[go: up one dir, main page]

JP7087533B2 - Surface condition inspection device and surface condition inspection method - Google Patents

Surface condition inspection device and surface condition inspection method Download PDF

Info

Publication number
JP7087533B2
JP7087533B2 JP2018057351A JP2018057351A JP7087533B2 JP 7087533 B2 JP7087533 B2 JP 7087533B2 JP 2018057351 A JP2018057351 A JP 2018057351A JP 2018057351 A JP2018057351 A JP 2018057351A JP 7087533 B2 JP7087533 B2 JP 7087533B2
Authority
JP
Japan
Prior art keywords
hue
light
group
light source
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018057351A
Other languages
Japanese (ja)
Other versions
JP2019168371A (en
Inventor
達哉 黒木
泉 大根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018057351A priority Critical patent/JP7087533B2/en
Priority to CN201920380843.7U priority patent/CN210427372U/en
Publication of JP2019168371A publication Critical patent/JP2019168371A/en
Application granted granted Critical
Publication of JP7087533B2 publication Critical patent/JP7087533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、表面状態検査装置及び表面状態検査方法に関するものである。 The present invention relates to a surface condition inspection apparatus and a surface condition inspection method.

金属板やタイヤなどの対象物に複数色の光を照射しその反射光の輝度または強度を個別に認識することで、対象物の表面状態を検出する装置が知られている。 A device for detecting the surface state of an object by irradiating an object such as a metal plate or a tire with light of a plurality of colors and individually recognizing the brightness or intensity of the reflected light is known.

例えば、特許文献1では、波長の異なる光を2つの光源から被検査物である金属体に照射し、波長毎に準備した受光カメラで反射光を受光し輝度を検出している。被検査物の凹凸により、2つの波長の光に輝度の差が生ずることを利用して金属体である被検査物の表面状態を検出している。特許文献2では、波長の異なる光を2つの光源からタイヤのサイドウォール部の表面に照射し、反射光の強度を検出している。被検査物の凹凸により2つの波長の光に強度に差が生ずることを利用して金属体の被検査物の表面状態を検出している。 For example, in Patent Document 1, light having a different wavelength is irradiated from two light sources to a metal body to be inspected, and the reflected light is received by a light receiving camera prepared for each wavelength to detect the brightness. The surface state of the object to be inspected, which is a metal body, is detected by utilizing the fact that the unevenness of the object to be inspected causes a difference in brightness between the two wavelengths of light. In Patent Document 2, light having different wavelengths is irradiated to the surface of the sidewall portion of the tire from two light sources, and the intensity of the reflected light is detected. The surface state of the metal object to be inspected is detected by utilizing the fact that the intensity of light of two wavelengths is different due to the unevenness of the object to be inspected.

特許第6061059号公報Japanese Patent No. 6061059 特開2010-249700号公報Japanese Unexamined Patent Publication No. 2010-249700

しかしながら、波長の異なる2つの光を被検査物に照射し、その反射光を波長毎に異なるカメラで採取し強度あるいは輝度のデータを取得して演算解析するためには、高額かつ複雑な装置が必要になる。特に、ケーブルなどの長尺物を被検査物とする場合は、長手方向だけでなく周方向の検査が必要となることが多く、平板状のものより高価な装置になることが多い。 However, in order to irradiate an object to be inspected with two lights having different wavelengths, collect the reflected light with a camera different for each wavelength, acquire intensity or luminance data, and perform arithmetic analysis, an expensive and complicated device is required. You will need it. In particular, when a long object such as a cable is to be inspected, it is often necessary to inspect not only in the longitudinal direction but also in the circumferential direction, and the device is often more expensive than a flat plate.

例えば特許文献1において、カラーラインセンサカメラではなくモノクロラインセンサカメラを用いることで安価にする例を提示しているが、受光器が波長毎に必要となっている。 For example, Patent Document 1 presents an example of reducing the cost by using a monochrome line sensor camera instead of a color line sensor camera, but a receiver is required for each wavelength.

例えば特許文献2において、異なる波長の光を同一方向から照射し、反射光をラインセンサカメラで受光した例を提示している。利用できるデータが光源から被検査物の検査位置までの距離だけとなるため、波長毎に強度データを取りその相対関係から表面状態を推定することになる。各波長の強度データはそれぞればらつきをもつため、得られたデータが2つある場合は1つの場合よりデータ処理が複雑になる。 For example, Patent Document 2 presents an example in which light of different wavelengths is irradiated from the same direction and the reflected light is received by a line sensor camera. Since the only data that can be used is the distance from the light source to the inspection position of the object to be inspected, the intensity data is taken for each wavelength and the surface state is estimated from the relative relationship. Since the intensity data of each wavelength has variations, the data processing becomes more complicated when there are two obtained data than in the case of one.

本開示の目的は、簡易な動作原理で、より安価な機器を用いて表面状態を検査する装置を提供することである。 An object of the present disclosure is to provide an apparatus for inspecting a surface condition using a cheaper device based on a simple operation principle.

本実施形態の一観点によれば、
第1の色相の光を被検査物表面の検査領域に照射する第1の光源と、
第1の色相とは異なる第2の色相の光を前記検査領域に照射する第2の光源と、
前記被検査物の表面からの反射光を受光するカラーカメラと、
前記カラーカメラから出力される受光信号を入力として、前記検査領域からの前記反射光の色相分布を分析する分析器とを備え、
前記第1の光の照射方向と、前記第2の光の照射方向が異なる方向である、表面状態検査装置を提供する。
According to one aspect of this embodiment
A first light source that irradiates the inspection area on the surface of the object to be inspected with light of the first hue, and
A second light source that irradiates the inspection area with light having a second hue different from that of the first hue.
A color camera that receives the reflected light from the surface of the object to be inspected, and
It is equipped with an analyzer that analyzes the hue distribution of the reflected light from the inspection area by using the received light signal output from the color camera as an input.
Provided is a surface condition inspection apparatus in which the irradiation direction of the first light and the irradiation direction of the second light are different.

本開示によれば、簡易な動作原理で、より安価な機器を用いて表面状態を検査する装置を提供できる。 According to the present disclosure, it is possible to provide an apparatus for inspecting a surface condition by using a cheaper device by a simple operation principle.

図1は、本願の検査装置の基本構成を説明する図である。FIG. 1 is a diagram illustrating a basic configuration of the inspection device of the present application. 図2Aは、本願の検査装置の検出原理を説明する図である。FIG. 2A is a diagram illustrating a detection principle of the inspection device of the present application. 図2Bは、本願の検査装置の検出原理を説明する図である。FIG. 2B is a diagram illustrating a detection principle of the inspection device of the present application. 図2Cは、本願の検査装置の検出原理を説明する図である。FIG. 2C is a diagram illustrating the detection principle of the inspection device of the present application. 図3は、色相環を模式的に描いた図である。FIG. 3 is a diagram schematically depicting the color wheel. 図4は、本願の検査装置における色相と異常検知の関係を説明する図である。FIG. 4 is a diagram illustrating the relationship between hue and abnormality detection in the inspection device of the present application. 図5は、線状体を被検査対象とする場合の光源とカラーカメラの配置例を示す図である。FIG. 5 is a diagram showing an example of arrangement of a light source and a color camera when a linear body is an object to be inspected. 図6は、図5の配置例におけるカラーカメラの配置例を示す図である。FIG. 6 is a diagram showing an arrangement example of a color camera in the arrangement example of FIG. 図7は、図5の配置例における光源の光の照射範囲を説明する図である。FIG. 7 is a diagram illustrating an irradiation range of light from a light source in the arrangement example of FIG. 図8は、本願の検査装置の代表的な検出ロジックを説明するフロー図である。FIG. 8 is a flow chart illustrating a typical detection logic of the inspection device of the present application. 図9は、本願の検査装置により異常個所が検出される様子を模式的に示す図である。FIG. 9 is a diagram schematically showing how an abnormal portion is detected by the inspection device of the present application. 図10Aは、線状体を被検査物とする場合の、既設の検査装置の光源と受光器の配置例を示す図である。FIG. 10A is a diagram showing an example of arrangement of a light source and a light receiver of an existing inspection device when a linear body is used as an object to be inspected. 図10Bは、線状体を被検査物とする場合の、既設の検査装置の光源と受光器の配置例を示す図である。FIG. 10B is a diagram showing an arrangement example of a light source and a light receiver of an existing inspection device when a linear body is used as an object to be inspected. 図11は、凹凸不良部と凹凸良好部を有する被検査物を、(a)既設の検査装置及び(b)本願の検査装置で検査し、凹凸の高さで結果をまとめた図である。FIG. 11 is a diagram in which an inspected object having a defective unevenness portion and a good unevenness portion is inspected by (a) an existing inspection device and (b) the inspection device of the present application, and the results are summarized by the height of the unevenness. 図12は、既設の検査装置及び本願の検査装置を用い表面の凹凸を検出した実験例であり、凹凸の高さと長さで結果をまとめた図である。FIG. 12 is an experimental example in which surface irregularities were detected using an existing inspection device and the inspection device of the present application, and the results are summarized by the height and length of the irregularities.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.

(1)本開示の一態様に係る表面状態検査装置は、第1の色相の光を被検査物表面の検査領域に照射する第1の光源と、第1の色相とは異なる第2の色相の光を前記検査領域に照射する第2の光源と、前記被検査物の表面からの反射光を受光するカラーカメラと、前記カラーカメラから出力される受光信号を入力として、前記検査領域からの前記反射光の色相分布を分析する分析器とを備え、前記第1の光の照射方向と、前記第2の光の照射方向が異なる方向である表面状態検査装置である。 (1) The surface condition inspection apparatus according to one aspect of the present disclosure includes a first light source that irradiates an inspection area on the surface of an object to be inspected with light of the first hue, and a second hue different from the first hue. A second light source that irradiates the inspection area with the light of the above, a color camera that receives the reflected light from the surface of the object to be inspected, and a light receiving signal output from the color camera as inputs from the inspection area. It is a surface condition inspection device including an analyzer for analyzing the hue distribution of the reflected light, in which the irradiation direction of the first light and the irradiation direction of the second light are different.

工業製品では一様な表面として製造された製品であっても、その表面は一様ではなく場所毎に表面形状に差がある。傷や凹凸などの外観不良と認識される表面状態は弁別し排除することが求められる。本発明の発明者らは、異なる位置に配置した2つの光源から同時に異なる色相の光を被検査物に照射すると、反射光は被検査物の表面の形状の違いである表面状態に応じて異なる色相となることを見いだした。そして、かかる反射光をカラーカメラで受光し、カラーカメラから出力される受光信号に基づいて前記表面状態を検知する表面状態検査装置として完成させた。 Even if an industrial product is manufactured as a uniform surface, the surface is not uniform and the surface shape differs from place to place. It is required to discriminate and eliminate surface conditions that are recognized as poor appearance such as scratches and irregularities. When the inventors of the present invention irradiate the object to be inspected with light of different hues from two light sources arranged at different positions at the same time, the reflected light differs depending on the surface condition which is the difference in the shape of the surface of the object to be inspected. I found that it would be a hue. Then, the reflected light is received by the color camera, and the surface condition inspection device is completed to detect the surface condition based on the received light signal output from the color camera.

表面状態が一様な被検査物に、2つの光源から相異なる色相の光を被検査物に照射する場合、被検査物のどの場所でも一定の反射となり、一定の中間色相の反射光が得られる。 When an object to be inspected with a uniform surface condition is irradiated with light of different hues from two light sources, the object to be inspected has constant reflection at any location, and reflected light having a certain intermediate hue is obtained. Be done.

一方、表面に傷や膨れなどにより凸部や凹部がある被検査物では、それぞれの光源から照射した光の反射が被検査物の表面状態に応じて変わる。特に陰になるところでは反射がなくなり、表面状態が一様の被検査物の場合とは異なる色相の反射光が得られる。上記2つの光源を被検査物に対して異なる方向から照射するように配置すると、被検査物の表面状態によっては一方の照射光の色相が弱められたり強められたりするため、反射光の色相は一定の中間色相ではなく、光源の色相あるいはその色相に近い色相が得られる。 On the other hand, in an inspected object having protrusions or concave portions due to scratches or swelling on the surface, the reflection of light emitted from each light source changes depending on the surface condition of the inspected object. Especially in the shaded area, the reflection disappears, and the reflected light having a hue different from that in the case of the object to be inspected having a uniform surface state can be obtained. When the above two light sources are arranged so as to irradiate the object to be inspected from different directions, the hue of one of the irradiated lights may be weakened or strengthened depending on the surface condition of the inspected object, so that the hue of the reflected light is changed. Instead of a constant neutral hue, a hue of a light source or a hue close to that hue can be obtained.

ここで第一の色相及びその色相に近い色相を合わせた第一の色相群、第二の色相及びその色相に近い色相を合わせた第二の色相群、第一の色相群と第二の色相群の中間にある中間色相群の、3つの色相群を定義する。すると、被検査物の反射光の色相が第一の色相群あるいは第二の色相群にある場合は、被検査物の表面状態に異常があると推定される。一方、中間色相群にあるときは被検査物に異常がないと推定される。ここで、異常とは、主に表面の傷やふくれなどに起因する凹凸であって、当該製品として不良と判断されることをいう。表面の凹凸状態がわかっているサンプルを用いて、第一の色相群、第二の色相群、中間色相群を予め装置に登録し、反射光が第一の色相群あるいは第二の色相群のときは異常、中間色相群のときは異常なしの判断と出力をするようにすれば、表面状態を判断する検査装置ができる。 Here, the first hue group in which the first hue and the hue close to the hue are combined, the second hue group in which the second hue and the hue close to the hue are combined, the first hue group and the second hue are combined. We define three hue groups of intermediate hue groups in the middle of the group. Then, when the hue of the reflected light of the inspected object is in the first hue group or the second hue group, it is presumed that the surface condition of the inspected object is abnormal. On the other hand, when it is in the intermediate hue group, it is presumed that there is no abnormality in the inspected object. Here, the abnormality means unevenness mainly caused by scratches or blisters on the surface, and is judged to be defective as the product. Using a sample whose surface unevenness is known, the first hue group, the second hue group, and the intermediate hue group are registered in the device in advance, and the reflected light is the first hue group or the second hue group. If it is determined that there is no abnormality in the case of an abnormality and no abnormality in the case of an intermediate hue group and the output is made, an inspection device for determining the surface condition can be obtained.

(2)前記分析器は、前記検査領域に対応する画像の画素毎の色相を検出し、前記第1の色相の画素、または、前記第2の色相の画素が連続した領域が存在する場合に、凹凸が存在すると判断するように構成されている表面状態検査装置であってもよい。 (2) The analyzer detects the hue of each pixel of the image corresponding to the inspection region, and when there is a region in which the pixels of the first hue or the pixels of the second hue are continuous. , The surface condition inspection device may be configured to determine that unevenness is present.

色相の判断を画素毎に行うことで、非常に細かい表面状態の変化を検出することができる。しかし、あまりに細かい分析ではノイズの影響を受けやすい。また対象とする製品における異常の判断基準には凹凸の大きさが含まれることが多い。そこで、色相変化を領域の大きさとして判断することで、ノイズを排除しつつ所定の不良のみを検出することができ、検査装置としての精度を一層高めることができる。 By determining the hue for each pixel, it is possible to detect very fine changes in the surface state. However, too detailed analysis is susceptible to noise. In addition, the size of unevenness is often included in the criteria for judging abnormalities in the target product. Therefore, by determining the hue change as the size of the region, it is possible to detect only a predetermined defect while eliminating noise, and the accuracy of the inspection device can be further improved.

(3)前記被検査物は1つの軸方向に延在する表面を有し、前記軸方向をZ方向、検査領域の中心を原点として前記表面の法線方向にX方向、X方向およびZ方向に直交する方向をY方向とした場合に、前記第1の光源および前記第2の光源は、それぞれX-Z平面内において、前記第1の光源はZが正の領域に、前記第2の光源はZが負の領域に配置され、前記カラーカメラはX-Y平面上に配置されている記載の表面状態検査装置であってもよい。 (3) The object to be inspected has a surface extending in one axial direction, the axial direction is the Z direction, and the center of the inspection region is the origin in the X direction, the X direction, and the Z direction in the normal direction of the surface. When the direction orthogonal to is the Y direction, the first light source and the second light source are in the XZ plane, respectively, and the first light source is in the region where Z is positive, and the second light source is the second light source. The light source may be the surface condition inspection apparatus according to which Z is arranged in a negative region and the color camera is arranged on an XY plane.

2つの光源を、検出器としてのカラーカメラを挟んでそれぞれ逆の方向に置くことで、検査対象とされる表面における反射の程度に顕著な差が生じ易くなり、検出の精度が向上する。 By placing the two light sources in opposite directions with the color camera as a detector in between, a significant difference in the degree of reflection on the surface to be inspected is likely to occur, and the accuracy of detection is improved.

(4)前記被検査物は前記Z方向に中心軸を持つ円筒状の表面を有し、
前記第1の光源および前記第2の光源は円環状に円環の軸方向に光を照射する光源であって、X-Y平面に平行なそれぞれ異なる面においてZ軸を中心とするように配置されており、
複数の前記カラーカメラがX-Y平面上に前記円筒状の表面を取り囲むように配置されている、表面状態検査装置であってもよい。
(4) The object to be inspected has a cylindrical surface having a central axis in the Z direction.
The first light source and the second light source are light sources that irradiate light in the axial direction of the annulus in an annular shape, and are arranged so as to be centered on the Z axis on different planes parallel to the XY plane. Has been
It may be a surface condition inspection device in which a plurality of the color cameras are arranged on an XY plane so as to surround the cylindrical surface.

被検査物がケーブルやロッドのような線状あるいは棒状の形状を有する場合には、検査対象となる表面が長手方向を軸に全周に亘って存在する。均等に同時に全周の検査を行うために、円環状の光源で全周を同時に照らし、表面からの反射光を同時に検出するために複数のカラーカメラを配置すると良い。 When the object to be inspected has a linear or rod-like shape such as a cable or a rod, the surface to be inspected exists over the entire circumference around the longitudinal direction. In order to inspect the entire circumference evenly at the same time, it is advisable to illuminate the entire circumference at the same time with an annular light source and arrange multiple color cameras to detect the reflected light from the surface at the same time.

(5)複数の前記第1の光源を有し、複数の前記第1の光源は同一の平面上に同心に配置されており、複数の前記第2の光源を有し、複数の前記第2の光源は同一の平面上に同心に配置されている、表面状態検査装置であってもよい。 (5) It has a plurality of the first light sources, the plurality of the first light sources are concentrically arranged on the same plane, has a plurality of the second light sources, and has a plurality of the second light sources. The light sources may be surface condition inspection devices concentrically arranged on the same plane.

このように光源を複数にすることで、均等な照射範囲を増やすことができるため、検査の効率を上げることができる。 By using a plurality of light sources in this way, the uniform irradiation range can be increased, so that the efficiency of inspection can be improved.

(6)また、本開示の一態様は、第1の色相の光と、第1の色相とは異なる第2の色相の光が、被検査物の表面の検査領域に照射され前記検査領域からの反射光の色相が前記検査領域を細分化した画素毎に検出され、前記検査領域における色相の平面分布から、前記被検査物の表面の凹凸が検出される、表面状態検査方法を提供する。 (6) Further, in one aspect of the present disclosure, the light of the first hue and the light of the second hue different from the first hue are applied to the inspection area on the surface of the object to be inspected from the inspection area. Provided is a surface condition inspection method in which the hue of the reflected light of the above is detected for each pixel in which the inspection region is subdivided, and the unevenness of the surface of the object to be inspected is detected from the plane distribution of the hue in the inspection region.

(7)前記被検査物はZ軸を中心軸として延在する円筒状の表面を有し、
前記Z軸の方向をZ方向、前記検査領域の法線の内の任意の一方向をX方向、X方向およびZ方向に直交する方向をY方向とした場合に、
前記第1の色相の光と前記第2の色相の光とは、それぞれX-Z平面内において、前記第1の光源はZが正の領域から、前記第2の光源はZが負の領域から前記表面に照射され、
前記反射光は、X-Y平面上において検出される、表面状態検査方法であってもよい。
(7) The object to be inspected has a cylindrical surface extending with the Z axis as the central axis.
When the direction of the Z axis is the Z direction, and any one direction within the normal of the inspection area is the X direction, and the direction orthogonal to the X direction and the Z direction is the Y direction.
The light of the first hue and the light of the second hue are in the XZ plane from the region where Z is positive for the first light source and the region where Z is negative for the second light source, respectively. Irradiates the surface from
The reflected light may be a surface condition inspection method detected on an XY plane.

[本開示の実施形態の詳細]
本開示の実施形態(以下「本実施形態」と記す)に係る表面状態検査装置の具体例を、以下に図面を参照しつつ説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。なお、本発明はこれらの例示に限定されるものではなく、特許の請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
[Details of Embodiments of the present disclosure]
A specific example of the surface condition inspection apparatus according to the embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described below with reference to the drawings. In the following description, the same or corresponding elements are designated by the same reference numerals, and the same description is not repeated for them. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

図1に示すように、本実施形態に係る表面状態検査装置の基本構成は、第1の光源10、第2の光源20、カラーカメラ30、分析器40、出力装置50を備えている。第1の光源10は第1の色相の光11を、被検査物60の表面61に向けて照射する。第2の光源20は第2の色相の光21を、被検査物60の表面61に向けて照射する。第1の色相の光11と第2の色相の光21の両方が照射された表面61からは、反射光として正常反射光73、あるいは異常反射光71、72が生じ、カラーカメラ30が当該反射光を受光する。本例では被検査物60の表面61に、表面が膨らんだ部分である凸部62が存在する場合を例示している。 As shown in FIG. 1, the basic configuration of the surface condition inspection device according to the present embodiment includes a first light source 10, a second light source 20, a color camera 30, an analyzer 40, and an output device 50. The first light source 10 irradiates the light 11 of the first hue toward the surface 61 of the object 60 to be inspected. The second light source 20 irradiates the light 21 of the second hue toward the surface 61 of the object 60 to be inspected. Normal reflected light 73 or abnormal reflected light 71 and 72 are generated as reflected light from the surface 61 irradiated with both the light 11 of the first hue and the light 21 of the second hue, and the color camera 30 reflects the light. Receives light. In this example, the case where the convex portion 62, which is a bulging portion of the surface, is present on the surface 61 of the object to be inspected 60 is illustrated.

ここで一旦本検査装置内の分析器40の色相検査について説明する。図3は、色相環を模式的に描いた図である。
図3に示すように、色相は光の3原色赤(R)、緑(G)、青(B)を基準に色相環をなす。本発明で用いる分析器は色相環を等分割設定できるものを用いる。更に、分割された色相のうち指定した領域の色相群を異常とし、指定外の領域を正常として設定できるものを用いる。
Here, the hue inspection of the analyzer 40 in the inspection apparatus will be described once. FIG. 3 is a diagram schematically depicting the color wheel.
As shown in FIG. 3, the hue forms a hue circle based on the three primary colors of light, red (R), green (G), and blue (B). The analyzer used in the present invention is one that can set the color wheel evenly divided. Further, among the divided hues, the one that can set the hue group of the specified region as abnormal and the non-designated region as normal is used.

図4は、本願の検査装置における色相と異常検知の関係を説明する図であり、図3の色相環の一部分を示している。本発明は2つの色相の光源を用いるため、図4に示すように、第1の色相101、第1の色相に近い異常色相103(両者を合わせて第一の色相群とする)、第2の色相102、第2の色相に近い異常色相104(両者を合わせて第2の色相群とする)、及び、中間色相である正常色相105(中間色相群とする)に分けることができる。予め表面状態がわかっているサンプルを用い、分析器内で第一の色相群、第二の色相群、中間色相群の範囲を予め設定する。第1の色相群及び第2の色相群の色相に相当する反射光を異常と判断し、出力装置50に出力するように分析器の設定をおこなうことで、色相検査ができる。 FIG. 4 is a diagram illustrating the relationship between hue and abnormality detection in the inspection device of the present application, and shows a part of the hue circle of FIG. Since the present invention uses two hue light sources, as shown in FIG. 4, the first hue 101, the abnormal hue 103 close to the first hue (both are collectively referred to as the first hue group), and the second. It can be divided into a hue 102, an abnormal hue 104 close to the second hue (combined to form a second hue group), and a normal hue 105 (intermediate hue group) which is an intermediate hue. Using a sample whose surface state is known in advance, the range of the first hue group, the second hue group, and the intermediate hue group is preset in the analyzer. Hue inspection can be performed by determining that the reflected light corresponding to the hues of the first hue group and the second hue group is abnormal and setting the analyzer so that the light is output to the output device 50.

図1を用い、表面状態検査装置の処理の説明をする。
第1の色相を有する照射光11と、照射光11とは異なる第2の色相を有する照射光21を被検査物60の表面61に同時に照射すると、反射光には、中間色相群を有する正常反射光73、あるいは、第1の色相群または第2の色相群の色相を有する異常反射光71、72が生ずる。反射光をカラーカメラ30で撮像する。撮像された画素毎のデータは分析器40へ入力される。分析器40は画素毎の色相を判別できる機能を含む装置であり、表面状態の良否判断と、異常と判断された結果を含む情報を出力装置50に出力する。出力装置50は、ランプ等を備える警報盤、液晶モニター等の表示装置、ブザー等の音声出力装置など、任意の出力装置であって、検査結果を作業者等に伝える。
The processing of the surface condition inspection apparatus will be described with reference to FIG.
When the irradiation light 11 having the first hue and the irradiation light 21 having the second hue different from the irradiation light 11 are simultaneously irradiated on the surface 61 of the object 60 to be inspected, the reflected light is normal having an intermediate hue group. The reflected light 73, or the abnormal reflected light 71, 72 having the hue of the first hue group or the second hue group is generated. The reflected light is imaged by the color camera 30. The captured pixel-by-pixel data is input to the analyzer 40. The analyzer 40 is a device including a function capable of discriminating the hue for each pixel, and outputs information including a result of determining whether the surface condition is good or bad and an abnormality being determined to the output device 50. The output device 50 is an arbitrary output device such as an alarm panel provided with a lamp or the like, a display device such as a liquid crystal monitor, or a voice output device such as a buzzer, and conveys an inspection result to an operator or the like.

分析器40は、専用に構成された装置、あるいは予めプログラムされたコンピュータを含む装置であって、検査領域に対応する画像の画素毎の色相を検出する。また、第1の色相群の画素が連続した領域あるいは第2の色相群の画素が連続した領域が存在する場合に、凹凸が存在すると判断するように構成されていてもよい。 The analyzer 40 is a dedicated device or a device including a pre-programmed computer, and detects the hue of each pixel of the image corresponding to the inspection area. Further, when there is a region where the pixels of the first hue group are continuous or a region where the pixels of the second hue group are continuous, it may be configured to determine that the unevenness is present.

以下、図2Aから図2Cを参照して、表面の凹凸と反射光の色相の関係について説明する。それぞれの図は、被検査物60の表面状態が異なるものであり、その他の構成は図1と同様である。
図2Aに示される被検査物60では、表面61に異常とされる凹凸がない。この場合、光が照射された表面61のどの部分でも同じ反射状態であり、中間色相群の色相を有する正常反射光73のみがカラーカメラで撮像される。撮像された画像が正常反射光73からなるため、分析器40では正常と判断される。
Hereinafter, the relationship between the unevenness of the surface and the hue of the reflected light will be described with reference to FIGS. 2A to 2C. Each figure has a different surface condition of the object to be inspected 60, and other configurations are the same as those in FIG.
In the object to be inspected 60 shown in FIG. 2A, the surface 61 has no irregularities. In this case, all parts of the surface 61 irradiated with light are in the same reflected state, and only the normally reflected light 73 having a hue of the intermediate hue group is imaged by the color camera. Since the captured image is composed of the normal reflected light 73, the analyzer 40 determines that the image is normal.

図2Bに示される被検査物60は、表面61に凸部62を有する。この場合、第1の色相の照射光は凸部62の右側では反射するが、左側では陰になり反射されない。同様に第2の照射光は凸部62の右側では陰になり反射されないが、左側では反射する。その結果、凸部62の右側の反射光は第1の色相群の色相をもつ異常反射光71となり、左側の反射光は第2の色相群の色相を持つ異常反射光72となる。正常反射光73だけでなく、異常反射光71、72がカラーカメラで撮像されるため、分析器40では異常と判断されて、主力装置50に異常の出力がなされる。 The object to be inspected 60 shown in FIG. 2B has a convex portion 62 on the surface 61. In this case, the irradiation light of the first hue is reflected on the right side of the convex portion 62, but is shaded on the left side and is not reflected. Similarly, the second irradiation light is shaded on the right side of the convex portion 62 and is not reflected, but is reflected on the left side. As a result, the reflected light on the right side of the convex portion 62 becomes the abnormal reflected light 71 having the hue of the first hue group, and the reflected light on the left side becomes the abnormal reflected light 72 having the hue of the second hue group. Since not only the normally reflected light 73 but also the abnormally reflected lights 71 and 72 are imaged by the color camera, the analyzer 40 determines that the abnormality is present, and the abnormality output is output to the main device 50.

図2Cに示される被検査物60は、表面61に凹部63を有する。この場合、第1の色相の照射光は凹部63の左側では反射するが、右側では陰になり反射されない。同様に第2の照射光は凹部63の左側では陰になり反射されないが、右側では反射する。その結果、凹部63の右側の反射光は第2の色相群の色相をもつ異常反射光72となり、左側の反射光は第1の色相群の色相を持つ異常反射光71となる。正常反射光73だけでなく、異常反射光71、72がカラーカメラで撮像されるため、分析器40から主力装置50に異常の出力がなされる。 The inspected object 60 shown in FIG. 2C has a recess 63 on the surface 61. In this case, the irradiation light of the first hue is reflected on the left side of the recess 63, but is shaded on the right side and is not reflected. Similarly, the second irradiation light is shaded on the left side of the recess 63 and is not reflected, but is reflected on the right side. As a result, the reflected light on the right side of the recess 63 becomes the abnormal reflected light 72 having the hue of the second hue group, and the reflected light on the left side becomes the abnormal reflected light 71 having the hue of the first hue group. Since not only the normally reflected light 73 but also the abnormally reflected lights 71 and 72 are imaged by the color camera, the analyzer 40 outputs an abnormality to the main device 50.

色相異常の判断は画素毎に行われるため、画素毎に正常か異常かを判断するだけでは小さな埃、無害の微小な凹凸についても異常と判断される可能性がある。また、電気的なノイズや光学的なノイズの影響も受けやすい。このように微小な無害のものを異常から除外するために、異常画素の連続面積を算出し、あらかじめ設定した閾値以上の面積のもののみ異常出力を行う処理を付加してもよい。 Since the determination of hue abnormality is performed for each pixel, it may be determined that even small dust and harmless minute irregularities are abnormal just by determining whether the hue is normal or abnormal for each pixel. It is also susceptible to electrical and optical noise. In order to exclude such minute harmless ones from the anomaly, a process of calculating the continuous area of the anomalous pixels and performing anomalous output only for the ones having an area equal to or larger than a preset threshold value may be added.

図9は、連続画素の閾値として2画素を設定した場合の、異常個所が検出される様子を模式的に示した図である。被検査物の撮像された領域をa1、a2、b1、b2として示している。領域a1、a2内の小さな正方形領域は色相判定で異常判定となった画素を表す。画素毎の色相判定では、いずれも異常と判断される。連続面積としての閾値をもとにして、領域a1に対して再判定を行った結果が領域b1、領域a2に対して再判定を行った結果が領域b2である。この例では、連続した2画素がある場合に連続とする閾値とした。領域b1は連続領域が残るため異常が出力されるが、領域b2は色相異常が解消されたため異常の出力は行われない。連続画素の閾値判定を行うことにより、微小な無害のものの排除を行うことができるようになり、実用的な検査装置にすることが可能となる。なお、連続画素の閾値は、2画素に限られるものではなく、実際の運用の中で適宜調整を行えば良い。さらに被検査物の特性によっては、連続の画素数に加えて、線状に連続するとか、円形状に連続するなどの連続の形態をも異常判断の基準として設定することもできる。 FIG. 9 is a diagram schematically showing how an abnormal portion is detected when two pixels are set as the threshold value of continuous pixels. The imaged regions of the object to be inspected are shown as a1, a2, b1, and b2. The small square areas in the areas a1 and a2 represent the pixels for which an abnormality is determined in the hue determination. In the hue determination for each pixel, it is determined that all are abnormal. The result of re-determining the area a1 based on the threshold value as the continuous area is the area b1, and the result of re-determining the area a2 is the area b2. In this example, the threshold value is set to be continuous when there are two consecutive pixels. An abnormality is output in the region b1 because a continuous region remains, but an abnormality is not output in the region b2 because the hue abnormality has been resolved. By determining the threshold value of continuous pixels, it becomes possible to eliminate minute harmless objects, and it becomes possible to make a practical inspection device. The threshold value of continuous pixels is not limited to two pixels, and may be appropriately adjusted in actual operation. Further, depending on the characteristics of the object to be inspected, in addition to the number of continuous pixels, a continuous form such as continuous in a linear shape or continuous in a circular shape can be set as a criterion for determining an abnormality.

被検査物がZ軸方向に延在する表面を有し、表面状態検査装置の第1の光源および第2の光源は、それぞれX-Z平面内において、前記第1の光源はZが正の領域に、前記第2の光源はZが負の領域に配置され、前記カラーカメラはX-Y平面上に配置されていてもよい。 The object to be inspected has a surface extending in the Z-axis direction, and the first light source and the second light source of the surface condition inspection device are each in the XX plane, and the first light source is Z positive. In the region, the second light source may be arranged in the region where Z is negative, and the color camera may be arranged on the XY plane.

板や線をはじめZ軸方向に延在する表面を有しているものの表面異常を表面状態検査装置で判定するためには、反射光の色相を第1の色相群、第2の色相群、中間色相群に確実に区分できる必要がある。Z方向に沿って光源を並べ、被検査部のZ方向位置を光源と光源の間にすることにより目的を達成することができる。 In order to determine the surface abnormality of a plate or line having a surface extending in the Z-axis direction with a surface condition inspection device, the hue of the reflected light is determined by the first hue group, the second hue group, and the like. It is necessary to be able to reliably classify into the neutral hue group. The purpose can be achieved by arranging the light sources along the Z direction and setting the position of the inspected portion in the Z direction between the light sources.

被検査物がZ軸を中心軸とする円筒状の表面を有している場合、表面状態検査装置の第1の光源および第2の光源は、それぞれX-Y平面に平行な面上でZ軸を中心とする円環をなすように配置されており、複数の前記カラーカメラがX-Y平面上に前記円筒状の表面を取り囲むように配置されていてもよい。 When the object to be inspected has a cylindrical surface centered on the Z axis, the first light source and the second light source of the surface condition inspection device are Z on a plane parallel to the XY plane, respectively. The color cameras are arranged so as to form a ring centered on the axis, and a plurality of the color cameras may be arranged so as to surround the cylindrical surface on the XY plane.

また、表面状態検査装置は、複数の第1の光源を有し、複数の第1の光源は同一の平面上に同心に配置されており、複数の第2の光源を有し、複数の第2の光源は同一の平面上に同心に配置されてもよい。 Further, the surface condition inspection device has a plurality of first light sources, the plurality of first light sources are concentrically arranged on the same plane, and the surface condition inspection device has a plurality of second light sources and a plurality of second light sources. The two light sources may be concentrically arranged on the same plane.

以下、被検査物が円筒状をしている場合について記すが、表現を簡素化するため、Z軸方向に延在する表面を有しているものの例として被覆電線やケーブル、金属線、金属や樹脂製のパイプや棒などの長尺の線形状である線状体を用いて説明する。なお、円断面以外の異形断面を含め、断面を有する長尺品であれば適用可能であり、説明が適用される対象物は円筒状に限られるものではない。 In the following, the case where the object to be inspected has a cylindrical shape will be described. The explanation will be given using a linear body having a long linear shape such as a resin pipe or a rod. It should be noted that this is applicable as long as it is a long product having a cross section including a deformed cross section other than a circular cross section, and the object to which the description is applied is not limited to a cylindrical shape.

線状体の場合、2つの光源とカラーカメラをZ軸方向に配置しただけでは、照射光の当たらない面が生ずる。全周検査をするためには、光源とカラーカメラを円周状に配置し検査不能領域をなくすことが必要となる。 In the case of a linear body, simply arranging the two light sources and the color camera in the Z-axis direction produces a surface that is not exposed to the irradiation light. In order to perform an all-around inspection, it is necessary to arrange the light source and the color camera in a circumferential shape to eliminate the inspectable area.

線状体を全周だけでなく全長に亘り検査する場合、X-Y平面上に円筒状に配置した光源及び円筒状に配置したカメラの中に線状体を通し、線状体または検査装置をZ方向に移動させることが好ましい。効率的に検査するためにはこのZ方向の移動速度をあげることが望まれ、撮像効率を高める必要がある。安価な方法として、1枚の撮像画像面積を大きくすることがよく、移動速度に応じてZ方向の長さを大きくするとよい。照射光が検査領域全体にわたり安定していることが重要であるため、複数の光源を使用し照射できるZ方向の長さを大きくすることが好ましい。 When inspecting a striatum not only over the entire circumference but also over the entire length, the striatum is passed through a light source arranged in a cylindrical shape on an XY plane and a camera arranged in a cylindrical shape, and the striatum or an inspection device is used. Is preferably moved in the Z direction. In order to perform an efficient inspection, it is desired to increase the moving speed in the Z direction, and it is necessary to increase the imaging efficiency. As an inexpensive method, it is preferable to increase the area of one captured image, and it is preferable to increase the length in the Z direction according to the moving speed. Since it is important that the irradiation light is stable over the entire inspection area, it is preferable to increase the length in the Z direction that can be irradiated by using a plurality of light sources.

以下、図5、図6、図7を用いて、具体的な実施態様の例を示す。 Hereinafter, examples of specific embodiments will be shown with reference to FIGS. 5, 6, and 7.

図5は、線状体を被検査対象とする場合の光源とカラーカメラの配置例を示す図である。図5を参照して、被検査物である線状体80を囲むように環状光源81、82、83、84が配置されている。環状光源81と環状光源82は、第1の光源として用いられ、いずれも第1の色相の光を線状体80の表面に向けて照射する。環状光源81と環状光源82は環状の半径が異なっており、線状体への光の照射範囲が異なるように配置されている。環状光源83と環状光源84は、第2の光源として用いられ、いずれも第2の色相の光を線状体80の表面に向けて照射する。環状光源83と環状光源84は環状の半径が異なっており、線状体への光の照射範囲が異なるように配置されている。 FIG. 5 is a diagram showing an example of arrangement of a light source and a color camera when a linear body is an object to be inspected. With reference to FIG. 5, annular light sources 81, 82, 83, 84 are arranged so as to surround the linear body 80, which is an object to be inspected. The annular light source 81 and the annular light source 82 are used as the first light source, and both emit light of the first hue toward the surface of the linear body 80. The annular light source 81 and the annular light source 82 have different annular radii, and are arranged so that the irradiation range of light on the striatum is different. The annular light source 83 and the annular light source 84 are used as a second light source, and both emit light having a second hue toward the surface of the linear body 80. The annular light source 83 and the annular light source 84 have different annular radii, and are arranged so that the irradiation range of light on the striatum is different.

カラーカメラ85はレンズ86を含み、環状光源81、82と環状光源83、84の間で検査対象となる表面を撮像するように配置されている。以上の説明において、線状体80の延在する方向をZ方向とし、それに直交する平面がX-Y平面とする。カラーカメラ85はZ=0とするX-Y平面に配置されるとした場合、環状光源81、82はZが正のX-Yに平行な平面内に配置されており、環状光源83、84はZが負のX-Yに平行な平面内に配置されている。 The color camera 85 includes a lens 86 and is arranged between the annular light sources 81 and 82 and the annular light sources 83 and 84 so as to capture an image of the surface to be inspected. In the above description, the extending direction of the linear body 80 is the Z direction, and the plane orthogonal to the Z direction is the XY plane. Assuming that the color camera 85 is arranged in the XY plane where Z = 0, the annular light sources 81 and 82 are arranged in the plane in which Z is parallel to the positive XY, and the annular light sources 83 and 84 are arranged. Is arranged in a plane parallel to XY where Z is negative.

図6は、図5の配置例におけるカラーカメラの配置例をX-Y平面上に示す図である。
図6を参照して、被検査物である線状体80を囲むように環状光源81(83)、82(84)が配置されている。同様に、被検査物である線状体を囲むようにカラーカメラ85はレンズ86を内側にした状態で配置されている。光源81(83)、82(84)及びカラーカメラ85をこのように環状に配置することにより、被検査物の全周を照射し、全周からの反射光を全て受光することができる。なお、本例示では受光カメラ86の設置数を8台としているが、検査の状況に応じ変更してもよいものであり、設置数は特に限られるものではない。
FIG. 6 is a diagram showing an arrangement example of the color camera in the arrangement example of FIG. 5 on an XY plane.
With reference to FIG. 6, the annular light sources 81 (83) and 82 (84) are arranged so as to surround the linear body 80 which is the object to be inspected. Similarly, the color camera 85 is arranged with the lens 86 inside so as to surround the linear body to be inspected. By arranging the light sources 81 (83), 82 (84) and the color camera 85 in an annular shape in this way, it is possible to irradiate the entire circumference of the object to be inspected and receive all the reflected light from the entire circumference. In this example, the number of light receiving cameras 86 installed is eight, but the number of light receiving cameras 86 may be changed depending on the inspection situation, and the number of installed light receiving cameras 86 is not particularly limited.

図7は、図5の配置例における光源からの光の照射範囲をX-Z平面上に示す図である。図7を参照して、W1はカラーカメラ86のZ方向の視野範囲を示している。第1の色相の照射光811の照射範囲をW1より大きくすることは可能であるが、Z方向の全体に亘り同じ明るさで照射することはできない。照射範囲の中心と端部で明るさの差が生じる。照射光831でも同様のことが起きる。その結果、被検査物80には凹凸等の異常がないにもかかわらず照射範囲の端部からの反射光が第1の色相群の色相、あるいは、第2の色相群の色相となり、分析器は異常と判定する誤動作が起きる場合がある。誤動作を防ぐためには、視野範囲W1内に検査判定をする検査範囲W2を設けると良い。 FIG. 7 is a diagram showing the irradiation range of light from the light source in the arrangement example of FIG. 5 on the XX plane. With reference to FIG. 7, W1 shows the field of view of the color camera 86 in the Z direction. It is possible to make the irradiation range of the irradiation light 811 of the first hue larger than that of W1, but it is not possible to irradiate with the same brightness over the entire Z direction. There is a difference in brightness between the center and the edge of the irradiation range. The same thing happens with the irradiation light 831. As a result, the reflected light from the end of the irradiation range becomes the hue of the first hue group or the hue of the second hue group even though the inspected object 80 has no abnormality such as unevenness, and the analyzer becomes an analyzer. May cause a malfunction that is determined to be abnormal. In order to prevent malfunction, it is preferable to provide an inspection range W2 for making an inspection determination within the visual field range W1.

効率的な検査を行うためには、検査範囲W2はカラーカメラの視野範囲W1に近い方が好ましい。そこで、第1の色相の光源を環状光源81、82と2重にして、第1の色相の照射光の明るさが安定する範囲を広げ、同様に第2の色相の光源を環状光源83、84と2重にして、第2の色相の照射光の明るさが安定する範囲を広げている。第1の色相の照射光の明るさ、第2の色相の照射光の明るさ、の安定する範囲が広がるため、検査範囲W2が大きくなり、より一層実用的な検査ができる。 In order to perform an efficient inspection, it is preferable that the inspection range W2 is close to the field of view range W1 of the color camera. Therefore, the light source of the first hue is doubled with the annular light sources 81 and 82 to widen the range in which the brightness of the irradiation light of the first hue is stable, and similarly, the light source of the second hue is the annular light source 83. It is doubled with 84 to widen the range in which the brightness of the irradiation light of the second hue is stable. Since the stable range of the brightness of the irradiation light of the first hue and the brightness of the irradiation light of the second hue is widened, the inspection range W2 becomes large and more practical inspection can be performed.

円筒状に配置した第1の光源81と第2の光源83により、線状体80に光を照射し、カラーカメラ85を光源間に円筒状に配置して、全周の反射光を漏れなく受光できるようにしてもよい。また、高速移動に対応するため、円筒状に配置した第1の光源81の内周に円筒状の第1の光源82を配置するとともに、円筒状に配置した第2の光源83の外周に円筒状の第2の光源84を配置することにより、Z方向の照射光が安定する距離をW2からW1に広げてもよい。光源を2重に円筒状に配置することで照射光が安定し、カメラで撮像できる面積が大きくなり、Z方向の移動が高速になっても安定した検査ができる。 The linear body 80 is irradiated with light by the first light source 81 and the second light source 83 arranged in a cylindrical shape, and the color camera 85 is arranged in a cylindrical shape between the light sources so that the reflected light around the entire circumference is not leaked. It may be possible to receive light. Further, in order to support high-speed movement, a cylindrical first light source 82 is arranged on the inner circumference of the first light source 81 arranged in a cylindrical shape, and a cylinder is placed on the outer periphery of the second light source 83 arranged in a cylindrical shape. By arranging the second light source 84 in the shape of a cylinder, the distance at which the irradiation light in the Z direction is stable may be widened from W2 to W1. By arranging the light sources in a double cylindrical shape, the irradiation light is stable, the area that can be imaged by the camera is large, and stable inspection can be performed even if the movement in the Z direction becomes high speed.

(実施例)
本検査装置を用い、直径8mmのケーブル被覆の表面状態検査を行った実施例について記す。
(Example)
An example in which the surface condition of a cable coating having a diameter of 8 mm is inspected using this inspection device will be described.

光源の色相としては赤、青を選択した。分析器は、色相を直接分析できる市販の画像処理装置、にて色相環を255色相に等分割する条件で使用し、異常色相の異常判定を実施した。市販の比較的安価でかつ、光の三原色の内の2色である赤と青の光源を使用することにより、反射光を中間色相含め86の色相に分割して精度の高い判定を行った。カメラとレンズは、視野範囲が40mmとなるように市販品を組み合わせた。また、赤と青の照明はいずれも円周上に配置されたものを2組ずつ、同一平面上に2重環状に配置し用いた。その結果、カメラの視野範囲に近い30mmの検査範囲を確保した。 Red and blue were selected as the hue of the light source. The analyzer was used in a commercially available image processing device capable of directly analyzing the hue under the condition that the hue circle was equally divided into 255 hues, and the abnormality determination of the abnormal hue was carried out. By using a commercially available light source of red and blue, which are relatively inexpensive and two of the three primary colors of light, the reflected light was divided into 86 hues including intermediate hues, and a highly accurate judgment was made. The camera and lens are a combination of commercially available products so that the field of view is 40 mm. In addition, two sets of red and blue lights arranged on the circumference were arranged in a double ring on the same plane. As a result, an inspection range of 30 mm, which is close to the field of view of the camera, was secured.

図8は、本願の検査装置の代表的な検出ロジックを説明するフロー図である。実施例の検出について図8を参照しつつ説明する。被検査物の検査範囲を含む範囲をカラーカメラで撮像(S01)し、撮像したデータを分析器へ入力(S02)する。分析器では、撮像範囲の画素毎に色相を判定(S03)し、画素毎に判定した色相が異常色相か否かを予め設定した色相群によって二値化処理(S04)を行った。次に異常色相が連続する画素数が予め設定した閾値以上か否かを判定(S05)し、閾値以上と判定した領域を異常として出力(S06)した。 FIG. 8 is a flow chart illustrating a typical detection logic of the inspection device of the present application. The detection of the embodiment will be described with reference to FIG. The range including the inspection range of the object to be inspected is imaged with a color camera (S01), and the captured data is input to the analyzer (S02). In the analyzer, the hue was determined for each pixel in the imaging range (S03), and the binarization process (S04) was performed by the hue group in which whether or not the hue determined for each pixel was an abnormal hue was set in advance. Next, it was determined whether or not the number of pixels having continuous abnormal hues was equal to or greater than a preset threshold value (S05), and the region determined to be equal to or greater than the threshold value was output as an abnormality (S06).

比較として、光源と受光センサで構成される既設の検査装置を用いた。装置の構成を図10Aおよび図10Bに模式図で示す。図10Aおよび図10Bを参照して、既設の検査装置を説明する。図10Aは検査対象物である線状体90の長手方向側面から見た配置を説明する図である。図10Bは同じく既設の検査装置を線状体90の長手方向に直交する方向から見た配置を説明する図である。既設の検査装置は、4つの白色光源91と4つの受光センサ92により構成されている。それぞれ4つの光源91とセンサ92は線状体90の周囲に等角度で配置されている。既設の検査装置では、表面状態の違いによって生じる反射の違いを、光の強度の変化として捉え、強度が高い場合に不良と判断する。しかし、凹凸の他に表面の汚れや微小な表面ざらつきなどの表面状態の違いによって生じる反射の違いも光の強度の変化として捉え易いために、不良とすべき凹凸以外でも強度の大きな反射として検出し易い。 For comparison, an existing inspection device consisting of a light source and a light receiving sensor was used. The configuration of the device is shown schematically in FIGS. 10A and 10B. The existing inspection device will be described with reference to FIGS. 10A and 10B. FIG. 10A is a diagram illustrating an arrangement of the linear body 90, which is an inspection object, as seen from the side surface in the longitudinal direction. FIG. 10B is a diagram illustrating an arrangement of the existing inspection device as viewed from a direction orthogonal to the longitudinal direction of the linear body 90. The existing inspection device is composed of four white light sources 91 and four light receiving sensors 92. The four light sources 91 and the sensor 92, respectively, are arranged at equal angles around the linear body 90. In the existing inspection device, the difference in reflection caused by the difference in surface condition is regarded as a change in light intensity, and when the intensity is high, it is judged to be defective. However, in addition to unevenness, differences in reflection caused by differences in surface conditions such as surface stains and minute surface roughness can be easily captured as changes in light intensity, so it is detected as high-intensity reflections other than irregularities that should be considered defective. Easy to do.

(検出試験1)
不良部分となる凹凸を故意につけた検査対象物を準備し、本実施形態による検査装置による検査結果と既設の検査装置による検査結果を比較した。それぞれの装置は、本来の検査工程においては、測定結果から所定の閾値を超える不良部分のみを検出するように用いられるが、今回の比較実験においては、検出されるデータをそのまま出力として記録した。予め不良部として故意に設けた凹凸部の高さと検出データの対比から、検出データを凹凸高さに換算し、その検出頻度をグラフにしたものを図11に示す。図11における塗りつぶされた棒グラフによって(a)は本実施形態の装置による検出結果、(b)は既設の検査装置による検出結果を示す。検出データの頻度は非常に多いため、不良部として設けた凹凸の頻度がグラフ上では見えない。そこで、図11では検出データの中で、故意に設けた不良部としての凹凸に該当するものだけを縦軸を2000倍に拡大してハッチングを変えた棒で示している。
(Detection test 1)
An inspection object with irregularities as defective parts was prepared, and the inspection results by the inspection device according to the present embodiment were compared with the inspection results by the existing inspection device. In the original inspection process, each device is used to detect only defective parts exceeding a predetermined threshold value from the measurement results, but in this comparative experiment, the detected data was recorded as an output as it is. FIG. 11 shows a graph in which the detection data is converted into the unevenness height from the comparison between the height of the uneven portion intentionally provided as a defective portion in advance and the detected data, and the detection frequency thereof is graphed. From the filled bar graph in FIG. 11, (a) shows the detection result by the apparatus of this embodiment, and (b) shows the detection result by the existing inspection apparatus. Since the frequency of detection data is very high, the frequency of unevenness provided as a defective portion cannot be seen on the graph. Therefore, in FIG. 11, among the detected data, only those corresponding to the unevenness as the intentionally provided defective portion are shown by a bar whose vertical axis is enlarged 2000 times and the hatching is changed.

図11(a)より、本実施形態の装置においては、不良部としての凹凸と、それ以外の良好部とが分離して検出できていることがわかる。良好部は0.1mm高さ未満の凹凸に相当するものとして検出されている。したがって、不良判断の閾値を0.1mm高さ相当の値に設定することによって、0.1mm高さ以上の凹凸を不良として検出することができる。すなわち、良好な部分を不良部として過剰に検出することが極めて少ないことが解る。一方、図11(b)の既設の検査装置のデータを見ると、本来不良とされるような凹凸が無い良好部においても他の要因によって検出される数値が大きくなるために、およそ0.4mm高さ以下では不良部として故意に設けた凹凸による出力は良好部の中に埋もれて区別がつかない。不良判断の閾値をおよそ0.4mm高さに設定すれば、それ以上を不良部と判別することが概ね可能であるが、それでも0.6mm高さ程度までは過剰に不良部として検出してしまうことが解る。以上から、本実施形態の装置においては、従来の装置に比べて、本来良好な部分を不良部として検出してしまう過剰検出が極めて少なく、より小さい凹凸を不良部として検出することができることが確認された。 From FIG. 11A, it can be seen that in the apparatus of the present embodiment, the unevenness as a defective portion and the other good portion can be detected separately. The good part is detected as corresponding to the unevenness having a height of less than 0.1 mm. Therefore, by setting the threshold value for determining a defect to a value corresponding to a height of 0.1 mm, unevenness having a height of 0.1 mm or more can be detected as a defect. That is, it can be seen that it is extremely rare to excessively detect a good portion as a defective portion. On the other hand, looking at the data of the existing inspection device in FIG. 11B, the numerical value detected by other factors becomes large even in the good part where there is no unevenness that is originally considered to be defective, so that it is about 0.4 mm. Below the height, the output due to the unevenness intentionally provided as a defective part is buried in the good part and cannot be distinguished. If the threshold value for determining defects is set to a height of about 0.4 mm, it is generally possible to discriminate more than that as a defective portion, but even so, up to a height of about 0.6 mm is excessively detected as a defective portion. I understand that. From the above, it has been confirmed that in the apparatus of the present embodiment, there is extremely little excessive detection in which an originally good portion is detected as a defective portion, and smaller unevenness can be detected as a defective portion, as compared with the conventional apparatus. Was done.

(検出試験2)
別な検出試験として、凹凸の高さ(最大高低差)と長さ(線状体の軸方向の長さ)を変えて故意に設けた不良部を準備した結果を図12に示す。本実施形態の装置と既設の検査装置のそれぞれにおいて、良好部との区別が可能なように閾値を設定して検出を試みた。故意に設けた凹凸が不良部として検出されたか否かを図示したものを図12に示す。このように本実施形態の装置においては、0.2mm高さ以下の小さな凹凸であっても不良検出が可能であることが確認できた。
(Detection test 2)
As another detection test, FIG. 12 shows the result of preparing a defective portion intentionally provided by changing the height (maximum height difference) and the length (the length in the axial direction of the striatum) of the unevenness. In each of the apparatus of this embodiment and the existing inspection apparatus, a threshold value was set so that the good part could be distinguished, and detection was attempted. FIG. 12 shows an illustration showing whether or not the intentionally provided unevenness is detected as a defective portion. As described above, in the apparatus of the present embodiment, it was confirmed that defects can be detected even with small irregularities having a height of 0.2 mm or less.

本願の表面状態検査装置及び検査方法は、表面検査を必要とする長尺品に対し、特に有利に適用され得る。 The surface condition inspection apparatus and inspection method of the present application may be particularly advantageously applied to long products requiring surface inspection.

10 第1の光源
11 第1の照射光
20 第2の光源
21 第2の照射光
30 カラーカメラ
40 分析器
50 出力装置
60 被検査物
61 表面
62 凸部
63 凹部
71、72 異常反射光
73 正常反射光
101 第1の色相
102 第2の色相、
103、104 異常色相
105 正常色相
80 線状体
81、82、83、84 環状光源
811、821 第1の色相の照射光
831、841 第2の色相の照射光
85 カラーカメラ
86 レンズ
W1 視野範囲
W2 検査範囲
90 線状体
91 光源
92 受光器
10 1st light source 11 1st irradiation light 20 2nd light source 21 2nd irradiation light 30 Color camera 40 Analyzer 50 Output device 60 Inspected object 61 Surface 62 Convex 63 Concave 71, 72 Abnormal reflected light 73 Normal Reflected light 101 1st hue 102 2nd hue,
103, 104 Abnormal hue 105 Normal hue 80 Linear body 81, 82, 83, 84 Circular light source 811, 821 First hue irradiation light 831, 841 Second hue irradiation light 85 Color camera 86 Lens W1 Viewing range W2 Inspection range 90 Linear body 91 Light source 92 Receiver

Claims (7)

第1の色相の光を被検査物表面の検査領域に照射する第1の光源と、
前記第1の色相とは異なる第2の色相の光を前記検査領域に照射する第2の光源と、
前記被検査物の表面からの反射光を受光するカラーカメラと、
前記カラーカメラから出力される受光信号を入力として、前記検査領域からの前記反射光の色相分布を分析する分析器とを備え、
前記第1の色相の光の照射方向と、前記第2の色相の光の照射方向が異なる方向であ
前記分析器は、
前記カラーカメラの画素毎の前記反射光の色相が、第1の色相群、第2の色相群又は中間色相群のいずれかに含まれるかを前記画素毎に判断し、
前記カラーカメラの前記画素毎の前記反射光の色相が、前記第1の色相群又は前記第2の色相群に含まれる場合を異常と判断し、
前記カラーカメラの前記画素毎の前記反射光の色相が、前記中間色相群に含まれる場合を異常なしと判断し、
前記第1の色相群とは、前記第1の色相及びその色相に近い色相を合わせた色相群であり、
前記第2の色相群とは、前記第2の色相及びその色相に近い色相を合わせた色相群であり、
前記中間色相群とは、色相環において前記第1の色相群と前記第2の色相群の中間にある色相群である、
表面状態検査装置。
A first light source that irradiates the inspection area on the surface of the object to be inspected with light of the first hue, and
A second light source that irradiates the inspection area with light having a second hue different from that of the first hue.
A color camera that receives the reflected light from the surface of the object to be inspected, and
It is equipped with an analyzer that analyzes the hue distribution of the reflected light from the inspection area by using the received light signal output from the color camera as an input.
The irradiation direction of the light of the first hue and the irradiation direction of the light of the second hue are different.
The analyzer
It is determined for each pixel whether the hue of the reflected light for each pixel of the color camera is included in any of the first hue group, the second hue group, and the intermediate hue group.
When the hue of the reflected light for each pixel of the color camera is included in the first hue group or the second hue group, it is determined as abnormal.
When the hue of the reflected light for each pixel of the color camera is included in the intermediate hue group, it is determined that there is no abnormality.
The first hue group is a hue group in which the first hue and a hue close to the first hue are combined.
The second hue group is a hue group in which the second hue and a hue close to the second hue are combined.
The intermediate hue group is a hue group located between the first hue group and the second hue group in the color wheel.
Surface condition inspection device.
前記分析器は、前記第1の色相群に含まれる画素が予め設定された個数以上連続した領域が存在する場合、あるいは前記第2の色相群に含まれる画素が予め設定された個数以上連続した領域が存在する場合に、前記検査領域には凹凸が存在すると判断する、
請求項1に記載の表面状態検査装置。
In the analyzer, when there is a region in which the pixels included in the first hue group are continuous by a preset number or more , or when the pixels included in the second hue group are continuous by a preset number or more. If there is an area that has been removed, it is determined that the inspection area has irregularities.
The surface condition inspection apparatus according to claim 1.
前記被検査物は1つの軸方向に延在する表面を有し、
前記軸方向をZ方向、前記検査領域の中心を原点として前記表面の法線方向にX方向、X方向およびZ方向に直交する方向をY方向とした場合に、
前記第1の光源および前記第2の光源は、それぞれX-Z平面内において、前記第1の光源はZが正の領域に、前記第2の光源はZが負の領域に配置され
前記カラーカメラはX-Y平面上に配置されている、
請求項1または請求項2に記載の表面状態検査装置。
The object to be inspected has a surface extending in one axial direction and has a surface extending in one axial direction.
When the axial direction is the Z direction and the direction orthogonal to the X direction, the X direction and the Z direction is the Y direction with the center of the inspection region as the origin and the normal direction of the surface.
The first light source and the second light source are arranged in the XZ plane, the first light source is arranged in a region where Z is positive, and the second light source is arranged in a region where Z is negative. The camera is located on the XY plane,
The surface condition inspection apparatus according to claim 1 or 2.
前記被検査物は前記Z方向に中心軸を持つ円筒状の表面を有し、
前記第1の光源および前記第2の光源は円環状に円環の軸方向に光を照射する光源であって、X-Y平面に平行なそれぞれ異なる面においてZ軸を中心とするように配置されており、
複数の前記カラーカメラがX-Y平面上に前記円筒状の表面を取り囲むように配置されている、
請求項3に記載の表面状態検査装置。
The object to be inspected has a cylindrical surface having a central axis in the Z direction.
The first light source and the second light source are light sources that irradiate light in the axial direction of the annulus in an annular shape, and are arranged so as to be centered on the Z axis on different planes parallel to the XY plane. Has been
A plurality of the color cameras are arranged on an XY plane so as to surround the cylindrical surface.
The surface condition inspection apparatus according to claim 3.
複数の前記第1の光源を有し、複数の前記第1の光源は同一の平面上に同心に配置されており、
複数の前記第2の光源を有し、複数の前記第2の光源は同一の平面上に同心に配置されている、
請求項4に記載の表面状態検査装置。
It has a plurality of the first light sources, and the plurality of the first light sources are concentrically arranged on the same plane.
It has a plurality of the second light sources, and the plurality of the second light sources are concentrically arranged on the same plane.
The surface condition inspection apparatus according to claim 4.
第1の色相の光と、前記第1の色相とは異なる第2の色相の光を、前記第1の色相の光の照射方向と、前記第2の色相の光の照射方向が異なる方向となるように被検査物の表面の検査領域に照射
前記検査領域からの反射光の色相を受光するカラーカメラの画素毎に検出
前記画素毎の前記反射光の色相が、第1の色相群、第2の色相群又は中間色相群のいずれに含まれるかを前記画素毎に判断し、
前記画素毎の前記反射光の色相が、前記第1の色相群又は前記第2の色相群に含まれる場合を異常と判断し、
前記画素毎の前記反射光の色相が、前記中間色相群に含まれる場合を異常なしと判断し、
前記第1の色相群とは、前記第1の色相及びその色相に近い色相を合わせた色相群であり、
前記第2の色相群とは、前記第2の色相及びその色相に近い色相を合わせた色相群であり、
前記中間色相群とは、色相環において前記第1の色相群と前記第2の色相群の中間にある色相群である、
表面状態検査方法。
The light of the first hue and the light of the second hue different from the first hue are irradiated with the light of the first hue and the irradiation direction of the light of the second hue different from each other. Irradiate the inspection area on the surface of the object to be inspected so that
The hue of the reflected light from the inspection area is detected for each pixel of the color camera that receives light, and is detected.
Whether the hue of the reflected light for each pixel is included in the first hue group, the second hue group, or the intermediate hue group is determined for each pixel.
When the hue of the reflected light for each pixel is included in the first hue group or the second hue group, it is determined to be abnormal.
When the hue of the reflected light for each pixel is included in the intermediate hue group, it is determined that there is no abnormality.
The first hue group is a hue group in which the first hue and a hue close to the first hue are combined.
The second hue group is a hue group in which the second hue and a hue close to the second hue are combined.
The intermediate hue group is a hue group located between the first hue group and the second hue group in the color wheel.
Surface condition inspection method.
前記被検査物はZ軸を中心軸として延在する円筒状の表面を有し、
前記Z軸の方向をZ方向、前記検査領域の法線の内の任意の一方向をX方向、X方向およびZ方向に直交する方向をY方向とした場合に、
前記第1の色相の光と前記第2の色相の光とは、それぞれX-Z平面内において、前記第1の光源はZが正の領域から、前記第2の光源はZが負の領域から前記表面に照射され、
前記反射光は、X-Y平面上において検出される、
請求項6に記載の表面状態検査方法。
The object to be inspected has a cylindrical surface extending around the Z axis.
When the direction of the Z axis is the Z direction, and any one direction within the normal of the inspection area is the X direction, and the direction orthogonal to the X direction and the Z direction is the Y direction.
The light of the first hue and the light of the second hue are in the XZ plane from the region where Z is positive for the first light source and the region where Z is negative for the second light source, respectively. Irradiates the surface from
The reflected light is detected on the XY plane.
The surface condition inspection method according to claim 6.
JP2018057351A 2018-03-26 2018-03-26 Surface condition inspection device and surface condition inspection method Active JP7087533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018057351A JP7087533B2 (en) 2018-03-26 2018-03-26 Surface condition inspection device and surface condition inspection method
CN201920380843.7U CN210427372U (en) 2018-03-26 2019-03-25 Surface state inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057351A JP7087533B2 (en) 2018-03-26 2018-03-26 Surface condition inspection device and surface condition inspection method

Publications (2)

Publication Number Publication Date
JP2019168371A JP2019168371A (en) 2019-10-03
JP7087533B2 true JP7087533B2 (en) 2022-06-21

Family

ID=68106490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057351A Active JP7087533B2 (en) 2018-03-26 2018-03-26 Surface condition inspection device and surface condition inspection method

Country Status (2)

Country Link
JP (1) JP7087533B2 (en)
CN (1) CN210427372U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111583597A (en) * 2020-05-12 2020-08-25 深圳市商厨科技有限公司 Surface treatment device is used in stainless steel goods production
CN112098425B (en) * 2020-11-17 2021-11-23 北京领邦智能装备股份公司 High-precision imaging system and method, image acquisition device and detection equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269931A (en) 2002-03-13 2003-09-25 Rozefu Technol:Kk Solid form detector for defects
JP2005037203A (en) 2003-07-18 2005-02-10 Seiwa Electric Mfg Co Ltd Inspection device and inspection method of bar-like object
JP2005274558A (en) 2004-02-27 2005-10-06 Omron Corp Surface condition inspecting method, surface condition inspecting apparatus employing it, and substrate inspecting apparatus
JP2006208362A (en) 2004-12-27 2006-08-10 Omron Corp Image processing method, substrate inspection method, substrate inspection apparatus, and inspection data creation method for substrate inspection
WO2010024254A1 (en) 2008-08-26 2010-03-04 株式会社ブリヂストン Specimen roughness detecting method, and apparatus for the method
JP2010249700A (en) 2009-04-16 2010-11-04 Bridgestone Corp Surface state detection method and device of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231510A (en) * 1989-03-02 1990-09-13 Omron Tateisi Electron Co Substrate inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269931A (en) 2002-03-13 2003-09-25 Rozefu Technol:Kk Solid form detector for defects
JP2005037203A (en) 2003-07-18 2005-02-10 Seiwa Electric Mfg Co Ltd Inspection device and inspection method of bar-like object
JP2005274558A (en) 2004-02-27 2005-10-06 Omron Corp Surface condition inspecting method, surface condition inspecting apparatus employing it, and substrate inspecting apparatus
JP2006208362A (en) 2004-12-27 2006-08-10 Omron Corp Image processing method, substrate inspection method, substrate inspection apparatus, and inspection data creation method for substrate inspection
WO2010024254A1 (en) 2008-08-26 2010-03-04 株式会社ブリヂストン Specimen roughness detecting method, and apparatus for the method
JP2010249700A (en) 2009-04-16 2010-11-04 Bridgestone Corp Surface state detection method and device of the same

Also Published As

Publication number Publication date
JP2019168371A (en) 2019-10-03
CN210427372U (en) 2020-04-28

Similar Documents

Publication Publication Date Title
KR101832081B1 (en) Surface defect detection method and surface defect detection device
US9310278B2 (en) Appearance inspection apparatus and appearance inspection method with uneveness detecting
US20170315062A1 (en) Inspection apparatus, inspection system, and article manufacturing method
JP5589888B2 (en) Evaluation apparatus for surface inspection apparatus and evaluation method for surface inspection apparatus
US7187436B2 (en) Multi-resolution inspection system and method of operating same
KR102027986B1 (en) Bead recognition apparatus using vision camera and method thereof
KR20170049266A (en) Vision inspection apparatus and vision inspection method
KR102596252B1 (en) Method and apparatus for checking tyres in a production line
JP7087533B2 (en) Surface condition inspection device and surface condition inspection method
KR20140065347A (en) Visual inspecting apparatus and method
JP6360782B2 (en) Inspection method of screws
JPH0736004B2 (en) Inspection method and device
KR101496993B1 (en) inspection method for display panel
JP2017067632A (en) Checkup apparatus, and manufacturing method
JP2009097977A (en) Appearance inspection device
JP7317286B2 (en) Defect detection device with rubber on topping rubber sheet
JP2007205974A (en) Method of inspecting plating, and method of inspecting lead frame
JP3601298B2 (en) Defect inspection apparatus and defect inspection method
JP2005037203A (en) Inspection device and inspection method of bar-like object
JP6373743B2 (en) Surface evaluation method and surface evaluation apparatus
JP6572648B2 (en) Granular resin inspection device and inspection method
JP7524717B2 (en) Inspection Equipment
US12135293B2 (en) Method for checking compliance of a mechanical part of a vehicle
JP2016109532A5 (en)
KR101349662B1 (en) How to determine defects in optical film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150