JP7081139B2 - New promoter and expression vector containing it - Google Patents
New promoter and expression vector containing it Download PDFInfo
- Publication number
- JP7081139B2 JP7081139B2 JP2017244251A JP2017244251A JP7081139B2 JP 7081139 B2 JP7081139 B2 JP 7081139B2 JP 2017244251 A JP2017244251 A JP 2017244251A JP 2017244251 A JP2017244251 A JP 2017244251A JP 7081139 B2 JP7081139 B2 JP 7081139B2
- Authority
- JP
- Japan
- Prior art keywords
- seq
- sequence
- promoter
- human
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本発明は、哺乳動物細胞を宿主として組換えタンパク質を生産するための新規なプロモーターおよびそれを含む発現ベクターに関する。より詳しくは、ヒト成長因子1α(EF1α)プロモーターを改良することにより得られた新規プロモーターおよびそれを含む発現ベクターに関する。 The present invention relates to a novel promoter for producing a recombinant protein using a mammalian cell as a host and an expression vector containing the promoter. More specifically, the present invention relates to a novel promoter obtained by modifying the human growth factor 1α (EF1α) promoter and an expression vector containing the promoter.
現在、組換えタンパク質は幅広い分野で使用されている。近年のバイオ医薬品の成長によりその重要性はさらに高まっている。組換えタンパク質は主に大腸菌、酵母、昆虫細胞を宿主として作られている。これら宿主を用いると短時間に大量の組換えタンパク質を得ることができる一方、発現させた組換えタンパク質が、正しい立体構造をとらなかったり、糖鎖付加といった翻訳後修飾等の理由から本来の機能を有しなかったりする問題があった。
前記問題を解決するため、哺乳動物細胞を宿主として用いた組換えタンパク質発現系を用いる例が増えている。特にチャイニーズハムスター卵巣細胞(以下、CHO細胞)を用いて造られた組換えタンパク質は医薬品として使用できる安全性が確認されており、現在、一般的な手法となっている。そのため哺乳動物細胞を用いた組換えタンパク質製造の生産性の向上は、製造のコスト削減ひいてはバイオ医薬品の価格低下による医療費の抑制の面から非常に重要である。しかしながら現時点では、哺乳動物細胞を宿主とした組換えタンパク質の生産性は十分に高いとは言い難い。
Currently, recombinant proteins are used in a wide range of fields. The growth of biopharmacy in recent years has made it even more important. Recombinant proteins are mainly produced using Escherichia coli, yeast, and insect cells as hosts. While these hosts can be used to obtain large amounts of recombinant proteins in a short period of time, the expressed recombinant proteins do not have the correct three-dimensional structure, and their original functions are due to post-translational modifications such as glycosylation. There was a problem of not having.
In order to solve the above problems, an increasing number of cases are using a recombinant protein expression system using mammalian cells as a host. In particular, recombinant proteins produced using Chinese hamster ovary cells (hereinafter referred to as CHO cells) have been confirmed to be safe for use as pharmaceuticals, and are currently a general method. Therefore, improving the productivity of recombinant protein production using mammalian cells is extremely important from the viewpoint of reducing production costs and reducing medical costs due to the price reduction of biopharmacy. However, at present, it cannot be said that the productivity of recombinant proteins using mammalian cells as a host is sufficiently high.
哺乳動物細胞を宿主として組換えタンパク質を発現させるためには、プロモーターと、前記タンパク質をコードするポリヌクレオチドと、ポリアデニル鎖(以下、ポリAとも表記)とを含む発現ベクターを宿主細胞に導入し、培養する必要がある。そのため組換えタンパク質の生産には、プロモーターやポリAの配列、遺伝子組換え細胞の培養条件など様々な因子が関与している。その中でも特にプロモーターは、組換えタンパク質の生産性に影響を与えるため重要である。 In order to express a recombinant protein using a mammalian cell as a host, an expression vector containing a promoter, a polynucleotide encoding the protein, and a polyadenyl chain (hereinafter, also referred to as polyA) is introduced into the host cell. Need to be cultivated. Therefore, various factors such as the promoter, the sequence of poly A, and the culture conditions of the recombinant cells are involved in the production of the recombinant protein. Among them, the promoter is particularly important because it affects the productivity of recombinant proteins.
哺乳動物細胞を宿主とした発現系のプロモーターは、従来よりシミアンウイルス由来のプロモーターであるSV40プロモーター(以下、SV40proとも表記)、サイトメガロウイルス由来のプロモーターであるCMVプロモーター(以下、CMVproとも表記)(特許文献1)およびヒト成長因子由来のプロモーターであるEF1αプロモーター(以下、EF1aproとも表記)(特許文献2)などが用いられている。また近年では、ヒトCMVエンハンサーにニワトリのβアクチンプロモーターを組み合わせたCAGプロモーター(以下、CAGproとも表記)(特許文献3)や、ヒトCMVエンハンサーにヒトEF1αプロモーターを組み合わせたCEFプロモーター(非特許文献1)など、従来よりも強力な発現プロモーターも作られている。しかしながら、哺乳動物細胞を宿主とした組換えタンパク質製造の生産性向上のためには、前述したプロモーターよりもさらに強力なプロモーターが必要とされている。 Expression system promoters using mammalian cells as hosts have traditionally been the SV40 promoter (hereinafter, also referred to as SV40pro), which is a promoter derived from Simian virus, and the CMV promoter (hereinafter, also referred to as CMVpro), which is a promoter derived from cytomegalovirus. Patent Document 1) and the EF1α promoter (hereinafter, also referred to as EF1apro) (Patent Document 2), which is a promoter derived from human growth factor, are used. In recent years, the CAG promoter (hereinafter also referred to as CAGpro) in which a human CMV enhancer is combined with a chicken β-actin promoter (Patent Document 3) and the CEF promoter in which a human CMV enhancer is combined with a human EF1α promoter (Non-Patent Document 1). For example, stronger expression promoters than before have also been made. However, in order to improve the productivity of recombinant protein production using mammalian cells as a host, a promoter stronger than the above-mentioned promoter is required.
本発明の課題は、哺乳動物細胞で組換えタンパク質を高生産可能な新規なプロモーターおよびそれを含む発現ベクターを提供することにある。 An object of the present invention is to provide a novel promoter capable of highly producing a recombinant protein in mammalian cells and an expression vector containing the promoter.
本発明者らは上記の課題を解決すべく鋭意検討した結果、ヒト成長因子1α(EF1α)プロモーターの一部の配列を欠損させて得られた新規なプロモーターを含む発現ベクターを用いた組換えタンパク質発現系を構築することで、哺乳動物細胞による組換えタンパク質生産をより高効率に行なえることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have made a recombinant protein using an expression vector containing a novel promoter obtained by deleting a part of the sequence of the human growth factor 1α (EF1α) promoter. By constructing an expression system, we have found that recombinant protein production by mammalian cells can be performed more efficiently, and have completed the present invention.
すなわち、本願は以下に記載の態様を包含する。
(1) 配列番号12に記載のヌクレオチド配列から、少なくとも621番目のグアニンから798番目のグアニンまでの領域が欠損した、ポリヌクレオチド又はそれと80%以上の相同性を有するポリヌクレオチド。
(2) 配列番号18に記載のヌクレオチド配列からなる、又はそれと80%以上の相同性を有するヌクレオチド配列からなる、(1)に記載のポリヌクレオチド。
(3) (1)または(2)に記載のポリヌクレオチドからなるプロモーター。
(4) (3)に記載のプロモーターおよびタンパク質をコードするポリヌクレオチドを含むベクター。
(5) タンパク質が抗体のH鎖またはL鎖である、(4)に記載のベクター。
(6) (4)または(5)に記載のベクターで哺乳動物細胞を形質転換して得られる形質転換体。
(7) 哺乳動物細胞がCHO細胞またはCOS細胞である、(6)に記載の形質転換体。
(8) (6)または(7)に記載の形質転換体を培養することにより組換えタンパク質を生産する工程と、得られた培養物から生産された前記組換えタンパク質を回収する工程とを含む、組換えタンパク質の製造方法。
以下、本発明を詳細に説明する。
That is, the present application includes the aspects described below.
(1) A polynucleotide lacking at least the region from the 621st guanine to the 798th guanine from the nucleotide sequence set forth in SEQ ID NO: 12, or a polynucleotide having 80% or more homology with the polynucleotide.
(2) The polynucleotide according to (1), which comprises the nucleotide sequence set forth in SEQ ID NO: 18, or which comprises a nucleotide sequence having 80% or more homology with the nucleotide sequence.
(3) A promoter consisting of the polynucleotide according to (1) or (2).
(4) A vector containing the polynucleotide encoding the promoter and protein according to (3).
(5) The vector according to (4), wherein the protein is an H chain or an L chain of an antibody.
(6) A transformant obtained by transforming a mammalian cell with the vector according to (4) or (5).
(7) The transformant according to (6), wherein the mammalian cell is a CHO cell or a COS cell.
(8) Includes a step of producing a recombinant protein by culturing the transformant according to (6) or (7), and a step of recovering the recombinant protein produced from the obtained culture. , Method for producing recombinant protein.
Hereinafter, the present invention will be described in detail.
本発明のポリヌクレオチドは、配列番号12に記載のヌクレオチド配列から、少なくとも621番目のグアニンから798番目のグアニンまでの領域が欠損した、ポリヌクレオチド又はそれと80%以上の相同性を有するポリヌクレオチドである。このとき、配列番号18に記載のヌクレオチド配列からなる、又はそれと80%以上の相同性を有するヌクレオチド配列からなるポリヌクレオチドであることが好ましい。またそれらの配列と90%以上の相同性を有することがさらに好ましい。 The polynucleotide of the present invention is a polynucleotide lacking a region from at least 621st guanine to 798th guanine from the nucleotide sequence set forth in SEQ ID NO: 12, or a polynucleotide having 80% or more homology with the polynucleotide. .. At this time, it is preferable that the polynucleotide consists of the nucleotide sequence set forth in SEQ ID NO: 18, or consists of a nucleotide sequence having 80% or more homology with the nucleotide sequence. Further, it is more preferable to have 90% or more homology with those sequences.
本発明のプロモーターはヒトEF1αプロモーターの一部を欠損させることで、哺乳動物細胞における組換えタンパク質の生産性が向上するプロモーターである。具体的には、配列番号12に記載のヌクレオチド配列からなるヒトEF1αプロモーターのうち、少なくとも621番目のグアニンから798番目のグアニン(以下、領域Aとも表記)までが欠損したプロモーターである。なお本発明のプロモーターは、哺乳動物細胞における組換えタンパク質の生産性向上という本発明のプロモーターの特徴を有している限り、領域Aの5’末端側および/または3’末端側に隣接する領域をさらに欠損させてもよい。一方で後述の実施例より、ヒトEF1αプロモーターを用いて組換えタンパク質を発現させるためには、当該プロモーター中の領域Aよりも3’末端側領域が必要であることから、前記さらなる欠損は、領域Aよりも3’末端側の全領域を欠損させることはできない。また本発明のプロモーターは、領域Aの5’末端側及び/又は3’末端側であって、領域Aに隣接しない領域に欠損を有していてもよい。本発明のプロモーターの具体例として、配列番号12に記載のヌクレオチド配列からなるヒトEF1αプロモーターのうち、621番目のグアニンから798番目のグアニンまでを欠損させた、配列番号18に記載の配列からなるポリヌクレオチドがあげられる。 The promoter of the present invention is a promoter that improves the productivity of recombinant proteins in mammalian cells by deleting a part of the human EF1α promoter. Specifically, among the human EF1α promoters consisting of the nucleotide sequence set forth in SEQ ID NO: 12, the promoter lacks at least the 621st guanine to the 798th guanine (hereinafter, also referred to as region A). As long as the promoter of the present invention has the characteristic of the promoter of the present invention of improving the productivity of recombinant proteins in mammalian cells, the region adjacent to the 5'end side and / or the 3'end side of region A. May be further deleted. On the other hand, according to the examples described later, in order to express the recombinant protein using the human EF1α promoter, a region 3'-terminal to the region A in the promoter is required, so that the further deletion is a region. It is not possible to delete the entire region on the 3'end side of A. Further, the promoter of the present invention may have a defect in a region that is on the 5'end side and / or 3'end side of the region A and is not adjacent to the region A. As a specific example of the promoter of the present invention, among the human EF1α promoters consisting of the nucleotide sequence shown in SEQ ID NO: 12, the poly consisting of the sequence set forth in SEQ ID NO: 18 lacking guanine at position 621 to guanine at position 798. Nucleotides can be mentioned.
本発明のプロモーターを用いて、哺乳動物細胞における組換えタンパク質の生産性を向上させるには、本発明のプロモーターおよび当該組換えタンパク質をコードするポリヌクレオチドを含む発現ベクター(以下、単に本発明の発現ベクターとも表記する)を作製するのが好ましい。本発明の発現ベクターには、本発明のプロモーターおよび組換えタンパク質をコードするポリヌクレオチドの他にも、ポリA、組換えタンパク質の分泌発現に必要な分泌シグナルや、遺伝子増幅マーカー遺伝子、宿主選択に用いる抗生物質耐性遺伝子、哺乳動物細胞以外の宿主での複製開始点、等をさらに含んでもよい。 In order to improve the productivity of a recombinant protein in a mammalian cell by using the promoter of the present invention, an expression vector containing the promoter of the present invention and a polynucleotide encoding the recombinant protein (hereinafter, simply the expression of the present invention). (Also referred to as a vector) is preferably produced. In addition to the promoter of the present invention and the polynucleotide encoding the recombinant protein, the expression vector of the present invention includes poly A, a secretory signal required for secret expression of the recombinant protein, a gene amplification marker gene, and host selection. It may further include an antibiotic resistance gene to be used, a replication initiation site in a host other than mammalian cells, and the like.
前記ポリAはターミネーションシグナルを含んでいれば特に制限はなく、一例として、発現させるタンパク質由来のポリA、SV40ウイルスゲノム由来のポリA、ヘルペスウイルスチミジンキナーゼのポリA、ウシ成長ホルモン由来のポリA、ウサギのβ-グロビン遺伝子由来のポリAがあげられる。 The poly A is not particularly limited as long as it contains a termination signal, and as an example, poly A derived from the protein to be expressed, poly A derived from the SV40 virus genome, poly A derived from herpesvirus thymidine kinase, and poly A derived from bovine growth hormone. , Poly A derived from the β-globin gene of rabbits.
前記分泌シグナルの一例としては、発現させる組換えタンパク質由来の分泌シグナル、ヒトインターロイキン2(IL-2)の分泌シグナル(配列番号75)、アズロシジン前駆体の分泌シグナル(配列番号69)、ヒト血清アルブミンの分泌シグナル(配列番号72)があげられる。例えば抗体を発現させる際には、後述の実施例よりアズロシジン前駆体の分泌シグナル配列を用いると、抗体発現量が多く好ましい。 Examples of the secretory signal include a secretory signal derived from a recombinant protein to be expressed, a secretory signal of human interleukin 2 (IL-2) (SEQ ID NO: 75), a secretory signal of an azlocidine precursor (SEQ ID NO: 69), and a human serum. The secretory signal of albumin (SEQ ID NO: 72) can be mentioned. For example, when expressing an antibody, it is preferable to use the secretory signal sequence of the azurosidine precursor from the examples described later because the antibody expression level is high.
前記遺伝子増幅マーカー遺伝子は、遺伝子増幅させる方法に適した遺伝子を用いればよい。例えばジヒドロ葉酸レダクターゼ(dhfr)/メトトレキサート(MTX)法を用いる場合はdhfr遺伝子を、グルタミン合成酵素(GS)/メチオニンスルホキシミン(MSX)法を用いる場合はGS遺伝子を、それぞれ用いればよい。 As the gene amplification marker gene, a gene suitable for the method of gene amplification may be used. For example, the dhfr gene may be used when the dihydrofolate reductase (dhfr) / methotrexate (MTX) method is used, and the GS gene may be used when the glutamine synthetase (GS) / methionine sulfoxymin (MSX) method is used.
前記抗生物質耐性遺伝子は、宿主選択に用いる抗生物質に対応した耐性遺伝子を選択すればよく、一例として、宿主が大腸菌の場合はアンピシリン耐性遺伝子やカナマイシン耐性遺伝子が、宿主が哺乳動物細胞の場合はG418耐性遺伝子、ピューロマイシン耐性遺伝子、ブラストサイジン耐性遺伝子、ゼオシン耐性遺伝子、ハイグロマイシン耐性遺伝子、フレオマイシン耐性遺伝子が、それぞれあげられる。 For the antibiotic resistance gene, a resistance gene corresponding to the antibiotic used for host selection may be selected. For example, when the host is Escherichia coli, an ampicillin resistance gene or a canamycin resistance gene is selected, and when the host is a mammalian cell, the resistance gene is selected. Examples thereof include G418 resistance gene, puromycin resistance gene, blastsaidin resistance gene, zeosin resistance gene, hyglomycin resistance gene, and freomycin resistance gene, respectively.
前記複製開始点は、哺乳動物細胞以外の宿主が大腸菌である場合、大腸菌内でのコピー数が高くプラスミドDNAの収量が多い、ColE1が例示できる。 The origin of replication can be exemplified by ColE1, which has a high number of copies in Escherichia coli and a high yield of plasmid DNA when the host other than the mammalian cell is Escherichia coli.
また本発明の発現ベクターには、プロモーターの働きを強めるためのエンハンサーをさらに含んでいてもよい。使用するエンハンサーに特に制限はなく、発現させる組換えタンパク質や宿主を考慮し、適宜選択すればよい。一例としてサイトメガロウイルス(CMV)由来のエンハンサーがあげられる。 Further, the expression vector of the present invention may further contain an enhancer for enhancing the action of the promoter. The enhancer to be used is not particularly limited, and may be appropriately selected in consideration of the recombinant protein to be expressed and the host. An example is an enhancer derived from cytomegalovirus (CMV).
また宿主に導入した遺伝子が発現しやすくするために、本発明の発現ベクターにLoxP遺伝子をさらに含ませてもよい。ゲノム中にLoxP遺伝子を含んだ宿主細胞へ前記発現ベクターを導入する際に、Creリコンビナーゼによる相同組換えを行うことで宿主と前期発現ベクター中にあるLoxP遺伝子が相同組換えを起こすことで宿主細胞のゲノムへ部位特異的に組換えタンパク質をコードするポリヌクレオチドを導入することができる。 Further, in order to facilitate the expression of the gene introduced into the host, the expression vector of the present invention may further contain the LoxP gene. When the expression vector is introduced into a host cell containing the LoxP gene in its genome, the host cell undergoes homologous recombination with Cre recombinase to cause homologous recombination between the host and the LoxP gene in the early expression vector. Polynucleotides encoding recombinant proteins can be introduced into the genome of the gene.
本発明のベクターのサイズ(塩基長)は、大きくなると宿主である哺乳動物細胞への遺伝子導入効率が低下するため、できる限り小さいほうがよく、好ましくは4000塩基以上8000塩基以下である。 The size (base length) of the vector of the present invention should be as small as possible, preferably 4000 bases or more and 8000 bases or less, because the gene transfer efficiency into the host mammalian cell decreases as the size (base length) increases.
本発明の発現ベクターを用いて哺乳動物細胞で発現させる組換えタンパク質に特に制限はない。一例として、抗体(イムノグロブリン)、各種酵素、ヒト由来の受容体タンパク質があげられる。組換えタンパク質が抗体である場合の具体例として、由来からは哺乳動物である、マウス、ラット、ウサギ、ラクダ、ヒトが、構造からは相補性決定領域(CDR)以外を異なる宿主由来の抗体に変えた組換え抗体、Fabフラグメント、F(ab’)2フラグメント、Fvフラグメント、VLおよびVH領域を合成リンカーによって合体させたscFv等の小型化抗体が、それぞれあげられる。 The recombinant protein expressed in mammalian cells using the expression vector of the present invention is not particularly limited. Examples include antibodies (immunoglobulins), various enzymes, and human-derived receptor proteins. As a specific example of the case where the recombinant protein is an antibody, a mouse, rat, rabbit, camel, or human, which is a mammal from the origin, becomes an antibody derived from a different host except for the complementarity determining region (CDR) from the structure. Examples thereof include miniaturized antibodies such as modified recombinant antibody, Fab fragment, F (ab') 2 fragment, Fv fragment, scFv in which VL and VH regions are combined with a synthetic linker.
本発明の発現ベクターを用いて組換えタンパク質を発現させるために用いる哺乳動物細胞の一例として、CHO細胞(K1株、DG44株、DXB11株)、ヒト胎児腎臓由来細胞(HEK細胞)、ヒト白血病細胞由来細胞(HL-60細胞)、ヒト子宮頸癌由来細胞(HeLa細胞)およびアフリカミドリザルの腎細胞由来細胞(COS細胞)などが例示できる。中でも本発明の発現ベクターは、CHO細胞またはCOS細胞を宿主とした組換えタンパク質発現系に好ましいベクターである。 As an example of mammalian cells used for expressing recombinant protein using the expression vector of the present invention, CHO cells (K1 strain, DG44 strain, DXB11 strain), human fetal kidney-derived cells (HEK cells), human leukemia cells. Examples thereof include derived cells (HL-60 cells), human cervical cancer-derived cells (HeLa cells), and African green monkey kidney cell-derived cells (COS cells). Among them, the expression vector of the present invention is a preferred vector for a recombinant protein expression system using CHO cells or COS cells as a host.
本発明の発現ベクターで哺乳動物細胞を形質転換させるには、エレクトロポレーションやカチオニックリポソームを用いたリポフェクションなど、当業者が通常用いる形質転換法の中から、宿主として使用する哺乳動物細胞に合わせて適宜選択すればよい。 In order to transform a mammalian cell with the expression vector of the present invention, one of the transformation methods usually used by those skilled in the art, such as electroporation and lipofection using a cationic liposome, is selected according to the mammalian cell used as a host. It may be selected as appropriate.
本発明の発現ベクターで哺乳動物細胞を形質転換して得られる、組換えタンパク質を生産可能な形質転換体を培養し、得られた培養物から生産された前記組換えタンパク質を回収することで、前記組換えタンパク質を高効率に製造することができる。前記形質転換体の培養物から前記組換えタンパク質を回収する際、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィーなどのクロマトグラフィーによる精製操作を組み合わせてもよく、当該操作により前記組換えタンパク質を高効率かつ高純度に回収できる。 By culturing a transformant capable of producing a recombinant protein obtained by transforming a mammalian cell with the expression vector of the present invention, and recovering the recombinant protein produced from the obtained culture. The recombinant protein can be produced with high efficiency. When recovering the recombinant protein from the culture of the transformant, a purification operation by chromatography such as affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration chromatography and the like may be combined, and the operation may be used. The recombinant protein can be recovered with high efficiency and high purity.
本発明のプロモーターはヒト成長因子1α(EF1α)プロモーターの一部配列を欠損させたポリヌクレオチドであり、本発明のプロモーターを発現ベクターに含ませることで哺乳動物細胞における組換えタンパク質の生産性が向上する。そのため前記組換えタンパク質を低コストで製造することができる。 The promoter of the present invention is a polynucleotide lacking a partial sequence of the human growth factor 1α (EF1α) promoter, and inclusion of the promoter of the present invention in an expression vector improves the productivity of recombinant proteins in mammalian cells. do. Therefore, the recombinant protein can be produced at low cost.
以下、実施例および比較例を用いて、本発明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
実施例1 ヒト成長因子1α(EF1α)プロモーターを含むプラスミドの作製
以下に示す方法で、ヒトEF1αプロモーターを含むプラスミドを作製した。
Example 1 Preparation of a plasmid containing the human growth factor 1α (EF1α) promoter A plasmid containing the human EF1α promoter was prepared by the method shown below.
(1)配列番号1に記載のジヒドロ葉酸レダクターゼ(dihydrofolate reductase、DHFR)コードするポリヌクレオチドおよびSV40のポリAに制限酵素SacII認識配列(CCGCGG)を付加したポリヌクレオチドを全合成し、プラスミドにクローニングした(Integrated DNA Technologies社に委託)。 (1) The polynucleotide encoding dihydrofolate reductase (DHFR) shown in SEQ ID NO: 1 and the polynucleotide in which the restriction enzyme SacII recognition sequence (CCGCGG) was added to Poly A of SV40 were totally synthesized and cloned into a plasmid. (Consigned to Integrated DNA Technologies).
(2)(1)で作製したプラスミドで大腸菌JM109株を形質転換した。得られた形質転換体を培養し、プラスミドを抽出した後、制限酵素SacIIで消化することで、dhfr遺伝子とSV40ポリAが連結したポリヌクレオチドを調製した(dhfr-SV40polyA-Pと命名)。 (2) Escherichia coli JM109 strain was transformed with the plasmid prepared in (1). The obtained transformant was cultured, a plasmid was extracted, and then digested with a restriction enzyme SacII to prepare a polynucleotide in which the dhfr gene and SV40 polyA were ligated (named dhfr-SV40polyAP).
(3)pIRESベクター(Clontech社製)を鋳型として、配列番号2(5’-TCC[CCGCGG]GCGGGACTCTGGGGTTCGAAATGACCG-3’)および配列番号3(5’-TCC[CCGCGG]GGTGGCTCTAGCCTTAAGTTCGAGACTG-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素SacII認識配列)として、表1に示す組成の反応液を調製し、当該反応液を98℃で30秒間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で5分間の第3ステップを1サイクルとする反応を25サイクル繰り返すことでPCRを行ない、pIRESベクターのうちネオマイシン耐性遺伝子を除いた領域を増幅した(pIRES-Pと命名)。 (3) Described in SEQ ID NO: 2 (5'-TCC [CCGCGG] GCGGGACTCGGGGTTCGAAAATTGACCG-3') and SEQ ID NO: 3 (5'-TCC [CCGCGG] GGTGGCTAGCCTAAGTCGACTG-3') using a pIRES vector (manufactured by Clontech) as a template. Using the oligonucleotide consisting of the sequence as a primer (restriction enzyme SacII recognition sequence in square brackets), prepare a reaction solution having the composition shown in Table 1, heat the reaction solution at 98 ° C. for 30 seconds, and then heat the reaction solution at 98 ° C. for 10 seconds. PCR was performed by repeating the reaction of the first step, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 5 minutes as one cycle for 25 cycles, and the region of the pIRES vector excluding the neomycin resistance gene. Was amplified (named pIRES-P).
(4)作製したPCR産物pIRES-Pを精製後、制限酵素SacIIで消化し、(2)で調製したdhfr-SV40polyA-Pとライゲーションした。当該ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することでdhfr遺伝子を含んだプラスミドpIRES-dhfrを得た。 (4) The prepared PCR product pIRES-P was purified, digested with the restriction enzyme SacII, and ligated with dhfr-SV40polyAP prepared in (2). Escherichia coli JM109 strain was transformed with the ligation product, and a plasmid was extracted from the cultured transformant to obtain a plasmid pIRES-dhfr containing the dhfr gene.
(5)(4)で作製したpIRES-dhfrを鋳型として、配列番号4(5’-AGATCTAGA[CTCGAG]GAAATAACCTCTGAAAGAGGAACTTGG-3’)および配列番号5(5’-ATCAGATCAGACTGTTTACCACATTTGTAGAGGTTTTAC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素XhoI認識配列)として、表2に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で2分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、SV40プロモーター、DHFRおよびSV40のポリA遺伝子領域を増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をdhfr-Pと命名した。 (5) Described in SEQ ID NO: 4 (5'-AGATTTAGA [CTCGAG] GAAATAACCCTGAAAAGAGGAACTTGG-3') and SEQ ID NO: 5 (5'-ATCAGATCAGACTGTTACCATTTTGTAGAGGTTAC-3') using the pIRES-dhfr prepared in (4) as a template. Using the above oligonucleotide as a primer (restriction enzyme XhoI recognition sequence in square brackets), prepare a reaction solution having the composition shown in Table 2, heat the reaction solution at 98 ° C for 5 minutes, and then heat the reaction solution at 98 ° C for 10 seconds. PCR was performed by repeating the reaction of 1 step, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 2 minutes as one cycle for 30 cycles, and the polyA gene regions of the SV40 promoter, DHFR and SV40 were analyzed. Amplified. Then, the PCR product obtained by purification by agarose gel extraction was named dhfr-P.
(6)市販のpUC19(タカラバイオ社製)を鋳型として、配列番号6(5’-CAGTCTGATCTGATTATTGAAAAAGGAAGAGTATG-3’)および配列番号7(5’-AGA[TCTAGA]AGAATCAGGGGATAACGCAGGAAAG-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素XbaI認識配列)として、表2に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で2分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、アンピシリン耐性遺伝子(Ampr)および大腸菌での複製起点(ColE1)遺伝子領域を増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をAmp+ColE1-Pと命名した。 (6) Using a commercially available pUC19 (manufactured by Takara Bio Co., Ltd.) as a template, from the sequences shown in SEQ ID NO: 6 (5'-CAGTCTGATCTGATTATTGAAAAAAGGAAGAGTAG-3') and SEQ ID NO: 7 (5'-AGA [TCTAGA] AGAATCAGGGATAAGCAGGAAAG-3'). Using the above oligonucleotide as a primer (restriction enzyme XbaI recognition sequence in square brackets), prepare a reaction solution having the composition shown in Table 2, heat the reaction solution at 98 ° C for 5 minutes, and then heat the reaction solution at 98 ° C for 10 seconds. PCR was performed by repeating the reaction of 1 step, the 2nd step at 55 ° C. for 5 seconds, and the 3rd step at 72 ° C. for 2 minutes as 1 cycle for 30 cycles, and replication with the ampicillin resistance gene ( Ampr ) and Escherichia coli. The origin (ColE1) gene region was amplified. Then, the PCR product obtained by purification by agarose gel extraction was named Amp + ColE1-P.
(7)pECE-dhfr(J.Biochem.、108、673-676(1990))を鋳型とし、配列番号8(5’-AGA[TCTAGA]CTGTGGAATGTGTGTCAGTTAGGG-3’)および配列番号9(5’-[GCGGCCGC]TTT<GAATTC>AGCTTTTTGCAAAAGCCTAGGCC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(配列番号8の角かっこ内は制限酵素XbaI認識配列、配列番号9の角かっこ内は制限酵素NotIの認識配列、配列番号9の山かっこ内はEcoRIの認識配列)として、表2に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、SV40プロモーター(SV40pro)遺伝子領域を増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をSV40-Pと命名した。 (7) Using pECE-dhfr (J. Biochem., 108, 673-676 (1990)) as a template, SEQ ID NO: 8 (5'-AGA [TCTAGA] CTGTGGAATGTGTGTCAGTGGG-3') and SEQ ID NO: 9 (5'-[ GCGGCCGC] TTT <GAATTC> AGCTTTTGCAAAAGCCCATAGGC-3') Primer (restriction enzyme XbaI recognition sequence in the square bracket of SEQ ID NO: 8 and restriction enzyme NotI recognition sequence in the square bracket of SEQ ID NO: 9) , The inside of the mountain bracket of SEQ ID NO: 9 is the recognition sequence of EcoRI), prepare a reaction solution having the composition shown in Table 2, heat the reaction solution at 98 ° C. for 5 minutes, and then perform the first step at 98 ° C. for 10 seconds. PCR was performed by repeating 30 cycles of the second step at 55 ° C. for 5 seconds and the third step at 72 ° C. for 90 seconds as one cycle to amplify the SV40 promoter (SV40pro) gene region. Then, the PCR product obtained by purification by agarose gel extraction was named SV40-P.
(8)(4)で作製したpIRES-dhfrを鋳型とし、配列番号10(5’-[GAATTC]AAA<GCGGCCGC>GACATGATAAGATACATTGATG-3’)および配列番号11(5’-TAA[CTCGAG]TTTACCACATTTGTAGAGGTTTTAC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(配列番号10の角かっこ内は制限酵素EcoRIの認識配列、配列番号10の山かっこ内はNotIの認識配列、配列番号11の角かっこ内は制限酵素XhoIの認識配列)として、表2に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で2分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、SV40ポリA領域を増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をSV40polyA-Pと命名した。 (8) Using the pIRES-dhfr prepared in (4) as a template, SEQ ID NO: 10 (5'-[GAATTC] AAA <GCGGCCGC> GACATGATAAGATATACTGATTG-3') and SEQ ID NO: 11 (5'-TAA [CTCGAG] TTTACCAATTTTGTTACGAGTTAC-3') Primer is an oligonucleotide consisting of the sequence shown in') (the recognition sequence of the restriction enzyme EcoRI is in the square bracket of SEQ ID NO: 10, the recognition sequence of NotI is in the mountain bracket of SEQ ID NO: 10, and the square bracket of SEQ ID NO: 11 is restricted. As a recognition sequence of the enzyme XhoI), a reaction solution having the composition shown in Table 2 was prepared, and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds and the first step at 55 ° C. for 5 seconds. PCR was performed by repeating the reaction of 2 steps, the 3rd step of 2 minutes at 72 ° C. as 1 cycle for 30 cycles, and the SV40 poly A region was amplified. Then, the PCR product obtained by purification by agarose gel extraction was named SV40polyAP.
(9)(5)で作製したPCR産物dhfr-Pと(6)で作製したPCR産物Amp+ColE1-Pとはオーバーラップする領域を含んでいる。そこでこれらを鋳型とし、配列番号4および配列番号7に記載の配列からなるポリヌクレオチドをプライマーとして、それぞれ用いて表3に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で2分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、dhfr-PおよびAmp+ColE1-Pを1つの遺伝子として合成し増幅した。その後アガロースゲル抽出による精製を行ない、得られたPCR産物をdhfr-Amp-Pと命名した。 (9) The PCR product dhfr-P prepared in (5) and the PCR product Amp + ColE1-P prepared in (6) contain overlapping regions. Therefore, using these as templates and the polynucleotides consisting of the sequences shown in SEQ ID NO: 4 and SEQ ID NO: 7 as primers, a reaction solution having the composition shown in Table 3 was prepared, and the reaction solution was used at 98 ° C. for 5 minutes. After the heat treatment, PCR was performed by repeating 30 cycles of the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 2 minutes as one cycle, and PCR was performed. P and Amp + ColE1-P were synthesized and amplified as one gene. After that, purification was performed by agarose gel extraction, and the obtained PCR product was named dhfr-Amp-P.
(10)(7)で作製したPCR産物SV40-Pと(8)で作製したPCR産物SV40polyA-Pとはオーバーラップする領域を含んでいる。そこでこれらを鋳型とし、配列番号8および配列番号11に記載の配列からなるポリヌクレオチドをプライマーとして、それぞれ用いて表3に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、SV40-PおよびSV40polyA-Pを1つの遺伝子として合成し増幅した。その後アガロースゲル抽出による精製を行ない、得られたPCR産物をSV40propolyA-Pと命名した。 (10) The PCR product SV40-P prepared in (7) and the PCR product SV40polyAP prepared in (8) include overlapping regions. Therefore, using these as templates and the polynucleotides consisting of the sequences shown in SEQ ID NO: 8 and SEQ ID NO: 11 as primers, a reaction solution having the composition shown in Table 3 was prepared, and the reaction solution was used at 98 ° C. for 5 minutes. After the heat treatment, PCR was performed by repeating 30 cycles of the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 90 seconds as one cycle, and PCR was performed. P and SV40polyA-P were synthesized and amplified as one gene. After that, purification was performed by agarose gel extraction, and the obtained PCR product was named SV40propolyAP.
(11)(9)で作製したdhfr-Amp-Pおよび(10)で作製したSV40propolyA-Pを、それぞれ制限酵素XbaIおよびXhoIで消化し、PCR Purification kit(キアゲン社製)を用いて精製後、ライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで哺乳動物細胞用発現ベクターであるpSV40を得た。 (11) The dhfr-Amp-P prepared in (9) and the SV40polyA-P prepared in (10) are digested with restriction enzymes XbaI and XhoI, respectively, purified using a PCR Purification kit (manufactured by Qiagen), and then purified. Ligation. Escherichia coli JM109 strain was transformed with a ligation product, and a plasmid was extracted from the cultured transformant to obtain pSV40, which is an expression vector for mammalian cells.
(12)配列番号12に記載の配列からなるヒト成長因子1α(EF1α)のプロモーター領域(以下、EF1aproとも表記)のポリヌクレオチドを全合成し、プラスミドにクローニングした(GENEWIZ社に委託)。前記プラスミドを鋳型とし、配列番号13(5’-AGA[TCTAGA]CGTGAGGCTCCGGTGCCCGTC-3’)および配列番号14(5’-[GCGGCCGC]TTT<GAATTC>TCACGACACCTGAAATGGAAG-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(配列番号13の角かっこ内は制限酵素XbaIの認識配列、配列番号14の角かっこ内は制限酵素NotIの認識配列、配列番号14の山かっこ内はEcoRIの認識配列)として、表2に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、EF1apro遺伝子領域を増幅し、その後、アガロースゲル抽出によりPCR産物を精製した。 (12) The polynucleotide of the promoter region of human growth factor 1α (EF1α) (hereinafter, also referred to as EF1apro) consisting of the sequence shown in SEQ ID NO: 12 was totally synthesized and cloned into a plasmid (consigned to GENEWIZ). An oligonucleotide consisting of the sequences described in SEQ ID NO: 13 (5'-AGA [TCTAGA] CGTGAGGCTCCGGTGCCCGTC-3') and SEQ ID NO: 14 (5'-[GCGGCCGC] TTT <GAATTC> TCACGAACCCTGAAATGGAAG-3') using the plasmid as a template. As a primer (restriction enzyme XbaI recognition sequence in the square bracket of SEQ ID NO: 13, restriction enzyme NotI recognition sequence in the square bracket of SEQ ID NO: 14, EcoRI recognition sequence in the mountain bracket of SEQ ID NO: 14), Table 2 A reaction solution having the composition shown in the above is prepared, and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, and the second step at 72 ° C. for 90 seconds. PCR was performed by repeating the reaction with 3 steps as 1 cycle for 30 cycles to amplify the EF1apro gene region, and then the PCR product was purified by agarose gel extraction.
(13)(11)で作製したpSV40および(12)で得られたPCR産物をそれぞれ制限酵素XbaIおよびEcoRIで消化し、PCR Purification kit(キアゲン社製)を用いて精製後、ライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで哺乳動物細胞用発現ベクターであるpEFdを得た。 (13) The PCR products prepared in (11) and pSV40 and (12) were digested with restriction enzymes XbaI and EcoRI, respectively, purified using a PCR Purification kit (manufactured by Qiagen), and then ligated. Escherichia coli JM109 strain was transformed with a ligation product, and a plasmid was extracted from the cultured transformant to obtain pEFd, which is an expression vector for mammalian cells.
(14)(13)で作製したベクターのヌクレオチド配列を、チェーンターミネータ法に基づくBigDye Terminator Ver.3.1 Cycle Sequencing Kit(Thermo Fisher Scientific社製)を用いてサイクルシークエンス反応に供し、全自動DNAシークエンサーABI Prism 3700 DNA analyzer(Thermo Fisher Scientific社製)にて解析を行なった。なおシークエンス用プライマーとして、配列番号6から9、配列番号13、配列番号14、配列番号15(5’-CTCGTCAGGGGGGCGGAGCC-3’)、配列番号16(5’-CTCTAGCTTCCCGGCAACAA-3’)および配列番号17(5’-ATTTTCTTGCCAAAAGTTTG-3’)に記載の配列からなるオリゴヌクレオチドを用いた。 (14) The nucleotide sequence of the vector prepared in (13) was subjected to BigDye Terminator Ver. 3.1 Cycle sequence reaction was performed using a Cycle Sequencing Kit (manufactured by Thermo Fisher Scientific), and a fully automated DNA sequencer ABI Prism 3700 DNA analyzer (manufactured by Thermo Fisher Scientific) was used for cycle sequence reaction. As primers for sequencing, SEQ ID NOs: 6 to 9, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15 (5'-CTCGGTCAGGGGGGCGGAGCC-3'), SEQ ID NO: 16 (5'-CTCTAGCTTCCCCGCAACAA-3') and SEQ ID NO: 17 ( An oligonucleotide consisting of the sequence described in 5'-ATTTTCTTGCCAAAAAGTTTG-3') was used.
配列解析の結果、(12)で得られたPCR産物(すなわちEF1apro、配列番号12)のうち、621番目のグアニンから798番目のグアニンまでの178ヌクレオチドが欠損していた(配列番号18、以降EFdproと命名する)。なお他の領域は設計通りのヌクレオチド配列であった。本実施例で作製したプラスミドpEFdの概略を図1に示す。 As a result of sequence analysis, among the PCR products obtained in (12) (that is, EF1apro, SEQ ID NO: 12), 178 nucleotides from the 621st guanine to the 798th guanine were deleted (SEQ ID NO: 18, EFdpro thereafter). Name it). The other regions had the nucleotide sequence as designed. The outline of the plasmid pEFd prepared in this example is shown in FIG.
実施例2 抗体発現ベクターの作製(その1)
実施例1で作製したプラスミドpEFdに、抗体(イムノグロブリン)をコードするポリヌクレオチドを導入し、抗体発現用ベクターを作製した。
Example 2 Preparation of antibody expression vector (Part 1)
A polynucleotide encoding an antibody (immunoglobulin) was introduced into the plasmid pEFd prepared in Example 1 to prepare a vector for antibody expression.
(1)抗体重鎖遺伝子を含むプラスミドの作製
(1-1)配列番号19に記載のアミノ酸配列からなる、抗ヒトgp130受容体抗体の重鎖(H鎖)可変領域(VH領域)をコードするポリヌクレオチド(配列番号20)に制限酵素EcoRI認識配列(GAATTC)およびNheI認識配列(GCTAGC)を付加したポリヌクレオチドを全合成し、プラスミドにクローニングした(FASMAC社に委託)。
(1) Preparation of plasmid containing antibody heavy chain gene (1-1) Encoding the heavy chain (H chain) variable region (VH region) of an anti-human gp130 receptor antibody consisting of the amino acid sequence set forth in SEQ ID NO: 19. A polynucleotide in which the restriction enzymes EcoRI recognition sequence (GAATTC) and NheI recognition sequence (GCTAGC) were added to the polynucleotide (SEQ ID NO: 20) was totally synthesized and cloned into a plasmid (consigned to FASMAC).
(1-2)(1-1)で作製したプラスミドで大腸菌JM109株を形質転換し、得られた形質転換体からプラスミド抽出後、制限酵素EcoRIおよびNheIで消化することで、VH領域をコードするポリヌクレオチドを調製しVH-Pと命名した。 (1-2) The VH region is encoded by transforming the Escherichia coli JM109 strain with the plasmid prepared in (1-1), extracting the plasmid from the obtained transformant, and then digesting with the restriction enzymes EcoRI and NheI. A polynucleotide was prepared and named VH-P.
(1-3)ヒトIgG1の定常領域を含んだpFUSEss-CHIg-hG1(InvivoGen社製)を制限酵素EcoRIおよびNheIで消化後、アガロースゲル抽出にて精製し、(1-2)で作製したVH-Pとライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで抗ヒトgp130受容体抗体のH鎖をコードするポリヌクレオチドを含むプラスミドpFU-hG1を得た。 (1-3) pFUSEss-CHIg-hG1 (manufactured by InvivoGen) containing a constant region of human IgG1 was digested with restriction enzymes EcoRI and NheI, purified by agarose gel extraction, and VH prepared in (1-2). -Rigated with P. Escherichia coli JM109 strain was transformed with a ligation product, and a plasmid was extracted from the cultured transformant to obtain a plasmid pFU-hG1 containing a polynucleotide encoding the H chain of an anti-human gp130 receptor antibody.
(2)抗体軽鎖遺伝子を含むプラスミドの作製
(2-1)配列番号21に記載のアミノ酸配列からなる、抗ヒトgp130受容体抗体の軽鎖(L鎖)可変領域(VL領域)をコードするポリヌクレオチド(配列番号22)に制限酵素EcoRI認識配列(GAATTC)およびBsiWI認識配列(CGTACG)を付加したポリヌクレオチドを全合成しプラスミドにクローニングした(FASMAC社に委託)。
(2) Preparation of plasmid containing antibody light chain gene (2-1) Encodes the light chain (L chain) variable region (VL region) of an anti-human gp130 receptor antibody consisting of the amino acid sequence set forth in SEQ ID NO: 21. A polynucleotide in which the restriction enzymes EcoRI recognition sequence (GAATTC) and BsiWI recognition sequence (CGTACG) were added to the polynucleotide (SEQ ID NO: 22) was completely synthesized and cloned into a plasmid (consigned to FASMAC).
(2-2)作製したVL領域をコードするポリヌクレオチドを含むプラスミドで大腸菌JM109株を形質転換し、得られた形質転換体をからプラスミド抽出後、制限酵素EcoRIおよびBsiWIで消化することで、VL領域をコードするポリヌクレオチドを調製しVL-Pと命名した。 (2-2) Escherichia coli JM109 strain is transformed with a plasmid containing a polynucleotide encoding the prepared VL region, and the obtained transformant is extracted from the plasmid and then digested with restriction enzymes EcoRI and BsiWI to VL. A polynucleotide encoding the region was prepared and named VL-P.
(2-3)ヒトκ鎖の定常領域を含んだpFUSE2ss-CLIg-hk(InvivoGen社製)を制限酵素EcoRIおよびBsiWIで消化後、アガロースゲル抽出にて精製しVL-Pとライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで抗ヒトgp130受容体抗体のL鎖をコードするポリヌクレオチドを含むプラスミドpFU-hLを得た。 (2-3) pFUSE2ss-CLIg-hk (manufactured by InvivoGen) containing a constant region of human κ chain was digested with restriction enzymes EcoRI and BsiWI, purified by agarose gel extraction, and ligated with VL-P. Escherichia coli JM109 strain was transformed with a ligation product, and a plasmid was extracted from the cultured transformant to obtain a plasmid pFU-hL containing a polynucleotide encoding the L chain of an anti-human gp130 receptor antibody.
(3)(1)で作製したpFU-hG1および(2)で作製したpFU-hLを、実施例1(14)と同様な方法でヌクレオチド配列を確認した。なおシークエンス用プライマーとして、配列番号23(5’-CGTTACAGATCCAAGCTGTGAC-3’)に記載の配列からなるオリゴヌクレオチドを用いた。結果、導入したポリヌクレオチド配列が設計通りであることを確認した。 (3) The nucleotide sequences of pFU-hG1 prepared in (1) and pFU-hL prepared in (2) were confirmed by the same method as in Example 1 (14). As a primer for sequencing, an oligonucleotide having the sequence shown in SEQ ID NO: 23 (5'-CGTTACAGATCCAAAGCTGTGAC-3') was used. As a result, it was confirmed that the introduced polynucleotide sequence was as designed.
(4)(1)で作製したpFU-hG1を鋳型とし、配列番号24(5’-GCAGGTGTCCTCTCTCAGGTTCAACTCCAG-3’)および配列番号25(5’-AAT[GCGGCCGC]TATCATTTACCCGGAGACAGGGAGAG-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素NotIの認識配列)として、表4に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で60秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行なった。その後、アガロースゲル抽出による精製を行ない得られた抗ヒトgp130受容体のH鎖全長をコードするPCR産物をAH-Pと命名した。 (4) Using the pFU-hG1 prepared in (1) as a template, from the sequences described in SEQ ID NO: 24 (5'-GCAGGTGTTCCTCTCATCAGGTTCAACTCCAG-3') and SEQ ID NO: 25 (5'-AAT [GCGGCCGC] TATCATTCCGGAGAGAGGGAGAG-3'). A reaction solution having the composition shown in Table 4 is prepared using the oligonucleotide (the recognition sequence of the restriction enzyme NotI in the square brackets) as a primer, and the reaction solution is heat-treated at 98 ° C. for 5 minutes and then at 98 ° C. for 10 seconds. PCR was performed by repeating the reaction of the first step, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 60 seconds as one cycle for 30 cycles. Then, the PCR product encoding the full length of the H chain of the anti-human gp130 receptor obtained by purification by agarose gel extraction was named AHP.
(5)(2)で作製したpFU-hLを鋳型とし、配列番号26(5’-CATAATGTCCAGGGGGGACATTCAGATGAC-3’)および配列番号27(5’-AAT[GCGGCCGC]TACTAACACTCTCCCCTGTTGAAGC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素NotIの認識配列)として、それぞれ用いて表4に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行なった。その後、アガロースゲル抽出による精製を行ない得られた抗ヒトgp130受容体のL鎖全長PCR産物をAL-Pと命名した。 (5) Using the pFU-hL prepared in (2) as a template, from the sequences shown in SEQ ID NO: 26 (5'-CATATATGTCCAGGGGGACATTCAGATGAC3') and SEQ ID NO: 27 (5'-AAT [GCGGCCGC] TACTAACACTCCCCCTGAAGC-3'). The oligonucleotides are used as primers (the recognition sequence of the restriction enzyme NotI in the square brackets) to prepare a reaction solution having the composition shown in Table 4, and the reaction solution is heat-treated at 98 ° C. for 5 minutes and then at 98 ° C. PCR was performed by repeating the reaction of the first step for 10 seconds, the second step for 5 seconds at 55 ° C., and the third step for 1 minute at 72 ° C. for 30 cycles. Then, the L-chain full-length PCR product of the anti-human gp130 receptor obtained by purification by agarose gel extraction was named AL-P.
(6)(4)で作製したAH-Pを鋳型とし、配列番号28に記載のシグナル配列AH(MGWSWIFLFFLSGTAGVLS)をコードするポリヌクレオチドである配列番号29(5’-ATGGGATGGAGCTGGATCTTTCTCTTCTTCCTGTCAGGAACTGCAGGTGTCCTCTCT-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号30(5’-CTA[GAATTC]GCCACCATGGGATGGAGCTGG-3’)および配列番号25に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、表5に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、シグナル配列AHを付加したH鎖をコードするポリヌクレオチドを増幅した。その後、アガロースゲル抽出による精製を行ない、得られたPCR産物をsAH-Pと命名した。 (6) Described in SEQ ID NO: 29 (5'-ATGGGATGGAGCTGGATCTTTCTTTCTTCCTGTGTCAGGTACGTGTCCT), which is a polynucleotide encoding the signal sequence AH (MGWSWIFLLFFLSGTAGVLS) set forth in SEQ ID NO: 28, using the AH-P prepared in (4) as a template. The polynucleotide consisting of the sequence is used as the signal DNA, and the oligonucleotide consisting of the sequence shown in SEQ ID NO: 30 (5'-CTA [GAATTC] GCCACCATGGGGAGGAGCTGG-3') and SEQ ID NO: 25 is used as a primer (recognition of the restriction enzyme EcoRI in square brackets). As an arrangement), a reaction solution having the composition shown in Table 5 is prepared, and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, 72. PCR was performed by repeating the reaction at ° C. for 90 seconds with the third step as one cycle for 30 cycles, and the polynucleotide encoding the H chain to which the signal sequence AH was added was amplified. Then, purification was performed by agarose gel extraction, and the obtained PCR product was named sAHP-P.
(7)(5)で作製したAL-Pを鋳型とし、配列番号31に記載のシグナル配列AL(MDFQVQIFSFLLMSASVIMSRG)をコードするポリヌクレオチドである配列番号32(5’-ATGGATTTTCAAGTGCAGATTTTCAGCTTCCTGCTAATGAGTGCCTCAGTCATAATGTCCAGGGGG-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号33(5’-CTA[GAATTC]GCCACCATGGATTTTCAAGTG-3’)および配列番号27に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、表5に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、シグナル配列ALを付加したL鎖をコードするポリヌクレオチドを増幅した。その後、アガロースゲル抽出による精製を行ない、得られたPCR産物をsAL-Pと命名した。 (7) The AL-P prepared in (5) is used as a template, and the polynucleotide encoding the signal sequence AL (MDFQVQIFSFLLMSASVISRG) set forth in SEQ ID NO: 31 is set forth in SEQ ID NO: 32 (5'-ATGGATTTTCAAGTGCAGATTTTTCAGCTTCCGCTAGCTAGTCAGTCAGCTAG). The polynucleotide consisting of the sequence is used as the signal DNA, and the oligonucleotide consisting of the sequence shown in SEQ ID NO: 33 (5'-CTA [GAATTC] GCACCACTGGATTTTCAAGTG-3') and SEQ ID NO: 27 is used as a primer (recognition of the restriction enzyme EcoRI in the square brackets). As an arrangement), a reaction solution having the composition shown in Table 5 is prepared, and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, 72. PCR was performed by repeating the reaction at ° C. for 90 seconds with the third step as one cycle for 30 cycles, and the polynucleotide encoding the L chain to which the signal sequence AL was added was amplified. Then, purification was performed by agarose gel extraction, and the obtained PCR product was named sAL-P.
(8)(6)で作製したsAH-P、(7)で作製したsAL-Pおよび実施例1で作製したプラスミドpEFdをそれぞれ制限酵素EcoRIおよびNotIで消化、精製後ライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、抗ヒトgp130受容体抗体のH鎖発現ベクターpEFd-AHsHおよび抗ヒトgp130受容体抗体のL鎖発現ベクターpEFd-ALsLを得た。 (8) The sAH-P prepared in (6), the sAL-P prepared in (7), and the plasmid pEFd prepared in Example 1 were digested with restriction enzymes EcoRI and NotI, respectively, and ligated after purification. By transforming Escherichia coli JM109 strain with a ligation product and extracting a plasmid from the cultured transformant, the H chain expression vector pEFd-AHsH of the anti-human gp130 receptor antibody and the L chain expression vector of the anti-human gp130 receptor antibody pEFd-ALsL was obtained.
(9)(8)で得られた発現ベクターpEFd-AHsHおよびpEFd-ALsLのうち、クローニングしたシグナル配列および抗ヒトgp130受容体抗体H鎖(pEFd-AHsH)またはL鎖(pEFd-ALsL)周辺のヌクレオチド配列を実施例1(14)と同様の方法で解析した。なおpEFd-AHsH用シークエンスプライマーとして、配列番号34(5’-GAGTTCCACGACACCGTCAC-3’)、配列番号35(5’-GCTAGCACCAAGGGCCCATC-3’)および配列番号36(5’-CGGGAGGAGATGACCAAGAAC-3’)に記載の配列からなるオリゴヌクレオチドを、pEFd-ALsL用シークエンスプライマーとして、配列番号33および配列番号37(5’-CACCTTCCACTGTACTTTGGC-3’)に記載の配列からなるオリゴヌクレオチドを、それぞれ用いた。 (9) Of the expression vectors pEFd-AHsH and pEFd-ALsL obtained in (8), the cloned signal sequence and the vicinity of the anti-human gp130 receptor antibody H chain (pEFd-AHsH) or L chain (pEFd-ALsL) The nucleotide sequence was analyzed in the same manner as in Example 1 (14). As a sequence primer for pEFd-AHsH, it is described in SEQ ID NO: 34 (5'-GAGTTCCACGACACCGTCAC-3'), SEQ ID NO: 35 (5'-GCTAGCACCAAGGGCCCATC-3') and SEQ ID NO: 36 (5'-CGGGAGGAGACCAAGAAC-3'). The oligonucleotide consisting of the sequence was used as a sequence primer for pEFd-ALsL, and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 33 and SEQ ID NO: 37 (5'-CACCTTCCACTGTACTTGGC-3') was used, respectively.
配列解析の結果、ポリヌクレオチド配列が設計通りであることを確認した。シグナル配列AHおよび抗ヒトgp130受容体抗体H鎖のアミノ酸配列を配列番号38に、シグナル配列AHおよび抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドの配列を配列番号39に、シグナル配列ALおよび抗ヒトgp130受容体抗体L鎖のアミノ酸配列を配列番号40に、シグナル配列ALおよび抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドの配列を配列番号41に、それぞれ示す。なお配列番号38の1番目のメチオニンから19番目のセリンまでがシグナル配列AHであり、20番目のグルタミンから469番目のリジンまでが抗ヒトgp130受容体抗体H鎖のアミノ酸配列である。また配列番号40の1番目のメチオニンから22番目のグリシンまでがシグナル配列ALであり、23番目のアスパラギン酸から235番目のシステインまでが抗ヒトgp130受容体抗体L鎖のアミノ酸配列である。 As a result of sequence analysis, it was confirmed that the polynucleotide sequence was as designed. The amino acid sequence of the signal sequence AH and the anti-human gp130 receptor antibody H chain is in SEQ ID NO: 38, the sequence of the polynucleotide encoding the signal sequence AH and the anti-human gp130 receptor antibody H chain is in SEQ ID NO: 39, and the signal sequence AL and The amino acid sequence of the anti-human gp130 receptor antibody L chain is shown in SEQ ID NO: 40, and the sequence of the signal sequence AL and the polynucleotide encoding the anti-human gp130 receptor antibody L chain is shown in SEQ ID NO: 41, respectively. The signal sequence AH is from the first methionine to the 19th serine of SEQ ID NO: 38, and the amino acid sequence of the anti-human gp130 receptor antibody H chain is from the 20th glutamine to the 469th lysine. The signal sequence AL is from the first methionine to the 22nd glycine of SEQ ID NO: 40, and the amino acid sequence of the anti-human gp130 receptor antibody L chain is from the 23rd aspartic acid to the 235th cysteine.
比較例1 抗体発現ベクターの作製(その2)
実施例1で作製したプラスミドpEFdに挿入されているプロモーターEFdproは、ヒトEF1αプロモーターの一部が欠損した態様であるため、改めてヒトEF1αプロモーター(EF1apro)全長を含む発現ベクターを作製した。
Comparative Example 1 Preparation of antibody expression vector (Part 2)
Since the promoter EFdpro inserted in the plasmid pEFd prepared in Example 1 is an embodiment in which a part of the human EF1α promoter is deleted, an expression vector containing the entire length of the human EF1α promoter (EF1apro) was prepared again.
(1)実施例1(12)で合成したEF1aproを含むプラスミドを鋳型とし、配列番号13および配列番号14に記載の配列からなるオリゴヌクレオチドをプライマーとして、表6に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で10秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、EF1apro全長を増幅した。その後、アガロースゲル抽出による精製を行ない、得られたPCR産物をEF1α-Pと命名した。 (1) Using the plasmid containing EF1apro synthesized in Example 1 (12) as a template and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 13 and SEQ ID NO: 14 as primers, a reaction solution having the composition shown in Table 6 was prepared. After heat-treating the reaction solution at 98 ° C. for 5 minutes, the reaction consists of a first step at 98 ° C. for 10 seconds, a second step at 55 ° C. for 10 seconds, and a third step at 72 ° C. for 90 seconds as one cycle. PCR was performed by repeating 30 cycles to amplify the total length of EF1apro. Then, purification was performed by agarose gel extraction, and the obtained PCR product was named EF1α-P.
(2)(1)で作製したEF1α-P、ならびに実施例2で作製したpEFd-AHsHおよびpEFd-ALsLを、それぞれ制限酵素XbaIおよびEcoRIで消化し、精製後、EF1α-PとpEFd-AHsH、ならびにEF1α-PとpEFd-ALsLをライゲーションした。 (2) EF1α-P prepared in (1) and pEFd-AHsH and pEFd-ALsL prepared in Example 2 are digested with restriction enzymes XbaI and EcoRI, respectively, and after purification, EF1α-P and pEFd-AHsH, Also, EF1α-P and pEFd-ALsL were ligated.
(3)ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、全長のEF1aproを含む抗ヒトgp130受容体抗体のH鎖発現ベクターpEF1α-AHsHおよび抗ヒトgp130受容体抗体のL鎖発現ベクターpEF1α-ALsLを得た。 (3) H chain expression vector pEF1α-AHsH and anti-human gp130 of anti-human gp130 receptor antibody containing full-length EF1apro by transforming Escherichia coli JM109 strain with ligation product and extracting plasmid from the cultured transformant. The L chain expression vector pEF1α-ALsL of the receptor antibody was obtained.
(4)クローニングした領域のヌクレオチド配列を実施例1(14)と同様の方法で解析した。なおシークエンス用プライマーとして配列番号14、15、34および39に記載の配列からなるオリゴヌクレオチドを用いた。 (4) The nucleotide sequence of the cloned region was analyzed by the same method as in Example 1 (14). As a sequencer primer, an oligonucleotide consisting of the sequences shown in SEQ ID NOs: 14, 15, 34 and 39 was used.
配列解析の結果、ポリヌクレオチド配列が設計通りであることを確認した。pEF1α-AHsHにおけるプロモーター、シグナル配列および抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドの配列を配列番号44に、pEF1α-ALsLにおけるプロモーター、シグナル配列および抗ヒトgp130抗体受容体抗体L鎖をコードするポリヌクレオチドの配列を配列番号45に、それぞれ示す。なお配列番号44および45において、1番目から1184番目までがプロモーターEF1apro全長のヌクレオチド配列であり1197番目のアデニン以降がシグナル配列および抗体各鎖をコードするポリヌクレオチドの配列である。 As a result of sequence analysis, it was confirmed that the polynucleotide sequence was as designed. The promoter, signal sequence and anti-human gp130 antibody receptor antibody L chain in pEF1α-ALsL are encoded by SEQ ID NO: 44, and the promoter, signal sequence and anti-human gp130 antibody receptor antibody L chain in pEF1α-ALsL are encoded by SEQ ID NO: 44. The sequences of the polynucleotides to be used are shown in SEQ ID NO: 45, respectively. In SEQ ID NOs: 44 and 45, the 1st to 1184th are the nucleotide sequences of the full length of the promoter EF1apro, and the 1197th and subsequent adenines are the signal sequences and the polynucleotide sequences encoding the antibody chains.
比較例2 抗体発現ベクターの作製(その3)
ヒトEF1αプロモーターの一部配列が欠損したポリヌクレオチドを含む抗体発現ベクターを作製した。
Comparative Example 2 Preparation of antibody expression vector (Part 3)
An antibody expression vector containing a polynucleotide lacking a partial sequence of the human EF1α promoter was prepared.
(1)配列番号12に記載のヌクレオチド配列からなるEF1aproのうち、1番目から619番目までのポリヌクレオチド(以下、EFS1とも表記)を増幅した。実施例1(12)で合成したEF1aproを含むプラスミドを鋳型とし、配列番号13および配列番号42(5’-AAT[GAATTC]CCGTCGCCGCCCGCGGCCCC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、表6に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で10秒間の第2ステップ、72℃で60秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、EFS1を増幅した。その後、アガロースゲル抽出による精製を行ない、得られたPCR産物をEFS1-Pと命名した。 (1) Of the EF1apro consisting of the nucleotide sequence shown in SEQ ID NO: 12, the polynucleotides 1 to 619 (hereinafter, also referred to as EFS1) were amplified. The plasmid containing EF1apro synthesized in Example 1 (12) was used as a template, and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 13 and SEQ ID NO: 42 (5'-AAT [GAATTC] CCGTCGCCGCCCCGCGCCCC-3') was used as a primer (square bracket). A reaction solution having the composition shown in Table 6 is prepared as the restriction enzyme EcoRI recognition sequence), and the reaction solution is heat-treated at 98 ° C. for 5 minutes, then the first step at 98 ° C. for 10 seconds, and 10 at 55 ° C. PCR was performed by repeating 30 cycles of the second step of seconds and the third step of 60 seconds at 72 ° C. as one cycle, and EFS1 was amplified. Then, purification was performed by agarose gel extraction, and the obtained PCR product was named EFS1-P.
(2)配列番号12に記載のEF1aproの1番目から366番目までのポリヌクレオチド(以下、EFS2とも表記)を増幅した。実施例1(12)で合成したEF1aproを含むプラスミドを鋳型とし、配列番号13および配列番号43(5’-AAT[GAATTC]CCCACCCACTTCCAACCCGAAGC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、表6に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で10秒間の第2ステップ、72℃で60秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、EFS2を増幅した。その後、アガロースゲル抽出による精製を行ない、得られたPCR産物をEFS2-Pと命名した。 (2) The polynucleotides 1 to 366 of EF1apro shown in SEQ ID NO: 12 (hereinafter, also referred to as EFS2) were amplified. The plasmid containing EF1apro synthesized in Example 1 (12) was used as a template, and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 13 and SEQ ID NO: 43 (5'-AAT [GAATTC] CCCACCACTTCCAACCCACCGAAGC-3') was used as a primer (square bracket). A reaction solution having the composition shown in Table 6 is prepared as the restriction enzyme EcoRI recognition sequence), and the reaction solution is heat-treated at 98 ° C. for 5 minutes, then the first step at 98 ° C. for 10 seconds, and 10 at 55 ° C. PCR was performed by repeating the reaction with the second step of seconds and the third step of 60 seconds at 72 ° C. as one cycle for 30 cycles, and EFS2 was amplified. Then, purification was performed by agarose gel extraction, and the obtained PCR product was named EFS2-P.
(3)(1)で作製したEFS1-P、(2)で作製したEFS2-P、ならびに実施例2で作製したpEFd-AHsHおよびpEFd-ALsLを、それぞれ制限酵素XbaIおよびEcoRIで消化し、精製後、EFS1-PとpEFd-AHsH、EFS1-PとpEFd-ALsL、EFS2-PとpEFd-AHsH、ならびにEFS2-PとpEFd-ALsL、をそれぞれライゲーションした。 (3) EFS1-P prepared in (1), EFS2-P prepared in (2), and pEFd-AHsH and pEFd-ALsL prepared in Example 2 are digested with restriction enzymes XbaI and EcoRI, respectively, and purified. Later, EFS1-P and pEFd-AHsH, EFS1-P and pEFd-ALsL, EFS2-P and pEFd-AHsH, and EFS2-P and pEFd-ALsL were ligated, respectively.
(4)ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、EFS1を含む抗ヒトgp130受容体抗体のH鎖およびL鎖発現ベクターpEFS1-AHsHおよびpEFS1-ALsL、ならびにEFS2を含む抗ヒトgp130受容体抗体のH鎖およびL鎖発現ベクターpEFS2-AHsHおよびpEFS2-ALsLを得た。 (4) By transforming Escherichia coli JM109 strain with a ligation product and extracting a plasmid from the cultured transformant, H chain and L chain expression vectors pEFS1-AHsH and pEFS1- of an anti-human gp130 receptor antibody containing EFS1. H-chain and L-chain expression vectors pEFS2-AHsH and pEFS2-ALsL for anti-human gp130 receptor antibody containing ALsL and EFS2 were obtained.
(5)クローニングした領域のヌクレオチド配列を実施例1(12)と同様の方法で解析した。 (5) The nucleotide sequence of the cloned region was analyzed by the same method as in Example 1 (12).
配列解析の結果、ポリヌクレオチド配列が設計通りであることを確認した。pEFS1-AHsHにおけるプロモーター、シグナル配列および抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドの配列を配列番号46に、pEFS1-ALsLにおけるプロモーター、シグナル配列および抗ヒトgp130抗体受容体抗体L鎖をコードするポリヌクレオチドの配列を配列番号47に、pEFS2-AHsHにおけるプロモーター、シグナル配列および抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドの配列を配列番号48に、pEFS2-ALsLにおけるプロモーター、シグナル配列および抗ヒトgp130抗体受容体抗体L鎖をコードするポリヌクレオチドの配列を配列番号49に、それぞれ示す。なお配列番号46および47において、1番目から619番目までがクローニングしたEFS1のヌクレオチド配列であり、632番目のアデニン以降がシグナル配列および抗体各鎖をコードするポリヌクレオチドの配列である。また配列番号48および49において1番目から366番目までがクローニングしたEFS2のヌクレオチド配列であり、379番目のアデニン以降がシグナル配列および抗体各鎖をコードするポリヌクレオチドの配列である。 As a result of sequence analysis, it was confirmed that the polynucleotide sequence was as designed. The promoter, signal sequence and anti-human gp130 receptor antibody H chain in pEFS1-AHsH are encoded by SEQ ID NO: 46, and the promoter, signal sequence and anti-human gp130 antibody receptor antibody L chain in pEFS1-ALsL are encoded by the sequence. The sequence of the polynucleotide to be used is on SEQ ID NO: 47, the promoter, signal sequence in pEFS2-AHsH and the sequence of the polynucleotide encoding the anti-human gp130 receptor antibody H chain are in SEQ ID NO: 48, the promoter, signal sequence and in pEFS2-ALsL. The sequence of the polynucleotide encoding the anti-human gp130 antibody receptor antibody L chain is shown in SEQ ID NO: 49, respectively. In SEQ ID NOs: 46 and 47, the 1st to 619th are cloned nucleotide sequences of EFS1, and the 632th and subsequent adenines are signal sequences and polynucleotide sequences encoding antibody chains. Further, in SEQ ID NOs: 48 and 49, the 1st to 366th are cloned nucleotide sequences of EFS2, and the 379th and subsequent adenines are signal sequences and polynucleotide sequences encoding antibody chains.
実施例3 抗体発現量比較(その1)
実施例2ならびに比較例1および2で作製した抗体発現ベクターによる、抗体発現量の比較を行なった。
Example 3 Comparison of antibody expression levels (Part 1)
The antibody expression levels were compared using the antibody expression vectors prepared in Example 2 and Comparative Examples 1 and 2.
(1)CHO細胞K1株を10%(w/v)のウシ胎児血清および50μg/mLのカナマイシンを含んだRPM1640培地(Wako社製)にて24穴プレート(BD社製)を用いて37℃、5%CO2の条件下で培養した。 (1) CHO cell K1 strain in RPM1640 medium (Wako) containing 10% (w / v) fetal bovine serum and 50 μg / mL kanamycin using a 24-well plate (BD) at 37 ° C. The cells were cultured under the condition of 5% CO 2 .
(2)COS細胞を10%(w/v)のウシ胎児血清および50μg/mLのカナマイシンを含んだD-MEM培地(Gibco社製)にて24穴プレートを用いて37℃、5%CO2の条件下で培養した。 (2) COS cells in D-MEM medium (manufactured by Gibco) containing 10% (w / v) fetal bovine serum and 50 μg / mL kanamycin at 37 ° C. using a 24-well plate, 5% CO 2 Was cultured under the conditions of.
(3)細胞がコンフルエントになった後、各ウェルの培地を0.3mLのOpti-MEM(Thermo Fisher Scientific社製)に交換した。 (3) After the cells became confluent, the medium of each well was replaced with 0.3 mL of Opti-MEM (manufactured by Thermo Fisher Scientific).
(4)実施例2で作製したpEFd-AHsHおよびpEFd-ALsL、比較例1で作製したpEF1α-AHsHおよびpEF1α-ALsL、比較例2で作製したpEFS1-AHsHおよびpEFS1-ALsL、ならびにpEFS2-AHsHおよびpEFS2-ALsLを用い、H鎖発現ベクターおよびL鎖発現ベクターを各250ngならびに1μLのP3000 Reagentを50μLのOpti-MEMに加え、さらに1μLのLipofectamine 3000(Thermo Fisher Scientific社製)を含んだ50μLのOpti-MEMを加えて、室温で10分間静置後、Opti-MEMに培地交換されたCHO細胞K1株またはCOS細胞が入ったウェルに全量加え、37℃、5%CO2の条件で3日間培養した。 (4) pEFd-AHsH and pEFd-ALsL prepared in Example 2, pEF1α-AHsH and pEF1α-ALsL prepared in Comparative Example 1, pEFS1-AHsH and pEFS1-ALsL prepared in Comparative Example 2, and pEFS2-AHsH and Using pEFS2-ALsL, 250 ng each of H chain expression vector and L chain expression vector and 1 μL of P3000 Reagent were added to 50 μL of Opti-MEM, and 1 μL of Lipofectamine 3000 (manufactured by Thermo Fisher Scientific) was included. -MEM was added and allowed to stand at room temperature for 10 minutes, then the whole amount was added to the well containing the CHO cell K1 strain or COS cells whose medium was exchanged in Opti-MEM, and cultured at 37 ° C. and 5% CO 2 for 3 days. did.
(5)発現した抗体の発現量を以下に示すEnzyme-Linked ImmunoSorbent Assay(以下、ELISAと表記)によって測定した。
(5-1)抗ヒトIgG-Fab抗体(Bethyl社製)を96穴マイクロプレート(Nunc社製)のウェルに1μg/wellで固定化し(4℃で一晩)、固定化終了後、2%(w/v)のSKIM MILK(BD社製)および150mMの塩化ナトリウムを含んだ20mMのトリス塩酸緩衝液(pH7.4)によりブロッキングした。
(5-2)洗浄緩衝液(0.05%(w/v)のTween 20、150mMのNaClを含む20mM Tris-HCl緩衝液(pH7.4))で洗浄後、発現した抗ヒトgp130受容体抗体と固相の抗ヒトIgG-Fabとを反応させた(30℃で1時間)。
(5-3)反応終了後、前記洗浄緩衝液で洗浄し、100ng/mLに希釈したペルオキシターゼで標識された抗マウス抗体(Bethyl社製)を100μL/wellで添加した。
(5-4)30℃で1時間反応後、前記洗浄緩衝液で洗浄した後、TMB Peroxidase Substrate(KPL社製)を50μL/wellで添加した。1Mのリン酸を50μL/wellで添加することで発色を止め、マイクロプレートリーダー(テカン社製)を用いて450nmの吸光度を測定した。
(5-5)濃度既知の標準抗体(シグマ社製)を用いて(5-1)から(5-4)と同様な測定を行ない得られた吸光度に基づき、検量線を作成し、当該検量線から抗ヒトgp130受容体抗体の発現量を求めた。
(5) The expression level of the expressed antibody was measured by the Enzyme-Linked ImmunoSorbent Assay (hereinafter referred to as ELISA) shown below.
(5-1) Anti-human IgG-Fab antibody (manufactured by Bethyl) was immobilized at 1 μg / well in a well of a 96-well microplate (manufactured by Nunc) at 1 μg / well (overnight at 4 ° C.), and 2% after completion of immobilization. Blocking was performed with (w / v) SKIM MILK (manufactured by BD) and 20 mM Tris-hydrochloric acid buffer (pH 7.4) containing 150 mM sodium chloride.
(5-2) Anti-human gp130 receptor expressed after washing with wash buffer (20 mM Tris-HCl buffer (pH 7.4) containing 0.05% (w / v) Tween 20, 150 mM NaCl). The antibody was reacted with solid phase anti-human IgG-Fab (1 hour at 30 ° C.).
(5-3) After completion of the reaction, the reaction was washed with the washing buffer, and an anti-mouse antibody (manufactured by Bethyl) labeled with peroxidase diluted to 100 ng / mL was added at 100 μL / well.
(5-4) After reacting at 30 ° C. for 1 hour, washing with the washing buffer, TMB Peroxidase Substrate (manufactured by KPL) was added at 50 μL / well. Color development was stopped by adding 1 M phosphoric acid at 50 μL / well, and the absorbance at 450 nm was measured using a microplate reader (manufactured by Tecan).
(5-5) Measurements similar to (5-1) to (5-4) were performed using a standard antibody (manufactured by Sigma) having a known concentration, and a calibration curve was prepared based on the obtained absorbance, and the calibration curve was prepared. The expression level of the anti-human gp130 receptor antibody was determined from the line.
CHO細胞K1株を宿主に用いたときの結果を図2に、COS細胞を宿主に用いたときの結果を図3に、それぞれ示す。いずれの宿主を用いた場合も、プロモーターとして本発明のプロモーターであるEFdpro(EF1apro(配列番号12)のうち621番目のグアニンから798番目のグアニンまでのヌクレオチドが欠損)を用いたとき抗体発現量が最も高かった。なおEFdと同様、EF1aproの一部を欠損させたポリヌクレオチドであるEFS1pro(EF1aproのうち620番目のグアニン以降のヌクレオチドが欠損)やEFS2pro(EF1aproのうち367番目のアデニン以降のヌクレオチドが欠損)では殆ど抗体を発現しなかった。このことから、ヒトEF1αプロモーターを用いて組換えタンパク質を発現させるためには、当該プロモーターの3’末端側領域が必要であることがわかる。 The results when the CHO cell K1 strain was used as the host are shown in FIG. 2, and the results when the COS cells were used as the host are shown in FIG. 3, respectively. In any host, the antibody expression level was high when EFdpro (deficient in nucleotides from 621st guanine to 798th guanine in EF1apro (SEQ ID NO: 12)), which is the promoter of the present invention, was used as the promoter. It was the highest. Similar to EFd, most of EFS1pro (deficient in nucleotides after 620th guanine in EF1apro) and EFS2pro (deficient in nucleotides after 376th adenine in EF1apro), which are polynucleotides lacking a part of EF1apro. No antibody was expressed. From this, it can be seen that in order to express a recombinant protein using the human EF1α promoter, the 3'-terminal region of the promoter is required.
比較例3 抗体発現ベクターの作製(その4)
一般に哺乳動物細胞によるタンパク質発現で用いられるプロモーター(SV40、CMV、CAG)を含む抗体発現ベクターを作製した。
Comparative Example 3 Preparation of antibody expression vector (No. 4)
An antibody expression vector containing promoters (SV40, CMV, CAG) generally used for protein expression by mammalian cells was prepared.
(1)SV40プロモーターを含む抗体発現ベクターの作製
(1-1)実施例1(7)で作製したSV40-Pを制限酵素XbaIおよびEcoRIで消化し、アガロースゲル抽出を用いて精製した。該SV40-Pは配列番号50に記載のSV40プロモーターを含んでいる。
(1-2)実施例2で作製したpEFd-AHsHおよびpEFd-ALsLを制限酵素XbaIおよびEcoRIで消化し、アガロースゲル抽出による精製により、EFdproを除去したプラスミドをそれぞれ調製した。
(1-3)(1-1)で得られた制限酵素消化産物と、(1-2)で調製したEFdproを除いた各プラスミドとをライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、SV40proを含む抗ヒトgp130受容体抗体H鎖発現ベクターpSV40-AHsH、およびSV40proを含む抗ヒトgp130受容体抗体L鎖発現ベクターpSV40-ALsLを得た。
(1) Preparation of antibody expression vector containing SV40 promoter (1-1) SV40-P prepared in Example 1 (7) was digested with restriction enzymes XbaI and EcoRI, and purified using agarose gel extraction. The SV40-P comprises the SV40 promoter set forth in SEQ ID NO: 50.
(1-2) The pEFd-AHsH and pEFd-ALsL prepared in Example 2 were digested with restriction enzymes XbaI and EcoRI, and purified by agarose gel extraction to prepare plasmids from which EFdpro had been removed.
(1-3) The restriction enzyme digestion products obtained in (1-1) and each plasmid prepared in (1-2) excluding EFdpro were ligated. By transforming Escherichia coli JM109 strain with a ligation product and extracting a plasmid from the cultured transformant, an anti-human gp130 receptor antibody H chain expression vector pSV40-AHsH containing SV40pro, and an anti-human gp130 receptor containing SV40pro. The antibody L chain expression vector pSV40-ALsL was obtained.
(2)CMVプロモーターを含む抗体発現ベクターの作製
(2-1)配列番号51に記載の配列からなるCMVプロモーター領域(CMVpro)のポリヌクレオチドを全合成しプラスミドにクローニングした(FASMAC社に委託)。
(2-2)(2-1)で合成したプラスミドを鋳型として、配列番号52(5’-AGA[TCTAGA]GTTGACATTGATTATTGACTAG-3’)および配列番号53(5’-[GCGGCCGC]TTT<GAATTC>GAGCTCTGCTTATATAGACCTCCC-3’)に記載の配列からなるオリゴヌクレオチドをプライマー(配列番号52の角かっこ内は制限酵素XbaIの認識配列、配列番号53の角かっこ内は制限酵素NotIの認識配列、配列番号53の山かっこ内は制限酵素EcoRIの認識配列)として、表2に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ないCMVプロモーターを増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をCMV-Pと命名した。
(2-3)(2-2)で作製したCMV-Pを制限酵素XbaIおよびEcoRIで消化し、アガロースゲル抽出を用いて精製した。
(2-4)(2-3)で得られた制限酵素消化産物と、(1-3)で調製したEFdproを除いた各プラスミドとをライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、CMVproを含む抗ヒトgp130受容体抗体H鎖発現ベクターpCMV-AHsH、およびCMVproを含む抗ヒトgp130受容体抗体L鎖発現ベクターpCMV-ALsLを得た。
(2) Preparation of antibody expression vector containing CMV promoter (2-1) The polynucleotide of the CMV promoter region (CMVpro) consisting of the sequence shown in SEQ ID NO: 51 was totally synthesized and cloned into a plasmid (consigned to FASMAC).
(2-2) Using the plasmid synthesized in (2-1) as a template, SEQ ID NO: 52 (5'-AGA [TCTAGA] GTTGACATTGATTATTGACTAG-3') and SEQ ID NO: 53 (5'-[GCGGCCGC] TTT <GAATTC> GAGCTCTGCTATATAGACCTCCC Primer the oligonucleotide consisting of the sequence shown in -3') (the recognition sequence of the restriction enzyme XbaI is in the square bracket of SEQ ID NO: 52, the recognition sequence of the restriction enzyme NotI is in the square bracket of SEQ ID NO: 53, and the mountain of SEQ ID NO: 53. A reaction solution having the composition shown in Table 2 is prepared as a restriction enzyme EcoRI recognition sequence in parentheses), and the reaction solution is heat-treated at 98 ° C. for 5 minutes, then the first step at 98 ° C. for 10 seconds, at 55 ° C. PCR was performed and the CMV promoter was amplified by repeating the reaction with the second step for 5 seconds and the third step for 90 seconds at 72 ° C. as one cycle for 30 cycles. Then, the PCR product obtained by purification by agarose gel extraction was named CMV-P.
(2-3) CMV-P prepared in (2-2) was digested with restriction enzymes XbaI and EcoRI, and purified using agarose gel extraction.
(2-4) The restriction enzyme digestion products obtained in (2-3) and each plasmid prepared in (1-3) excluding EFdpro were ligated. By transforming Escherichia coli JM109 strain with a ligation product and extracting a plasmid from the cultured transformant, an anti-human gp130 receptor antibody H chain expression vector pCMV-AHsH containing CMVpro, and an anti-human gp130 receptor containing CMVpro. The antibody L chain expression vector pCMV-ALsL was obtained.
(3)CAGプロモーターを含む抗体発現ベクターの作製
(3-1)配列番号54に記載の配列からなるCAGプロモーター領域(CAGpro)のポリヌクレオチドを全合成しプラスミドにクローニングした(GENEWIZ社に委託)。
(3-2)(3-1)で合成したプラスミドを鋳型として、配列番号55(5’-AGA[TCTAGA]GTGAGCCCCACGTTCTGCTTCAC-3’)および配列番号56(5’-[GCGGCCGC]TTT<GAATTC>GCCGCCGGTCACACGCCAGAAGCC-3’)に記載のポリヌクレオチドをプライマー(配列番号55の角かっこ内は制限酵素XbaIの認識配列、配列番号56の角かっこ内は制限酵素NotIの認識配列、配列番号56の山かっこ内は制限酵素EcoRIの認識配列)として表6に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、CAGプロモーターを増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をCAG-Pと命名した。
(3-3)(3-2)で作製したCAG-Pを制限酵素XbaIおよびEcoRIで消化し、アガロースゲル抽出を用いて精製した。
(3-4)(3-3)で得られた制限酵素消化産物と、(1-3)で調製したEFdproを除いた各プラスミドとをライゲーションした。ライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、CAGproを含む抗ヒトgp130受容体抗体H鎖発現ベクターpCAG-AHsH、およびCAGproを含む抗ヒトgp130受容体抗体L鎖発現ベクターpCAG-ALsLを得た。
(3) Preparation of antibody expression vector containing CAG promoter (3-1) The polynucleotide of the CAG promoter region (CAGpro) consisting of the sequence shown in SEQ ID NO: 54 was totally synthesized and cloned into a plasmid (consigned to GENEWIZ).
(3-2) Using the plasmid synthesized in (3-1) as a template, SEQ ID NO: 55 (5'-AGA [TCTAGA] GTGAGCCCACGTTCTGCTTCAC-3') and SEQ ID NO: 56 (5'-[GCGGCCGC] TTT <GAATTC> GCCGCCGGTCACACGCCAGAGAGCC. -3') Primer (restriction enzyme XbaI recognition sequence in the square bracket of SEQ ID NO: 55, restriction enzyme NotI recognition sequence in the square bracket of SEQ ID NO: 56, and mountain bracket of SEQ ID NO: 56 A reaction solution having the composition shown in Table 6 was prepared as a restriction enzyme EcoRI recognition sequence), and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds and the first step at 55 ° C. for 5 seconds. PCR was performed by repeating the reaction of 2 steps, the 3rd step for 90 seconds at 72 ° C. as 1 cycle for 30 cycles, and the CAG promoter was amplified. Then, the PCR product obtained by purification by agarose gel extraction was named CAG-P.
(3-3) CAG-P prepared in (3-2) was digested with restriction enzymes XbaI and EcoRI, and purified using agarose gel extraction.
(3-4) The restriction enzyme digestion products obtained in (3-3) and each plasmid prepared in (1-3) excluding EFdpro were ligated. By transforming Escherichia coli JM109 strain with a ligation product and extracting a plasmid from the cultured transformant, an anti-human gp130 receptor antibody H chain expression vector pCAG-AHsH containing CAGpro, and an anti-human gp130 receptor containing CAGpro. The antibody L chain expression vector pCAG-ALsL was obtained.
(4)(1)から(3)で得られた抗体発現ベクター(計6種類)を、実施例1(14)と同様の方法で配列解析を行なった。なおシークエンス用プライマーとして、pSV40-AHsH、pCMV-AHsHの場合は配列番号15および34を、pCAG-AHsHの場合は配列番号15、34および57(5’-CGTACGGAGCCCCGCACCCGAAGCCGG-3’)を、pSV40-ALsL、pCMV-ALsLの場合は配列番号15および37を、pCAG-ALsLの場合は配列番号15、37および57に記載の配列からなるオリゴヌクレオチドを用いた。 (4) The antibody expression vectors (6 types in total) obtained in (1) to (3) were sequence-analyzed by the same method as in Example 1 (14). As primers for sequencing, pSV40-AHsH, pCMV-AHsH, SEQ ID NOs: 15 and 34, pCAG-AHsH, SEQ ID NOs: 15, 34 and 57 (5'-CGTACGGAGCCCCGCACCCGAAGCCGG-3'), pSV40-ALsL. , PCMV-ALsL used SEQ ID NOs: 15 and 37, and pCAG-ALsL used oligonucleotides consisting of the sequences set forth in SEQ ID NOs: 15, 37 and 57.
配列解析の結果、前記抗体発現ベクターはいずれも設計通りのプロモーターを含んでいることを確認した。 As a result of sequence analysis, it was confirmed that all of the antibody expression vectors contained the promoter as designed.
実施例4 抗体発現量比較(その2)
抗体発現ベクターとして、実施例2で作製したpEFd-AHsHおよびpEFd-ALsL、比較例1で作製したpEF1α-AHsHおよびpEF1α-ALsL、比較例3で作製したpSV40-AHsHおよびpSV40-ALsL、pCMV-AHsHおよびpCMV-ALsL、ならびにpCAG-AHsHおよびpCAG-ALsLを用いた他は、実施例3と同様の方法で3日間培養後の抗体の発現量をELISAにて比較した。
Example 4 Comparison of antibody expression levels (Part 2)
As antibody expression vectors, pEFd-AHsH and pEFd-ALsL prepared in Example 2, pEF1α-AHsH and pEF1α-ALsL prepared in Comparative Example 1, pSV40-AHsH and pSV40-ALsL, pCMV-AHsH prepared in Comparative Example 3 And pCMV-ALsL, and pCAG-AHsH and pCAG-ALsL were used, and the expression level of the antibody after culturing for 3 days was compared by ELISA in the same manner as in Example 3.
CHO細胞K1株を宿主に用いたときの結果を図4に、COS細胞を宿主に用いたときの結果を図5に示す。いずれの宿主を用いた場合も、プロモーターとして本発明のプロモーターであるEFdpro(EF1apro(配列番号12)のうち621番目のグアニンから798番目のグアニンまでのヌクレオチドが欠損)を用いることで、従来のプロモーター(SV40pro、CMVpro、CAGpro)と比較し抗体発現量が向上していることがわかる。 The results when the CHO cell K1 strain was used as the host are shown in FIG. 4, and the results when the COS cells were used as the host are shown in FIG. Regardless of which host is used, the promoter of the present invention, EFdpro (deficient in nucleotides from 621st guanine to 798th guanine in EF1apro (SEQ ID NO: 12)), is used as a promoter. It can be seen that the antibody expression level is improved as compared with (SV40pro, CMVpro, CAGpro).
実施例5 抗体発現ベクターの作製(その5)
実施例2で作製した抗体発現ベクターpEFd-AHsHおよびpEFd-ALsLの分泌シグナル配列を変更したものを作製した。
Example 5 Preparation of antibody expression vector (No. 5)
The antibody expression vectors pEFd-AHsH and pEFd-ALsL prepared in Example 2 were prepared by modifying the secretory signal sequences.
(1)実施例2(1)で作製したpFU-hG1を鋳型とし、配列番号58(5’-ACAGGGGTCAATTCACAGGTTCAACTCCAG-3’)、配列番号59(5’-GCCTCTTCCCGGGCCCAGGTTCAACTCCAG-3’)、配列番号60(5’-CTCTTCTGCCTACTCTCAGGTTCAACTCCAG-3’)および配列番号61(5’-CTTGTCACCAATTCGCAGGTTCAACTCCAG-3’)のいずれかに記載の配列からなるオリゴヌクレオチドをフォワードプライマーとし、配列番号25に記載の配列からなるオリゴヌクレオチドをリバースプライマーとして、表4に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で60秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、アガロースゲル抽出による精製を行なった。得られたPCR産物のうち、配列番号58に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をBH-Pと命名し、配列番号59に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をCH-Pと命名し、配列番号60に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をDH-Pと命名し、配列番号61に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をEH-Pと命名した。 (1) Using pFU-hG1 prepared in Example 2 (1) as a template, SEQ ID NO: 58 (5'-ACAGGGGTCAATTCCACAGGTTCACTACG-3'), SEQ ID NO: 59 (5'-GCCTTTCCCCCGGGCCCAGGTTCAACTCCAG-3'), SEQ ID NO: 60 (5). The oligonucleotide consisting of the sequence set forth in any of'-CTCTTCTGCCTACTCTCAGGTTCAACTCCAG-3') and SEQ ID NO: 61 (5'-CTTGTCACCAAATTTCGCAGGGTCAACTCCAG-3') is used as a forward primer, and the oligonucleotide consisting of the sequence set forth in SEQ ID NO: 25 is used as a reverse primer. The reaction solution having the composition shown in Table 4 is prepared, and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, and 72 ° C. PCR was performed by repeating the reaction with the third step for 60 seconds as one cycle for 30 cycles, and purification was performed by agarose gel extraction. Among the obtained PCR products, the PCR product obtained when the oligonucleotide consisting of the sequence shown in SEQ ID NO: 58 was used as a forward primer was named BH-P, and the oligonucleotide consisting of the sequence shown in SEQ ID NO: 59 was named BH-P. The PCR product obtained when the above was used as the forward primer was named CH-P, and the PCR product obtained when the oligonucleotide consisting of the sequence shown in SEQ ID NO: 60 was used as the forward primer was named DH-P. , The PCR product obtained when the oligonucleotide consisting of the sequence shown in SEQ ID NO: 61 was used as a forward primer was named EHP-P.
(2)実施例2(2)で作製したpFU-hLを鋳型とし、配列番号62(5’-CCAGGCTCCACTGGTGACATTCAGATGAC-3’)、配列番号63(5’-GCCTCTTCCCGGGCCGACATTCAGATGAC-3’)、配列番号64(5’-CTCTTCTGCCTACTCTGACATTCAGATGAC-3’)および配列番号65(5’-CTTGTCACCAACTCGGACATTCAGATGAC-3’)のいずれかに記載の配列からなるオリゴヌクレオチドをフォワードプライマーとして、配列番号27に記載の配列からなるオリゴヌクレオチドをリバースプライマーとして、表4に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で60秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、アガロースゲル抽出による精製を行なった。得られたPCR産物のうち、配列番号62に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をBL-Pと命名し、配列番号63に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をCL-Pと命名し、配列番号64に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をDL-Pと命名し、配列番号65に記載の配列からなるオリゴヌクレオチドをフォワードプライマーとしたときに得られたPCR産物をEL-Pと命名した。 (2) Using the pFU-hL prepared in Example 2 (2) as a template, SEQ ID NO: 62 (5'-CCAGGCTCACTGGGTGACATTCAGATGAC-3'), SEQ ID NO: 63 (5'-GCCTTTCCCGGGCCGACATTCAGATGAC-3'), SEQ ID NO: 64 (5). The oligonucleotide consisting of the sequence set forth in any of'-CTCTTCTGCCTACTCTGACATTCAGATAGAC-3') and SEQ ID NO: 65 (5'-CTTGTCACCACACTCGGACATTCAGATGAC-3') is used as a forward primer, and the oligonucleotide consisting of the sequence set forth in SEQ ID NO: 27 is used as a reverse primer. The reaction solution having the composition shown in Table 4 is prepared, and after heat-treating the reaction solution at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, and 72 ° C. PCR was performed by repeating the reaction with the third step for 60 seconds as one cycle for 30 cycles, and purification was performed by agarose gel extraction. Among the obtained PCR products, the PCR product obtained when the oligonucleotide consisting of the sequence shown in SEQ ID NO: 62 was used as a forward primer was named BL-P, and the oligonucleotide consisting of the sequence shown in SEQ ID NO: 63 was named BL-P. The PCR product obtained when the above was used as the forward primer was named CL-P, and the PCR product obtained when the oligonucleotide consisting of the sequence shown in SEQ ID NO: 64 was used as the forward primer was named DL-P. , The PCR product obtained when the oligonucleotide consisting of the sequence shown in SEQ ID NO: 65 was used as a forward primer was named EL-P.
(3)各シグナル配列を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドを作製した。 (3) A polynucleotide encoding an anti-human gp130 receptor antibody H chain to which each signal sequence was added was prepared.
(3-1)シグナル配列BH(配列番号66)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチド
(1)で作製したBH-Pを鋳型とし、配列番号66に記載のシグナル配列BH(MKCSWVIFFLLAVVTGVNS)をコードするポリヌクレオチドである配列番号67(5’-ATGAAATGCAGCTGGGTTATCTTCTTCCTGCTGGCAGTGGTTACAGGGGTCAATTCA-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号68(5’-CTA[GAATTC]GCCACCATGAAATGCAGCTGG-3’)および配列番号25に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、表5に示す組成の反応液を調製し、当該反応液を98℃で5分間の熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル繰り返すことでPCRを行ない、シグナル配列BHを付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドを増幅した。その後、アガロースゲル抽出による精製を行ない得られたPCR産物をBHs-Pと命名した。
(3-1) The signal sequence set forth in SEQ ID NO: 66 using BH-P prepared with the polynucleotide (1) encoding the anti-human gp130 receptor antibody H chain to which the signal sequence BH (SEQ ID NO: 66) was added as a template. The polynucleotide having the sequence described in SEQ ID NO: 67 (5'-ATGAAATGCAGCTGGTATTTTCTTCTCTGCTGGCAGGTGGTTACAGGGGTCAATTCA-3'), which is a polynucleotide encoding BH (MKCSWVIFFLLAVVTGVNS), is used as a signal DNA, and SEQ ID NO: 68 is used as a signal DNA. Using the oligonucleotide consisting of the sequence shown in') and SEQ ID NO: 25 as a primer (the recognition sequence of the limiting enzyme EcoRI in the square brackets), prepare a reaction solution having the composition shown in Table 5, and use the reaction solution at 98 ° C. for 5 After the heat treatment for 1 minute, PCR was performed by repeating the reaction of 30 cycles including the first step at 98 ° C. for 10 seconds, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 90 seconds. The polynucleotide encoding the anti-human gp130 receptor antibody H chain to which the signal sequence BH was added was amplified. Then, the PCR product obtained by purification by agarose gel extraction was named BHs-P.
(3-2)シグナル配列C(配列番号69)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチド
(1)で作製したCH-Pを鋳型とし、配列番号69に記載のシグナル配列C(MTRLTVLALLAGLLASSRA)をコードするポリヌクレオチドである、配列番号70(5’-ATGACCCGGCTGACCGTGCTGGCCCTGCTGGCTGGCCTGCTCGCCTCTTCCCGGGCC-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号71(5’-CTA[GAATTC]GCCACCATGACCCGGCTGACC-3’)および配列番号25に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列Cを付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドをCHs-Pと命名した。
(3-2) The signal sequence set forth in SEQ ID NO: 69 using CH-P prepared with the polynucleotide (1) encoding the anti-human gp130 receptor antibody H chain to which the signal sequence C (SEQ ID NO: 69) was added as a template. The polynucleotide having the sequence described in SEQ ID NO: 70 (5'-ATGACCCGCGCTGACCGTGCTGGCCCTGCTGCGCTGGCCTGCTCGCCTCTTCCCGGGCC-3'), which is a polynucleotide encoding C (MTRLTVALLAGLLASSRA), is used as a signal DNA, and SEQ ID NO: 71 (5'CCGCCACCGATCCGCCACGCCACCGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCACGCCGCCCGCC. The oligonucleotide consisting of the sequence shown in 3') and SEQ ID NO: 25 was PCR and purified in the same manner as in (3-1) as a primer (the recognition sequence of the restriction enzyme EcoRI in the square brackets). The polynucleotide encoding the anti-human gp130 receptor antibody H chain to which the signal sequence C was added, which is the obtained PCR product, was named CHs-P.
(3-3)シグナル配列D(配列番号72)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチド
(1)で作製したDH-Pを鋳型とし、配列番号72に記載のシグナル配列D(MKWVTFISLLFLFSSAYS)をコードするポリヌクレオチドである、配列番号73(5’-ATGAAGTGGGTCACCTTCATCTCTCTGCTGTTCCTGTTCTCTTCTGCCTACTCT-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号74(5’-CTA[GAATTC]GCCACCATGAAGTGGGTCACC-3’)および配列番号25に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列Dを付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドをDHs-Pと命名した。
(3-3) The signal sequence set forth in SEQ ID NO: 72 using DH-P prepared with the polynucleotide (1) encoding the anti-human gp130 receptor antibody H chain to which signal sequence D (SEQ ID NO: 72) was added as a template. The polynucleotide consisting of the sequence described in SEQ ID NO: 73 (5'-ATGAAGTGGGGTCACTTCACTCTCTTGCTGTTCGTTCTTCTTGCCTACCT-3'), which is a polynucleotide encoding D (MKWVTFISLLFLFSSAYS), is used as a signal DNA, and SEQ ID NO: 74 (5'-GTGACCAT) The oligonucleotide consisting of the sequence shown in 3') and SEQ ID NO: 25 was PCR and purified in the same manner as in (3-1) as a primer (the recognition sequence of the restriction enzyme EcoRI in the square brackets). The polynucleotide encoding the anti-human gp130 receptor antibody H chain to which the signal sequence D was added, which is the obtained PCR product, was named DHs-P.
(3-4)シグナル配列E(配列番号75)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチド
(1)で作製したEH-Pを鋳型とし、配列番号75に記載のシグナル配列E(MYRMQLLSCIALSLALVTNS)をコードするポリヌクレオチドである、配列番号76(5’-ATGTACAGGATGCAACTCCTGTCTTGCATTGCACTAAGTCTTGCACTTGTCACCAATTCG-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号77(5’-CTA[GAATTC]GCCACCATGTACAGGATGCAAC-3’)および配列番号25に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列Eを付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドをEHs-Pと命名した。
(3-4) The signal sequence set forth in SEQ ID NO: 75 using EH-P prepared with the polynucleotide (1) encoding the anti-human gp130 receptor antibody H chain to which the signal sequence E (SEQ ID NO: 75) was added as a template. The polynucleotide having the sequence described in SEQ ID NO: 76 (5'-ATGTACAGGATGCAACTCCCTGTCTTGCATTGCACTAAGTCTGCACTTGTCACCAATTTCG-3'), which is a polynucleotide encoding E (MYRMQLSCIALSLALVTNS), is used as a signal DNA, and the polynucleotide consisting of the sequence described in E (MYRMQLSCIALSLALVTNS) is used as a signal DNA, and SEQ ID NO: 77. The oligonucleotide consisting of the sequence shown in 3') and SEQ ID NO: 25 was PCR and purified in the same manner as in (3-1) as a primer (the recognition sequence of the restriction enzyme EcoRI in the square brackets). The polynucleotide encoding the anti-human gp130 receptor antibody H chain to which the signal sequence E was added, which is the obtained PCR product, was named EHs-P.
(4)各シグナル配列を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドを作製した。 (4) A polynucleotide encoding an anti-human gp130 receptor antibody L chain to which each signal sequence was added was prepared.
(4-1)シグナル配列BL(配列番号78)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチド
(2)で作製したBL-Pを鋳型とし、配列番号78に記載のシグナル配列BL(MESDTLLLWVLLLWVPGSTG)をコードするポリヌクレオチドである、配列番号79(5’-ATGGAGTCAGACACACTCCTGCTATGGGTGCTGCTGCTCTGGGTTCCAGGCTCCACTGGT-3’)に記載の配列からなるポリヌクレオチドをシグナルDNAとし、配列番号80(5’-CTA[GAATTC]GCCACCATGGAGTCAGACAC-3’)および配列番号27に記載の配列からなるオリゴヌクレオチドをプライマー(角かっこ内は制限酵素EcoRIの認識配列)として、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列BLを付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドをBLs-Pと命名した。
(4-1) The signal sequence set forth in SEQ ID NO: 78, using BL-P prepared with the polynucleotide (2) encoding the anti-human gp130 receptor antibody L chain to which the signal sequence BL (SEQ ID NO: 78) was added as a template. The polynucleotide having the sequence described in SEQ ID NO: 79 (5'-ATGGAGTCAGACACATCCCTGTCATGGTGTGCTGCTGCTCTGGGTTCCAGGTCCACTGGT-3'), which is a polynucleotide encoding BL (MESDTLLLWVLLLWVPGSTG), is used as a signal DNA, and SEQ ID NO: 80 is used as a signal DNA. The oligonucleotide consisting of the sequence shown in 3') and SEQ ID NO: 27 was PCR and purified in the same manner as in (3-1) as a primer (the recognition sequence of the restriction enzyme EcoRI in the square brackets). The polynucleotide encoding the anti-human gp130 receptor antibody L chain to which the signal sequence BL was added, which is the obtained PCR product, was named BLs-P.
(4-2)シグナル配列C(配列番号69)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチド
(2)で作製したCL-Pを鋳型とし、配列番号70に記載の配列からなる、シグナル配列C(配列番号69)をコードするポリヌクレオチドをシグナルDNAとし、配列番号71および配列番号27に記載の配列からなるオリゴヌクレオチドをプライマーとして、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列Cを付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドをCLs-Pとした。
(4-2) Using CL-P prepared from the polynucleotide (2) encoding the anti-human gp130 receptor antibody L chain to which the signal sequence C (SEQ ID NO: 69) was added as a template, from the sequence set forth in SEQ ID NO: 70. The polynucleotide encoding the signal sequence C (SEQ ID NO: 69) is used as the signal DNA, and the oligonucleotide consisting of the sequences set forth in SEQ ID NO: 71 and SEQ ID NO: 27 is used as a primer, and PCR and purification are carried out in the same manner as in (3-1). did. The polynucleotide encoding the anti-human gp130 receptor antibody L chain to which the signal sequence C was added, which is the obtained PCR product, was designated as CLs-P.
(4-3)シグナル配列D(配列番号72)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチド
(2)で作製したDL-Pを鋳型とし、配列番号73に記載の配列からなる、シグナル配列D(配列番号72)をコードするポリヌクレオチドをシグナルDNAとし、配列番号73および配列番号27に記載の配列からなるオリゴヌクレオチドをプライマーとして、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列Dを付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドをDLs-Pとした。
(4-3) From the sequence set forth in SEQ ID NO: 73, DL-P prepared with the polynucleotide (2) encoding the anti-human gp130 receptor antibody L chain to which the signal sequence D (SEQ ID NO: 72) was added was used as a template. The polynucleotide encoding the signal sequence D (SEQ ID NO: 72) is used as the signal DNA, and the oligonucleotide consisting of the sequences set forth in SEQ ID NO: 73 and SEQ ID NO: 27 is used as a primer, and PCR and purification are carried out in the same manner as in (3-1). did. The polynucleotide encoding the anti-human gp130 receptor antibody L chain to which the signal sequence D was added, which is the obtained PCR product, was designated as DLs-P.
(4-4)シグナル配列E(配列番号75)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチド
(2)で作製したEL-Pを鋳型とし、配列番号76に記載の配列からなる、シグナル配列E(配列番号75)をコードするポリヌクレオチドをシグナルDNAとし、配列番号77および配列番号27に記載の配列からなるオリゴヌクレオチドをプライマーとして、(3-1)と同様にPCRおよび精製した。得られたPCR産物である、シグナル配列Eを付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドをELs-Pとした。
(4-4) From the sequence set forth in SEQ ID NO: 76, using EL-P prepared with the polynucleotide (2) encoding the anti-human gp130 receptor antibody L chain to which the signal sequence E (SEQ ID NO: 75) was added as a template. The polynucleotide encoding the signal sequence E (SEQ ID NO: 75) is used as the signal DNA, and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 77 and SEQ ID NO: 27 is used as a primer, and PCR and purification are carried out in the same manner as in (3-1). did. The polynucleotide encoding the anti-human gp130 receptor antibody L chain to which the signal sequence E was added, which is the obtained PCR product, was designated as ELs-P.
(5)(3)で作製したBHs-P、CHs-P、DHs-PおよびEHs-P、ならびに実施例1で作製したpEFdを、それぞれ制限酵素EcoRIおよびNotIで消化し、精製した。制限酵素処理したpEFdに対して、制限酵素処理したBHs-P、CHs-P、DHs-PまたはEHs-Pをライゲーションした。 (5) BHs-P, CHs-P, DHs-P and EHs-P prepared in (3), and pEFd prepared in Example 1 were digested with restriction enzymes EcoRI and NotI, respectively, and purified. BHs-P, CHs-P, DHs-P or EHs-P treated with restriction enzymes were ligated to pEFd treated with restriction enzymes.
(6)(5)で得られたライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、シグナル配列BHを付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-BHsH、シグナル配列C(配列番号69:アズロシジン前駆体の分泌シグナル)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-CsH、シグナル配列D(配列番号72:ヒト血清アルブミンの分泌シグナル)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-DsH、ならびにシグナル配列E(配列番号75:ヒトIL-2の分泌シグナル)を付加した抗ヒトgp130受容体抗体H鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-EsH、をそれぞれ得た。 (6) The E. coli JM109 strain was transformed with the ligation product obtained in (5), and the plasmid was extracted from the cultured transformant to encode an anti-human gp130 receptor antibody H chain to which the signal sequence BH was added. Anti-human gp130 receptor antibody H chain-encoding antibody expression vector pEFd- CsH, an antibody expression vector pEFd-DsH containing a polynucleotide encoding an anti-human gp130 receptor antibody H chain to which signal sequence D (SEQ ID NO: 72: secretory signal of human serum albumin) is added, and signal sequence E (SEQ ID NO: 75). : An antibody expression vector pEFd-EsH containing a polynucleotide encoding an anti-human gp130 receptor antibody H chain to which a human IL-2 secretory signal) was added was obtained.
(7)(4)で作製したBLs-P、CLs-P、DLs-PおよびELs-P、ならびに実施例1で作製したpEFdを、それぞれ制限酵素EcoRIおよびNotIで消化し精製した。制限酵素処理したpEFdに対して、制限酵素処理したBLs-P、CLs-P、DLs-PまたはELs-Pをライゲーションした。 (7) BLs-P, CLs-P, DLs-P and ELs-P prepared in (4), and pEFd prepared in Example 1 were digested and purified with restriction enzymes EcoRI and NotI, respectively. BLs-P, CLs-P, DLs-P or ELs-P treated with restriction enzymes were ligated to pEFd treated with restriction enzymes.
(8)(7)で得られたライゲーション産物で大腸菌JM109株を形質転換し、培養した形質転換体からプラスミドを抽出することで、シグナル配列BLを付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-BLsL、シグナル配列C(配列番号69:アズロシジン前駆体の分泌シグナル)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-CsL、シグナル配列D(配列番号72:ヒト血清アルブミンの分泌シグナル)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-DsL、ならびにシグナル配列E(配列番号75:ヒトIL-2の分泌シグナル)を付加した抗ヒトgp130受容体抗体L鎖をコードするポリヌクレオチドを含む抗体発現ベクターpEFd-EsL、をそれぞれ得た。 (8) By transforming the E. coli JM109 strain with the ligation product obtained in (7) and extracting the plasmid from the cultured transformant, the anti-human gp130 receptor antibody L chain to which the signal sequence BL was added was encoded. Anti-human gp130 receptor antibody L chain-encoding antibody expression vector pEFd- CsL, an antibody expression vector pEFd-DsL containing a polynucleotide encoding an anti-human gp130 receptor antibody L chain to which signal sequence D (SEQ ID NO: 72: secretory signal of human serum albumin) is added, and signal sequence E (SEQ ID NO: 75). : An antibody expression vector pEFd-EsL containing a polynucleotide encoding an anti-human gp130 receptor antibody L chain to which a human IL-2 secretion signal) was added was obtained.
実施例6 抗体発現量比較(その3)
分泌シグナル配列の違いによる抗体発現量の違いを検討した。
Example 6 Comparison of antibody expression levels (Part 3)
We investigated the difference in antibody expression level due to the difference in secretory signal sequence.
抗体発現ベクターとして、実施例2で作製したpEFd-AHsHおよびpEFd-ALsL、実施例5で作製したpEFd-BHsHおよびpEFd-BLsL、pEFd-CsHおよびpEFd-CsL、pEFd-DsHおよびpEFd-DsL、ならびにpEFd-EsHおよびpEFd-EsLを用いた他は、実施例3と同様の方法で3日間培養後の抗体の発現量をELISAにて比較した。 As antibody expression vectors, pEFd-AHsH and pEFd-ALsL prepared in Example 2, pEFd-BHsH and pEFd-BLsL prepared in Example 5, pEFd-CsH and pEFd-CsL, pEFd-DsH and pEFd-DsL, and The expression level of the antibody after culturing for 3 days was compared by ELISA in the same manner as in Example 3 except that pEFd-EsH and pEFd-EsL were used.
CHO細胞K1株を宿主に用いたときの結果を図6に、COS細胞を宿主に用いたときの結果を図7に示す。いずれの宿主を用いた場合も、分泌シグナルとしてシグナル配列C(配列番号69:アズロシジン前駆体の分泌シグナル)を用いたときが最も抗体発現量が多く、以下、シグナル配列B(H鎖:配列番号66、L鎖:配列番号78)、シグナル配列A(H鎖:配列番号28、L鎖:配列番号31)、シグナル配列D(配列番号72:ヒト血清アルブミンの分泌シグナル)、シグナル配列E(配列番号75:ヒトIL-2の分泌シグナル)の順に抗体発現量が多かった。 The results when the CHO cell K1 strain was used as the host are shown in FIG. 6, and the results when the COS cells were used as the host are shown in FIG. Regardless of which host was used, the expression level of the antibody was highest when the signal sequence C (SEQ ID NO: 69: secretory signal of azlocidine precursor) was used as the secretory signal, and hereinafter, the signal sequence B (H chain: SEQ ID NO:) was used. 66, L chain: SEQ ID NO: 78), signal sequence A (H chain: SEQ ID NO: 28, L chain: SEQ ID NO: 31), signal sequence D (SEQ ID NO: 72: secretory signal of human serum albumin), signal sequence E (sequence). The antibody expression level was higher in the order of No. 75: human IL-2 secretion signal).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017244251A JP7081139B2 (en) | 2017-12-20 | 2017-12-20 | New promoter and expression vector containing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017244251A JP7081139B2 (en) | 2017-12-20 | 2017-12-20 | New promoter and expression vector containing it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019106976A JP2019106976A (en) | 2019-07-04 |
JP7081139B2 true JP7081139B2 (en) | 2022-06-07 |
Family
ID=67178230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017244251A Active JP7081139B2 (en) | 2017-12-20 | 2017-12-20 | New promoter and expression vector containing it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7081139B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011520442A (en) | 2008-05-14 | 2011-07-21 | ジャワハーラル ネール センター フォー アドヴァンスド サイエンティフィック リサーチ | DNA sequence of TAT, gene construct, vaccine and methods thereof |
JP2015500656A (en) | 2011-12-22 | 2015-01-08 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Combinations of expression vector elements, novel production cell generation methods, and their use for recombinant production of polypeptides |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3051411B2 (en) * | 1989-03-14 | 2000-06-12 | 持田製薬株式会社 | Novel DNA and expression plasmid containing it |
-
2017
- 2017-12-20 JP JP2017244251A patent/JP7081139B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011520442A (en) | 2008-05-14 | 2011-07-21 | ジャワハーラル ネール センター フォー アドヴァンスド サイエンティフィック リサーチ | DNA sequence of TAT, gene construct, vaccine and methods thereof |
JP2015500656A (en) | 2011-12-22 | 2015-01-08 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Combinations of expression vector elements, novel production cell generation methods, and their use for recombinant production of polypeptides |
Non-Patent Citations (2)
Title |
---|
Wakabayashi‐Ito N et al,Characterization of the Regulatory Elements in the Promoter of the Human Elongation Factor-1α Gene,Journal of Biological Chemistry,1994年,Vol.269(47),pp. 29831-29837 |
Zheng C et al.,All human EF1α promoters are not equal: markedly affect gene expression in constructs from different sources,Int. J. Med. Sci.,2014年,Vol. 11(5),pp. 404-408 |
Also Published As
Publication number | Publication date |
---|---|
JP2019106976A (en) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10508154B2 (en) | Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells | |
Bradbury et al. | Beyond natural antibodies: the power of in vitro display technologies | |
CN104854133B (en) | It is used to prepare the best heavy chain and light chain signal peptide of recombinant antibodies therapeutic agent | |
EP2152872B1 (en) | Method for manufacturing a recombinant polyclonal protein | |
JP6343011B2 (en) | Bicistronic expression vector for antibody expression and antibody production method using the same | |
AU2020453086B2 (en) | Anti-human interleukin 23 monoclonal antibody and application thereof | |
TW200914612A (en) | Promoter | |
BR112014014239B1 (en) | METHOD FOR SELECTING A STABLE TRANSFECTED RECOMBINANT MAMMALIAN CELL, METHOD FOR PRODUCING AN ANTIBODY AND EXPRESSION VECTOR | |
KR20160003705A (en) | Expression process | |
WO2022199106A1 (en) | Chi3l1 antibody, applications thereof, nucleic acids, recombinant expression vector system, and host cell | |
CN113603775A (en) | Anti-human interleukin-33 monoclonal antibody and its application | |
CN108026180A (en) | Anti- hydroxyl putrescine lysine antibody and application thereof | |
US20090110632A1 (en) | Biological materials and uses thereof | |
JP7245373B2 (en) | Method for controlling affinity of antibody for antigen, antibody with altered affinity for antigen, and method for producing the same | |
JP7081139B2 (en) | New promoter and expression vector containing it | |
CN112912392A (en) | Method for screening multispecific antibodies using recombinase-mediated cassette exchange | |
US12195553B2 (en) | Development of recombinant chicken IgY monoclonal antibody and scFv antibodies raised against human tymidine kinase 1 expressed in mammalian cells and use thereof | |
CN113330027B (en) | Methods for producing multimeric proteins in eukaryotic host cells | |
JP2013509188A (en) | SORF constructs and multiple gene expression | |
Lao-Gonzalez et al. | Screening and selection strategy for the establishment of biosimilar to trastuzumab-expressing CHO-K1 cell lines | |
EP4151651A1 (en) | Method for improving affinity of anti-cytokine antibody for antigen, method for producing anti-cytokine antibody, and anti-cytokine antibody | |
CN105399830B (en) | Anti-EGFR humanized monoclonal antibody, its preparation method and use | |
WO2014126254A1 (en) | Membrane-binding protein expression vector | |
JP2020188737A (en) | Production method of antibody with improved antibody dependent cell mediated cytotoxicity activity | |
US20110313138A1 (en) | Method for Producing Proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220509 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7081139 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |