficiently controlled in the lighting control of the LED row by the AC drive. By controlling the timing and position of blinking the LED row according to the voltage value so that it can be used effectively), it is possible to prevent the generation of LEDs that are completely turned off in one waveform section of AC voltage (within each pulse flow cycle). , It has the effect of reducing the loss caused by the fluctuation of the power supply or improving the power supply usage rate.
Further, according to the LED driving method according to the embodiment of the present invention and the lighting device provided with the LED driving method, not only when the voltage applied to the LED train drops by a constant value from the standard voltage value, but also when the voltage is AC. We can provide LED drive methods that expand the input voltage range to operate from low voltage to high voltage and lighting equipment equipped with the LED drive method, thereby supporting a wide variety of voltages with a small product group. It becomes possible to do.

本発明の一実施形態にかかるLED駆動方法とその構成例を説明する説明図である。It is explanatory drawing explaining the LED driving method and the structural example thereof which concerns on one Embodiment of this invention. 本発明の他の実施形態にかかるLED駆動方法とその構成例を説明する説明図である。It is explanatory drawing explaining the LED driving method and the structural example thereof which concerns on other Embodiment of this invention. 本発明の他の実施形態にかかるLED駆動方法とその構成例を説明する説明図である。It is explanatory drawing explaining the LED driving method and the structural example thereof which concerns on other Embodiment of this invention. 本発明のさらに他の実施形態にかかるLED駆動方法とその構成例を説明する説明図である。It is explanatory drawing explaining the LED driving method and the structural example thereof which concerns on still another Embodiment of this invention. 本発明の動作原理を例示的に説明する説明図である。It is explanatory drawing for exemplifying the operation principle of this invention. 本発明の一実施形態にかかるLED駆動方法における全波整流器のバリエーションを説明する説明図。It is explanatory drawing explaining the variation of the full-wave rectifier in the LED driving method which concerns on one Embodiment of this invention. 従来のLED駆動方法と構成例を説明する説明図である。It is explanatory drawing explaining the conventional LED driving method and the configuration example.

本発明の実施形態は、全波整流された脈流により駆動される給電端を一端とする直列接続されたLED列に於いて、給電端を起点とするLED列の異なる複数個所を各々異なるLED駆動部と接続、脈流の瞬時値に応じて給電端から前記LED駆動部接続箇所までのLEDを点灯制御すると共に、前記LED列の給電端から見て最遠端のLED端子をLED駆動部に接続すると共に、単数または複数個所でLED列のLED端子間を導通して脈流の瞬時値に応じて点灯LED数を制御するLED駆動方法で、点灯するLEDの位置を選定する事で一脈流サイクル中に全てのLEを点灯する事が可能であるが、ここでは、駆動部やLED列との接続を少なくし、且つ制御の説明を分かり易くする為、脈流の瞬時値がVLなる値に至るまでは給電端から点灯するLED数を順次増加し、脈流の瞬時値がVL以上VH以下の場合は給電端から最遠のLED端子に駆動部を接続して給電端とLED端子間を導通させ、VH以上の場合は全LEDを点灯させる動作モデルを例とし、説明を分かり易くする為、標準脈流尖頭値の90%をVL、同じく110%をVHとし、LED列は一列で、LEDの数は標準の脈流尖頭値で点灯する時に10個として説明する。 In the embodiment of the present invention, in a series of LED trains having a feeding end driven by a full-wave rectified pulse flow as one end, different LEDs in a plurality of different LED rows starting from the feeding end are used. The LED from the power supply end to the LED drive unit connection point is controlled to light up according to the instantaneous value of the connection with the drive unit and the pulse flow, and the LED terminal at the farthest end when viewed from the power supply end of the LED row is the LED drive unit. It is an LED drive method that controls the number of lit LEDs according to the instantaneous value of the pulsation by conducting between the LED terminals of the LED row at one or more locations while connecting to the LED drive method. It is possible to turn on all the LEs during the pulsation cycle, but here, in order to reduce the connection with the drive unit and LED row and make the explanation of control easy to understand, the instantaneous value of the pulsation is VL. The number of LEDs that light up from the feeding end is gradually increased until the value reaches As an example, an operation model in which all LEDs are turned on when the terminals are connected to each other and VH or higher is used as an example. Is in a row, and the number of LEDs is described as 10 when lit at the standard pulsation peak value.

次に、本発明にかかるLED駆動方法等を実施するための各実施形態について、図面を参照しながら詳述する。 Next, each embodiment for carrying out the LED driving method and the like according to the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態はLED駆動方法のデジタル制御法に関し、第2実施形態はLED駆動電流のアナログ制御法に関し、第3実施形態はLED駆動電流のデジタル・アナログ混在制御法に関するものとして説明する。なお、回路系の安定性向上のために、例えば、DAコンバータ→定電流駆動回路→ADコンバータ→誤差算出という一連の負帰還制御動作に対し系の安定性を確保する為の付加手段等が適宜必要とされる場合もあるが、これらは本発明の本質部分ではなく、また、本発明の理解を容易にするために、説明を省略する。 The first embodiment of the present invention will be described as relating to the digital control method of the LED drive method, the second embodiment as relating to the analog control method of the LED drive current, and the third embodiment as relating to the digital / analog mixed control method of the LED drive current. do. In order to improve the stability of the circuit system, for example, additional means for ensuring the stability of the system for a series of negative feedback control operations such as DA converter → constant current drive circuit → AD converter → error calculation are appropriately provided. Although sometimes required, these are not essential parts of the invention and are omitted herein to facilitate understanding of the invention.

あるいは、アナログ回路系の安定性のために、適宜コンデンサ(C)や抵抗(R)を挿入するなどして応答調整が行われる場合もあるが、これらも本発明の本質部分ではなく、また、本発明の理解を容易にするために、説明を省略する。 Alternatively, for the stability of the analog circuit system, response adjustment may be performed by inserting a capacitor (C) or a resistor (R) as appropriate, but these are also not essential parts of the present invention, and are also In order to facilitate the understanding of the present invention, the description thereof will be omitted.

(本発明の基本概念)
上述のように、本発明の実施形態としては、デジタル制御方法によるもの(第1実施形態)、アナログ制御方法によるもの(第2実施形態)、デジタル・アナログ混合制御方法によるもの(第3実施形態)といった様々な実施形態が想定されるが、本発明の基本概念は、上述の課題として挙げた「各脈流周期内で全消灯のままとなるLEDの発生」を防止するために、電圧値によってLED列中の点灯数を柔軟に変更制御し、かつ、点灯させる位置(LED)を柔軟に制御するという点にある。そのために、電圧の尖頭値を含む基準点から所定の経過時間後の波高値(以下、これを尖頭値等という)を適切に予測することは重要な処理となりうる。
(Basic Concept of the Present Invention)
As described above, the embodiment of the present invention is based on the digital control method (first embodiment), the analog control method (second embodiment), and the digital / analog mixed control method (third embodiment). ), But the basic concept of the present invention is a voltage value in order to prevent "generation of an LED that remains completely extinguished within each pulsation cycle" mentioned as the above-mentioned problem. The point is that the number of lights in the LED row is flexibly changed and controlled, and the position (LED) to be turned on is flexibly controlled. Therefore, it may be an important process to appropriately predict the peak value (hereinafter referred to as the peak value or the like) after a predetermined elapsed time from the reference point including the peak value of the voltage.

また、第2実施形態では、電圧波形の尖頭値等の予測を行う替わりに、回路中の各スイッチのオン/オフが電圧の高低に依存して制御されるように構成されており、これによって、第1実施形態及び第3実施形態と同様のLED点灯制御が行われる。いずれにせよ、電圧の高低に応じてLED列中の点灯数と点灯位置(つまり点灯させるべきLED)が柔軟に制御される点に変わりはない。 Further, in the second embodiment, instead of predicting the peak value of the voltage waveform, the on / off of each switch in the circuit is controlled depending on the voltage level. Therefore, the same LED lighting control as in the first embodiment and the third embodiment is performed. In any case, there is no change in that the number of lights and the lighting position (that is, the LED to be turned on) in the LED row are flexibly controlled according to the voltage level.

このようなLEDの駆動制御が行われると、LEDの点灯段数は減っても消灯状態が継続してしまう箇所(LED位置)の発生を防止することができ、瞬間的に一部消灯していることを人は知覚出来ないという効果を奏する。 When such LED drive control is performed, it is possible to prevent the occurrence of a place (LED position) where the LED lighting stage continues even if the number of lighting stages of the LED is reduced, and the LED is partially turned off instantaneously. It has the effect that people cannot perceive it.

図4を参照して、本発明の動作原理を例示的に説明する。
図4には、LED駆動方法(詳細には、図1A~図3に示された駆動方法)における脈流Voの高低と、それぞれの脈流Voの場合に応じて点灯/消灯制御されるLED列中のLEDとの関係について説明したものである。図4(A1)に示されている波形は、脈流Voの尖頭値が標準値より10%高いAC110Vの場合の全波整流波形(脈流1サイクル)であり、(A2)には(A1)に示された波形の各電圧ステップに応じてLED列中のLEDがどのように点灯/消灯制御されるのかを時系列に例示している。また、図4(B1)に示されている波形は、脈流Voの尖頭値が標準値のAC100Vの場合の全波整流波形(脈流1サイクル)であり、(B2)には(B1)に示された波形の各電圧ステップに応じてLED列中のLEDがどのように点灯/消灯制御されるのかを時系列に例示している。また、図4(C1)に示されている波形は、脈流Voの尖頭値が標準値より10%低いAC90Vの場合の全波整流波形(脈流1サイクル)であり、(C2)には(C1)に示された波形の各電圧ステップに応じてLED列中のLEDがどのように点灯/消灯制御されるのかを時系列に例示している。
The operating principle of the present invention will be exemplified by reference with reference to FIG.
FIG. 4 shows the high and low of the pulsating current Vo in the LED driving method (specifically, the driving method shown in FIGS. 1A to 3), and the LED controlled to be turned on / off according to the case of each pulsating current Vo. The relationship with the LEDs in the row is explained. The waveform shown in FIG. 4 (A1) is a full-wave rectified waveform (pulsating flow 1 cycle) in the case of AC110V in which the peak value of the pulsating current Vo is 10% higher than the standard value, and (A2) shows (A2). How the LEDs in the LED row are controlled to be turned on / off according to each voltage step of the waveform shown in A1) is illustrated in chronological order. Further, the waveform shown in FIG. 4 (B1) is a full-wave rectified waveform (pulsating flow 1 cycle) when the peak value of the pulsating current Vo is AC100V, which is a standard value, and (B2) shows (B1). ) Is exemplified in chronological order how the LEDs in the LED row are controlled to be turned on / off according to each voltage step of the waveform shown in). Further, the waveform shown in FIG. 4 (C1) is a full-wave rectified waveform (pulsating flow 1 cycle) in the case of AC90V in which the peak value of the pulsating current Vo is 10% lower than the standard value, and is shown in (C2). Illustrates in chronological order how the LEDs in the LED row are controlled to be turned on / off according to each voltage step of the waveform shown in (C1).

図4(A1)に示された電圧値が高い場合の全波整流波形におけるLED駆動方法のLEDの点灯/消灯制御を示す。(A2)においては、制御の基準点(脈流Voの電圧値が最小となる点)から脈流Voが時刻t10から立ち上がっていくとともに、LED駆動方法による駆動制御部は、時刻t11~t12の区間では第1段目~第4段目のLED(D1~D4)を点灯させ、時刻t12~t13の区間では第1段目~第7段目のLED(D1~D7)を点灯させ、時刻t13~t14の区間では第1段目~第2段目のLED(D1~D2)を消灯させるとともに、第8段目~第11段目のLED(D8~D11)をさらに点灯させる(つまり、同区間では、D3~D11が点灯している状態である)。次に、時刻t14~t15の区間では第2段目のLED(D2)をさらに点灯させ(つまり、同区間では、D2~D11が点灯している状態である)、時刻t15~t16の区間(脈流Voの尖頭値が含まれる区間)では、再び第1段目のLED(D1)を点灯させることにより、第1段目~第11段目のLED(D1~D11)を全点灯させる。以後、脈流Voの電圧が立ち下がっていくとともに、点灯させるLEDについては、時刻t16~t17の区間においてD2~D11を点灯させ、時刻t17~t18の区間においてD3~D11を点灯させ、時刻t18~t19の区間においてD1~D7を点灯させ、時刻t19~t1aの区間においてD1~D4を点灯させるように、順次制御される。 FIG. 4 (A1) shows lighting / extinguishing control of the LED of the LED driving method in the full-wave rectified waveform when the voltage value is high. In (A2), the pulse flow Vo rises from the time t10 from the control reference point (the point where the voltage value of the pulse flow Vo becomes the minimum), and the drive control unit by the LED drive method is at times t11 to t12. In the section, the LEDs (D1 to D4) in the first to fourth stages are turned on, and in the section from time t12 to t13, the LEDs (D1 to D7) in the first to seventh stages are turned on, and the time is set. In the section from t13 to t14, the LEDs (D1 to D2) of the first stage to the second stage are turned off, and the LEDs (D8 to D11) of the eighth stage to the eleventh stage are further turned on (that is,). In the same section, D3 to D11 are lit). Next, in the section from time t14 to t15, the second-stage LED (D2) is further lit (that is, in the same section, D2 to D11 are lit), and the section from time t15 to t16 (that is, in the same section). In the section including the peak value of the pulse flow Vo), the LEDs (D1) of the first stage are turned on again to light all the LEDs (D1 to D11) of the first stage to the eleventh stage. .. After that, as the voltage of the pulsating current Vo drops, as for the LED to be turned on, D2 to D11 are turned on in the section from time t16 to t17, D3 to D11 are turned on in the section from time t17 to t18, and time t18. It is sequentially controlled so that D1 to D7 are turned on in the section from t19 and D1 to D4 are turned on in the section from time t19 to t1a.

また、図4(B1)に示された電圧値が平均の場合の全波整流波形におけるLED駆動方法のLEDの点灯/消灯制御を示す(B2)においては、制御の基準点(脈流Voの電圧値が最小となる点)から脈流Voが時刻t20から立ち上がっていくとともに、LED駆動方法による駆動制御部は、時刻t21~t22の区間では第1段目~第4段目のLED(D1~D4)を点灯させ、時刻t22~t23の区間では第1段目~第7段目のLED(D1~D7)を点灯させ、時刻t23~t24の区間では第1段目~第2段目のLED(D1~D2)を消灯させるとともに、第8段目~第11段目のLED(D8~D11)をさらに点灯させる(つまり、同区間では、D3~D11が点灯している状態である)。次に、時刻t24~t25の区間(脈流Voの尖頭値が含まれる区間)では第2段目のLED(D2)をさらに点灯させる(つまり、同区間では、D2~D11が点灯している状態である)。以後、脈流Voの電圧が立ち下がっていくとともに、点灯させるLEDについては、時刻t25~t26の区間においてD3~D11を点灯させ、時刻t26~t27の区間においてD1~D7を点灯させ、時刻t27~t28の区間においてD1~D4を点灯させるように、順次制御される。 Further, in (B2) showing the LED lighting / extinguishing control of the LED driving method in the full-wave rectified waveform when the voltage value shown in FIG. 4 (B1) is average, the control reference point (pulse flow Vo) is shown. The pulsating flow Vo rises from time t20 from the point where the voltage value becomes the minimum), and the drive control unit by the LED drive method is the first to fourth stage LEDs (D1) in the section from time t21 to t22. ~ D4) is turned on, the first to seventh stage LEDs (D1 to D7) are turned on in the section from time t22 to t23, and the first to second stages are turned on in the section from time t23 to t24. The LEDs (D1 to D2) of the above are turned off, and the LEDs (D8 to D11) of the eighth to eleventh stages are further turned on (that is, D3 to D11 are lit in the same section. ). Next, in the section from time t24 to t25 (the section including the peak value of the pulsating current Vo), the LED (D2) in the second stage is further turned on (that is, in the same section, D2 to D11 are turned on. Is in a state of being). After that, as the voltage of the pulsating current Vo drops, D3 to D11 are turned on in the section of time t25 to t26, D1 to D7 are turned on in the section of time t26 to t27, and the time t27 is turned on. It is sequentially controlled so that D1 to D4 are turned on in the section from to t28.

また、また、図4(C1)に示された電圧値が低い場合の全波整流波形におけるLED駆動方法のLEDの点灯/消灯制御を示す(C2)においては、制御の基準点(脈流Voの電圧値が最小となる点)から脈流Voが時刻t50から立ち上がっていくとともに、LED駆動方法による駆動制御部は、時刻t51~t52の区間では第1段目~第4段目のLED(D1~D4)を点灯させ、時刻t52~t53の区間では第1段目~第7段目のLED(D1~D7)を点灯させる。次に、時刻t53~t54の区間(脈流Voの尖頭値が含まれる区間)では第1段目~第2段目のLED(D1~D2)を消灯させるとともに、第8段目~第11段目のLED(D8~D11)をさらに点灯させる(つまり、同区間では、D3~D11が点灯している状態である)。以後、脈流Voの電圧が立ち下がっていくとともに、点灯させるLEDについては、時刻t54~t55の区間においてD1~D7を点灯させ、時刻t55~t56の区間においてD1~D4を点灯させるように、順次制御される。 Further, in (C2) showing the LED lighting / extinguishing control of the LED driving method in the full-wave rectified waveform when the voltage value shown in FIG. 4 (C1) is low, the control reference point (pulsating current Vo) is shown. The pulsating current Vo rises from time t50 from the point where the voltage value of D1 to D4) are turned on, and the first to seventh stage LEDs (D1 to D7) are turned on in the section from time t52 to t53. Next, in the section from time t53 to t54 (the section including the peak value of the pulsating current Vo), the LEDs (D1 to D2) in the first to second stages are turned off, and the LEDs (D1 to D2) in the eighth stage to the eighth stage are turned off. The 11th stage LEDs (D8 to D11) are further lit (that is, D3 to D11 are lit in the same section). After that, as the voltage of the pulsating current Vo drops, as for the LED to be turned on, D1 to D7 are turned on in the section of time t54 to t55, and D1 to D4 are turned on in the section of time t55 to t56. It is controlled sequentially.

なお、駆動制御部は、現在の脈流Voの値(瞬時電圧値)及び蓄積した波形情報(例えば直近4~8個の波形情報の平均値)を基に、直後の脈流Voの尖頭値等を予測させることができる。このとき、尖頭値等の予測は任意のタイミングで行わせることができるが、より精度の高い予測のためには、脈流Voの尖頭値近くで全LEDを点灯させる直前のタイミングで予測させると好適である。 The drive control unit is based on the current pulsating current Vo value (instantaneous voltage value) and the accumulated waveform information (for example, the average value of the latest 4 to 8 waveform information), and the pulsating current Vo peak immediately after that. The value etc. can be predicted. At this time, the peak value and the like can be predicted at any timing, but for more accurate prediction, the prediction is made at the timing immediately before turning on all the LEDs near the peak value of the pulsating current Vo. It is preferable to let it.

また、図4では、LED列中のLEDの数を11個とし、脈流周期内において全消灯のままのLEDの発生を回避するために点灯/消灯の切り替え対象としたLED列端部のLEDをD1~D2とし(他端は、D5~D11である)、引き出し端の数を3つとして説明しているが、本発明はこれらに限定されない(図1A~図3を参照して後述する実施形態においても、同様である)。 Further, in FIG. 4, the number of LEDs in the LED row is set to 11, and the LEDs at the end of the LED row to be switched on / off in order to avoid the generation of LEDs that are completely turned off during the pulsating current cycle. 1 to D2 (the other end is D5 to D11), and the number of drawer ends is three, but the present invention is not limited thereto (see FIGS. 1A to 3 later). The same applies to the embodiment).

次に、図1A~図3を参照しながら第1実施形態~第3実施形態について詳説する。 Next, the first embodiment to the third embodiment will be described in detail with reference to FIGS. 1A to 3.

第1実施形態]<LED駆動電流のデジタル制御法>
図1Aは、本発明の第1実施形態にかかるLED駆動方法110の構成例である。いわゆるフルデジタルの構成である。このようなデジタル制御においては、通常は系の安定性の問題(システムの動作不安定や発振を防止する観点)として、マイクロプロセッサのレスポンスよりも、回路出力のほうが十分にゆっくりであること(逆に言えば、プロセッサのレスポンスが十分速いこと。但し、コスト要請もある)が条件とされる事が多いが、具体的なスペックについては本発明の本質ではないため詳細な説明は割愛する。以下、LED駆動方法110はこの問題をクリアしているものとする。
[ First Embodiment ] <Digital control method of LED drive current>
FIG. 1A is a configuration example of the LED driving method 110 according to the first embodiment of the present invention. It is a so-called full digital configuration. In such digital control, the circuit output is usually sufficiently slower than the microprocessor response (reverse) as a system stability issue (from the perspective of preventing system instability and oscillation). In many cases, the response of the processor is sufficiently fast. However, there is also a cost request), but the specific specifications are not the essence of the present invention, so detailed explanations are omitted. Hereinafter, it is assumed that the LED driving method 110 clears this problem.

また、図1Aにおいては、Q11~Q15のゲート~ソース間に各MOSFETの動作に影響を与えない大きな値の抵抗(図では破線で表示)を実装しており、SW101~SW106を開放した場合にはMOSFETには電流が流れないように構成した。またI11~I15とRs11~Rs15の値は予め設定されており、Q11~Q15、Q132、Q142の特性は既知とする。
つまり、電流I11~I15の値と抵抗Rs11~Rs15の値は、ドライバの設計手順により定まる値である(つまり、流す電流、及びドライバにとっての基準電圧・基準電流が定まればソースに使用される抵抗値は設計値として決定される)。
同様に、すでに決定された標準入力AC電圧、変動率、LED段数、切換タップ数、各タップに流す電流値と各切替電圧、基準電圧により、トランジスタQ11~Q15で必要とされる特性、並びに、導通切替部140の各抵抗の値及びトランジスタQ261、Q262の特性も自ずと定まる。
以下、「値は予め設定されている」、「特性は既知とする」の意義については同様の趣旨である。
Further, in FIG. 1A, a resistance having a large value (indicated by a broken line in the figure) that does not affect the operation of each MOSFET is mounted between the gate and the source of Q11 to Q15, and when SW101 to SW106 are opened. Was configured so that no current would flow through the MOSFET. Further, the values of I11 to I15 and Rs11 to Rs15 are set in advance, and the characteristics of Q11 to Q15, Q132, and Q142 are known.
That is, the values of the currents I11 to I15 and the values of the resistors Rs11 to Rs15 are values determined by the driver design procedure (that is, if the current to be passed and the reference voltage / reference current for the driver are determined, they are used for the source. The resistance value is determined as a design value).
Similarly, the characteristics required for the transistors Q11 to Q15, and the characteristics required by the transistors Q11 to Q15, depending on the already determined standard input AC voltage, fluctuation rate, number of LED stages, number of switching taps, current value and switching voltage flowing through each tap, and reference voltage, and The value of each resistance of the conduction switching unit 140 and the characteristics of the transistors Q261 and Q262 are also determined naturally.
Hereinafter, the meanings of "values are preset" and "characteristics are known" have the same meaning.

図1Aに示すように、LED駆動方法110は、全波整流器FR1、駆動制御部120、複数のトランジスタ等を有する定電流駆動回路130、導通切替部140、及びLED列(例示的に、D11~D1bまで11個のLED列からなる)を備える。 As shown in FIG. 1A, the LED drive method 110 includes a full-wave rectifier FR1, a drive control unit 120, a constant current drive circuit 130 having a plurality of transistors, a conduction switching unit 140, and an LED train (exemplarily, D11 to D11 to). It consists of 11 LED rows up to D1b).

LED列は、互いに直列接続されたN個(Nは3以上の整数。図1Aにおいては例示的に11個)のLEDを有し、交流入力(交流電源)からブリッジダイオード等の全波整流器FR1で全波整流された脈流Voが、LED列の給電端150A及び駆動制御部120に入力される。 The LED train has N LEDs (N is an integer of 3 or more; 11 in FIG. 1A as an example) connected in series with each other, and has an AC input (AC power supply) to a full-wave rectifier FR1 such as a bridge diode. The full-wave rectified pulsating current Vo is input to the feeding end 150A and the drive control unit 120 of the LED row.

図1Aに示す形態では、発明の理解を容易にするために、LED(D11~D1b)の数Nを11個としているがこれに限定されるものではない。また、LED列の給電端150Aから異なる数(同じ数であってもよい)のLEDごとに引き出し端151~153が設けられ、それぞれは駆動用のトランジスタQ11、Q12、Q13-1に接続されている。LED列の終端150Bは駆動用のトランジスタQ13-2、Q14、Q15に接続されている。なお、引き出し端151~153の数はこれに限定されない。 In the embodiment shown in FIG. 1A, the number N of the LEDs (D11 to D1b) is set to 11 in order to facilitate the understanding of the invention, but the present invention is not limited thereto. Further, lead-out ends 151 to 153 are provided for each of different numbers (may be the same number) of LEDs from the feeding end 150A of the LED row, and each is connected to the driving transistors Q11, Q12, and Q13-1. There is. The terminal 150B of the LED row is connected to the driving transistors Q13-2, Q14, and Q15. The number of drawer ends 151 to 153 is not limited to this.

定電流駆動回路130は、複数の駆動用のトランジスタQ11、Q12、Q13-1、Q13-2、Q14、Q15、複数のスイッチSw101~Sw106、及び複数の抵抗Rs11~Rs14を含む回路であり、それぞれの要素は図1Aに示すように接続されている。駆動制御部120によるスイッチSw101~Sw106の制御により、トランジスタQ11、Q12、Q13-1、Q13-2、Q14、Q15に流れる電流I11、I12、I13-1、I13-2、I14,I15がそれぞれ制御される。なお、定電流駆動回路130に含まれる駆動用のトランジスタ、スイッチ及び抵抗の個数は、図1Aに示す例に限定されず、LED列に含まれるLEDの数や、電流I11~I15が流れるLED列からの引き出し配線の数や入力される交流電圧等に応じて変更される。また本説明ではLEDを1列として説明してあるが、並列、直並列、並列の数を変える等、さまざまな接続形態が可能なのであり、これらを代表として1列として説明するものである。 The constant current drive circuit 130 is a circuit including a plurality of driving transistors Q11, Q12, Q13-1, Q13-2, Q14, Q15, a plurality of switches Sw101 to Sw106, and a plurality of resistors Rs11 to Rs14, respectively. Elements are connected as shown in FIG. 1A. The currents I11, I12, I13-1, I13-2, I14, and I15 flowing through the transistors Q11, Q12, Q13-1, Q13-2, Q14, and Q15 are controlled by the control of the switches Sw101 to Sw106 by the drive control unit 120, respectively. Will be done. The number of driving transistors, switches, and resistors included in the constant current drive circuit 130 is not limited to the example shown in FIG. 1A, and the number of LEDs included in the LED row and the LED row through which the currents I11 to I15 flow. It is changed according to the number of lead wires from and the input AC voltage. Further, in this description, the LEDs are described as one row, but various connection forms such as parallel, series-parallel, and changing the number of parallels are possible, and these are described as one row as a representative.

ここで、本実施形態では、トランジスタQ11、Q12、Q13-1、Q13-2、Q14、Q15としてMOSFETを用い、スイッチSw101~Sw106として半導体スイッチ(CMOS・MOSFET・バイポーラトランジスタ)を用いて説明しているが、これらに限定されるものではなく、他の同等機能品を採用してもよい。 Here, in the present embodiment, MOSFETs are used as transistors Q11, Q12, Q13-1, Q13-2, Q14, and Q15, and semiconductor switches (CMOS, MOSFETs, bipolar transistors) are used as switches Sw101 to Sw106. However, the present invention is not limited to these, and other equivalent functional products may be adopted.

導通切替部140は、トランジスタQ132、Q142、スイッチSw121、122、及び抵抗Rc111、112、121、122を含む。導通切替部140は、次に述べる駆動制御部120による制御に応じて、LED列の給電端150Aから数えてj段目(jは2以上N未満の整数)のLEDの陽極(アノードあるいは入力端子)と給電端150Aとを導通状態又は非導通状態に切り替える。
言い換えると、導通切替部140は、駆動制御部120による制御に応じて、LED列の給電端150Aと、この給電端150Aから数えてj段目のLEDとの間のLEDを導通状態又は非導通状態に切り替える。尚、非導通を切り替える数や場所はこれ等説明に限定されるものではなく、必要に応じて増減が可能な事は言うまでもない。
The conduction switching unit 140 includes transistors Q132, Q142, switches Sw121, 122, and resistors Rc111, 112, 121, 122. The conduction switching unit 140 is the anode (anode or input terminal) of the LED of the jth stage (j is an integer of 2 or more and less than N) counted from the feeding end 150A of the LED row according to the control by the drive control unit 120 described below. ) And the feeding end 150A are switched to a conductive state or a non-conducting state.
In other words, the continuity switching unit 140 conducts or does not conduct the LED between the feeding end 150A of the LED row and the LED in the jth stage counting from the feeding end 150A according to the control by the drive control unit 120. Switch to the state. It goes without saying that the number and location of switching non-conduction are not limited to these explanations, and can be increased or decreased as needed.

駆動制御部120は、入力電圧測定用のADコンバータ(ADC)121、制御マイクロプロセッサユニット(MPU)122、電流値設定用のDAコンバータ(DAC)123、及びスイッチ制御部124を備える。 The drive control unit 120 includes an AD converter (ADC) 121 for input voltage measurement, a control microprocessor unit (MPU) 122, a DA converter (DAC) 123 for current value setting, and a switch control unit 124.

制御MPU122は、CPU、メモリ及びプログラムメモリ等を備えたコンピュータであり、全波整流器FR1で全波整流された脈流Voの電圧値を予め定められた時間毎にADC121を介して取得し、内部メモリ内に脈流Voの波形情報(電圧値とその電圧値を示す時間とを関連付けた情報)を蓄積する。当該予め定められた時間は、例えば、交流入力一周期ごとに16~128個、好ましくは32~64個の電圧値をサンプリングできる時間としてもよい。また、蓄積する波形情報は、脈流一サイクルで1個の波形情報とすると、現時点から直近2個以上の波形情報を蓄積していればよい。本実施形態では限定されないが、制御MPU122は例えば直近4~16個の波形情報を常時蓄積し、古い波形情報はその都度破棄される。
なお、これらのMPU性能は、本願の出願時において低価格低速のMPUであり上述したようにシステムが動作不安定とならず発振をしない程度の処理性能の使用を想定している。
The control MPU 122 is a computer equipped with a CPU, a memory, a program memory, etc., and acquires the voltage value of the pulsating current Vo rectified by the full-wave rectifier FR1 at predetermined time intervals via the ADC 121, and internally. Pulsating current Vo waveform information (information associated with a voltage value and a time indicating the voltage value) is stored in the memory. The predetermined time may be, for example, a time during which 16 to 128 voltage values, preferably 32 to 64 voltage values can be sampled in one AC input cycle. Further, assuming that the waveform information to be accumulated is one waveform information in one pulsating current cycle, it is sufficient to accumulate two or more latest waveform information from the present time. Although not limited in this embodiment, the control MPU 122 constantly accumulates, for example, the latest 4 to 16 waveform information, and the old waveform information is discarded each time.
It should be noted that these MPU performances are low-priced and low-speed MPUs at the time of filing of the present application, and as described above, it is assumed that the processing performance is such that the system does not become unstable and does not oscillate.

制御MPU122は、蓄積した波形情報を基に、現時点におけるADC121を介して取得した脈流Voの値(瞬時電圧値)から、以後の脈流波形を予測する。この予測した脈流波形に基づき、制御MPU122は、スイッチ制御部124を制御して定電流駆動回路130内のスイッチSw101~Sw106をそれぞれ制御して、トランジスタQ11、Q12、Q13-1、Q13-2、Q14、Q15の何れを動作させるかを決めると共に、DAC123を介してこれらのトランジスタに流れる電流値I11、I12、I13-1、I13-2、I14、I15を設定する。このとき、制御MPU122は、ADC121を介して取得した電圧値(瞬時電圧値)に従い、電流値I11、I12、I13-1、I13-2、I14、I15が設定範囲内に収まる様にDAC123の出力を変更し電流値を調整する。 The control MPU 122 predicts the subsequent pulsating flow waveform from the value (instantaneous voltage value) of the pulsating current Vo acquired via the ADC 121 at the present time based on the accumulated waveform information. Based on this predicted pulsating current waveform, the control MPU 122 controls the switch control unit 124 to control the switches Sw101 to Sw106 in the constant current drive circuit 130, respectively, and the transistors Q11, Q12, Q13-1, and Q13-2. , Q14, and Q15 are to be operated, and the current values I11, I12, I13-1, I13-2, I14, and I15 flowing through these transistors via the DAC123 are set. At this time, the control MPU 122 outputs the DAC 123 so that the current values I11, I12, I13-1, I13-2, I14, and I15 fall within the set range according to the voltage value (instantaneous voltage value) acquired via the ADC 121. To adjust the current value.

次に、図1Aに記載のLED駆動方法110に基づき、制御MPU122によるLED駆動制御方法について説明する。 Next, the LED drive control method by the control MPU 122 will be described based on the LED drive method 110 shown in FIG. 1A.

まず、制御MPU122は、予め定められた時間毎に(例えば交流入力一周期ごとに32~64個の電圧値をサンプリング)、ADC121を介して脈流Vo及びトランジスタQ11、Q12、Q13-1、Q13-2、Q14、Q15に流れる電流でRs15に生ずる電圧値より算定する。取得した値は波形情報として制御MPU122に蓄積される。制御MPU122は、蓄積した波形情報を逐次(限定されないが現時点から直近4~16個の波形情報分)平準化してノイズの影響を低減した後に、その値を参照する。 First, the control MPU 122 performs pulsating current Vo and transistors Q11, Q12, Q13-1, Q13 via the ADC 121 at predetermined time intervals (for example, sampling 32 to 64 voltage values for each AC input cycle). Calculated from the voltage value generated in Rs15 by the current flowing through -2, Q14, and Q15. The acquired value is stored in the control MPU 122 as waveform information. The control MPU 122 sequentially (but is not limited to, the latest 4 to 16 waveform information from the present time) leveling the accumulated waveform information to reduce the influence of noise, and then refers to the value.

以下に記載のステップ1~5では、LED駆動方法110において脈流Voの電圧が制御の基準点(脈流Voの電圧値が最小となる点)から立ち上がっていく際の制御MPU122によるLED駆動方法について説明する。 In steps 1 to 5 described below, in the LED driving method 110, the LED driving method by the control MPU 122 when the voltage of the pulsating current Vo rises from the control reference point (the point where the voltage value of the pulsating current Vo becomes the minimum). Will be explained.

(ステップ1)
MPU122は、Voの値やQ11~Q15に流れる電流値を予め定められた時間毎にADCで測定すると共に制御の基準点、例えばVoの電圧値が最小となる時を認識するとSw101を閉じて他のSwは開き、DAC123には予め設定されたI11なる電流が流れる時のQ11のVGS標準値に(Rs11+Rs12+Rs13+Rs14+Rs15)×I11を加えた電圧を出力し、その後VsのADC測定値がVs=Rs15×I11となるように制御を開始する。
(Step 1)
The MPU 122 measures the Vo value and the current value flowing through Q11 to Q15 with the ADC at predetermined time intervals, and closes Sw101 when it recognizes the control reference point, for example, when the voltage value of Vo becomes the minimum. Sw opens, and the DAC 123 outputs a voltage obtained by adding (Rs11 + Rs12 + Rs13 + Rs14 + Rs15) × I11 to the VGS standard value of Q11 when a preset current of I11 flows, and then the ADC measurement value of Vs is Vs = Rs15 × I11. The control is started so as to become.

(ステップ2)
MPU122は、Vo・Vsや蓄積情報よりLED(D11~D14)を経てQ11にI11が流れ始めた事を知り、I11なる電流が流れる時のQ1のVGS標準値に(Rs11+Rs12+Rs13+Rs14)×I11を加えた電圧値をDAC初期値とし、I11が所定の値である事を示すVs=Rs15×I11となるようにDAC出力を調整する。
また、これと前後してSw102を閉じてQ12にも電流が流れるように設定する。
(Step 2)
The MPU 122 learned from Vo · Vs and accumulated information that I11 began to flow in Q11 via LEDs (D11 to D14), and added (Rs11 + Rs12 + Rs13 + Rs14) × I11 to the VGS standard value of Q1 when the current I11 flows. The voltage value is set as the initial DAC value, and the DAC output is adjusted so that Vs = Rs15 × I11 indicating that I11 is a predetermined value.
Around this time, Sw102 is closed and set so that current also flows in Q12.

(ステップ3)
MPU122は、Vo、Vsや蓄積情報等よりLED(D11~D17)を経てQ12にI12が流れ始めた事を知り、DAC初期値をI12なる電流が流れる時のQ12のVGS標準値に(Rs12+Rs13+Rs14+Rs15)×I12を加えた電圧を出力後、I12が所定の値であるVs=Rs15×I12となるようにDAC出力を調整し、それと前後してSw101を開き、Sw103及びSw104を閉じてQ13-1及びQ13-2に電流が流れるように設定する。
(Step 3)
The MPU 122 learns from Vo, Vs, accumulated information, etc. that I12 has started to flow in Q12 via LEDs (D11 to D17), and sets the DAC initial value to the VGS standard value of Q12 when a current of I12 flows (Rs12 + Rs13 + Rs14 + Rs15). After outputting the voltage to which × I12 is added, the DAC output is adjusted so that I12 becomes Vs = Rs15 × I12, which is a predetermined value, and before and after that, Sw101 is opened, Sw103 and Sw104 are closed, and Q13-1 and Set so that current flows in Q13-2.

(ステップ4)
MPU122は、Vo、Vsや蓄積情報よりLED(D11~D19)を経てQ13-1にI13-1が流れ始めた事を知るとSw102を開くと共に、I13-1なる電流が流れる時のQ13-1のVGS標準値に(Rs13+Rs14+Rs15)×I13を加えた電圧をDAC123より出力し、その後I13が所定の値であるVs=Rs15×I13となるようにDAC出力を調整する。
それと同時期にSw121を閉じSw103を開いてQ13-2を導状態としてLED(D13~D1b)を経てQ13-2に電流I13-2を流す。またこれと前後してSw105を閉じ、Q14に電流が流れるように設定する。尚、I13-1=I13-2=I13である為、Q13-1を経てI13-1が流れても、Q13-2を経てI13-2が流れてもDAC出力を制御するMPU122の制御内容に変わりはない。
(Step 4)
The MPU 122 opens Sw102 when it learns that I13-1 has started to flow to Q13-1 via LEDs (D11 to D19) from Vo, Vs and accumulated information, and Q13-1 when a current of I13-1 flows. The voltage obtained by adding (Rs13 + Rs14 + Rs15) × I13 to the VGS standard value of is output from the DAC123, and then the DAC output is adjusted so that I13 becomes Vs = Rs15 × I13 which is a predetermined value.
At the same time, Sw121 is closed, Sw103 is opened, Q13-2 is guided, and a current I13-2 is passed through LEDs (D13 to D1b) to Q13-2. Around this time, Sw105 is closed and set so that current flows through Q14. Since I13-1 = I13-2 = I13, the control content of the MPU 122 that controls the DAC output regardless of whether I13-1 flows through Q13-1 or I13-2 flows through Q13-2. There is no change.

(ステップ5)
MPU122は、Vo、Vsや蓄積情報よりVoの電圧波形を予測し、VoがLED(D12~D1b)を経てQ14にI14を流す事が出来る値に達しないと予測する場合は、Voが尖頭値に達し電圧値が減少を開始するまで予測・判定を継続する。この時、I3が所定の値であるVs=Rs15×I3となるようにDAC出力を調整するのは言うまでもない。
Voの電圧波形の予測で、VoがLED(D12~D1b)を経てQ14にI14を流す事が出来る値に達すると予測される場合、Q14に電流I14を流す時点を設定し、当該時点に達したと判断するとSw121を開きSw122を閉じてQ132を遮断状態とし且つQ142を導通状態として150AからQ142を経由しLED(D12~D1b)を経てQ14に電流I14が流れる様に、I14なる電流が流れる時のQ14のVGS標準値に(Rs14+Rs15)×I14を加えた電圧をDAC123より出力し、I14が所定の値であるVs=Rs15×I14となるようにDAC出力を調整する。また、Sw106を閉じSw103を開いてQ15を動作可能とする。
(Step 5)
The MPU 122 predicts the voltage waveform of Vo from Vo, Vs and accumulated information, and if it predicts that Vo does not reach a value at which I14 can flow to Q14 via LEDs (D12 to D1b), Vo is sharp. The prediction / judgment is continued until the value is reached and the voltage value starts to decrease. At this time, it goes without saying that the DAC output is adjusted so that I3 becomes Vs = Rs15 × I3, which is a predetermined value.
If it is predicted that Vo will reach a value at which I14 can be passed through Q14 via LEDs (D12 to D1b) in the prediction of the voltage waveform of Vo, the time point at which the current I14 is passed through Q14 is set and the time point is reached. When it is determined that the current has been determined, Sw121 is opened, Sw122 is closed, Q132 is cut off, Q142 is in a conductive state, and a current I14 flows from 150A via Q142 to Q14 via LEDs (D12 to D1b). The voltage obtained by adding (Rs14 + Rs15) × I14 to the VGS standard value of Q14 at the time is output from the DAC123, and the DAC output is adjusted so that I14 becomes Vs = Rs15 × I14 which is a predetermined value. Further, Sw106 is closed and Sw103 is opened to enable Q15 to operate.

(ステップ6)
MPU122は、Vo、Vsや蓄積情報よりVoの電圧波形を予測し、VoがLED(D11~D1b)を経てQ15にI15を流す事が出来る値に達しないと予測する場合は、Voが尖頭値に達し電圧値が減少し始めるまで本動作を継続し、I14が所定の値であるVs=Rs15×I14となるようにDAC出力を調整する。
Voの電圧波形の予測で、VoがLED(D11~D1b)を経てQ15にI15を流す事が出来る値に達すると予測する場合、Q15に電流I15を流す時点を設定し、当該時点に達したと判断するとSw122を開いてQ142を遮断状態として全LED(D11~D1b)を経てQ15に電流I15を流し始めると共に、I15なる電流が流れる時のQ15のVGS標準値にRs15×I15を加えた電圧をDAC123より出力し、その後I15が所定の値であるVs=Rs15×I15となるようにDAC出力を調整すると共に、MPU122はVo、Vsや蓄積情報よりVoの電圧波形の予測を継続し、Voが尖頭値に達するまで動作を継続する。
(Step 6)
The MPU 122 predicts the voltage waveform of Vo from Vo, Vs and accumulated information, and if it predicts that Vo does not reach a value at which I15 can flow to Q15 via LEDs (D11 to D1b), Vo is sharp. This operation is continued until the value is reached and the voltage value starts to decrease, and the DAC output is adjusted so that I14 becomes Vs = Rs15 × I14, which is a predetermined value.
In the prediction of the voltage waveform of Vo, when it is predicted that Vo will reach a value at which I15 can be passed through Q15 via LEDs (D11 to D1b), the time point at which the current I15 is passed through Q15 is set, and the time point is reached. When it is determined that Sw122 is opened and Q142 is cut off, the current I15 is started to flow through all the LEDs (D11 to D1b) to Q15, and the voltage obtained by adding Rs15 × I15 to the VGS standard value of Q15 when the current I15 flows. Is output from the DAC 123, and then the DAC output is adjusted so that I15 becomes Vs = Rs15 × I15, which is a predetermined value, and the MPU 122 continues to predict the voltage waveform of Vo from Vo, Vs and accumulated information, and Vo. Continues to operate until the peak value is reached.

そして、脈流Voが尖頭値に達した後は電圧が減少するが、その時は上記ステップの逆順の動作を行う。 Then, after the pulsating current Vo reaches the peak value, the voltage decreases, but at that time, the operation in the reverse order of the above steps is performed.

なお、上記例では(ステップ4)でLED(D11~D19)に電流I13-1が流れ出すのを知り、Sw121を操作してQ132を導通させる事でLED(D13~D1b)に電流を流すように制御を行っているが、電圧Voの予測で直接Sw121を操作することにより、Q13-1を削除することもできる。 In the above example, in (step 4), it is known that the current I13-1 flows out to the LEDs (D11 to D19), and the Sw121 is operated to conduct the Q132 so that the current flows through the LEDs (D13 to D1b). Although it is controlled, Q13-1 can be deleted by directly operating Sw121 by predicting the voltage Vo.

また、上記の制御方法では入力電圧許容範囲を広げるとそれに伴い消費電力も変動してしまうが、電圧に応じて流す電流を増減する事で電力の変動を抑止するよう制御しても良い。 Further, in the above control method, when the allowable input voltage range is widened, the power consumption also fluctuates accordingly, but the fluctuation of the power may be suppressed by increasing or decreasing the current flowing according to the voltage.

このように各ステップを繰り返し、LED駆動回路110は、LED列の各LEDを点灯/消灯させる。また、LED駆動回路110は、脈流Voの予測した尖頭値等が基準値よりも高い場合であっても低い場合であっても、LED列中の個々のLEDを適宜点灯/消灯制御することで、脈流1周期内でD11~D1bの全LEDをいずれかのタイミングで点灯させ、且つ、周期内で全く点灯しないLEDを無くすることができる。 By repeating each step in this way, the LED drive circuit 110 turns on / off each LED in the LED row. Further, the LED drive circuit 110 appropriately turns on / off the individual LEDs in the LED row regardless of whether the predicted peak value of the pulsating current Vo is higher or lower than the reference value. This makes it possible to turn on all the LEDs D11 to D1b at any timing within one cycle of the pulsating current, and eliminate the LEDs that do not light at all within the cycle.

以上の説明に基づけば、LED列中のLED数をN個(Nは3以上の整数)とし、脈流周期内における不点灯を回避するために点灯/消灯の切り替え対象としたLEDをLED列の両端からその合計がN個を越えない任意の数のLEDとし、また、LED列中のLED間において引き出し端の数と引き出し位置を任意に設計することができることは、当業者であれば容易に理解できるであろう。 Based on the above explanation, the number of LEDs in the LED row is N (N is an integer of 3 or more), and the LED that is switched on / off in order to avoid non-lighting in the pulsation cycle is the LED row. It is easy for a person skilled in the art to have an arbitrary number of LEDs whose total number does not exceed N from both ends of the LED, and to arbitrarily design the number of drawer ends and the drawer positions among the LEDs in the LED row. You can understand it.

この場合、LED駆動方法は、全波整流された脈流が入力される給電端を一端とするLED列であって、互いに直列接続されたN個(Nは3以上の整数)のLEDを有する前記LED列と、LED列の両端からその合計がN個を越えないそれぞれ任意の数のLEDを切り替える導通切替部とを含み、前記導通切替部は、脈流の(瞬時)電圧値に応じて、前記給電端と前記給電端から数えてj段目(jは2以上N未満の整数)のLEDとの間のLEDの導通と、前記給電端から数えてk段目(kはjとの合計がN未満の整数)からN段目までのLEDとの導通とを切り替えるように制御する。 In this case, the LED drive method is an LED train having a feeding end at one end to which a full-wave rectified pulse flow is input, and has N LEDs (N is an integer of 3 or more) connected in series with each other. The LED row includes a conduction switching unit that switches an arbitrary number of LEDs from both ends of the LED row, each of which does not exceed N in total, and the conduction switching unit responds to the (instantaneous) voltage value of the pulsation flow. , The continuity of the LED between the feeding end and the LED in the jth stage (j is an integer of 2 or more and less than N) counting from the feeding end, and the kth stage (k is j) counting from the feeding end. It is controlled to switch between the continuity with the LED from the Nth stage (an integer whose total is less than N) to the Nth stage.

さらに、以上の説明に基づいて本発明の技術概念を敷衍すれば、配線は複雑となるがLED端子間を導通するときに一端を給電端に固定せずに任意のLED間を導通させてLED数の制御を行っても上記と同様の効果を得られる事、LED列中のLED間において引き出し端の数と引き出し位置を任意に設計しても同様の効果を得る事は言うまでもなく、容易に理解もできるであろう。
また、複数の駆動回路を用いる代わりに、入力される脈流の波高値に応じてLED列に所定の電流が流せるか否かの判断を行ない、駆動回路端に接続されるLED列の数をLED間を導通させる機能を必要数用意してこれを制御する事で点灯するLED数を制御する事で単一の駆動回路でも同様の効果を得られるであろう事も容易に理解できるであろう。
むろん、駆動回路を複数用いてLED間を導通させる事も前述の制御法と類似の制御で可能な事も同様である。
Further, if the technical concept of the present invention is extended based on the above description, although wiring becomes complicated, when conducting between LED terminals, one end is not fixed to the feeding end and any LED is conducted to conduct the LED. It goes without saying that the same effect as above can be obtained even if the number is controlled, and the same effect can be easily obtained even if the number of drawer ends and the drawer position are arbitrarily designed among the LEDs in the LED row. You can understand it.
Further, instead of using a plurality of drive circuits, it is determined whether or not a predetermined current can flow in the LED train according to the peak value of the input pulse flow, and the number of LED trains connected to the end of the drive circuit is determined. It is easy to understand that the same effect can be obtained with a single drive circuit by controlling the number of LEDs that light up by preparing the required number of functions to conduct conduction between LEDs and controlling this. Let's go.
Of course, it is also possible to make the LEDs conductive by using a plurality of drive circuits by the same control as the above-mentioned control method.

また、該LED駆動方法は、前記LED列に設けられた複数の引き出し端と、前記複数の引き出し端に接続された複数のトランジスタと、前記複数のトランジスタの各々に接続された複数のスイッチと、前記導通切替部及び前記スイッチを制御する駆動制御部とをさらに含んでいてもよく、前記駆動制御部が、前記脈流の瞬時電圧値に応じて前記複数のスイッチを制御し前記複数のトランジスタの各々に流れる電流を制御してもよい。 Further, the LED driving method includes a plurality of extraction ends provided in the LED row, a plurality of transistors connected to the plurality of extraction ends, and a plurality of switches connected to each of the plurality of transistors. The continuity switching unit and the drive control unit that controls the switch may be further included, and the drive control unit controls the plurality of switches according to the instantaneous voltage value of the pulsating flow of the plurality of transistors. The current flowing through each may be controlled.

(LED駆動電流のデジタル制御法の他のバリエーション)
図1Bを参照して、LED駆動電流のデジタル制御法の他のバリエーションを示す。図1Bにおいて図1Aと同じ部材番号が付されている装置や素子等は、基本的に同等の動作機能を有するものである(動作の仕組みは同等であっても、要求スペックが異なる場合はあり得る)。
(Other variations of LED drive current digital control method)
With reference to FIG. 1B, other variations of the digital control method of LED drive current are shown. Devices, elements, and the like having the same member numbers as those in FIG. 1B in FIG. 1B basically have the same operation functions (even if the operation mechanisms are the same, the required specifications may differ. obtain).

図1Bに示されたLED駆動方法115の概要は、次のとおりである。図1BにおけるMPUは、交流入力をブリッジダイオードFR1で全波整流した脈流Vを、予め定められた時間毎にADCを用いて「DAC→定電流回路→ADC→誤差算出」と言う一連の負帰還制御動作を常時行う。なお、本動作に於いて安定性は確保されているものとし、本説明に於いては、I11~I15とRs15の値は予め設定されており、Q15の特性は既知として、以下、図1Bを参照してその動作を詳述する。 The outline of the LED driving method 115 shown in FIG. 1B is as follows. The MPU in FIG. 1B is a series of "DAC-> constant current circuit->ADC-> error calculation" using the ADC for the pulsating current V 0 in which the AC input is full-wave rectified by the bridge diode FR1 at predetermined time intervals. Negative feedback control operation is always performed. It is assumed that stability is ensured in this operation, and in this description, the values of I11 to I15 and Rs15 are set in advance, and the characteristics of Q15 are known. The operation will be described in detail with reference.

(ステップ1)
MPU122は、Voの値やQ15に流れる電流波形等をRs15の電圧値として予め定められた時間毎にADCで測定すると共に制御の基準点、例えばVoが最低電圧となる時点を認識するとSw101を閉じ、且つ他のSwは開き、DAC123には予め設定されたI11なる電流が流れる時のQ15のVGS標準値にRs15×I11を加えた電圧を出力し、その後Vsの値がVs=Rs15×I11となるように制御を始める。
(Step 1)
The MPU 122 measures the value of Vo, the current waveform flowing through Q15, etc. with the ADC at predetermined time intervals as the voltage value of Rs15, and closes Sw101 when recognizing the control reference point, for example, the time when Vo becomes the minimum voltage. , And the other Sw is opened, and the voltage obtained by adding Rs15 × I11 to the VGS standard value of Q15 when the preset current of I11 flows is output to the DAC123, and then the value of Vs becomes Vs = Rs15 × I11. Start control so that it becomes.

(ステップ2)
MPU122は、Vo・Vsや蓄積情報よりLED(D11~D14)を経てQ15にI11が流れる事を認識すると、I11なる電流が流れる時のQ15のVGS標準値にRs15×I11を加えた電圧値をDAC初期値として出力し、その後I11が設定した値であるVs=Rs15×I11となるようにDAC出力を調整する。
(Step 2)
When the MPU 122 recognizes that I11 flows through Q15 via LEDs (D11 to D14) from Vo · Vs and accumulated information, it calculates the voltage value obtained by adding Rs15 × I11 to the VGS standard value of Q15 when the current I11 flows. It is output as a DAC initial value, and then the DAC output is adjusted so that Vs = Rs15 × I11, which is a value set by I11.

(ステップ3)
MPU122は、Vo、Vsや蓄積情報等よりLED(D11~D17)を経てQ15にI12が流れる事を認識すると、Sw101を開き、Sw102を閉じると共にDAC設定値をI12なる電流値のQ15のVGS標準値にRs15×I12を加えた電圧を出力し、その後I12が所定の値であるVs=Rs15×I12となるようにDAC出力を制御する。
(Step 3)
When the MPU 122 recognizes that I12 flows through the LED (D11 to D17) through the LED (D11 to D17) from Vo, Vs, accumulated information, etc., it opens Sw101, closes Sw102, and sets the DAC setting value to I12, which is the VGS standard of Q15. A voltage obtained by adding Rs15 × I12 to the value is output, and then the DAC output is controlled so that I12 becomes Vs = Rs15 × I12, which is a predetermined value.

(ステップ4)
MPU122は、Vo、Vsや蓄積情報よりLED(D11~D19を経てQ15にI13_1が流れる事を知ると、Sw102を開き、Sw103を閉じ、更にI13_1なる電流が流れる時のQ15のVGS標準値にRs15×I13_1を加えた電圧をDACより出力し、その後I13_1が設定した値であるVs=Rs15×I13_1となるようにDAC出力を制御する。
(Step 4)
When the MPU 122 learns from the Vo, Vs and accumulated information that I13_1 flows through the LED (D11 to D19 to Q15, it opens Sw102, closes Sw103, and further sets the VGS standard value of Q15 to the VGS standard value when the current I13_1 flows. The voltage to which × I13_1 is added is output from the DAC, and then the DAC output is controlled so that Vs = Rs15 × I13_1, which is the value set by I13_1.

(ステップ5)
MPU122は、Vo、Vsや蓄積情報よりLED(D11~D19)を経てQ15にI13_1が流れる事を知ると、Sw122を閉じ、Sw103を開いてSw122~LED(D13~D1b)の経路でQ15に電流I13_2が流れるようにI13_2なる電流が流れる時のQ15のVGS標準値にRs15×I13_2を加えた電圧をDACより出力し、その後I13_2が設定した値であるVs=Rs15×I13_2となるようにDAC出力を制御する。
(Step 5)
When the MPU 122 learns that I13_1 flows through the LED (D11 to D19) via the LED (D11 to D19) from Vo, Vs and accumulated information, it closes Sw122, opens Sw103, and conducts a current to Q15 through the path of Sw122 to LED (D13 to D1b). The voltage obtained by adding Rs15 × I13_2 to the VGS standard value of Q15 when the current I13_2 flows so that I13_2 flows is output from the DAC, and then the DAC output is made so that Vs = Rs15 × I13_2, which is the value set by I13_2. To control.

(ステップ6)
MPU122は、Vo、Vsや蓄積情報よりVoの電圧波形を予測し、VoがLED(D12~D1b)を経てQ15にI14を流す事が出来る値に達しないと予測する場合は、Voが尖頭値に達し電圧値が減少を開始するまで予測・判定を継続する。MPU122はI13_2が設定した値であるVs=Rs15×I13_2となるようにDAC出力を制御するのは言うまでもない。
Voの電圧波形が、LED(D12~D1b)を経てQ15にI14を流す事が出来る値に達するとMPU122が予測する場合、Q15に電流I14を流す時点を設定し、当該時点にVoが達したと判断すると、Sw122を開き、Sw121を閉じてSw121~LED(D2~D1b)を経てQ15に電流I14が流れるよう、I14なる電流が流れる時のQ15のVGS標準値にRs15×I14を加えた電圧をDACより出力し、その後I14が設定した値であるVs=Rs15×I14となるようにDAC出力を制御する。
(Step 6)
The MPU 122 predicts the voltage waveform of Vo from Vo, Vs and accumulated information, and if it predicts that Vo does not reach a value at which I14 can flow to Q15 via LEDs (D12 to D1b), Vo is sharp. The prediction / judgment is continued until the value is reached and the voltage value starts to decrease. Needless to say, the MPU 122 controls the DAC output so that Vs = Rs15 × I13_2, which is a value set by I13_2.
When the MPU 122 predicts that the voltage waveform of Vo reaches a value at which I14 can be passed through Q15 via LEDs (D12 to D1b), a time point at which current I14 is passed through Q15 is set, and Vo reaches that time point. Then, Sw122 is opened, Sw121 is closed, and the voltage obtained by adding Rs15 × I14 to the VGS standard value of Q15 when the current I14 flows so that the current I14 flows through the Sw121 to LED (D2 to D1b). Is output from the DAC, and then the DAC output is controlled so that Vs = Rs15 × I14, which is the value set by I14.

(ステップ7)
MPU122は、Vo、Vsや蓄積情報よりVoの電圧波形を予測し、VoがLED(D11~D1b)を経てQ15にI15を流せる値には達しないと予測する場合、Voが尖頭値に達し電圧値が減少し始めるまで前記動作を継続する。
また、Voの電圧波形がLED(D11~D1b)を経てQ15にI15を流す事が出来る値に達すると予測される場合、MPU122はQ15に電流I15を流す時点を設定し、当該時点にVoが達したと判断すると、Sw121を開き、LED(D11~D1b)を経てQ15に電流I15を流し始めると共に、I15なる電流が流れる時のQ15のVGS標準値にRs15×I15を加えた電圧をDACより出力し、その後I15が設定した値であるVs=Rs15×I15となるようにDAC出力を制御する。
MPU122は、Vo、Vsや蓄積情報よりVoの電圧波形の予測を継続し、Voが尖頭値に達するまで動作を継続する。
(Step 7)
The MPU 122 predicts the voltage waveform of Vo from Vo, Vs and accumulated information, and when Vo predicts that it does not reach the value at which I15 can flow through Q15 via LEDs (D11 to D1b), Vo reaches the peak value. The operation is continued until the voltage value starts to decrease.
Further, when the voltage waveform of Vo is predicted to reach a value at which I15 can be passed through Q15 via LEDs (D11 to D1b), the MPU 122 sets a time point at which the current I15 is passed through Q15, and Vo is set at that time point. When it is determined that the voltage has been reached, Sw121 is opened, the current I15 is started to flow through the LEDs (D11 to D1b), and the voltage obtained by adding Rs15 × I15 to the VGS standard value of Q15 when the current I15 flows is applied from the DAC. After that, the DAC output is controlled so that Vs = Rs15 × I15, which is the value set by I15.
The MPU 122 continues to predict the voltage waveform of Vo from Vo, Vs and accumulated information, and continues to operate until Vo reaches the peak value.

なお、脈流Voが尖頭値に達した後は電圧が減少するが、その時は上記の逆の動作を行う。
本例では実用時に配線本数が増えて作業が煩雑になる事を考慮してSw101~Sw103とSw121~122はいずれも一端を共通としてあるが、動作原理上はSwの一端を共通にする必然性は無く、必要に応じて異なるLED間を接続しても同様の効果を得ることは言うまでもない。
電圧許容範囲を広げるとそれに伴い消費電力も変動するが、電圧に応じて流す電流を低減して電力の変動を抑止しても良い。
After the pulsating current Vo reaches the peak value, the voltage decreases, but at that time, the above-mentioned reverse operation is performed.
In this example, in consideration of the fact that the number of wires increases in practical use and the work becomes complicated, Sw101 to Sw103 and Sw121 to 122 all have one end in common, but in terms of the operating principle, it is inevitable that one end of Sw is common. Needless to say, the same effect can be obtained by connecting different LEDs as needed.
When the allowable voltage range is widened, the power consumption also fluctuates accordingly, but the current flowing according to the voltage may be reduced to suppress the fluctuation of the power.

第2実施形態]<LED駆動電流のアナログ制御法>
図2は、本発明の第2実施形態にかかるLED駆動方法210の構成例である。いわゆるフルアナログ制御法であり、相対的には上述の第1実施形態よりも実装の難易度が高い(なお、フルデジタル制御での発振抑制やフルアナログ制御法の実装難易度を勘案したデジタル・アナログ混在制御法が、後述する第3実施形態となる)。
[ Second Embodiment ] <Analog control method of LED drive current>
FIG. 2 is a configuration example of the LED driving method 210 according to the second embodiment of the present invention. It is a so-called full analog control method, and it is relatively more difficult to implement than the first embodiment described above (note that it is a digital system that takes into consideration oscillation suppression in full digital control and implementation difficulty of the full analog control method. The analog mixed control method is the third embodiment described later).

図2に示すように、LED駆動制御法210は、全波整流器FR1、LED列(例示的に、D21~D2bまで11個のLED列からなる)、複数のトランジスタ等を有する定電流駆動回路230、及び導通切替部240を有する。 As shown in FIG. 2, the LED drive control method 210 is a constant current drive circuit 230 having a full-wave rectifier FR1, an LED train (exemplarily consisting of 11 LED trains from D21 to D2b), a plurality of transistors, and the like. , And a continuity switching unit 240.

LED駆動回路210は、オペアンプOp21、定電流駆動用のトランジスタQ21~Q26、スイッチ用トランジスタ制御用トランジスタQ221、Q231、Q241、スイッチ用トランジスタ駆動用トランジスタQ230、Q240、Q250、スイッチ用トランジスタ(PチャネルMOSFET)Q261、Q262、抵抗R21~R26、Rs21~Rs26、Rg11、Rg22等を含み、これらは図3に示すようにLED列(D21~D2b)を定電流駆動するための定電流駆動回路230を構成する。各トランジスタはMOSFETであるが、これに限定されるものではなく、また1列のLEDもこれに限定されるものではなく、複数列、直並列、各列数で数を可変する等、さまざまな接続形態が可能なのであり、これらを代表として1列として説明するものである。 The LED drive circuit 210 includes an operational capacitor Op21, constant current drive transistors Q21 to Q26, switch transistor control transistors Q221, Q231, Q241, switch transistor drive transistors Q230, Q240, Q250, and switch transistor (P channel MOSFET). ) Q261, Q262, resistors R21 to R26, Rs21 to Rs26, Rg11, Rg22, etc., which constitute a constant current drive circuit 230 for driving the LED trains (D21 to D2b) with a constant current as shown in FIG. do. Each transistor is a MOSFET, but the number is not limited to this, and the LED in one row is not limited to this. The connection form is possible, and these are described as one column as a representative.

図2に示されるように、LED列(D21~D2b)を駆動する為のトランジスタとしては、例示的にQ21~Q26、Q221、Q231、Q241、Q230,Q240、Q250を示しているがこれに限定されるものではない。また、LED列には、11個のLED(D21~D2b)が含まれ、引き出し端251~253と250Bを設けているが、この数に限定されるものではない。 As shown in FIG. 2, as the transistor for driving the LED train (D21 to D2b), Q21 to Q26, Q221, Q231, Q241, Q230, Q240, and Q250 are exemplified, but the transistor is limited to this. It is not something that will be done. Further, the LED row includes 11 LEDs (D21 to D2b) and is provided with drawer ends 251 to 253 and 250B, but is not limited to this number.

以下に記載のステップ1~7では、LED駆動回路210において脈流Voの電圧が基準点(例えばVoの電圧値が最小となる点)から立ち上がっていく際のLED駆動方法について説明する。 In steps 1 to 7 described below, the LED driving method when the voltage of the pulsating current Vo rises from the reference point (for example, the point where the voltage value of Vo becomes the minimum) in the LED driving circuit 210 will be described.

ここで、Q21~Q26はスイッチを兼ねた定電流源として動作し、

Vref×(Rf2+Rf1)/Rf1
=(Rs21+Rs22+Rs23+Rs24+Rs25+Rs26)×I21
=(Rs22+Rs23+Rs24+Rs25+Rs26)×I22
=(Rs23+Rs24+Rs25+Rs26)×I23
=(Rs24+Rs25+Rs26)×I24
=(Rs25+Rs26)×I25
=Rs26×I26

なる式を満たすように動作する。
ここで、I21<I22<I23<I24<I25<I26となっている。
Here, Q21 to Q26 operate as a constant current source that also serves as a switch.

Vref × (Rf2 + Rf1) / Rf1
= (Rs21 + Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I21
= (Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I22
= (Rs23 + Rs24 + Rs25 + Rs26) × I23
= (Rs24 + Rs25 + Rs26) × I24
= (Rs25 + Rs26) × I25
= Rs26 × I26

It works to satisfy the formula.
Here, I21 <I22 <I23 <I24 <I25 <I26.

また、LED(D21~D22)間を導通させるスイッチQ261・Q262は、Q230、Q240、Q250に電流I261またはI262を流す事により動作する。またQ221・Q231・Q241はスイッチQ261・Q262を制御するMOSFETQ230・Q240・Q250を制御する。
なお、I21~I26の電流値に用いるMOSFETを始め、LEDや他のMOSFET等も特性は既知であり、これ等を用いる事を前提にRs21~Rs26、I21~I26、Rc211~Rc212、Rc221~Rc222、I261~I262の値を設定済であり、また、回路は安定動作するものとして、LED駆動回路210の動作を説明する。
Further, the switches Q261 and Q262 that conduct the LEDs (D21 to D22) operate by passing a current I261 or I262 through the Q230, Q240, and Q250. Further, Q221, Q231, and Q241 control MOSFETs Q230, Q240, and Q250 that control switches Q261 and Q262.
The characteristics of LEDs and other MOSFETs, including MOSFETs used for the current values of I21 to I26, are known, and on the premise of using these, Rs21 to Rs26, I21 to I26, Rc211 to Rc212, Rc221 to Rc222 , I261 to I262 have been set, and the operation of the LED drive circuit 210 will be described assuming that the circuit operates stably.

(ステップ1)
ブリッジダイオードFR1で全波整流した脈流Voの値が低くLED列に電流が流れないとき、演算増幅器Op21はMOSFET(Q21)に電流を流すべく演算増幅器Op21の出力Vopを上昇させるが、Voが低くLED列に電流は流れない。
この時、Q21のゲートにはI21なる電流が流れる時のQ1のVGS値に(Rs21+Rs22+Rs23+Rs24+Rs25+Rs26)×I21を加えた値より大きな電圧を印加し、Q21を動作可能とする。また、I21よりも大きな電流で動作するQ22~Q25にも各MOSFETに電流を流す時のVGSの値に各々のソース電圧を加算した値より大きな電圧が印加される為、Q22~Q26も動作可能となるが、同じゲート電位を抵抗Rg11、Rg21、Rg31を介して印加されるQ230、Q240、Q250は前段のQ22、Q23、Q24のゲート電位を抵抗Rg02/Rg03、Rg12/Rg13、Rg22/Rg23を介して印加されたQ221、Q231、Q241が動作してQ230、Q240、Q250のゲート電位を引き下げて動作を抑止するので、スイッチQ261、Q262は開いた状態を維持する。
なお、Rg11、Rg21、Rg31とRg02・Rg03、Rg12・Rg13、Rg22・Rg23の各値はQ22~Q25の動作に影響を与えず各々が動作する値とする事で回路の動作への影響は無視できる。Rg11・Rg21・Rg31やRg02/Rg03、Rg12/Rg13、Rg22/Rg23の抵抗値と比率は各MOSFETの特性を考慮し、動作に支障の無い値を順次決定する。
(Step 1)
When the value of the pulsating current Vo rectified by the bridge diode FR1 is low and no current flows through the LED train, the arithmetic amplifier Op21 raises the output Vop of the arithmetic amplifier Op21 in order to allow current to flow through the MOSFET (Q21). It is low and no current flows in the LED row.
At this time, a voltage larger than the value obtained by adding (Rs21 + Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I21 to the VGS value of Q1 when the current I21 flows is applied to the gate of Q21 to enable Q21 to operate. In addition, Q22 to Q26 can also operate because a voltage larger than the value obtained by adding each source voltage to the VGS value when a current is passed through each MOSFET is applied to Q22 to Q25 that operate with a current larger than I21. However, Q230, Q240, and Q250 to which the same gate potential is applied via the resistors Rg11, Rg21, and Rg31 use the gate potentials of the preceding stages Q22, Q23, and Q24 as the resistances Rg02 / Rg03, Rg12 / Rg13, and Rg22 / Rg23. Since the Q221, Q231, and Q241 applied via the operation operate to lower the gate potentials of the Q230, Q240, and Q250 and suppress the operation, the switches Q261 and Q262 remain open.
The values of Rg11, Rg21, Rg31 and Rg02 / Rg03, Rg12 / Rg13, Rg22 / Rg23 do not affect the operation of Q22 to Q25, and the influence on the circuit operation is ignored by setting each value to operate. can. The resistance values and ratios of Rg11, Rg21, Rg31, Rg02 / Rg03, Rg12 / Rg13, and Rg22 / Rg23 are sequentially determined as values that do not interfere with the operation in consideration of the characteristics of each MOSFET.

(ステップ2)
脈流Voが徐々に上昇し、I21がLED(D21~D24)を経てQ21に流れる電圧となった後は、LED列のD21~D24が点灯する。
Q21のゲートには電流I21を流す時のVGS値に(Rs21+Rs22+Rs23+Rs24+Rs25+Rs26)×I21を加えた電圧が印加され、I21よりも大きな電流で動作するQ22~Q25にも各MOSFETに電流を流す時のVGSの値に各々のソース電圧を加算した値より大きな電圧が印加され、Q22~Q25も動作可能となるが、D25~D2bとQ22~Q26には電流が流れずにQ221、Q231、Q241が動作し、Q230、Q240、Q250、Q261、Q262は遮断状態で(ステップ1)と同じ状態となる。
(Step 2)
After the pulsating current Vo gradually rises and the voltage of I21 reaches the voltage flowing through the LEDs (D21 to D24) to Q21, the LEDs D21 to D24 light up.
A voltage obtained by adding (Rs21 + Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I21 to the VGS value when the current I21 is passed is applied to the gate of Q21, and the VGS when the current is passed through each MOSFET to Q22 to Q25 which operate at a current larger than I21. A voltage larger than the value obtained by adding each source voltage to the value is applied, and Q22 to Q25 can also operate, but no current flows through D25 to D2b and Q22 to Q26, and Q221, Q231, and Q241 operate. Q230, Q240, Q250, Q261, and Q262 are in the same state as in (step 1) in the cutoff state.

(ステップ3)
脈流Voが更に上昇し、I22がLED列(D21~D27)を経てQ22に流れる電圧となった後は、LED列(D21~D27)が点灯する。
Q22のゲートには電流I22を流す時のVGS値に(Rs22+Rs23+Rs24+Rs25+Rs26)×I22を加えた電圧VG2=VGS2+(Rs22+Rs23+Rs24+Rs25+Rs26)×I22が印加される。
Q21のゲートには、VGS1={VGS2+(Rs22+Rs23+Rs24+Rs25+Rs26)×I22}×R26/(R25+R26)-(Rs22+Rs23+Rs24+Rs25+Rs26)×I22が印加されるが、VGS2、Rs2~Rs6、I22は既知の為、前記のVGS1でQ21が動作しないようにR25及びR26を定め、I22が流れる時にはQ21が動作せずI21が流れない値とする。
以上により、Q21とQ23~Q26、LED列(D28~D2b)に電流は流れず、Q221、Q231、Q241、Q230、Q240、Q250、Q261、Q262は前と同じ状態にとどまる。
(Step 3)
After the pulsating current Vo further rises and the voltage of I22 reaches the voltage flowing through the LED rows (D21 to D27) to Q22, the LED rows (D21 to D27) are lit.
A voltage VG2 = VGS2 + (Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I22 obtained by adding (Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I22 to the VGS value when the current I22 is passed is applied to the gate of Q22.
VGS1 = {VGS2 + (Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I22} × R26 / (R25 + R26)-(Rs22 + Rs23 + Rs24 + Rs25 + Rs26) × I22 is applied to the gate of Q21. R25 and R26 are set so that Q21 does not operate, and when I22 flows, Q21 does not operate and I21 does not flow.
As a result, no current flows through Q21, Q23 to Q26, and the LED rows (D28 to D2b), and Q221, Q231, Q241, Q230, Q240, Q250, Q261, and Q262 remain in the same state as before.

(ステップ4)
脈流Voが更に上昇し、I23がLED列(D21~D29)を経てQ23に流れる電圧となった後は、LED列(D21~D29)が点灯する。
Q23のゲートには、電流I23を流す時のVGS値に(Rs23+Rs24+Rs25+Rs26)×I23を加えた電圧VG3=VGS3+(Rs23+Rs24+Rs25+Rs26)×I23が印加される。
Q22のゲートには、VGS2=(VGS3+(Rs23+Rs24+Rs25+Rs26)×I3)×(R25+R26)/(R24+R25+R26)-(Rs23+Rs24+Rs25+Rs26)×I3が印加されるが、VGS3、Rs23~Rs26・I23は既知の為、前記VGS2でQ22が動作しないようにR24を定め、I23が流れる時にQ22は動作しない値とする。Q22のVGSよりQ21のVGSは低い為、Q21も動作しない。このようにQ23動作時にQ22は非動作状態となるが、この時Q221も遮断状態となり、Q22動作時にはQ221も動作状態となるように、且つQ22・Q23の動作には影響を与えないようにRg02とRg03の値を定める。更にQ221動作時にQ230は非動作状態となり、Q221が非動作時にはQ230が動作し、且つQ23の動作には影響を及ぼさないようにRg11の値を定める。
その結果、Q23にI23が流れる時はQ221が非動作状態となりRg11の電圧降下が無くなりQ230が動作して電流I261が流れてRc211に電圧が生じ、PチャネルMOSFET(Q261)より成るスイッチが閉じてLED(D21~D22)間が導通する。この時点でQ21~Q22、Q24~Q26、D2a~D2bに電流は流れていてない。
そして、Q230、Q231、Q241は動作し続け、Q221、Q240、Q250は動作しない。
(Step 4)
After the pulsating current Vo further rises and the voltage of I23 reaches the voltage flowing through the LED rows (D21 to D29) to Q23, the LED rows (D21 to D29) are lit.
A voltage VG3 = VGS3 + (Rs23 + Rs24 + Rs25 + Rs26) × I23 obtained by adding (Rs23 + Rs24 + Rs25 + Rs26) × I23 to the VGS value when the current I23 is passed is applied to the gate of Q23.
VGS2 = (VGS3 + (Rs23 + Rs24 + Rs25 + Rs26) × I3) × (R25 + R26) / (R24 + R25 + R26)-(Rs23 + Rs24 + Rs25 + Rs26) × I3 is applied to the gate of Q22. R24 is set so that Q22 does not operate, and Q22 is set to a value that does not operate when I23 flows. Since the VGS of Q21 is lower than the VGS of Q22, Q21 also does not work. In this way, Q22 is in the non-operating state when Q23 is operating, but at this time, Q221 is also in the shutoff state, and when Q22 is operating, Q221 is also in the operating state, and Rg02 is so as not to affect the operation of Q22 and Q23. And the value of Rg03 are determined. Further, the value of Rg11 is set so that the Q230 is in the non-operating state when the Q221 is operating, the Q230 is operating when the Q221 is not operating, and the operation of the Q23 is not affected.
As a result, when I23 flows through Q23, Q221 becomes inactive, the voltage drop of Rg11 disappears, Q230 operates, current I261 flows, voltage is generated in Rc211 and the switch consisting of P channel MOSFET (Q261) closes. Conduction between the LEDs (D21 to D22). At this point, no current is flowing through Q21 to Q22, Q24 to Q26, and D2a to D2b.
Then, Q230, Q231, and Q241 continue to operate, and Q221, Q240, and Q250 do not operate.

(ステップ5)
スイッチのQ261が閉じるとD21~D22間が導通する。ここでLED列D21~D29とLED列D23~D2bはLED段数も同じであり、電流I23とI24の値を同じ値またはその差が大きくないように設定する事でLED列の電圧降下を同等の値とし、(ステップ4)と同等の脈流Voの値でスイッチQ261を経てLED(D23~D2b)にI24なる電流を流してLED(D23~D2b)を点灯させる。Q24のゲートには、電流I24を流す時のVGS値に(Rs24+Rs25+Rs26)×I24を加えた電圧VG4=VGS4+(Rs24+Rs25+Rs26)×I24が印加される。Q23のゲートには、VGS3=(VGS4+(Rs24+Rs25+Rs26)×I24)×(R24+R25+R26)/(R23+R24+R25+R26)-(Rs24+Rs25+Rs26)×I24が印加されるが、VGS4、Rs24~Rs26、I24は既知の為、前記VGS3でQ23が動作しないようにR23を定め、I24が流れる時にQ23は動作しない値とする。Q23のVGSよりQ22、Q21のVGSは低くQ21、Q22も動作しない。このようにQ24動作時にはQ23は非動作状態となるが同時にQ231も遮断状態とし、Q23動作時にはQ231も動作状態とし、且つQ23の動作に影響を与えないようにRg12とRg13の値を定める。またQ231動作時にQ240は非動作状態となる様にするがこの時に、Q24の動作には影響を及ぼさないようにRg21の値を定める。
その結果、Q24にI24が流れる時はQ231が非動作状態となりRg21の電圧降下が無くなりQ240が動作して電流I261が流れてRc211に電位が生じ、PチャネルMOSFET(Q261)より成るスイッチが閉じたままとなる為、LED(D21~D22)間は導通し続ける。Q21~Q23、Q25~Q26、D21~D22に電流は流れていない。
Q240とQ241は動作し続け、Q221、Q231、Q230、Q250は動作しない。
(Step 5)
When Q261 of the switch is closed, the space between D21 and D22 becomes conductive. Here, the LED rows D21 to D29 and the LED rows D23 to D2b have the same number of LED stages, and by setting the values of the currents I23 and I24 to the same value or so that the difference between them is not large, the voltage drop of the LED train is equivalent. As a value, a current of I24 is passed through the LED (D23 to D2b) via the switch Q261 at the same value of the pulse flow Vo as in (step 4) to light the LED (D23 to D2b). A voltage VG4 = VGS4 + (Rs24 + Rs25 + Rs26) × I24 obtained by adding (Rs24 + Rs25 + Rs26) × I24 to the VGS value when the current I24 is passed is applied to the gate of Q24. VGS3 = (VGS4 + (Rs24 + Rs25 + Rs26) × I24) × (R24 + R25 + R26) / (R23 + R24 + R25 + R26)-(Rs24 + Rs25 + Rs26) × I24 is applied to the gate of Q23. R23 is set so that Q23 does not operate, and Q23 is set to a value that does not operate when I24 flows. The VGS of Q22 and Q21 is lower than the VGS of Q23, and Q21 and Q22 do not operate either. In this way, when Q24 is operating, Q23 is in a non-operating state, but at the same time, Q231 is also in a shut-off state, and when Q23 is operating, Q231 is also in an operating state, and the values of Rg12 and Rg13 are set so as not to affect the operation of Q23. Further, Q240 is set to be in a non-operating state during Q231 operation, but at this time, the value of Rg21 is set so as not to affect the operation of Q24.
As a result, when I24 flows through Q24, Q231 becomes inactive, the voltage drop of Rg21 disappears, Q240 operates, current I261 flows, a potential is generated in Rc211 and the switch consisting of P channel MOSFET (Q261) is closed. Since it remains as it is, the LED (D21 to D22) continues to conduct electricity. No current is flowing through Q21 to Q23, Q25 to Q26, and D21 to D22.
Q240 and Q241 continue to operate, while Q221, Q231, Q230 and Q250 do not.

(ステップ6)
脈流Voが更に上昇し、I25がLED列(D22~D2b)を経てQ25に流す事が可能な電圧となった後はLED列(D22~D2b)が点灯する。
Q25のゲートには、電流I25を流す時のVGS値に(Rs25+Rs26)×I25を加えた電圧VG5=VGS5+(Rs25+Rs26)×I25が印加される。
Q24のゲートには、VGS4=(VGS5+(Rs25+Rs26)×I25)×(R23+R24+R25+R26)/(R22+R23+R24+R25+R26)-(Rs25+Rs26)×I25が印加されるが、VGS5、Rs25・Rs26、I25は既知の為、前記VGS4でQ24が動作しないようにR22を定め、I25が流れる時にQ24は動作しない値とする。Q24のVGSよりQ23、Q22、Q21のVGSは低くQ21~Q23も動作しない。このようにQ25動作時にQ24は非動作状態となるがこの時Q241も遮断状態とし、Q24動作時にはQ241も動作状態とし、且つQ24、Q25の動作に影響を与えないようにRg22とRg23の値を定める。更にQ241動作時にQ250は非動作状態とさせ、Q241が非動作時にはQ250が動作し且つQ25の動作に響を及ぼさないようにRg31の値を定める。
その結果、Q25にI25が流れる時はQ241が非動作状態となりRg31の電圧降下が無くなりQ250が動作して電流I262が流れRc221に電圧が生じ、PチャネルMOSFET(Q262)より成るスイッチが閉じてLED(D21)間は導通する。D21に電流は流れず、Q21~Q24、Q26、Q221、Q231、Q241、Q230、Q240は動作しない。
(Step 6)
After the pulsating current Vo further rises and the voltage at which I25 can flow to Q25 via the LED trains (D22 to D2b) is reached, the LED trains (D22 to D2b) light up.
A voltage VG5 = VGS5 + (Rs25 + Rs26) × I25 obtained by adding (Rs25 + Rs26) × I25 to the VGS value when the current I25 is passed is applied to the gate of Q25.
VGS4 = (VGS5 + (Rs25 + Rs26) × I25) × (R23 + R24 + R25 + R26) / (R22 + R23 + R24 + R25 + R26)-(Rs25 + Rs26) × I25 is applied to the gate of Q24. R22 is set so that Q24 does not operate, and Q24 is set to a value that does not operate when I25 flows. The VGS of Q23, Q22, and Q21 is lower than the VGS of Q24, and Q21 to Q23 do not operate either. In this way, Q24 is in the non-operating state when Q25 is operating, but at this time, Q241 is also in the shutoff state, Q241 is also in the operating state when Q24 is operating, and the values of Rg22 and Rg23 are set so as not to affect the operation of Q24 and Q25. stipulate. Further, the Q250 is set to the non-operating state when the Q241 is operating, and the value of Rg31 is set so that the Q250 operates when the Q241 is not operating and does not affect the operation of the Q25.
As a result, when I25 flows through Q25, Q241 becomes inactive, the voltage drop of Rg31 disappears, Q250 operates, current I262 flows, voltage is generated in Rc221, the switch consisting of P channel MOSFET (Q262) closes, and the LED. Conduction occurs between (D21). No current flows through D21, and Q21 to Q24, Q26, Q221, Q231, Q241, Q230, and Q240 do not operate.

(ステップ7)
脈流Voが更に上昇し、I26がLED列D21~D2bを経てQ26に流す事が可能な電圧となった後はLED列D21~D2bの全LEDが点灯する。
Q26のゲートには、電流I26を流す時のVGS値にRs26×I26を加えた電圧VG6=VGS6+Rs26×I26が印加される。
Q25のゲートには、VGS5=(VGS6+Rs26×I26)×(R22+R23+R24+R25+R26)/(R21+R22+R23+R24+R25+R26)-Rs26×I26が印加されるが、VGS6、Rs26、I26は既知の為、前記VGS5でQ25が動作しないようにR21を定め、I26が流れる時にQ25は動作しない値とする。Q25のVGSよりQ24~Q21のVGSは低くQ21~Q24も動作しない。
Q25が動作しなくなるとQ250も動作しなくなりI262も流れなくなるのでRc221両端に生ずる電位差も無くなりPチャネルMOSFET(Q262)より成るスイッチはD21の両端を開くので、D21も点灯、D21~D2b全てのLEDが点灯する。Q21~Q25、Q221、Q231、Q241、Q230、Q240、Q250は動作しない。
(Step 7)
After the pulsating current Vo further rises and the voltage at which I26 reaches a voltage that can be passed through the LED rows D21 to D2b to the Q26, all the LEDs in the LED rows D21 to D2b are turned on.
A voltage VG6 = VGS6 + Rs26 × I26 obtained by adding Rs26 × I26 to the VGS value when the current I26 is passed is applied to the gate of Q26.
VGS5 = (VGS6 + Rs26 × I26) × (R22 + R23 + R24 + R25 + R26) / (R21 + R22 + R23 + R24 + R25 + R26) -Rs26 × I26 is applied to the gate of Q25. R21 is set, and Q25 is set to a value that does not operate when I26 flows. The VGS of Q24 to Q21 is lower than the VGS of Q25, and Q21 to Q24 do not operate either.
When Q25 stops working, Q250 also stops working and I262 does not flow, so there is no potential difference between both ends of Rc221, and the switch consisting of P-channel MOSFET (Q262) opens both ends of D21, so D21 also lights up and all LEDs from D21 to D2b. Lights up. Q21 to Q25, Q221, Q231, Q241, Q230, Q240, and Q250 do not operate.

脈流Voが尖頭値に達した後は電圧が減少するが、その時は上記ステップと逆順の動作を行う。 After the pulsating current Vo reaches the peak value, the voltage decreases, but at that time, the operation in the reverse order of the above step is performed.

第2実施形態にかかるフルアナログ駆動方法は、上述した回路構成および特有の動作原理を有しており、これらにより、第1実施形態と同様の効果を奏するものとなる。 The full analog drive method according to the second embodiment has the circuit configuration and the peculiar operating principle described above, whereby the same effect as that of the first embodiment can be obtained.

第3実施形態]<LED駆動電流のデジタル・アナログ混在制御法>
図3は、本発明の第3実施形態にかかるLED駆動回路310の回路構成例である。いわゆるハイブリッド回路である。このようなハイブリッド構成にする意義は、フルデジタル構成における系の安定性確保を別の観点から達成しようとするものである。つまり、フルデジタルで行われていた系の安定性は、ハイブリッド構成ではアナログ回路部分が担うことになる。これにより、系の安定性確保に必要であったCPU(MPU)のパワーは解放され、余剰分を正確なピーク予測、状態予測、及びスイッチ制御に振り分けることができる。
[ Third Embodiment ] <Digital-to-analog mixed control method of LED drive current>
FIG. 3 is a circuit configuration example of the LED drive circuit 310 according to the third embodiment of the present invention. It is a so-called hybrid circuit. The significance of adopting such a hybrid configuration is to achieve the stability of the system in a fully digital configuration from another point of view. In other words, the stability of the system, which was performed in full digital, will be borne by the analog circuit part in the hybrid configuration. As a result, the power of the CPU (MPU) required for ensuring the stability of the system is released, and the surplus can be allocated to accurate peak prediction, state prediction, and switch control.

図3に示すように、LED駆動方法310は、全波整流器FR1、駆動制御部320、複数のトランジスタ等を有する定電流駆動回路330、及び導通切替部340を備える。本実施形態にかかるLED駆動方法310は、第1実施形態にかかるLED駆動方法110と第2実施形態にかかるLED駆動方法210とを単純に組み合わせたというよりは、第1実施形態にかかるLED駆動方法110の一部をアナログ回路構成で置換したもの、あるいは、LED回路110にアナログ駆動方法を追加したものという性格を有する。 As shown in FIG. 3, the LED drive method 310 includes a full-wave rectifier FR1, a drive control unit 320, a constant current drive circuit 330 having a plurality of transistors, and a conduction switching unit 340. The LED drive method 310 according to the present embodiment is not a simple combination of the LED drive method 110 according to the first embodiment and the LED drive method 210 according to the second embodiment, but rather the LED drive according to the first embodiment. It has the characteristic that a part of the method 110 is replaced with an analog circuit configuration, or an analog drive method is added to the LED circuit 110.

以下に記載のステップ1~7では、LED駆動方法310において脈流Voの電圧が基準点(例えばVoの値が最小となる点)から立ち上がっていく際のLED駆動方法について説明する。 In steps 1 to 7 described below, the LED driving method when the voltage of the pulsating current Vo rises from the reference point (for example, the point where the value of Vo becomes the minimum) in the LED driving method 310 will be described.

ここで、MPU322は、ブリッジダイオードFR1で全波整流した脈流Voを予め定められた時間にADC321を用いて電圧波形を計測し、Q31~Q36の動作状態を把握した上でスイッチを制御する。
I31~I36の電流値は、Vref×(Rf32+Rf31)/Rf31=(Rs31+Rs32+Rs33+Rs34+Rs35+Rs36)×I31=(Rs32+Rs33+Rs34+Rs35+Rs36)×I32=(Rs33+Rs34+Rs35+Rs36)×I33=(Rs34+Rs35+Rs36)×I34=(Rs35+Rs36)×I35=Rs36×I36を満たす様にI31~I36とRs31~Rs36を設定する事でDAC出力をI31~I36毎に個別に設定する事を無くして処理の煩雑さと処理時間の変動を少なくし制御を単純化できる。Rs31~Rs36を適切に設定し、LED列に流れる電流波形を正弦波に近似し高調波を低減する事も可能となる。ここで、Q31~Q36のゲート~ソース間には他の回路の動作に影響を及ぼさない非常に高い抵抗が接続(煩雑になるので、図3において不図示)されており、ゲートに接続されたスイッチが開いた状態ではMOSFETは遮断状態となり動作しない。
なお、I1~I6の値とRs31~Rs36の値はすでに定まっており-よってVrefとRf31、Rf32も定まっている-MOSFET(Q31~Q36)の特性も明確になっているものとし、また、定電流回路系は安定で制御系の安定性も確保されているものとして以下の各ステップを説明する。
Here, the MPU 322 measures the voltage waveform of the pulsating current Vo rectified by the bridge diode FR1 at a predetermined time using the ADC 321 and controls the switch after grasping the operating states of Q31 to Q36.
The current values of I31 to I36 are Vref × (Rf32 + Rf31) / Rf31 = (Rs31 + Rs32 + Rs33 + Rs34 + Rs35 + Rs36) × I31 = (Rs32 + Rs33 + Rs34 + Rs35 + Rs36) × I32 = (Rs33 + Rs34 + Rs35 + By setting I31 to I36 and Rs31 to Rs36 so as to satisfy the requirements, it is possible to eliminate the need to individually set the DAC output for each of I31 to I36, reduce the complexity of processing and the fluctuation of processing time, and simplify the control. It is also possible to appropriately set Rs31 to Rs36 to approximate the current waveform flowing in the LED train to a sine wave and reduce harmonics. Here, a very high resistance that does not affect the operation of other circuits is connected between the gate and the source of Q31 to Q36 (not shown in FIG. 3 because it is complicated), and is connected to the gate. When the switch is open, the MOSFET is cut off and does not operate.
The values of I1 to I6 and the values of Rs31 to Rs36 have already been determined-therefore, Vref, Rf31, and Rf32 have also been determined-the characteristics of the MOSFET (Q31 to Q36) have also been clarified. The following steps will be described assuming that the current circuit system is stable and the stability of the control system is ensured.

(ステップ1)
MPU322は、脈流VoやVs(Q31~Q36に流れる電流値)を予め定められた時間毎にADCで測定し、制御の基準点-例えばVoの値が最小となる時点-と経過時間を認識するとともに、現在と過去の測定情報を基に以降のVoの波形やLED列導通開始電圧等を予測する。脈流Voの測定電圧が低くQ31~Q35は動作しないが、MPU322は、Sw302とSw311を閉じ、他のSw312~Sw316、Sw301、SW303~Sw306、Sw321とSw322を開き、Q31とQ32を動作可能な状態とする。
また、ここでRi32の値を設定しておく。
(Step 1)
The MPU322 measures the pulsating currents Vo and Vs (current values flowing in Q31 to Q36) with the ADC at predetermined time intervals, and recognizes the control reference point-for example, the time when the Vo value becomes the minimum-and the elapsed time. At the same time, the subsequent Vo waveform, LED row continuity start voltage, etc. are predicted based on the current and past measurement information. The measured voltage of pulsating current Vo is low and Q31 to Q35 do not operate, but MPU322 closes Sw302 and Sw311, opens other Sw312 to Sw316, Sw301, SW303 to Sw306, Sw321 and Sw322, and can operate Q31 and Q32. Make it a state.
Further, the value of Ri32 is set here.

(ステップ2)
脈流Voが徐々に上昇し、I31がLED列D31~D34を経てQ31に流れる事が可能となった後は、Q31が動作してLED列D31~D34に電流I31が流れて点灯する。
Voの値はまだ低く、D35~D3bに電流は流れず、Q32~Q36も動作しない。
Q32の動作時、Q32のゲートVG2には電流I32が流れる時のVGS値VGS2に(Rs32+Rs33+Rs34+Rs35+Rs36)×I32を加えた電圧VG2=VGS2+(Rs32+Rs33+Rs34+Rs35+Rs36)×I32が印加され、Q31にはVGS1={VGS2+(Rs32+Rs33+Rs34+Rs35+Rs36)×I32}×Ri32/(Ri31+Ri32)-(Rs32+Rs33+Rs34+Rs35+Rs36)×I32が加えられるが、VGS2、Rs32~Rs36、I32は既知であるから、このVGS1値でQ31が動作しないようにRi31の取り得る範囲を定めてRi31の値を仮決めすると共に、I32が流れる時にはQ31が動作しないようにしておく。
MPU322は、Vsの値よりQ31が動作しI31が流れている事とその時のVo値を検知する。
(Step 2)
After the pulsating current Vo gradually rises and I31 can flow to Q31 via the LED rows D31 to D34, the Q31 operates and the current I31 flows through the LED rows D31 to D34 to light up.
The value of Vo is still low, no current flows through D35 to D3b, and Q32 to Q36 do not operate either.
During the operation of Q32, the voltage VG2 = VGS2 + (Rs32 + Rs33 + Rs34 + Rs35 + Rs36) × I32 is applied to the gate VG2 of Q32 by adding (Rs32 + Rs33 + Rs34 + Rs35 + Rs36) × I32 to the VGS value VGS2 when the current I32 flows. Rs32 + Rs33 + Rs34 + Rs35 + Rs36) × I32} × Ri32 / (Ri31 + Ri32)-(Rs32 + Rs33 + Rs34 + Rs35 + Rs36) × I32 are added, but VGS2, Rs32 to Rs36, and I32 are known, so Q31 can be obtained in this VGS1 value range. And tentatively determine the value of Ri31, and prevent Q31 from operating when I32 flows.
The MPU322 detects that Q31 is operating and I31 is flowing from the value of Vs and the Vo value at that time.

(ステップ3)
脈流Voが上昇し、I32がLED(D31~D37)を経てQ32に流れる事が可能となった後は、Q32に電流I32が流れてLED列D31~D37は点灯する。
MPU322は、Vsの値からQ32が動作しI32が流れている事を認識、Q32が動作し始めたVoの値を測定すると共にSw302とSw311を開きSw303とSw312を閉じてQ31の動作を停止し、Q32とQ33を動作可能とする。スイッチが開いているのでQ31、Q34~Q36は動作しない。
Q33動作時、Q33のゲートVG3には電流I33が流れる時のVGS値に(Rs33+Rs34+Rs35+Rs36)×I33を加えた電圧VG3=VGS3+(Rs33+Rs34+Rs35+Rs36)×I33が印加され、Q32にはVGS2={VGS3+(Rs33+Rs34+Rs35+Rs36)×I33}×Ri32/(Ri31+Ri32)-(Rs33+Rs34+Rs35+Rs36)×I33が加えられるが、VGS3、Rs33~Rs36、I33は既知であるから、このVGS2でQ32が動作しないように、且つ以前の値とも矛盾しない範囲でRi31が取り得る範囲内で以前の値と矛盾しない様その値を仮決めする。
(Step 3)
After the pulsating current Vo rises and I32 can flow to Q32 via the LEDs (D31 to D37), the current I32 flows through Q32 and the LED rows D31 to D37 light up.
The MPU322 recognizes that Q32 operates and I32 is flowing from the value of Vs, measures the value of Vo at which Q32 starts operating, opens Sw302 and Sw311, closes Sw303 and Sw312, and stops the operation of Q31. , Q32 and Q33 can be operated. Since the switch is open, Q31 and Q34 to Q36 do not work.
During Q33 operation, the voltage VG3 = VGS3 + (Rs33 + Rs34 + Rs35 + Rs36) × I33 obtained by adding (Rs33 + Rs34 + Rs35 + Rs36) × I33 to the VGS value when the current I33 flows is applied to the gate VG3 of Q33, and VGS2 = {VGS3 + × I33} × Ri32 / (Ri31 + Ri32)-(Rs33 + Rs34 + Rs35 + Rs36) × I33 is added, but since VGS3, Rs33 to Rs36, and I33 are known, Q32 does not work with this VGS2 and does not contradict the previous value. The value is tentatively determined so as not to contradict the previous value within the range that Ri31 can take.

(ステップ4)
脈流Voが更に上昇し、I33がLED列D31~D39を経てQ33に流れる事が可能となった後は、Q33に電流I33が流れてLED列D31~D39は点灯する。
MPU322はQ33の動作し始めるVoの値と共にVsの値からQ33が動作しI33が流れている事を認識すると、Sw303とSw312を開き、Sw304とSw313を閉じてQ31~Q32の動作を抑止し、Q33とQ34を動作可能とする。
Q34動作時、Q34のゲートVG4には電流I34が流れる時のVGS値に(Rs34+Rs35+Rs36)×I34を加えた電圧VG4=VGS4+(Rs34+Rs35+Rs36)×I34が印加され、Q33にはVGS3={VGS4+(Rs34+Rs35+Rs36)×I34}×Ri32/(Ri31+Ri32)-(Rs34+Rs35+Rs36)×I34が印加されるが、VGS4、Rs34~Rs36、I34は既知である為、このVGS3でQ33が動作せず且つ以前の値とも矛盾しない範囲でRi31が取り得る範囲内で以前の値と矛盾しない様その値を仮決めする。
(Step 4)
After the pulsating current Vo further rises and the I33 can flow to the Q33 via the LED rows D31 to D39, the current I33 flows through the Q33 and the LED rows D31 to D39 light up.
When MPU322 recognizes that Q33 operates and I33 is flowing from the value of Vs together with the value of Vo at which Q33 starts to operate, it opens Sw303 and Sw312, closes Sw304 and Sw313, and suppresses the operation of Q31 to Q32. Enable Q33 and Q34 to operate.
During Q34 operation, the voltage VG4 = VGS4 + (Rs34 + Rs35 + Rs36) × I34 obtained by adding (Rs34 + Rs35 + Rs36) × I34 to the VGS value when the current I34 flows is applied to the gate VG4 of Q34, and VGS3 = {VGS4 + (Rs34 + Rs36) + Rs35 to Q33. × I34} × Ri32 / (Ri31 + Ri32)-(Rs34 + Rs35 + Rs36) × I34 is applied, but since VGS4, Rs34 to Rs36, and I34 are known, Q33 does not operate in this VGS3 and is consistent with the previous value. The value is tentatively determined so as not to contradict the previous value within the range that Ri31 can take.

(ステップ5)
MPU322は、現Vo値と基準点よりの経過時間等よりVo電圧波形を予測し、電流I34をLED列D33~D3bに流せると予測した時点でSW321を閉じてPチャネルMOSFET(Q332)より成るスイッチを動作させてLED列D31~D32間を導通し、LED列D33~D3bを点灯させる。
なお、LED列D31~D39とLED列D33~D3bのLED段数は同じため電流I33とI34の差が大きくないように設定する、もしくはRs33を0ΩとしてI33=I34とすれば、LED列の電圧降下は同等となり、予測を行わずにSw321を閉じてQ332より成るスイッチを動作してLED列D33~D3bにI34の電流を流してこれを点灯させる事も可能である。
MPU322は、Vsの値を読む事でI34が流れている事とその時のVo値を把握する。
その後、MPU322はSw304とSw313を開きSw305とSw314を閉じてQ31~Q33の動作を停止し、Q34とQ35を動作可能とする。
Q35動作時、Q35のゲートVG5には電流I35が流れる時のVGS値に(Rs35+Rs36)×I35を加えた電圧VG5=VGS5+(Rs35+Rs36)×I35が印加され、Q34にはVGS4={VGS5+(Rs35+Rs36)×I35}×Ri32/(Ri31+Ri32)-(Rs35+Rs36)×I35が印加されるが、VGS5、Rs34~Rs36、I35は既知である為、このVGS4でQ33が動作せず、且つ以前の値とも矛盾しない範囲でRi31が取り得る範囲内で以前の値と矛盾しない様その値を仮決めする
(Step 5)
The MPU322 predicts the Vo voltage waveform from the current Vo value and the elapsed time from the reference point, and closes the SW321 when it predicts that the current I34 can flow through the LED rows D33 to D3b, and is a switch composed of a P-channel MOSFET (Q332). Is operated to conduct current between the LED rows D31 to D32, and the LED rows D33 to D3b are turned on.
Since the number of LED stages of the LED rows D31 to D39 and the LED rows D33 to D3b are the same, the difference between the currents I33 and I34 is set so as not to be large, or if Rs33 is set to 0Ω and I33 = I34, the voltage drop of the LED row It is also possible to close Sw321 and operate a switch consisting of Q332 to pass the current of I34 through the LED rows D33 to D3b to light it without making a prediction.
The MPU322 grasps that I34 is flowing and the Vo value at that time by reading the value of Vs.
After that, MPU322 opens Sw304 and Sw313, closes Sw305 and Sw314, stops the operation of Q31 to Q33, and makes Q34 and Q35 operable.
During Q35 operation, the voltage VG5 = VGS5 + (Rs35 + Rs36) × I35 obtained by adding (Rs35 + Rs36) × I35 to the VGS value when the current I35 flows is applied to the gate VG5 of Q35, and VGS4 = {VGS5 + (Rs35 + Rs36) to Q34. × I35} × Ri32 / (Ri31 + Ri32)-(Rs35 + Rs36) × I35 is applied, but since VGS5, Rs34 to Rs36, and I35 are known, Q33 does not operate on this VGS4 and does not contradict the previous values. Tentatively determine the value so that it does not conflict with the previous value within the range that Ri31 can take.

(ステップ6)
MPU322は、脈流Voの現在値や基準点からの経過時間等よりVo電圧波形を予測、電流I35をLED列D32~D3bに流すことが可能か否かを予測する。
可能と予測した場合、MPU322は可能と予測した時にSw321を開きSw322を閉じて、PチャネルMOSFETQ332より成るスイッチを開きQ342より成るスイッチを閉じてLED(D31)間を導通させてLED列D32~D3bを点灯させる。
更に、MPU322は、Sw305とSw314を開きSw306とSw315を閉じてQ31~Q34の動作を停止し、Q35とQ36を動作可能とする。尚、MPU322は、Vsの値を読む事でI35が流れている事とその時のVo値を把握する。
不可能と予測した場合は以前の状態を維持する。
Q36が動作する時、Q36のゲートVG6には電流I36が流れる時のVGS値にRs36×I36を加えた電圧VG6=VGS6+Rs36×I36が印加され、Q35にはVGS5=(VGS6+Rs36×I36)×Ri32/(Ri31+Ri32)-Rs36×I36が印加されるが、VGS6、Rs36、I36は既知である為、このVGS5でQ35が動作せず、且つ以前の値とも矛盾しないよう、且つ以前の値とも矛盾しない範囲でRi31が取り得る範囲内で以前の値と矛盾しない様その値を決定する。
(Step 6)
The MPU 322 predicts the Vo voltage waveform from the current value of the pulsating current Vo, the elapsed time from the reference point, and the like, and predicts whether or not the current I35 can be passed through the LED rows D32 to D3b.
When it is predicted that it is possible, the MPU 322 opens Sw321 and closes Sw322 when it predicts that it is possible, opens a switch consisting of P-channel MOSFET Q332, closes a switch consisting of Q342, and conducts the LEDs (D31) to conduct the LED rows D32 to D3b. Turn on.
Further, the MPU 322 opens Sw305 and Sw314, closes Sw306 and Sw315, stops the operations of Q31 to Q34, and makes Q35 and Q36 operable. The MPU322 grasps that I35 is flowing and the Vo value at that time by reading the value of Vs.
If it is predicted that it will not be possible, the previous state will be maintained.
When Q36 operates, a voltage VG6 = VGS6 + Rs36 × I36 obtained by adding Rs36 × I36 to the VGS value when the current I36 flows is applied to the gate VG6 of Q36, and VGS5 = (VGS6 + Rs36 × I36) × Ri32 / to Q35. (Ri31 + Ri32) -Rs36 × I36 is applied, but since VGS6, Rs36, and I36 are known, Q35 does not operate in this VGS5, and the range does not contradict the previous value and does not contradict the previous value. The value is determined so as not to contradict the previous value within the range that Ri31 can take.

(ステップ7)
MPU322は、脈流Voの現在値や基準点からの経過時間等よりVo電圧波形を予測し、電流I36をLED列D31~D3bに流すことが可能か否かを予測する。
可能と予測した場合、MPU322は可能と予測した時にSw322を開き、PチャネルMOSFETQ342より成るスイッチを開いてLED(D31)にも電流I36を流して全LED列D31~D3bを点灯させる。
また、MPU322は、Sw315を開いてQ31~Q35の動作を停止し、Q36のみを動作させる。(Q332とQ342のスイッチは開放となっている。)
MPU322は、I36が流れている事とその時のVo値を確認する。
不可能と予測した場合は以前の状態を維持する。
(Step 7)
The MPU 322 predicts the Vo voltage waveform from the current value of the pulsating current Vo, the elapsed time from the reference point, and the like, and predicts whether or not the current I36 can be passed through the LED rows D31 to D3b.
When it is predicted that it is possible, the MPU 322 opens Sw322 when it predicts that it is possible, opens a switch composed of the P channel MOSFET Q342, and passes a current I36 to the LED (D31) to light all the LED rows D31 to D3b.
Further, the MPU 322 opens Sw315, stops the operations of Q31 to Q35, and operates only Q36. (The switches of Q332 and Q342 are open.)
MPU322 confirms that I36 is flowing and the Vo value at that time.
If it is predicted that it will not be possible, the previous state will be maintained.

脈流Voが尖頭値に達した後は電圧が減少するが、その時は上記ステップと逆順の動作を行う。 After the pulsating current Vo reaches the peak value, the voltage decreases, but at that time, the operation in the reverse order of the above step is performed.

以上の実施形態におけるLED駆動方法ないし駆動回路においては、交流電源を単相としており、これを全波整流することを前提として説明をしたが、本発明はこれら単相二線の交流に限定されるものではない。三相三線の交流を全波整流して脈流となし、かかる脈流を前提に本発明の上記実施形態にかかるLED駆動方法ないし駆動回路を適用することもできる。本発明は、この場合にも単相交流と同様の効果を得る。 In the LED drive method or drive circuit in the above embodiment, the AC power supply is single-phase, and the description has been made on the premise that this is full-wave rectified. However, the present invention is limited to these single-phase two-wire AC. It's not something. It is also possible to apply the LED drive method or drive circuit according to the above embodiment of the present invention on the premise that the three-phase three-wire AC is full-wave rectified to form a pulsating current. The present invention obtains the same effect as the single-phase alternating current in this case as well.

図5を参照して、三相三線の交流を全波整流して脈流とする場合の一実施形態について説明する。図5(A)は、図1A~図3を参照して説明したLED駆動方法ないし駆動回路に使用された単相二線の交流に対する全波整流器FR1である。三相三線の交流を全波整流して本発明の一実施形態となす場合には、図5(B)に示されるような全波整流器FR2を採用することで、同図(B)中のFR2から見て右側の回路構成は、同図(A)中のFR1から見て右側の回路構成(つまり、図1A~図3を三種押して説明したLED駆動方法ないし駆動回路)と同じものを採用することができる。 With reference to FIG. 5, an embodiment in a case where the three-phase three-wire alternating current is full-wave rectified to form a pulsating current will be described. FIG. 5A is a full-wave rectifier FR1 for single-phase two-wire alternating current used in the LED drive method or drive circuit described with reference to FIGS. 1A to 3. In the case of full-wave rectifying the three-phase three-wire alternating current to form one embodiment of the present invention, by adopting the full-wave rectifier FR2 as shown in FIG. 5 (B), the present invention (B) shows. The circuit configuration on the right side when viewed from FR2 is the same as the circuit configuration on the right side when viewed from FR1 in the figure (A) (that is, the LED drive method or drive circuit described by pressing three types of FIGS. 1A to 3). can do.

但し、三相全波整流の場合は、図5(C)に示されるように脈流が0Vまで低下しないため、脈流と脈流の切替点は電圧が減少から増加に変化する点を起点とする。三相全波整流の場合は60度の位相差があるため、同図(C)においては、電圧が減少から増加に変化する切替点は、

Figure 0007092323000001
となる。 However, in the case of three-phase full-wave rectification, as shown in FIG. 5C, the pulsating current does not drop to 0V, so the switching point between the pulsating current and the pulsating current starts from the point where the voltage changes from decreasing to increasing. And. In the case of three-phase full-wave rectification, there is a phase difference of 60 degrees, so in the figure (C), the switching point where the voltage changes from decrease to increase is
Figure 0007092323000001
Will be.

また、LEDは、輝度の変動は有るが消灯の期間は無く常時点灯となる。さらに、三相全波整流を用いた本発明の一実施形態にかかるLED駆動回路を採用すると、部分点灯の場合を含めると欠相時や電圧低下時にもLEDの点灯を継続する事が出来るという効果も奏する。 Further, although the brightness of the LED fluctuates, there is no period of extinguishing the LED, and the LED is always lit. Furthermore, by adopting the LED drive circuit according to the embodiment of the present invention using three-phase full-wave rectification, it is possible to continue lighting the LED even when the phase is open or the voltage drops, including the case of partial lighting. It also has an effect.

以上、具体例に基づき、本発明の一実施形態にかかるLED駆動方法と駆動回路について説明したが、かかるLED駆動方法と駆動回路を組み込んだ照明機器を実現することは、当業者であれば容易であることは言うまでもない。 Although the LED drive method and the drive circuit according to the embodiment of the present invention have been described above based on the specific example, it is easy for a person skilled in the art to realize a lighting device incorporating the LED drive method and the drive circuit. Needless to say, it is.

本明細書(特許請求の範囲、要約、及び図面を含む)に記載された構成要件の全て及び/又は開示された全ての方法又は処理の全てのステップについては、これらの特徴が相互に排他的である組合せを除き、任意の組合せで組み合わせることができる。 For all the components described herein (including claims, abstracts, and drawings) and / or for all steps of all disclosed methods or processes, these features are mutually exclusive. Any combination can be used except for the combination of.

また、本明細書(特許請求の範囲、要約、及び図面を含む)に記載された特徴の各々は、明示的に否定されない限り、同一の目的、同等の目的、または類似する目的のために働く代替の特徴に置換することができる。したがって、明示的に否定されない限り、開示された特徴の各々は、包括的な一連の同一又は均等となる特徴の一例にすぎない。 Also, each of the features described herein, including claims, abstracts, and drawings, serves the same, equivalent, or similar purpose, unless expressly denied. Can be replaced with alternative features. Therefore, unless expressly denied, each of the disclosed features is merely an example of a comprehensive set of identical or equal features.

さらに、本発明は、上述した実施形態のいずれの具体的構成にも制限されるものではない。本発明は、本明細書(特許請求の範囲、要約、及び図面を含む)に記載された全ての新規な特徴又はそれらの組合せ、あるいは記載された全ての新規な方法又は処理のステップ、又はそれらの組合せに拡張することができる。 Furthermore, the present invention is not limited to any specific configuration of the above-described embodiments. The present invention describes all novel features or combinations thereof described herein (including claims, abstracts, and drawings), or all novel methods or processing steps described, or them. Can be extended to the combination of.

110、210、310 LED駆動回路
120,320 駆動制御部
130、230、330 定電流駆動回路
140、240、340 導通切替部
150A、250A、350A 供給端
151~153、251~253、351~353 引き出し端
110, 210, 310 LED drive circuit 120, 320 Drive control unit 130, 230, 330 Constant current drive circuit 140, 240, 340 Conduction switching unit 150A, 250A, 350A Supply end 151 to 153, 251 to 253, 351 to 353 Drawer end

Claims (7)

全波整流された脈流により駆動される、給電端を一端とする直列接続されたLED列に於いて、給電端を起点とするLED列の異なる複数個所を各々異なるLED駆動部と接続し、脈流の瞬時値に応じて必要なLED駆動部を動作させて給電端から前記LED駆動部接続箇所までのLEDを点灯制御するとともに、前記LED列の給電端から見て最遠端のLED端子を駆動部に接続し、前記LED列の予め設定された単数あるいは複数個所でLED端子間を導通または短絡して脈流の瞬時値に応じて点灯LED数を制御するものであって、
前記点灯LED数の制御は、
(1)交流入力一周期における定められた時間毎において予め設定された点灯LED数に達するか、あるいは、交流入力一周期における定められた時間毎において予め設定された脈流の電圧値に達するかのいずれかの状態を監視し、
(2)前記点灯LED数が前記予め設定された数に達するか、あるいは、前記脈流の電圧値が前記予め設定された値に達すると、
(2-1)LED列中の予め設定された単数または複数個所に応じて予め設定された数のLEDの端子間に接続されたスイッチを閉じることによって前記端子間のLEDを消灯させ、
(2-2)上記(2-1)と同時に前記LED列の給電端から最遠端部に接続されたLED駆動部を動作させて前記LED列を点灯させることにより
(2-3)上記(2-1)及び上記(2-2)の動作の前後で前記LED列中、新たに点灯するLEDと、新たに消灯するLEDまたは消灯を維持するLEDとが発生し、前記LED中の各LEDが、前記交流入力一周期における定められた時間区間の少なくともいずれかの区間において点灯するように制御される
ことを特徴とするLED駆動方法。
In a series-connected LED train with a feed end as one end, which is driven by a full-wave rectified pulse flow, different locations of the LED train starting from the feed end are connected to different LED drive units. The required LED drive unit is operated according to the instantaneous value of the pulse flow to control the lighting of the LED from the power supply end to the LED drive unit connection location, and the LED terminal at the farthest end when viewed from the power supply end of the LED row. Is connected to the drive unit, and the number of lit LEDs is controlled according to the instantaneous value of the pulsation flow by conducting or short-circuiting between the LED terminals at a preset single number or a plurality of locations of the LED row.
The control of the number of lighting LEDs is
(1) Whether the number of lighting LEDs reached in advance at predetermined time intervals in one AC input cycle or the voltage value of the pulsating current set in advance at predetermined time intervals in one AC input cycle is reached. Monitor the status of any of
(2) When the number of lighting LEDs reaches the preset number, or the voltage value of the pulsating current reaches the preset value,
(2-1) By closing the switch connected between the terminals of the preset number of LEDs in the LED row or the preset number of LEDs according to a plurality of locations, the LEDs between the terminals are turned off.
(2-2) At the same time as the above (2-1), the LED drive unit connected to the farthest end from the feeding end of the LED row is operated to light the LED row.
(2-3) Before and after the operations of the above (2-1) and the above (2-2) , a newly lit LED and a newly turned off LED or an LED that keeps the turned off are generated in the LED row. A LED driving method, wherein each LED in the LED is controlled to light in at least one of a predetermined time intervals in one cycle of the AC input .
前記LED駆動方法は、
前記LED列に設けられた複数の引き出し端と、前記複数の引き出し端に接続された複数の定電流駆動部と、
前記の定電流駆動部の動作に同期して動作し、且つ必要な部分に設置されたスイッチ機能と、
前記スイッチ機能で動作する、給電端と異なるLED端とを導通させる導通切替部と、
前記複数の定電流駆動部を制御する制御部と
をさらに含み、
前記制御部は、前記脈流の瞬時電圧値に応じた長さのLED列に電流を流す様に前記定電流駆動部と共に前記スイッチ及び/又は前記導通切替部を制御することにより前記LED列に流れる電流を制御することを特徴とする請求項1に記載の駆動方法。
The LED driving method is
A plurality of drawer ends provided in the LED row, a plurality of constant current drive units connected to the plurality of drawer ends, and a plurality of constant current drive units.
The switch function that operates in synchronization with the operation of the constant current drive unit and is installed in the required part,
A conduction switching unit that conducts the feeding end and the LED end different from the feeding end, which operates by the switch function,
Further includes a control unit that controls the plurality of constant current drive units, and includes a control unit.
The control unit controls the switch and / or the conduction switching unit together with the constant current drive unit so that a current flows through the LED array having a length corresponding to the instantaneous voltage value of the pulsating current, thereby causing the LED array to flow. The driving method according to claim 1, wherein the flowing current is controlled.
前記LED駆動方法は、
前記LED列に設けられた複数の引き出し端と、前記複数の引き出し端に接続された複数のトランジスタと、前記複数のトランジスタの各々に接続された複数のスイッチとを含む定電流駆動部と、
導通切替部及び前記スイッチを制御する駆動制御部と
をさらに含み、
前記駆動制御部により、前記脈流の前記瞬時電圧値に応じて前記複数のスイッチを制御し前記複数のトランジスタの各々に流れる電流を制御することを特徴とする請求項1に記載の駆動方法。
The LED driving method is
A constant current drive unit including a plurality of drawer ends provided in the LED row, a plurality of transistors connected to the plurality of drawer ends, and a plurality of switches connected to each of the plurality of transistors.
Further includes a conduction switching unit and a drive control unit that controls the switch.
The drive method according to claim 1, wherein the drive control unit controls the plurality of switches according to the instantaneous voltage value of the pulsating current to control the current flowing through each of the plurality of transistors.
前記駆動制御部は、
前記脈流の直近複数個の波形情報を蓄積し、
前記蓄積した前記波形情報を基に、前記脈流の前記瞬時電圧値から前記脈流の尖頭値を含む波形を予測するものであり、
前記脈流の前記瞬時電圧値は前記予測した尖頭値を含む波形である請求項3に記載の駆動方法。
The drive control unit
By accumulating the latest waveform information of the pulsating current,
Based on the accumulated waveform information, the waveform including the peak value of the pulsating current is predicted from the instantaneous voltage value of the pulsating current.
The driving method according to claim 3, wherein the instantaneous voltage value of the pulsating current is a waveform including the predicted peak value.
前記駆動制御部は、入力電圧測定用ADCと、スイッチ制御部と、電流値設定用DACと、前記入力電圧測定用ADC、前記スイッチ制御部、及び前記電流値設定用DACを制御する制御MPUとを含み、
前記スイッチ制御部は、前記複数のトランジスタの各々に接続された複数のスイッチと、前記導通切替部とを制御するものであり、
前記複数のトランジスタの各々に接続された複数のスイッチの端部は前記電流値設定用DACに接続され、
前記複数のトランジスタのうちの少なくとも1のトランジスタのソースは前記入力電圧測定用ADCへ帰還接続される請求項3又は4に記載の駆動方法。
The drive control unit includes an ADC for input voltage measurement, a switch control unit, a DAC for setting a current value, an ADC for measuring the input voltage, a switch control unit, and a control MPU for controlling the DAC for setting the current value. Including
The switch control unit controls a plurality of switches connected to each of the plurality of transistors and the conduction switching unit.
The ends of the plurality of switches connected to each of the plurality of transistors are connected to the current value setting DAC.
The driving method according to claim 3 or 4, wherein the source of at least one of the plurality of transistors is feedback-connected to the ADC for input voltage measurement.
前記駆動制御部は、入力電圧測定用ADCと、スイッチ制御部と、電流値設定用DACと、前記入力電圧測定用ADC、前記スイッチ制御部、及び前記電流値設定用DACを制御する制御MPUとを含み、
前記スイッチ制御部は、少なくとも前記導通切替部を制御するものであり、
前記定電流駆動部に対する定電圧制御を行う定電圧制御部を更に備え、
前記定電圧制御部は、
入力端(+側)が前記電流値設定DACへ接続され、
入力端(-側)の一方が抵抗を経て接地され他端が抵抗を経て前記複数のトランジスタのうちの1つのソースに接続され、
出力端の一方が抵抗を経て接地され他端が前記複数のスイッチに接続された
オペアンプを備える
請求項3又は4に記載の駆動方法。
The drive control unit includes an ADC for input voltage measurement, a switch control unit, a DAC for setting a current value, an ADC for measuring the input voltage, a switch control unit, and a control MPU for controlling the DAC for setting the current value. Including
The switch control unit controls at least the continuity switching unit.
A constant voltage control unit that controls a constant voltage for the constant current drive unit is further provided.
The constant voltage control unit is
The input end (+ side) is connected to the current value setting DAC, and
One of the input ends (-side) is grounded via a resistor and the other end is connected to the source of one of the plurality of transistors via a resistor.
The driving method according to claim 3 or 4, wherein one of the output ends is grounded through a resistor and the other end is provided with an operational amplifier connected to the plurality of switches.
請求項1~6のいずれか1項に記載された駆動方法を備えた照明機器。 A lighting device provided with the driving method according to any one of claims 1 to 6.
JP2017134824A 2017-07-10 2017-07-10 LED drive method and lighting equipment using the LED drive method Active JP7092323B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017134824A JP7092323B2 (en) 2017-07-10 2017-07-10 LED drive method and lighting equipment using the LED drive method
PCT/JP2018/025152 WO2019013036A1 (en) 2017-07-10 2018-07-03 Led drive method and illumination device using said led drive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017134824A JP7092323B2 (en) 2017-07-10 2017-07-10 LED drive method and lighting equipment using the LED drive method

Publications (2)

Publication Number Publication Date
JP2019016561A JP2019016561A (en) 2019-01-31
JP7092323B2 true JP7092323B2 (en) 2022-06-28

Family

ID=65002538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134824A Active JP7092323B2 (en) 2017-07-10 2017-07-10 LED drive method and lighting equipment using the LED drive method

Country Status (2)

Country Link
JP (1) JP7092323B2 (en)
WO (1) WO2019013036A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529124A (en) 2009-06-04 2012-11-15 エクスクララ,インコーポレーテッド Apparatus, method, and system for supplying AC line power to a lighting device
JP2015106566A (en) 2013-11-28 2015-06-08 松男 市橋 LED drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012529124A (en) 2009-06-04 2012-11-15 エクスクララ,インコーポレーテッド Apparatus, method, and system for supplying AC line power to a lighting device
JP2015106566A (en) 2013-11-28 2015-06-08 松男 市橋 LED drive circuit

Also Published As

Publication number Publication date
WO2019013036A1 (en) 2019-01-17
JP2019016561A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US12193124B2 (en) Systems and methods for bleeder control related to TRIAC dimmers associated with LED lighting
US11856670B2 (en) Systems and methods for providing power supply to current controllers associated with LED lighting
EP2534926B1 (en) Light emitting unit driving circuit and light emitting device
US20140049177A1 (en) Method and Apparatus To Control Light Intensity As Voltage Fluctuates
US9681508B2 (en) Light modulation control unit, illumination system, and facility apparatus
EP3691413A1 (en) Switched-mode control circuit for correlated color temperature based on linear drive led lighting
US9491817B2 (en) LED driving circuit
US20160374166A1 (en) Light emitting device with low voltage-endurance components
US9801247B2 (en) Light-dimming device
US20150270780A1 (en) Constant current regulator
US9832822B2 (en) Line voltage compensation AC LED driving device
EP3128814A1 (en) Light-dimming device
CN103369804A (en) Method and device for detecting short circuit of light emitting diode
JP7092323B2 (en) LED drive method and lighting equipment using the LED drive method
US8847501B1 (en) Apparatus for driving LEDs using high voltage
EP3349319A2 (en) Method and apparatus for correcting for power harmonics
US20150327341A1 (en) Control circuit of led lighting apparatus
KR101422338B1 (en) Dimming Circuit For LED Lighting Apparatus
JP7282609B2 (en) LIGHTING CONTROL DEVICE, LIGHTING CONTROL METHOD, VEHICLE LAMP
CN111181389A (en) Power supply voltage reduction circuit and corresponding control system
CN204707325U (en) Automobile audio illumination PWM light adjusting circuit
CN108879627B (en) Electronic module, motor vehicle and method for limiting input current during switch-on
JP2018045767A (en) LED driving method and LED driving circuit
KR102168672B1 (en) Driving circuit using the constant current for improving power factor
KR20180051111A (en) Apparatus for controlling lamp of a vehicle and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7092323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250