[go: up one dir, main page]

JP7078890B2 - Secondary battery controller - Google Patents

Secondary battery controller Download PDF

Info

Publication number
JP7078890B2
JP7078890B2 JP2018023401A JP2018023401A JP7078890B2 JP 7078890 B2 JP7078890 B2 JP 7078890B2 JP 2018023401 A JP2018023401 A JP 2018023401A JP 2018023401 A JP2018023401 A JP 2018023401A JP 7078890 B2 JP7078890 B2 JP 7078890B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
positive electrode
electrolytic solution
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018023401A
Other languages
Japanese (ja)
Other versions
JP2019139999A (en
Inventor
宏司 鬼塚
伸光 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018023401A priority Critical patent/JP7078890B2/en
Publication of JP2019139999A publication Critical patent/JP2019139999A/en
Application granted granted Critical
Publication of JP7078890B2 publication Critical patent/JP7078890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本開示は、二次電池が過充電状態であるか否かを判定する技術に関する。 The present disclosure relates to a technique for determining whether or not a secondary battery is in an overcharged state.

特開2013-118090号公報(特許文献1)には、二次電池の充電状態を監視する監視装置が開示されている。この監視装置は、二次電池の負極板の外側に配置される参照極の単位時間あたりの電位変化量を監視し、参照極の単位時間あたりの電位変化量が閾値を超えた場合に二次電池が過充電状態であると判定する。 Japanese Unexamined Patent Publication No. 2013-118090 (Patent Document 1) discloses a monitoring device for monitoring the state of charge of a secondary battery. This monitoring device monitors the amount of potential change per unit time of the reference electrode placed outside the negative electrode plate of the secondary battery, and when the amount of potential change per unit time of the reference electrode exceeds the threshold value, it is secondary. It is determined that the battery is overcharged.

特開2013-118090号公報Japanese Unexamined Patent Publication No. 2013-118090

二次電池が過充電状態である場合には、正極および負極が熱力学的に不安定な状態となるため、二次電池が過熱状態となり得る。二次電池の使用を過剰に制限することなく過充電による過熱を抑制するためには、二次電池が過充電状態であるか否かを判定するための基準となる閾値(以下「過充電基準閾値」ともいう)を適切に設定し、二次電池の充電状態を示すパラメータが過充電基準閾値を超えた場合には二次電池の充電を制限することが望ましい。 When the secondary battery is in an overcharged state, the positive electrode and the negative electrode are in a thermodynamically unstable state, so that the secondary battery may be in an overheated state. In order to suppress overheating due to overcharging without excessively restricting the use of the secondary battery, a threshold that serves as a reference for determining whether or not the secondary battery is in an overcharged state (hereinafter referred to as "overcharge criterion"). It is desirable to appropriately set the "threshold") and limit the charging of the secondary battery when the parameter indicating the charge state of the secondary battery exceeds the overcharge reference threshold.

二次電池の過充電耐性(過充電による過熱の生じ難さ)は、二次電池内の反応速度の影響を受ける。すなわち、二次電池内の反応速度が低下した場合には、その反応に起因する発熱速度(単位時間あたりの発熱量)が低下するため、過充電による過熱は生じ難くなる。そして、二次電池内の反応速度は、二次電池の温度履歴および使用期間によって変化し得る。したがって、二次電池の過充電耐性は、二次電池の温度履歴および使用期間によって変化し得ることになる。 The overcharge resistance of the secondary battery (difficulty of overheating due to overcharging) is affected by the reaction speed in the secondary battery. That is, when the reaction rate in the secondary battery decreases, the heat generation rate (heat generation amount per unit time) caused by the reaction decreases, so that overheating due to overcharging is less likely to occur. The reaction rate in the secondary battery may change depending on the temperature history of the secondary battery and the period of use. Therefore, the overcharge resistance of the secondary battery can change depending on the temperature history of the secondary battery and the period of use.

しかしながら、特許文献1においては、参照極の単位時間あたりの電位変化量と比較される閾値(過充電基準閾値)が、二次電池の温度履歴および使用期間によって決まる値ではなく、二次電池内の反応速度を反映した値となっていない。そのため、特許文献1に開示された技術では、過充電であるか否かを正確に判定することができず、その影響で二次電池の使用が過剰に制限されたり、あるいは過充電による過熱が生じたりすることが懸念される。 However, in Patent Document 1, the threshold value (overcharge reference threshold value) compared with the amount of potential change per unit time of the reference electrode is not a value determined by the temperature history and usage period of the secondary battery, but is inside the secondary battery. The value does not reflect the reaction rate of. Therefore, in the technique disclosed in Patent Document 1, it is not possible to accurately determine whether or not the battery is overcharged, and as a result, the use of the secondary battery is excessively restricted, or overheating due to overcharging occurs. There is concern that it will occur.

本開示は、上述の課題を解決するためになされたものであって、その目的は、二次電池の使用を過剰に制限することなく、過充電による過熱を抑制することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to suppress overheating due to overcharging without excessively restricting the use of the secondary battery.

本開示による制御装置は、正極と負極と電解液とを備える二次電池の制御装置であって、二次電池の温度を検出するように構成された温度検出部と、二次電池の充電状態を示すパラメータが過充電基準閾値を超えた場合に二次電池の充電を制限する制御部とを備える。制御部は、二次電池の温度の履歴および使用期間を用いて、正極の表面に形成される正極皮膜量を示す第1パラメータおよび電解液の塩濃度を示す第2パラメータを算出する。制御部は、算出された第1パラメータおよび第2パラメータを用いて過充電基準閾値を設定する。 The control device according to the present disclosure is a control device for a secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, and has a temperature detection unit configured to detect the temperature of the secondary battery and a charging state of the secondary battery. It is provided with a control unit for limiting the charging of the secondary battery when the parameter indicating the above exceeds the overcharge reference threshold. The control unit calculates a first parameter indicating the amount of the positive electrode film formed on the surface of the positive electrode and a second parameter indicating the salt concentration of the electrolytic solution by using the history of the temperature of the secondary battery and the period of use. The control unit sets the overcharge reference threshold value using the calculated first parameter and second parameter.

二次電池においては、正極皮膜量が増加するほど、正極と電解液との反応速度(正極と電解液との反応に起因する発熱速度)が低下するため、過充電による過熱は生じ難くなる。また、電解液の塩濃度が低下するほど、電解液の分解速度(電解液の分解に起因する発熱速度)が低下するため、過充電による過熱は生じ難くなる。これらの点に鑑み、上記構成においては、過充電基準閾値が、正極皮膜量を示す第1パラメータと電解液の塩濃度を示す第2パラメータとを用いて設定される。これにより、過充電基準閾値を、正極と電解液との反応速度、および電解液の分解速度を反映した値に設定することができる。そのため、過充電基準閾値を、過充電耐性(過充電による過熱の生じ難さ)を考慮した適切な値に設定することができる。その結果、二次電池の使用を過剰に制限することなく、過充電による過熱を抑制することができる。 In the secondary battery, as the amount of the positive electrode film increases, the reaction rate between the positive electrode and the electrolytic solution (the heat generation rate due to the reaction between the positive electrode and the electrolytic solution) decreases, so that overheating due to overcharging is less likely to occur. Further, as the salt concentration of the electrolytic solution decreases, the decomposition rate of the electrolytic solution (heat generation rate due to the decomposition of the electrolytic solution) decreases, so that overheating due to overcharging is less likely to occur. In view of these points, in the above configuration, the overcharge reference threshold value is set by using the first parameter indicating the amount of the positive electrode film and the second parameter indicating the salt concentration of the electrolytic solution. Thereby, the overcharge reference threshold value can be set to a value that reflects the reaction rate between the positive electrode and the electrolytic solution and the decomposition rate of the electrolytic solution. Therefore, the overcharge reference threshold value can be set to an appropriate value in consideration of overcharge resistance (difficulty of overheating due to overcharge). As a result, overheating due to overcharging can be suppressed without excessively restricting the use of the secondary battery.

本開示によれば、二次電池の使用を過剰に制限することなく、過充電による過熱を抑制することができる。 According to the present disclosure, overheating due to overcharging can be suppressed without excessively restricting the use of the secondary battery.

車両の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of a vehicle. 電池の使用前状態における電池の内部状態を模式的に示す図である。It is a figure which shows typically the internal state of a battery in the state before use of a battery. 電池の使用後状態における電池の内部状態を模式的に示す図である。It is a figure which shows typically the internal state of a battery in the state after use of a battery. 充電による電池温度Tbの上昇特性を模式的に示す図である。It is a figure which shows typically the characteristic that the battery temperature Tb rises by charging. ECUが過充電基準閾値Vを設定する際に実行する処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure which is executed when the ECU sets an overcharge reference threshold value V.

以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.

図1は、本実施の形態による制御装置が適用される車両1の全体構成の一例を示す図である。なお、以下では、本実施の形態による制御装置が車両1に搭載される例について説明するが、本実施の形態による制御装置は、必ずしも車両1に搭載されることに限定されるものではない。 FIG. 1 is a diagram showing an example of an overall configuration of a vehicle 1 to which a control device according to the present embodiment is applied. In the following, an example in which the control device according to the present embodiment is mounted on the vehicle 1 will be described, but the control device according to the present embodiment is not necessarily limited to being mounted on the vehicle 1.

車両1は、電池10と、負荷20と、ECU(Electronic Control Unit)100とを備える。車両1は、電池10に蓄えられた電力を用いて走行可能な電動車両(ハイブリッド自動車、電気自動車など)である。 The vehicle 1 includes a battery 10, a load 20, and an ECU (Electronic Control Unit) 100. The vehicle 1 is an electric vehicle (hybrid vehicle, electric vehicle, etc.) that can travel by using the electric power stored in the battery 10.

電池10は、負荷20に電気的に接続され、負荷20の駆動電力を蓄えるリチウムイオン二次電池である。電池10の内部には、正極と、負極と、それらをイオン的に結合する電解液とが備えられる。 The battery 10 is a lithium ion secondary battery that is electrically connected to the load 20 and stores the driving power of the load 20. Inside the battery 10, a positive electrode, a negative electrode, and an electrolytic solution that ionically bonds them are provided.

負荷20は、電池10からの電力を用いて車両1を駆動させるための駆動力を発生する走行用電動機を含む。また、負荷20は、走行用電動機の回生電力により、電池10を充電することができる。 The load 20 includes a traveling electric motor that generates a driving force for driving the vehicle 1 by using the electric power from the battery 10. Further, the load 20 can charge the battery 10 by the regenerative power of the traveling electric motor.

電池10には、電池10の端子間電圧(以下「電池電圧Vb」ともいう)を検出するための電圧センサ11と、電池10を流れる電流(以下「電池電流Ib」ともいう)を検出するための電流センサ12と、電池10の温度(以下「電池温度Tb」ともいう)を検出するための温度センサ13とが設けられている。各センサ11~13の検出値はECU100へ送信される。 The battery 10 has a voltage sensor 11 for detecting the voltage between terminals of the battery 10 (hereinafter, also referred to as “battery voltage Vb”) and a current flowing through the battery 10 (hereinafter, also referred to as “battery current Ib”). A current sensor 12 and a temperature sensor 13 for detecting the temperature of the battery 10 (hereinafter, also referred to as “battery temperature Tb”) are provided. The detected values of the sensors 11 to 13 are transmitted to the ECU 100.

ECU100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵する。ECU100は、各センサ11~13からの情報およびメモリに記憶された情報などに基づいて所定の演算処理を実行する。 The ECU 100 incorporates a CPU (Central Processing Unit) and a memory (not shown). The ECU 100 executes a predetermined arithmetic process based on the information from the sensors 11 to 13 and the information stored in the memory.

<過充電による過熱の抑制>
電池10が過充電状態である場合には、電池10の正極および負極が熱力学的に不安定な状態となり、正極材料が容易に分解して酸素を放出したり、電解液が酸化したりして電池10の内部温度が上昇することで、電池10が過熱状態となり得る。
<Suppression of overheating due to overcharging>
When the battery 10 is in an overcharged state, the positive electrode and the negative electrode of the battery 10 become thermodynamically unstable, and the positive electrode material is easily decomposed to release oxygen or the electrolytic solution is oxidized. As the internal temperature of the battery 10 rises, the battery 10 may become overheated.

本実施の形態によるECU100は、過充電による過熱を抑制するために、電池10が過充電状態であるか否かを判定するための基準となる電圧値(以下「過充電基準閾値V」ともいう)を設定する。そして、ECU100は、電池電圧Vbが過充電基準閾値Vを超えた場合に、過充電による過熱を抑制するために、電池10の充電を制限する(充電中である場合に充電電流を低下させたり充電を停止したりする)処理を行なう。 The ECU 100 according to the present embodiment has a voltage value as a reference for determining whether or not the battery 10 is in an overcharged state in order to suppress overheating due to overcharging (hereinafter, also referred to as “overcharge reference threshold value V”). ) Is set. Then, when the battery voltage Vb exceeds the overcharge reference threshold V, the ECU 100 limits the charging of the battery 10 in order to suppress overheating due to overcharging (or lowers the charging current when charging is in progress). (Stop charging, etc.) Perform processing.

<過充電基準閾値の設定>
本実施の形態によるECU100は、上述の過充電基準閾値Vを電池10内の反応速度に応じて可変に設定することによって、過充電基準閾値Vを過充電耐性(過充電による過熱の生じ難さ)を考慮した適切な値に設定する。
<Setting of overcharge reference threshold>
The ECU 100 according to the present embodiment sets the overcharge reference threshold value V to be overcharge resistant (difficulty of overheating due to overcharge) by setting the above-mentioned overcharge reference threshold value V variably according to the reaction speed in the battery 10. ) Is taken into consideration and set to an appropriate value.

図2は、電池10の使用前状態(ほぼ新品の状態)における電池10の内部状態を模式的に示す図である。上述したように、電池10内部には、正極と、負極と、それらをイオン的に結合する電解液とが備えられる。電池10の使用前においては、正極表面に皮膜などはほとんど形成されておらず、また、電解液の塩濃度も低下していない。 FIG. 2 is a diagram schematically showing an internal state of the battery 10 in a state before use (almost new state) of the battery 10. As described above, the inside of the battery 10 is provided with a positive electrode, a negative electrode, and an electrolytic solution that ionically binds them. Before the use of the battery 10, a film or the like was hardly formed on the surface of the positive electrode, and the salt concentration of the electrolytic solution did not decrease.

図3は、電池10の使用後状態における電池10の内部状態を模式的に示す図である。図3に示すように、電池10を使用(充電あるいは放電)することによって、正極表面には正極皮膜が形成し得る。また、電解液の分解によって電解液の塩濃度が低下し得る。 FIG. 3 is a diagram schematically showing an internal state of the battery 10 in a state after the battery 10 is used. As shown in FIG. 3, by using (charging or discharging) the battery 10, a positive electrode film can be formed on the positive electrode surface. In addition, the salt concentration of the electrolytic solution may decrease due to the decomposition of the electrolytic solution.

電池10の使用によって正極皮膜量が増加すると、電池電圧Vbが同一であっても、正極と電解液との反応速度が低下するため、正極と電解液との反応に起因する発熱速度(単位時間あたりの発熱量)は低下する。したがって、正極皮膜量が増加するほど、過充電による過熱は生じ難くなる。 When the amount of the positive electrode film increases due to the use of the battery 10, even if the battery voltage Vb is the same, the reaction rate between the positive electrode and the electrolytic solution decreases, so that the heat generation rate (unit time) due to the reaction between the positive electrode and the electrolytic solution The amount of heat generated per unit) decreases. Therefore, as the amount of the positive electrode film increases, overheating due to overcharging is less likely to occur.

また、電池10の使用によって電解液の塩濃度が低下すると、電池電圧Vbが同一であっても、電解液の分解速度が低下するため、電解液の分解に起因する発熱速度は低下する。したがって、電解液の塩濃度が低下するほど、過充電による過熱は生じ難くなる。 Further, when the salt concentration of the electrolytic solution decreases due to the use of the battery 10, even if the battery voltage Vb is the same, the decomposition rate of the electrolytic solution decreases, so that the heat generation rate due to the decomposition of the electrolytic solution decreases. Therefore, the lower the salt concentration of the electrolytic solution, the less likely it is that overheating will occur due to overcharging.

図4は、充電による電池温度Tbの上昇特性を模式的に示す図である。図4において、横軸は充電継続時間を示し、縦軸は電池温度Tbを示す。また、図4において、実線は使用前状態(図2に示す状態)における電池温度Tbの上昇特性を示し、破線は使用後状態(図3に示す状態)における電池温度Tbの上昇特性を示す。図4に示す熱暴走領域は、過充電による過熱が生じる領域である。図4に示す許容温度Tb0は、過充電による過熱を回避可能な電池温度Tbの上限値である。 FIG. 4 is a diagram schematically showing an increase characteristic of the battery temperature Tb due to charging. In FIG. 4, the horizontal axis indicates the charging duration, and the vertical axis indicates the battery temperature Tb. Further, in FIG. 4, the solid line shows the rising characteristic of the battery temperature Tb in the pre-use state (the state shown in FIG. 2), and the broken line shows the rising characteristic of the battery temperature Tb in the post-use state (the state shown in FIG. 3). The thermal runaway region shown in FIG. 4 is a region where overheating occurs due to overcharging. The permissible temperature Tb0 shown in FIG. 4 is an upper limit value of the battery temperature Tb that can avoid overheating due to overcharging.

電池10の使用後においては、正極皮膜量の増加による発熱速度および発熱量の低減、および電解液の塩濃度の低下による発熱速度および発熱量の低減が生じる。そのため、図4に示すように、使用後の電池10を充電する場合の電池温度Tbの上昇速度(破線の傾き)は、使用前(新品状態)の電池10を充電する場合の電池温度Tbの上昇速度(実線の傾き)よりも小さくなる。 After the battery 10 is used, the heat generation rate and the heat generation amount are reduced by increasing the amount of the positive electrode film, and the heat generation rate and the heat generation amount are reduced by reducing the salt concentration of the electrolytic solution. Therefore, as shown in FIG. 4, the rate of increase of the battery temperature Tb (inclination of the broken line) when charging the battery 10 after use is the battery temperature Tb when charging the battery 10 before use (new state). It is smaller than the ascending speed (slope of the solid line).

この影響により、電池温度Tbが許容温度Tb0に達した時の電池電圧Vbは、使用前の電池10では初期電圧V1であるが、使用後の電池10では初期電圧V1よりも高い所定電圧V2となることが判明した。この場合、使用前の電池10においては過充電基準閾値Vを初期電圧V1に設定しておく必要があるが、使用後の電池10においては過充電基準閾値Vを初期電圧V1よりも高い所定電圧V2に設定することが可能である。 Due to this effect, the battery voltage Vb when the battery temperature Tb reaches the allowable temperature Tb0 is the initial voltage V1 in the battery 10 before use, but becomes a predetermined voltage V2 higher than the initial voltage V1 in the battery 10 after use. It turned out to be. In this case, it is necessary to set the overcharge reference threshold value V to the initial voltage V1 in the battery 10 before use, but in the battery 10 after use, the overcharge reference threshold value V is set to a predetermined voltage higher than the initial voltage V1. It can be set to V2.

そこで、本実施の形態によるECU100は、電池10の使用履歴(電池10の温度履歴および使用期間)から、正極皮膜量M(正極皮膜量を示す第1パラメータ)および電解液塩濃度C(電解液の塩濃度を示す第2パラメータ)を算出する。そして、ECU100は、算出された正極皮膜量Mおよび電解液塩濃度Cを用いて過充電基準閾値Vを設定する。 Therefore, the ECU 100 according to the present embodiment has a positive electrode film amount M (first parameter indicating the positive electrode film amount) and an electrolytic solution salt concentration C (electrolyte solution) based on the usage history of the battery 10 (temperature history and usage period of the battery 10). The second parameter) indicating the salt concentration of the above is calculated. Then, the ECU 100 sets the overcharge reference threshold value V using the calculated positive electrode film amount M and the electrolytic solution salt concentration C.

図5は、ECU100が過充電基準閾値Vを設定する際に実行する処理手順の一例を示すフローチャートである。このフローチャートはたとえば所定周期で繰り返し実行される。 FIG. 5 is a flowchart showing an example of a processing procedure executed when the ECU 100 sets the overcharge reference threshold value V. This flowchart is repeatedly executed, for example, at a predetermined cycle.

まず、ECU100は、電池温度Tbの履歴および各温度毎の使用期間tをメモリから取得する(ステップS10)。具体的には、ECU100は、定常的に、温度センサ13が検出した電池温度Tbの履歴を、各温度毎の使用期間tとともにメモリに記憶している。ECU100は、ステップS10において、この情報をメモリから読み出す。 First, the ECU 100 acquires the history of the battery temperature Tb and the usage period t for each temperature from the memory (step S10). Specifically, the ECU 100 constantly stores the history of the battery temperature Tb detected by the temperature sensor 13 in the memory together with the usage period t for each temperature. The ECU 100 reads this information from the memory in step S10.

次いで、ECU100は、ステップS10において取得された電池温度Tbの履歴および各温度毎の使用期間tを用いて、正極皮膜量M(Tb,t)を算出する(ステップS12)。たとえば、ECU100は、実験等によって求められた、電池温度Tbと使用期間tと正極皮膜量Mとの関係を示すマップをメモリに記憶しておき、このマップを参照して電池温度Tbおよび使用期間tに対応する正極皮膜量M(Tb,t)を算出する。 Next, the ECU 100 calculates the positive electrode film amount M (Tb, t) using the history of the battery temperature Tb acquired in step S10 and the usage period t for each temperature (step S12). For example, the ECU 100 stores a map showing the relationship between the battery temperature Tb, the usage period t, and the positive electrode film amount M, which is obtained by an experiment or the like, in a memory, and refers to this map to store the battery temperature Tb and the usage period. The positive electrode film amount M (Tb, t) corresponding to t is calculated.

次いで、ECU100は、ステップS10において取得された電池温度Tbの履歴および各温度毎の使用期間tを用いて、電解液塩濃度C(Tb,t)を算出する(ステップS14)。たとえば、ECU100は、実験等によって求められた、電池温度Tbと使用期間tと電解液塩濃度Cとの関係を示すマップをメモリに記憶しておき、このマップを参照して電池温度Tbおよび使用期間tに対応する電解液塩濃度C(Tb,t)を算出する。 Next, the ECU 100 calculates the electrolyte salt concentration C (Tb, t) using the history of the battery temperature Tb acquired in step S10 and the usage period t for each temperature (step S14). For example, the ECU 100 stores a map showing the relationship between the battery temperature Tb, the usage period t, and the electrolyte salt concentration C, which is obtained by experiments or the like, in the memory, and refers to this map for the battery temperature Tb and use. The electrolyte salt concentration C (Tb, t) corresponding to the period t is calculated.

次いで、ECU100は、ステップS12において算出された正極皮膜量M(Tb,t)およびステップS14において算出された電解液塩濃度C(Tb,t)を用いて、過充電基準閾値Vを算出する(ステップS16)。たとえば、ECU100は、下記の式(1)を用いて過充電基準閾値Vを算出する。 Next, the ECU 100 calculates the overcharge reference threshold value V using the positive electrode film amount M (Tb, t) calculated in step S12 and the electrolyte salt concentration C (Tb, t) calculated in step S14 (. Step S16). For example, the ECU 100 calculates the overcharge reference threshold value V using the following equation (1).

V=α・M(Tb,t)+β・C(Tb,t) …(1)
式(1)において、「α」は、正極皮膜量M(Tb,t)を過充電基準閾値Vに反映させるための係数である。係数αは、正極皮膜量M(Tb,t)が増加するほど、過充電基準閾値Vが増加するように調整されている。これにより、正極皮膜量Mの増加に応じて正極と電解液との反応速度が低下したこと(すなわち過充電耐性が向上したこと)に伴なって、過充電基準閾値Vを増加させて電池電圧Vbが過充電基準閾値Vを超え難くする(充電制限を介入し難くする)ことができる。そのため、電池10の充電を過剰に制限することなく、過充電による過熱を抑制することができる。
V = α ・ M (Tb, t) + β ・ C (Tb, t)… (1)
In the formula (1), “α” is a coefficient for reflecting the positive electrode film amount M (Tb, t) in the overcharge reference threshold value V. The coefficient α is adjusted so that the overcharge reference threshold value V increases as the positive electrode film amount M (Tb, t) increases. As a result, the reaction speed between the positive electrode and the electrolytic solution decreases as the amount of the positive electrode film M increases (that is, the overcharge resistance is improved), and the overcharge reference threshold V is increased to increase the battery voltage. It is possible to make it difficult for Vb to exceed the overcharge reference threshold V (make it difficult to intervene in the charge limit). Therefore, overheating due to overcharging can be suppressed without excessively limiting the charging of the battery 10.

式(1)において、「β」は電解液塩濃度C(Tb,t)を過充電基準閾値Vに反映させるための係数である。係数βは、電解液塩濃度Cが低下するほど過充電基準閾値Vが高くなるように調整されている。これにより、電解液塩濃度Cの低下に応じて電解液の分解速度したこと(すなわち過充電耐性が向上したこと)に伴なって、過充電基準閾値Vを増加させて電池電圧Vbが過充電基準閾値Vを超え難くする(充電制限を介入し難くする)ことができる。そのため、電池10の充電を過剰に制限することなく、過充電による過熱を抑制することができる。 In the formula (1), “β” is a coefficient for reflecting the electrolytic solution salt concentration C (Tb, t) in the overcharge reference threshold value V. The coefficient β is adjusted so that the overcharge reference threshold value V increases as the electrolytic solution salt concentration C decreases. As a result, the overcharge reference threshold V is increased and the battery voltage Vb is overcharged as the decomposition rate of the electrolyte increases (that is, the overcharge resistance is improved) in response to the decrease in the electrolyte salt concentration C. It is possible to make it difficult to exceed the reference threshold V (make it difficult to intervene in the charge limit). Therefore, overheating due to overcharging can be suppressed without excessively limiting the charging of the battery 10.

以上のように、本実施の形態によるECU100は、電池温度Tbの履歴および各温度毎の使用期間tから電池10の正極皮膜量Mおよび電解液塩濃度Cを算出し、算出された正極皮膜量Mおよび電解液塩濃度Cを用いて過充電基準閾値Vを設定する。これにより、過充電基準閾値Vを、正極と電解液との反応速度、および電解液の分解速度を反映した値に設定することができる。そのため、過充電基準閾値Vを、電池10の過充電耐性(過充電による過熱の生じ難さ)を考慮した適切な値に設定することができる。その結果、電池10の充電を過剰に制限することなく、過充電による過熱を抑制することができる。 As described above, the ECU 100 according to the present embodiment calculates the positive electrode film amount M and the electrolytic solution salt concentration C of the battery 10 from the history of the battery temperature Tb and the usage period t for each temperature, and the calculated positive electrode film amount. The overcharge reference threshold V is set using M and the electrolyte salt concentration C. Thereby, the overcharge reference threshold value V can be set to a value that reflects the reaction rate between the positive electrode and the electrolytic solution and the decomposition rate of the electrolytic solution. Therefore, the overcharge reference threshold value V can be set to an appropriate value in consideration of the overcharge resistance of the battery 10 (difficulty of overheating due to overcharge). As a result, overheating due to overcharging can be suppressed without excessively limiting the charging of the battery 10.

<変形例>
上述の実施の形態においては、「電池電圧Vb」を電池10の充電状態を示すパラメータとし、電池電圧Vbが「過充電基準閾値V」を超えた場合に電池10の充電を制限する例を示した。しかしながら、電池10の充電状態を示すパラメータは「電池電圧Vb」に限定されない。
<Modification example>
In the above-described embodiment, an example is shown in which "battery voltage Vb" is used as a parameter indicating the charge state of the battery 10 and charging of the battery 10 is restricted when the battery voltage Vb exceeds the "overcharge reference threshold V". rice field. However, the parameter indicating the state of charge of the battery 10 is not limited to the "battery voltage Vb".

たとえば、図4に示した電池温度Tbの上昇特性を考慮して、図4の横軸に示す「充電継続時間」を電池10の充電状態を示すパラメータとし、充電継続時間が「過充電基準閾値T」(過充電状態であるか否かを判定するための基準となる充電継続時間)を超えた場合に電池10の充電を制限するようにしてもよい。この場合、正極皮膜量Mが増加するほど、および、電解液塩濃度Cが低下するほど、過充電基準閾値Tを長くするようにすればよい。これにより、過充電基準閾値Tを電池10の過充電耐性(過充電による過熱の生じ難さ)を考慮した適切な値に設定することができる。その結果、上述の実施の形態と同様、電池10の充電を過剰に制限することなく、過充電による過熱を抑制することができる。 For example, in consideration of the rising characteristic of the battery temperature Tb shown in FIG. 4, the "charging duration" shown on the horizontal axis of FIG. 4 is set as a parameter indicating the charging state of the battery 10, and the charging duration is the "overcharge reference threshold". The charging of the battery 10 may be restricted when T ”(charging duration as a reference for determining whether or not the battery is overcharged) is exceeded. In this case, the overcharge reference threshold value T may be lengthened as the positive electrode film amount M increases and the electrolytic solution salt concentration C decreases. Thereby, the overcharge reference threshold value T can be set to an appropriate value in consideration of the overcharge resistance of the battery 10 (difficulty of overheating due to overcharge). As a result, as in the above-described embodiment, overheating due to overcharging can be suppressed without excessively limiting the charging of the battery 10.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 車両、10 電池、11 電圧センサ、12 電流センサ、13 温度センサ、20 負荷。 1 vehicle, 10 batteries, 11 voltage sensor, 12 current sensor, 13 temperature sensor, 20 load.

Claims (1)

正極と負極と電解液とを備える二次電池の制御装置であって、
前記二次電池の温度を検出するように構成された温度検出部と、
前記二次電池の充電状態を示すパラメータが過充電基準閾値を超えた場合に前記二次電池の充電を制限する制御部とを備え、
前記制御部は、
前記二次電池の温度の履歴および使用期間を用いて、前記正極の表面に形成される正極皮膜量を示す第1パラメータおよび前記電解液の塩濃度を示す第2パラメータを算出し、
算出された前記第1パラメータおよび前記第2パラメータを用いて前記過充電基準閾値を設定し、
前記制御部は、前記第1パラメータが示す正極皮膜量が増加するほど、および、前記第2パラメータが示す電解液の塩濃度が低下するほど、前記過充電基準閾値を増加させる、二次電池の制御装置。
A control device for a secondary battery including a positive electrode, a negative electrode, and an electrolytic solution.
A temperature detector configured to detect the temperature of the secondary battery,
It is provided with a control unit that limits the charging of the secondary battery when the parameter indicating the charge state of the secondary battery exceeds the overcharge reference threshold value.
The control unit
Using the history of the temperature of the secondary battery and the period of use, a first parameter indicating the amount of the positive electrode film formed on the surface of the positive electrode and a second parameter indicating the salt concentration of the electrolytic solution were calculated.
The overcharge reference threshold is set using the calculated first parameter and the second parameter .
The control unit of the secondary battery increases the overcharge reference threshold as the amount of the positive electrode film indicated by the first parameter increases and the salt concentration of the electrolytic solution indicated by the second parameter decreases . Control device.
JP2018023401A 2018-02-13 2018-02-13 Secondary battery controller Active JP7078890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023401A JP7078890B2 (en) 2018-02-13 2018-02-13 Secondary battery controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023401A JP7078890B2 (en) 2018-02-13 2018-02-13 Secondary battery controller

Publications (2)

Publication Number Publication Date
JP2019139999A JP2019139999A (en) 2019-08-22
JP7078890B2 true JP7078890B2 (en) 2022-06-01

Family

ID=67695483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023401A Active JP7078890B2 (en) 2018-02-13 2018-02-13 Secondary battery controller

Country Status (1)

Country Link
JP (1) JP7078890B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321963B2 (en) * 2020-03-31 2023-08-07 プライムアースEvエナジー株式会社 Method for estimating deterioration of secondary battery, method for estimating lifetime, and control device
JP2022026770A (en) * 2020-07-31 2022-02-10 プライムアースEvエナジー株式会社 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258172A (en) 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Charge control device and method
JP2010259240A (en) 2009-04-27 2010-11-11 Mitsumi Electric Co Ltd Protection circuit
JP2011061947A (en) 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device and method for charge control
JP2017135954A (en) 2016-01-29 2017-08-03 本田技研工業株式会社 Charging control apparatus, transport equipment, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258172A (en) 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Charge control device and method
JP2010259240A (en) 2009-04-27 2010-11-11 Mitsumi Electric Co Ltd Protection circuit
JP2011061947A (en) 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device and method for charge control
JP2017135954A (en) 2016-01-29 2017-08-03 本田技研工業株式会社 Charging control apparatus, transport equipment, and program

Also Published As

Publication number Publication date
JP2019139999A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP5470829B2 (en) Discrimination device for discriminating the state of a lithium ion battery
CN103339788B (en) The control device of electrical storage device and control method
US20120299552A1 (en) Charging control apparatus and charging control method for battery
CN105612081A (en) Electrical storage system for vehicle
JP2010066229A (en) Device and method for detecting failure of battery
JP5733112B2 (en) Vehicle and vehicle control method
JP6662228B2 (en) Battery system
JP6834757B2 (en) Battery system
JP7078890B2 (en) Secondary battery controller
JP7120062B2 (en) BATTERY CHARGE/DISCHARGE CONTROL DEVICE AND BATTERY CHARGE/DISCHARGE CONTROL METHOD
JP7196868B2 (en) battery system
JP5704014B2 (en) Secondary battery monitoring device
JP5696028B2 (en) Battery control device and power storage device
JP2013088183A (en) Power supply device abnormality detection system, abnormality detection device, and abnormality detection method
JP7031177B2 (en) Deterioration judgment device for secondary batteries
JP6950502B2 (en) Lithium-ion secondary battery controller
JP6365820B2 (en) Secondary battery abnormality determination device
JP6699533B2 (en) Battery system
JP2019046768A (en) Lithium ion secondary battery system
JP6525431B2 (en) Battery controller
JP2002044879A (en) Charging method and apparatus of secondary battery
JP2013142649A (en) Device for measuring state of charge
JP5975925B2 (en) Battery control device, power storage device
JP6508097B2 (en) Control device of nickel hydrogen battery
JP2020077464A (en) Secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220503

R151 Written notification of patent or utility model registration

Ref document number: 7078890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151