[go: up one dir, main page]

JP7076369B2 - 介入音響撮像のためのシステム及び方法 - Google Patents

介入音響撮像のためのシステム及び方法 Download PDF

Info

Publication number
JP7076369B2
JP7076369B2 JP2018533866A JP2018533866A JP7076369B2 JP 7076369 B2 JP7076369 B2 JP 7076369B2 JP 2018533866 A JP2018533866 A JP 2018533866A JP 2018533866 A JP2018533866 A JP 2018533866A JP 7076369 B2 JP7076369 B2 JP 7076369B2
Authority
JP
Japan
Prior art keywords
acoustic
probe
region
interest
imager
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533866A
Other languages
English (en)
Other versions
JP2019500144A (ja
JP2019500144A5 (ja
Inventor
ラモン クィド エレカンプ
マン グエン
ジャン‐ルック ロベルト
シェン‐ウェン フアン
シャム バーラト
ヨヘン クルエッカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2019500144A publication Critical patent/JP2019500144A/ja
Publication of JP2019500144A5 publication Critical patent/JP2019500144A5/ja
Application granted granted Critical
Publication of JP7076369B2 publication Critical patent/JP7076369B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0833Clinical applications involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Clinical applications involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52049Techniques for image enhancement involving transmitter or receiver using correction of medium-induced phase aberration

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、音響(例えば、超音波)撮像、並びに特に、介入手技と併せた音響撮像のためのシステム及び方法に関連する。
音響(例えば、超音波)撮像システムは、様々な用途及び状況においてますます用いられるようになっている。例えば、超音波撮像は、低侵襲手術の状況においてますます用いられるようになっている。この状況は、絨毛採取(Chorionic Villus Sampling:CVS)、針を使用する生検、及び局所麻酔のための神経ブロックなどの針を使用する手技を含む。今日、典型的には、低侵襲介入手技に使用される撮像プローブは、画像診断に使用されるプローブの撮像アレイ構成と同一の撮像アレイ構成を有する。
既存の音響プローブ及び撮像システムを使用してこれらの手技に用いられる1つ又は複数の介入デバイス(例えば、手術器具)を可視化することは、多くの場合は困難であり、十分な画像品質を維持するために手技中に音響プローブの手動による再位置付けをしばしば必要とする。かなりの割合のCVS手技が、医師によって難しいと述べられており、さらに多くの割合が、2回以上の挿入を伴ったと報告されている。
これらの問題を解決するために、エコーを発生する針など、視認性が高められた特別な介入デバイスが首尾よく市場に出ており、わずかな追加費用で限られた改善をもたらしている。針の視覚化は、近年、磁気追跡又は光学基準付きステレオカメラに基づいて、針追跡技術の形態でさらなる進歩を遂げている。これらの可視化技術は、他の介入デバイスにも応用され得る。
これらの改善があるとしても、既存の音響撮像プローブ及びシステムに対するある一定の制限が理由で、特定の臨床アプリケーション(例えば、深神経ブロック)は依然として、大部分が、又は完全に、手の届かないところにある。多くの場合において、特に皮膚表面下の奥深くで実施される手技の場合、介入部位における解剖学的特徴を十分に解像することができない。例えば、音響撮像ガイダンスは、浅い神経ブロック(例えば、最大3cmの深さ)内で使用され、そのような手技において神経を可視化することができる。音響撮像は、深神経にも用いられるが、既存のシステムがこれらの神経を可視化することができないことから、医師は、ガイダンスとして解剖学的ランドマークを使用するため、深いブロックをさらに実施困難にする。デバイス表面のスペクトル反射が原因で器具可視化も不十分になり得る。さらには、超音波ガイドされた介入手技の間、撮像プローブの位置を操作しなければならないことは望まれていない。
明らかに、介入超音波の既存のアプリケーションがすでに多く存在し、さらなるアプリケーションが、デバイス及び生体構造の可視化並びに動作特性における改善により実現され得る。そのようなアプリケーションは、癌焼灼手技、CVS、胎児手術/介入(例えば、双胎間輸血症候群(TTTS)において血流パターンを変えること)、肝生検、及び深神経ブロック手技を含む。
音響撮像システム及び方法の望ましい属性としては、超音波画像における器具の正確な可視化、介入の場所において高められた撮像解像度、及び音響プローブのハンズフリー動作が挙げられる。
したがって、介入手技中に高められた音響撮像能力を提供することができる超音波システム、音響プローブ、及び方法を提供することが望ましい。介入デバイスをデバイス挿入ポートより挿入して、超音波プローブを使用して撮像することができるように、超音波プローブ内へのデバイス挿入ポートを含むことが知られている。例えば、これは、米国特許出願公開第2014/0148701(A1)号に開示されている。さらに、WO2011/138698A1は、カテーテルなどの介入ツールが、超音波プローブを用いたツールの位置の決定を助けるために、超音波受信器を有することを教示する。
そのような超音波撮像システムを用いた解剖学的特徴可視化を改善するために、大面積超音波プローブ、例えば、少なくとも10cmの直径を有する活性領域を有するプローブが考案されており、結果として、これらのプローブは、特に大きい活性コヒーレントアパーチャサイズを有する。そのようなプローブは、関心の大きな解剖学的領域の撮像を促進するために身体表面に適合可能である。しかしながら、そのようなアプリケーションにおいて、大サイズの活性領域は、取り込まれた超音波画像内に収差及び屈折アーチファクトを引き起こす場合が多い。故に、改善された品質の超音波画像を作り出すことができるそのような大面積プローブを含むシステムが必要とされている。
本発明は、大面積超音波プローブが使用されるときにさえ十分な品質の音響画像を作り出すことができるシステムを提供することを目的とする。
本発明はさらに、そのような音響画像を作り出すための方法を提供することを目的とする。
本発明の1つの態様において、システムは、音響プローブと、音響プローブに接続される音響撮像機とを備え、音響プローブは、第1の主面及び第2の主面を有する基板であって、第1の主面から第2の主面まで基板を通過する開口部を備える少なくとも1つのデバイス挿入ポートをさらに有する基板と、基板によって支持され、少なくとも1つのデバイス挿入ポートの周りに配置される音響変換器素子のアレイとを有し、音響撮像機は、音響変換器素子の選択を体系的に変化させ、また、各選択について、選択の音響変換器素子が音響プローブ信号を関心領域へ送信させるために、選択の音響変換器素子に送信信号を提供し、デバイス挿入ポートを通過して関心領域内へと入る介入デバイスの遠位端に設けられた音響受信器からの送信信号のフィードバック信号を記録するように構成され、音響撮像機がさらに、音響変換器素子の好ましい選択を特定するために、記録されたフィードバック信号を評価し、好ましい選択の音響変換器素子がさらなる音響プローブ信号を関心領域へ送信させるために好ましい選択の音響変換器素子にさらなる信号を送信し、前記さらなる音響プローブ信号に応答して関心領域からの音響プローブによって受信される音響エコーから関心領域の音響画像を生成するように構成される。
本発明によると、音響撮像機は、超音波プローブの活性アパーチャの最適サイズ及び/又は位置、即ち、介入デバイスの助けを借りて音響画像の生成に従事する音響変換器素子の数及び/又は位置を動的に決定するように構成されるため、結果として、音響撮像機は、最適化された画像品質を有する、介入デバイスを含む関心領域の音響画像を生成する。
音響撮像機は、前記選択の各々について音響受信器上への送信信号の焦点の質を評定するためのメトリックを使用して、音響変換器素子の好ましい選択を特定するために、記録されたフィードバック信号を評価するように構成される。使用されるメトリックは、臨床アプリケーションに従属する。例えば、メトリックは、小さい低エコー特徴物が重要である場合にサイドローブエネルギーを最小限にするためのものにするか、又は、小さい高エコー特徴物が解像を必要とする場合に主ローブの規定を最大限にするためのものにする。
各選択は、音響プローブの活性アパーチャを画定し、音響撮像機が、超音波プローブのその目標とするアプリケーションにおける最適な活性アパーチャを得るために、活性アパーチャの場所及び活性アパーチャのサイズのうちの少なくとも一方の体系的変化によって音響変換器素子の選択を体系的に変化させるように構成される。
好ましい実施形態において、音響撮像機は、規定のサイズを有する活性アパーチャの場所を体系的に変化させること、及び、この最適な活性アパーチャを得るために、音響アパーチャの規定のサイズ範囲に基づいて、前記規定のサイズ範囲内の各サイズが使用されるまで、活性アパーチャのサイズを再規定することを繰り返し行うことによって、音響変換器素子の選択を体系的に変化させるように構成される。
音響撮像機はさらに、音響変換器素子の選択の体系的変化の間、音響変換器素子の各選択についてビームステアリング角を体系的に変化させるように構成される。この実施形態では、電子ビームステアリングは、選択プロセスの最中に活性アパーチャの場所を変化させることに取って代わり、それがこのプロセスの持続時間を減少させる。
これらの実施形態のいくつかのバージョンにおいて、音響撮像機はさらに、音響受信器からのフィードバック信号を使用して、音響プローブによって受信される音響エコーに対して音響受信器の場所をレジストレーションするように、及びこのレジストレーションを使用して、音響画像内の収差アーチファクトを軽減するように構成される。
いくつかの実施形態において、基板は、凹状ディスクの形状を有し、音響変換器素子のアレイによって画定される基板の活性領域は、少なくともおよそ12cmの直径を有する。
これらの実施形態のいくつかのバージョンにおいて、本システムは、所与の時間に少なくとも10cmの活性音響アパーチャを提供するように構成される。
これらの実施形態のいくつかのバージョンにおいて、音響プローブ信号の中心周波数は、約3.5MHzであり、音響変換器素子のうちの少なくともいくつかは、およそ0.44mmのサイズを有する。
本発明の別の態様において、方法は、対象者の皮膚に適用される基板であって、基板が、第1の主面及び第2の主面を有し、第1の主面から第2の主面まで基板を通過する開口部を備える少なくとも1つのデバイス挿入ポートをさらに有する、基板と、基板によって支持され、少なくとも1つのデバイス挿入ポートの周りに配置される音響変換器素子のアレイとを備える音響プローブを提供するステップと、音響変換器素子の選択を体系的に変化させ、また、各選択について、選択の音響変換器素子が音響プローブ信号を関心領域へ送信させるために選択の音響変換器素子に送信信号を提供し、デバイス挿入ポートを通過して関心領域内へと入る介入デバイスの遠位端に設けられた音響受信器からの送信信号のフィードバック信号を記録するステップと、音響変換器素子の好ましい選択を特定するために、記録されたフィードバック信号を評価するステップと、好ましい選択の音響変換器素子がさらなる音響プローブ信号を関心領域へ送信させるために好ましい選択の音響変換器素子がさらなる信号を送信するステップと、前記さらなる音響プローブ信号に応答して関心領域からの音響プローブによって受信される音響エコーから関心領域の音響画像を生成するステップとを有する。
この方法を用いて、介入デバイスに対する超音波プローブの活性アパーチャのサイズ及び/又は位置は、音響プローブを用いて介入手技の音響撮像をサポートするための画像品質に関して最適化される。完全を期すために、関心領域内への介入デバイスの挿入は、特許請求される発明の部分を形成しないということに留意されたい、これは、介入デバイスが挿入された後に典型的に起こる。
実施形態において、音響変換器素子の好ましい選択を特定するために、記録されたフィードバック信号を評価するステップは、前記選択の各々について音響受信器上への送信信号の焦点の質を評定するためのメトリックを使用することを含む。これは、音響変換器素子のそのような選択により生成されることになる音響画像の画像品質を決定するのに信頼できるメトリックであることが分かっている。
先に説明されるように、各選択は、音響プローブの活性アパーチャを画定し、音響変換器素子の選択を体系的に変化させるステップは、音響変換器素子の好ましい選択を決定して音響プローブの活性アパーチャを画定するために、活性アパーチャの場所及び活性アパーチャのサイズのうちの少なくとも一方を体系的に変化させることを含む。これは好ましくは、規定のサイズを有する活性アパーチャの場所を体系的に変化させること、及び、音響アパーチャの規定のサイズ範囲に基づいて、前記規定のサイズ範囲内の各サイズが使用されるまで、活性アパーチャのサイズを再規定することを繰り返し行うことを含む。
実施形態において、本方法は、音響変換器素子の選択の体系的変化の間、音響変換器素子の各選択についてビームステアリング角を変化させるステップをさらに有する。これは、少なくとも特定の条件下では、活性アパーチャを再配置する必要性を取り除き、それにより活性アパーチャ決定プロセスに必要とされる時間を減少させる。
本方法は、音響受信器からのフィードバック信号を使用して、音響プローブによって受信される音響エコーに対して音響受信器の場所をレジストレーションするステップと、超音波プローブにより得られる音響画像の画像品質をさらに改善するために、音響エコーに対する音響受信器の場所のレジストレーションを使用して、音響画像内の収差アーチファクトを軽減するステップとをさらに有する。
さらに、本方法は、関心領域内の介入デバイスの位置の変化に応答して音響変換器素子の好ましい選択を特定するために、音響変換器素子の選択の体系的変化、及び記録されたフィードバック信号の評価を繰り返すステップをさらに有する。最適な活性アパーチャが関心領域内の介入デバイスの位置の関数として変化することから、これにより、活性アパーチャがこの位置における変化の際に最適化されたままであることを確実にする。
いくつかの実施形態において、音響プローブ信号の中心周波数は、約3.5MHzであり、関心領域は、皮膚の下約8cmの領域を含む。
これらの実施形態のいくつかのバージョンにおいて、本方法は、音響プローブと関連付けられたユーザインターフェースを介したユーザ入力に応答して、音響プローブが、介入デバイスがデバイス挿入ポート内を自由に移動することを選択的に可能にするステップ、及びデバイス挿入ポート内で介入デバイスを係止するステップをさらに有する。
音響撮像機及び音響プローブを備えるシステムの一例を示す図である。 音響プローブの一実施形態例を例証する図である。 音響プローブの一実施形態例を例証する図である。 音響プローブと音響プローブ内のデバイス挿入ポートを通過する介入デバイスとの実施形態例を例証する図である。 音響プローブの別の実施形態例を例証する図である。 音響プローブのさらに別の実施形態例を例証する図である。 その遠位端に音響受信器が設けられている介入デバイスの一実施形態例を例証する図である。 音響撮像の方法の一実施形態例のフローチャートを例証する図である。 音響プローブのデバイス挿入ポートのための器具ガイドの実施形態例を例証する図である。 デバイス挿入ポートを有する音響プローブ、及びデバイス挿入ポート内に設けられる器具ガイドの配置例を例証する図である。 介入デバイス先端を所望の場所に位置付けるために、音響プローブのデバイス挿入ポート内に設けられる器具ガイドを配向する動作例を例証する図である。 デバイス挿入ポートを有する音響プローブ、及びデバイス挿入ポート内に設けられる器具ガイドのさらに別の実施形態例を例証する図である。 介入デバイス先端を所望の場所に位置付けるために、音響プローブのデバイス挿入ポート内に設けられる器具ガイドを配向しながらユーザフィードバックを提供するプロセスを例証する図である。 実施形態例に従う活性アパーチャ最適化方法のフローチャートである。 音響プローブに採用されるような活性アパーチャの最適化方法の段階例を概略的に描写する図である。
これより本発明は、本発明の好ましい実施形態が示される添付の図面を参照して以後より詳細に説明される。しかしながら、本発明は、異なる形態で具現化されてもよく、本明細書に明記される実施形態に限定されるものと解釈されるべきではない。むしろ、これらの実施形態は、本発明の例を教示するものとして提供される。本明細書において、ある値に対して「およそ」又は「約」が記載されるとき、それは、その値の10%以内であることを意味する。
図1は、音響撮像機110及び音響プローブ120を含む音響撮像システム100の一例を示す。音響撮像機110は、プロセッサ(及び関連メモリ)112、ユーザインターフェース114、ディスプレイ116、及び任意選択的に受信器インターフェース118を含む。
様々な実施形態において、プロセッサ112は、マイクロプロセッサ(及び関連メモリ)、デジタル信号プロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル回路、及び/又はアナログ回路の様々な組合せを含む。プロセッサ112と関連付けられたメモリ(例えば、不揮発性メモリ)は、その中にコンピュータ可読命令を記憶し、このコンピュータ可読命令が、プロセッサ112のマイクロプロセッサにシステム100を制御するためのアルゴリズムを実行させて、以下により詳細に説明される1つ又は複数の動作又は方法を実施する。いくつかの実施形態において、マイクロプロセッサが、オペレーティングシステムを実行する。いくつかの実施形態において、マイクロプロセッサは、ユーザインターフェース114及びディスプレイ116を介してシステム100のユーザにグラフィックユーザインターフェース(GYI)を提示する命令を実行する。
様々な実施形態において、ユーザインターフェース114は、キーボード、キーパッド、マウス、トラックボール、スタイラス/タッチペン、ジョイスティック、マイク、スピーカ、タッチスクリーン、1つ又は複数のスイッチ、1つ又は複数のノブ、1つ又は複数の光などの任意の組合せを含む。いくつかの実施形態において、プロセッサ112のマイクロプロセッサは、ユーザインターフェース114のマイクを介してユーザの命令の音声認識を提供するソフトウェアアルゴリズムを実行する。
ディスプレイデバイス116は、任意の利便性の高い技術のディスプレイ画面(例えば、液晶ディスプレイ)を備える。いくつかの実施形態において、ディスプレイ画面は、ユーザインターフェース114の部分も形成するタッチスクリーンデバイスである。
いくつかの実施形態において、音響撮像機110は、特に図4に関して以下により詳細に説明されるように、外部音響受信器、例えば、介入デバイスの遠位端(先端)のところ又はその近くに設けられる音響受信器から、1つ又は複数の電気信号を受信するように構成される受信器インターフェース118を含む。
当然ながら、音響撮像機110は、例えば、交流主電源から電力を受け取るための電力システム、プロセッサ112と音響プローブ120との間の通信のための入力/出力ポート、他の外部デバイス及びシステムとの(例えば、ワイヤレスのイーサネット(登録商標)及び/又はインターネット接続を介した)通信のための通信サブシステムなど、図1には示されないいくつかの他の要素を含んでもよいということが理解される。
図2A及び図2Bは、音響プローブ200の一実施形態例を例証する。音響プローブ200は、システム100内の音響プローブ120の一実施形態である。
音響プローブ200は、第1の主面212及び第2の主面214を有する基板210であって、第1の主面212から第2の主面214まで基板210を通過する開口部を備えるデバイス挿入ポート230をさらに有する基板210を含む。音響プローブ200はまた、基板210によって支持され、デバイス挿入ポート230の周りに配置される音響変換器素子222のアレイを含む。
音響プローブ200は、任意選択的に、音響プローブ200を対象者に取り付けるために対象者の背中に回すことができる弾性ストラップを(例えば、ベルクロ(登録商標)により)取り付けるために使用される一対のフック又は留め具240を含む。
音響プローブ200には、音響プローブ200の位置をさらに安定させるのを助けるために、対象者の超音波撮像試験の最中、対象者の皮膚にテープで貼り付けることができる側面装備の平坦なプローブケーブル205が関連付けられる。プローブケーブル205の他方の端は、音響プローブ120と音響撮像システムとの間で電気信号を通信するための音響撮像機(例えば、図1の音響撮像機110)に取り付けられる。
有益には、音響プローブ200、並びに特に、第1の主面212及び第2の主面214を含む基板210は、対象者の腹部生体構造にフィットするように凹曲されるディスクの形状因子又は形状を有する。音響プローブ200は、対象者の腹部生体構造によりぴったりフィットするためにある程度は可撓性である。
デバイス挿入ポート230は、そこを通って第1の主面212から第2の主面214まで通過し、次いで処置部位において対象者の身体内へと入る介入デバイス(例えば、手術器具)を収容するように構成される。
図3は、音響プローブ200及び音響プローブ200のデバイス挿入ポート230を通過する介入デバイス310の配置300の実施形態例を例証する。いくつかの実施形態において、デバイス挿入ポート230は、1cmの直径を有する介入デバイス310がデバイス挿入ポート230を通過することができるようなサイズを有する。
音響プローブ200は単一のデバイス挿入ポート230を含むが、他の実施形態において、音響プローブは、2つ以上のデバイス挿入ポート230を含んでもよい。また、音響プローブ200において、デバイス挿入ポート230は、略円形形状を有し、基板210の中央に設けられるが、他の実施形態において、デバイス挿入ポートは、異なる形状を有してもよく、及び/又は、基板上の異なる場所に位置してもよい。
例えば、図4は、音響プローブ200が対象者に固定されると単一の固定された皮膚入り口点のみを提供する基板210の中央にある小さい孔の代わりに、細長の放射状スリット又はスロットの形状を有するデバイス挿入ポート430を含む音響プローブ400の別の実施形態例を例証する。細長の放射状スロット430は、音響プローブ400を再位置付けする必要性なしに介入デバイスを対象者の組織内に挿入するための好適な皮膚挿入点及び軌道を見つけるためにさらなる柔軟性を提供する。図5は、細長のスリット又はスロットの形状を有するデバイス挿入ポート530を有する音響プローブ500のさらに別の実施形態例を例証する。他の実施形態において、音響プローブは、基板210の中央から放射状に延在する複数の細長のスリット又はスロットを含む。他の実施形態において、音響プローブは、介入デバイスが所望の挿入場所に到達するように挿入ポート内で2つの(例えば、直交する)方向に移動されることを可能にする「x状の」スロット又はスリットの形状を有する1つ又は複数のデバイス挿入ポートを含む。
音響プローブ200(並びに音響プローブ400及び500)は、介入デバイスの挿入場所を囲む撮像アパーチャを有する大きい変換器アレイを備える。例えば、いくつかのバージョンにおいて、音響変換器素子222のアレイによって画定される基板210の活性領域は、少なくともおよそ12cmの直径を有する。有益には、基板210は、およそ1cmの厚さを有する。有益には、基板210は、剛性又は半剛性である。当然ながら、例えば臨床アプリケーション領域に応じて、他の寸法が同等に実現可能であるということが理解される。
音響プローブ200のいくつかのバージョンは、およそ8cmの深さで腹部介入のために用いられる。このカテゴリに入る介入としては、絨毛採取、及び双胎間輸血症候群(TTTS)において血流パターンを変えることなどの胎児介入が挙げられる。音響プローブ200のいくつかのバージョンは、8cmの深さで神経線維を解像するために音響撮像機(例えば、音響撮像機110)とともに使用される。
任意選択的に、8cmの深さにおいて十分な信号を得るために、システム100の超音波中心周波数は、十分に低く、例えばおよそ3.5MHz以下に選択される。有益には、関心領域が8cmの深さに近く、且つ音響変換器素子222のアレイの中心軸の比較的近くに位置することが分かっている場合、わずかなステアリング角のみが必要とされる。この場合、音響変換器素子222のサイズは比較的大きく、音響プローブ200は、線形アレイと同様の様式で動作される。
有益には、音響変換器素子222は、約1波長のサイズ、例えば、音響プローブが約3.5MHzで動作するように音響撮像機によって制御されるときには約0.44mmを有する。その場合、いくつかのバージョンにおいて、音響プローブ200は、デバイス挿入ポート230を囲んで基板210に存在する約60000の音響変換器素子を有する。
音響プローブ200が追跡を可能にするシステム(例えば、システム100)とともに使用される場合、音響撮像機110は、介入デバイス先端の位置を知っており、この先端の周りの小さい関心領域を撮像することのみを必要とする。いくつかの実施形態において、追跡は、関心領域において音響プローブ200のデバイス挿入ポート230を通過する介入デバイス300の遠位端のところ又はその近くに受動的な音響受信器を提供することによって行われ得る。
図6は、その遠位端に音響受信器(例えば、受動的な音響受信器)610が設けられている介入デバイス600の一実施形態例を例証する。介入デバイス600は、介入デバイス300の一実施形態であり、したがって、音響プローブ200のデバイス挿入ポート230を通過するように構成される。介入デバイス600については1つのみの音響受信器610が示されているが、介入デバイスの他の実施形態は、2つ以上の音響受信器610を含んでもよい。
介入手技において用いられる介入デバイスのリアルタイムのガイダンスでは、いくつかの場合において、それは、介入デバイス600の先端において2×2cmのX平面を含む関心領域のみを撮像するのに十分である。これは、少なくともおよそ10cmの活性音響アパーチャを任意の所与の時間に作成し、それを経時的に横方向及び高さ方向に2cm範囲にわたってスライドすることによって達成される。アレイの活性アパーチャは、変換器の面積によって画定され、変換器は、送信イベントのための所与の瞬間に同時に作動される。
しかしながら、詳細に上述されたように、そのような大きい活性アパーチャは、一般に、収差アーチファクトの影響を受けやすい。有益には、いくつかの実施形態において、そのようなアーチファクトは、受信器インターフェース118によって介入デバイス600上の1つ又は複数の受動的音響受信器610から受信されるフィードバックを使用して、音響撮像機110のプロセッサ112によって軽減される。
適切な収差補正により、これは、撮像解像度を犠牲にすることなく従来の音響プローブの約2倍の深さでの撮像を可能にする。一般に、多量の利用可能な信号を損失することなく2倍の深さで撮像するには、音響プローブ信号の中心周波数を2倍低減することが必要である。その一方で、同じ撮像周波数を維持しながら解像度を犠牲にすることなく2倍の深さで撮像するには、同じF数を維持することが必要であり、活性アパーチャが2倍の波長にわたらなければならないことを意味する。これら2つの効果を組み合わせると、活性アパーチャの寸法は、2倍の深さで同じ撮像解像度を維持するためには2×2=4倍大きくなければならない。したがって、8cmの深さでの10cm活性アパーチャを有する音響変換器素子222のアレイの解像度は、4cmの深さで7MHzの周波数での2.5cm音響アパーチャを有する従来のアレイでの撮像に匹敵する。さらに、より大量の音響変換器素子222からの信号をコヒーレントに合計することによって、信号対ノイズ比(SNR)を増加させることができる。
図7は、音響撮像の方法700の一実施形態例のフローチャートを例証する。具体的な説明を提供するため、図1のシステム100及び音響プローブ200に関して言及する。しかしながら、一般に、本方法は、システム100と異なる構成及び音響プローブ200と異なる構成(例えば、音響プローブ400及び500)を有するシステムによって実施されてもよいということを理解されたい。
動作710は、対象者の皮膚に適用されるように構成される基板210を備える音響プローブ200を提供することを含み、ここで、基板は、少なくともおよそ12cmの直径及び音響プローブ200が適用される皮膚の形状に適合する凹状ディスクの形状を有する第1の主面212及び第2の主面214を有する。ここでは、音響プローブ200は、第1の主面212から第2の主面214まで基板210を通過する開口部を備える少なくとも1つのデバイス挿入ポート230と、基板210によって支持され、デバイス挿入ポート230の周りに配置される音響変換器素子222のアレイとをさらに有する。音響プローブ200は、介入手技が実施されることが望まれる領域において対象者の皮膚に適用され、留め具240を通過する1つ又は複数のストラップにより、例えばベルクロ(登録商標)を用いて、定位置に固定される。また、1つ又は複数の介入デバイス(例えば、介入デバイス600)は、デバイス挿入ポート230に挿入され、且つそこを通過して、対象者の組織内へと入る。いくつかの実施形態において、プロセッサ112は、介入デバイスがデバイス挿入ポート230を通過して介入手技のために対象者の身体内の目標とする場所に到達することを可能にする配向又は位置合わせを決定する。その場合、介入デバイスがデバイス挿入ポート230に挿入される前又は最中、介入デバイスは、目標とする場所と位置合わせされるか又はそれに対して配向される。そのような配向又は位置合わせのためのデバイス及び方法の実施形態は、以下により詳細に説明される。
動作720では、音響撮像機110のプロセッサ112が、ユーザインターフェース114及び/又はメモリに記憶されているプログラム命令を介して受信されたユーザインタラクションに応答して、音響プローブ200の音響変換器素子122の少なくともいくつかに信号を送信する。
動作730では、音響撮像機110から受信した信号に応答して、音響プローブ200の音響変換器素子122が、音響プローブビームを形成し、その音響プローブビームを、関心領域、例えば、介入手技が実施される予定の人体内の領域へ送信する。
動作740では、音響プローブ200の音響変換器素子122の一部又はすべてが、音響プローブ信号に応答して関心領域から音響エコーを受信する。音響エコーに応答して、音響プローブ200は、1つ又は複数の信号を音響撮像機110のプロセッサ112に送信する。
動作750では、音響撮像機110が、受信器インターフェース118において、音響プローブ200のデバイス挿入ポート230を通過する介入デバイス(例えば、介入デバイス600)の遠位端に設けられた音響受信器(例えば、音響受信器610)からフィードバック信号を受信する。
動作760では、音響撮像機110、及び特にプロセッサ112が、音響受信器610からのフィードバック信号を使用して、関心領域から音響プローブ200によって受信される音響エコーに対して、音響受信器、及び故に介入デバイス600の先端の場所をレジストレーションする。即ち、音響撮像機110は、フィードバック信号から介入デバイス600の先端の位置を決定するため、結果として、音響撮像機110は、この先端を追跡し、故に音響撮像機110は、この先端の周りの小さい領域のみを撮像する。言い換えると、音響撮像機は、関心領域に対する介入デバイスの相対位置を追跡するように配置される。いくつかの実施形態において、追跡プロトコルは、介入デバイス600の先端の予測位置に基づいて最適化される。例えば、音響受信器610の指向性プロファイルに基づいて音響受信器610に対する最大信号を確実にするために、変換器素子222のサブセットのみが、音響受信器610に高周波の音波を当てるために選択される。これは、追跡感度及びSNRを増大することを助ける。
動作770では、音響撮像機110、及び特にプロセッサ112が、関心領域からの受信した音響エコーに応答して音響プローブ200から受信した1つ又は複数の信号に応答して関心領域の音響画像を生成する。介入デバイスの場所を含むこれらの音響画像は、撮像されている関心領域において医師によって実施されている介入手技をガイドするためにディスプレイ116上で医師に表示される。
動作780では、音響撮像機110、及び特にプロセッサ112が、音響エコーに対する音響受信器610の場所のレジストレーションを使用して、音響画像内の収差アーチファクトを軽減する。
本発明の好ましい態様によると、音響撮像機110は、音響プローブの活性アパーチャの最適化方法1300を実装するように、即ち、動作760の状況において上述されたように音響受信器610の指向性プロファイルに基づいて音響受信器610に対する最大信号を確実にするために、音響受信器610に高周波の音波を当てるために変換器素子222のサブセットを選択するように構成される。そのような最適化方法1300の実施形態例のフローチャートは、図13に概略的に描写される。方法1300は、音響撮像機110、典型的にはプロセッサ112が、動作760において詳細に上述されたように音響受信器610の位置を計算する動作1301から始まる。この計算された位置は、以下により詳細に説明されるように、音響信号をこの位置に集束するために音響撮像機110によって使用される。
動作1303では、音響撮像機110が、活性アパーチャの直径を画定し、これは、動作1303が初めて実施される場合は、活性アパーチャ直径をデフォルト値に設定することと同等である。例えば、音響プローブ200が10cm直径の最大活性音響アパーチャを有する場合、活性音響アパーチャの初期直径は、3cmに設定され、動作1305において、例えば音響プローブ200のデバイス挿入ポート230を中心にした初期位置に位置付けられる。活性音響アパーチャに関して「直径」について言及される場合、これは必ずしも円形アパーチャに限定されないということに留意されたい。選択された活性アパーチャが、正方形などの多角形を有することも同等に実現可能であり、この場合、直径とはそのような形状の主となる対角線を指す。
さらに、活性音響アパーチャのサイズ及び位置の選択は、選択の音響変換器素子222が音響プローブ信号を関心領域へ送信させるため、即ち、選択の音響変換器素子222が、動作1301において決定されたように、音響プローブ信号を音響受信器610の位置に集束させるため、音響撮像機110が送信信号を選択の音響変換器素子222に提供することに相当するということが理解される。音響変換器素子222のこの選択が活性音響アパーチャを画定し、また、直径の変化及び/又は位置の変化に関する活性音響アパーチャに対する調整は、活性音響アパーチャを形成するために選択される音響変換器素子の変化に相当するということが理解される。これは、選択された複数の音響変換器素子222(明瞭性のためだけに図14には図示されない)で形成される活性音響アパーチャ225を有する音響プローブ200を概略的に描写する図14の助けを借りてさらに説明される。
非限定的な例として活性音響アパーチャ225がデバイス挿入ポート230を中心とする状況Aによってここでは概略的に描写される、動作1305において活性音響アパーチャ225の初期位置を画定する際、音響撮像機110は、例えば、焦点のすぐ近くにあるいくつかの点をサンプリングすることによってシステムの点広がり関数を測定することにより焦点の質の指標を得るために、音響変換器素子の選択に、音響プローブ信号を音響受信器610の方向に送信させる、例えば、音響プローブ信号を音響受信器610の小さい周囲領域上に又はそれにわたって集束させるように、活性音響アパーチャ225を画定する音響変換器素子222を制御する。音響受信器位置が固定される場合、これは、体系的なビームステアリング又は音響アパーチャ225の並進移動に関与する複数の超音波送信イベントによって達成される。代替的に、音響アパーチャ225は、音響受信器610に集束され、音響信号が受信される時間分が決定される。送信パルス長よりはるかに長い時間窓は、増大された収差を示す。
動作1307では、フィードバック信号が、音響撮像機110によって受信され、このフィードバック信号は、音響受信器610に由来し、動作1305において生成されるような選択された活性音響アパーチャ225を画定する音響変換器素子222を用いて音響受信器610に向けられた音響プローブ信号に対する応答信号である。
音響撮像機110は、動作1307において、フィードバック信号の品質指標を決定し、この品質指標は、いくつかの実施形態においては、活性音響アパーチャ225を画定する音響変換器素子222の選択によって音響受信器610に向けられる送信信号の焦点の質の決定である。そのような焦点の質は、当業者にはそれ自体がよく知られた任意の好適なメトリックを使用して決定される。音響撮像機110によって採用されるメトリックは、音響プローブ200が使用される臨床アプリケーションによって異なる。例えば、サイドローブエネルギーを最小限にすることが例えば小さい低エコー特徴物が対象であるので望ましいシナリオにおいては、主ローブの規定を最大限にすることが例えば小さい高エコー特徴物が解像される必要があるので望ましいシナリオと比較して、異なるメトリックが使用されてもよい。
続く動作1309は、任意選択的な動作であり、例えばこれは、図14の状況Bによって概略的に描写されるように、選択された直径を有する活性音響アパーチャ225が音響変換器素子222を担持する表面214を横切る1つ又は複数の方向に並進移動される場合に採用され、これは、活性音響アパーチャ225をこの表面上に再位置付けするために、即ち、音響変換器素子222の異なるセットを選択することによってこの新しい場所内に活性音響アパーチャ225を画定するために行われる。したがって、この動作は、介入デバイス600の音響受信器610により決定されるような、介入デバイス600に対する活性音響アパーチャ225の最適な場所を見つけるために使用される。具体的には、動作1309において、すべての事前に規定されたテストされるべき場所がテストされたかどうかがチェックされる。これが当てはまらない場合、方法1300は、動作1305へと戻り、ここで活性アパーチャ位置は、位置調整アルゴリズム又はスケジュールに従って再規定され、その後、この調整された活性音響アパーチャ225のためのフィードバック信号の品質指標が決定される。これは、活性音響アパーチャ225のすべての位置又は場所がこの様式で調査されるまで繰り返される。これは、軸1400に沿った活性音響アパーチャ225の再位置付けを描写する状況B及びB’によって図14に概略的に描写される。例えば、活性音響アパーチャ225は、一定の距離範囲にわたる一定の段階増分、例えば活性音響アパーチャ225の初期位置の両側において10mm範囲にわたる0.4mm増分を使用して体系的に再位置付けされ、それにより合計51の測定点をもたらす。
当業者によって理解されるように、上の例において、デバイス挿入ポート230を中心とする活性音響アパーチャ225の初期位置付けは、活性音響アパーチャ225の初期位置が軸1400上の任意の好適な場所内で選択されるため、単に非限定的な例にすぎない。さらに、活性音響アパーチャ225の理想の位置の調査は、単一方向における活性音響アパーチャ225の体系的再位置付けに限定されず、複数の方向、例えば軸1400に垂直の第2の方向におけるこの位置の体系的変化が同等に採用されるということに留意されたい。
追加的に、又は、代替的に、活性音響アパーチャ225は、電子ビームステアリングを使用して音響受信器610に対して再位置付けされるため、その結果、音響変換器素子222の単一の選択により、音響受信器610を用いた複数の(焦点の)品質測定が実施され、各品質測定が特定のビームステアリング角(又はビームステアリング角の範囲)に対応している。この場合、この特定のビームステアリング角(又は角度の範囲)は、音響受信器610に対する活性音響アパーチャ225の最適な位置付けを得るために体系的に変動される。この様式では、器具追跡能力が最適化される。
動作1311では、活性音響アパーチャ225のすべての直径は、この直径が体系的に変動される場合に備えて調査されたかどうかがチェックされる。例えば、音響変換器素子222の合計数によって画定されるようなおよそ10cmの固有の活性音響アパーチャを有する音響プローブ200の場合、活性音響アパーチャ225の有効直径、即ち、活性音響アパーチャ225が最適な音響性能を呈する直径は、図14において状況A’によって概略的に描写されるように、この較正方法1300においてこの直径のサイズを体系的に変化させることによって見つけられる。例えばこれは、直径のサイズを一定増分を使用して初期値から体系的に増加又は減少させることによって行われる。非限定的な例として、上の音響プローブ200の場合、初期直径サイズ値は、3cmに設定され、直径が10cmのサイズに到達するまで1cmごとに体系的に増分される。動作1311において、まだすべての直径が調査されていないことが分かった場合、方法1300は、動作1303へと戻り、ここで活性音響アパーチャ225の直径はそれに従って調整され、その後、音響受信器610からのフィードバック信号を使用した上述された音響品質測定が、調整された直径を有する活性音響アパーチャ225について実施される。
すべての所望の音響品質測定値が収集されると、例えば、メモリなどのデータストレージデバイスに記憶されると、方法1300は動作1313へと進む。動作1313では、最適な音響性能を有する活性音響アパーチャ225のサイズ及び/又は位置が、収集された音響品質測定値から決定され、その後、方法1300は動作1315へと進む。動作1315では、その場の介入デバイス600を用いた関心領域の撮像は、音響撮像機110によって実施される。音響撮像機110は、好ましい選択の音響変換器素子222に、さらなる信号を送信させるように、音響プローブ200を動作させる。即ち、さらなる信号を好ましい選択の音響変換器素子222が、さらなる音響プローブ信号を関心領域へ送信し、前記さらなる音響プローブ信号に応答して関心領域から音響プローブ200によって受信される音響エコーから関心領域の音響画像を生成するような最適な活性音響アパーチャ225を、選択の音響変換器素子222が画定するように、音響撮像機110は構成される。これは、介入デバイス600が関心領域内に再位置付けされるまで繰り返され、それは動作1317においてチェックされる。そのような再位置付けの際、最適な活性音響アパーチャ225は、このアパーチャが関心領域内への介入デバイス600の位置(例えば挿入の深さ)の関数であるため、再計算される必要がある。その結果、そのような再位置付けの際、方法1300は動作1301へと戻って、介入デバイス600の新しい位置について最適な活性音響アパーチャ225を決定する。
現段階で、アパーチャ較正方法1300の上述された実施形態は、単なる実施形態であるということに留意されたい。例えば、活性音響アパーチャ225のサイズのみを最適化すること、又は活性音響アパーチャ225の位置のみを最適化することは、例えば、変換器アレイ上の位置の範囲に沿って一定のサイズを有する活性音響アパーチャ225を移動させることによって同等に実現可能である。
さらには、活性音響アパーチャ225を、孤立して、又は活性音響アパーチャ225のサイズ変更と組み合わせて、再位置付けすることは、1つ又は複数の軸1400に沿った活性音響アパーチャ225の体系的な再位置付けに限定されない。そのような再位置付けは、任意の好適な様式で達成される。例えば、活性音響アパーチャ225は、デカルト格子を得るために、又はデバイス挿入ポート630の周りに同心円を形成するために、又は音響受信器610の周りの焦点に関して同心円を形成するために、体系的な様式で再位置付けされる。別の実施形態において、合成アパーチャ技術が採用され、ここでは音響変換器素子222のアレイは、複数のサブアパーチャに分割され、各サブアパーチャ225について、音響受信器610を囲む領域にわたってサブアパーチャ225の音響信号をスライド又はステアリングすることによって、音響性能が、例えば焦点の質に関して、決定される。この様式では、実績の高いサブアパーチャ225が特定され、その後、方法1300は、このようにして特定されたサブアパーチャ225を、隣接したサブアパーチャでそれらをクラスタリングすることによってサイズ変更する。この様式では、アパーチャサイズの範囲が評価され、そこから最も実績の高いアパーチャが上述されたように選択される。
さらに、方法1300の実施形態は、音響信号を音響受信器610に集束するための活性音響アパーチャ225のサイズ及び/又は位置の体系的変化に限定されない。関心領域内の限られた深さ範囲にわたってそのような活性音響アパーチャ225を用いて生成された送信焦点を移動させて、関心領域内の介入デバイス600の特定の位置について音響プローブ200の最適な活性音響アパーチャ225の体系的な評価をさらに拡大することが同等に実現可能である。
上記されたように、音響撮像システム及び方法の1つの望ましい属性は、音響プローブのハンズフリー動作である。特に、低侵襲手術手技において超音波撮像を使用して1つ又は複数の介入デバイス(例えば、手術ツール)をガイドするとき、医師/外科医に加えて音波検査者が必要とされないように、音響プローブのハンズフリー動作が望まれる。しかしながら、手技の最中、所望の場所に介入デバイスを保持している外科医が、介入デバイスの位置を乱すことなく異なるタスクを行うために自分の手を使用することを求める又は必要とする瞬間が存在する。これは、例えば、第2の介入デバイスの位置を操作すること、撮像機の設定を操作すること、又はガイドワイヤを挿入することに関与し得る。
この目的のため、図8は、音響プローブ(例えば、音響プローブ200)のデバイス挿入ポート(例えば、デバイス挿入ポート230)のための器具ガイド800の実施形態例を例証する。
図9は、音響プローブ200、デバイス挿入ポート230内に設けられた器具ガイド800、及び器具ガイド800を通過するように設けられた介入デバイス300の配置900の実施形態例を例証する。音響プローブ400及び500、並びに1つ又は複数のデバイス挿入ポートの異なる構成を有する他の音響プローブについて、同様の配置が提供され得るということを理解されたい。器具ガイド800は、音響プローブ200と一体化され、したがって、音響プローブの部分であると見なされるか、又はデバイス挿入ポート230内に取り外し可能に挿入される別個の要素であるということも理解されたい。
器具ガイド800は、介入デバイス300が通過するための円筒孔823を有するボール構造体820と、ボール構造体820を少なくとも部分的に囲む自在クランプ810とを備える。クランプ810は、球状の内部表面を有し、デバイス挿入ポート230の内部表面に装着される。
いくつかのバージョンにおいて、円筒孔823は、少なくとも約1.5mmの直径を有する介入デバイス300がそこを通過することを可能にする直径を有する。ボール構造体820は、複数のより大きな半軟質の変形可能なセグメント822、及びより小さい剛性のセグメント824を含む。いくつかのバージョンにおいて、セグメント822は多孔性のテフロン(登録商標)製であり、セグメント824はステンレス鋼製である。有益には、自在クランプ810は、球状の内側表面を有し、十分な遊びをもった嵌めにより、ボール構造体820は自由に回転し、介入デバイス300は器具ガイド800内外を自由にスライドする。
動作中、介入デバイス300が係止ユニットによって係止モードに入り、介入デバイス300が係止されて定位置に(固定位置に)しっかりと保持されるまで、器具ガイド800は、そこに挿入される介入デバイス300の自由な動きを可能にする。より具体的には、自在クランプ310が緩められると、ボール構造体820は自在クランプ810内を自由に回転することができ、器具ガイド800内での介入デバイス300の挿入の深さが調整される。しかしながら、自在クランプ810が締められると、ボール構造体820は、自在クランプ810内で動けなくなり、器具ガイド800内での介入デバイス300の挿入の深さが係止される。
器具ガイド800内で介入デバイス300を係止するため、自在クランプ810は、貫通孔812が位置する突出末端から締め付けられる。様々な実施形態において、これは、例えば、ナット/ボルト構造体、自転車ケーブルとともに用いられるものと同様の機構、電磁アクチュエータなどによって達成される。自在クランプ810が締め付けられると、自在クランプ810はボール構造体820を定位置に係止し、また、セグメント824を介入デバイス300に押し付けて挿入の深さを係止する。
いくつかの実施形態において、自在クランプ810を選択的に締めたり緩めたりして器具ガイド800を係止及び係止解除するために、ユーザ(例えば、医師/外科医)によってフットペダルが用いられる。他の実施形態において、音響撮像機110は、ユーザからの音声命令に応答して、自在クランプ810を選択的に締めたり緩めたりして器具ガイド800を係止及び係止解除する。依然として他の実施形態において、自在クランプ810の係止は、特定の重要な領域内で介入デバイスを係止することを避けるために、音響(超音波)スキャナによって開始される。
器具ガイド及び器具ガイドを含む音響プローブの多くの変形形態及び異なる実施形態が可能である。
いくつかの実施形態において、器具ガイド内の孔の形状及び/又は寸法は、挿入予定の特定の介入デバイスの形状及び/又は寸法に適合される。
いくつかの実施形態において、器具ガイドは、それを電磁石で磁化することによって定位置に固定される。
いくつかの実施形態において、音響プローブは、複数の器具ポートを有し、器具ポートの一部又はすべてが器具ガイドを備える。
いくつかの実施形態において、器具ガイドは、手術環境において無菌状態を維持するのを助けるために、使い捨てのボール構造体を含む。
いくつかの実施形態において、器具ガイドは、介入デバイスが挿入される器具ガイド内の孔の配向又は方向の、及び孔内に挿入される介入デバイスの、別個の独立した係止を提供するように構成される。
音響プローブのデバイス挿入ポート内の器具ガイド内に挿入される介入デバイスを挿入するとき、介入デバイスが音響画像内の特定の解剖学的な目標とする場所に到達するために必要とされる正しい配向又は角度を決定することは困難である。
したがって、以下に説明されるのは、デバイス挿入ポートと、音響撮像機と通信して介入デバイスの最適な挿入配向を自動的に決定することができる符号化され且つ調整可能な器具ガイドとを含むシステム及び音響プローブ、並びに、器具ガイドの配向を自動的に又は手動で最適化し、結果として、その配向で器具ガイドを介して挿入される介入デバイスが音響画像内のユーザ定義された目標とする解剖学的場所と交差するようにするための方法である。これにより、繰り返されるデバイス挿入の発生率を低減することができ、したがって対象者に対する外傷を低減し、臨床ワークフローを改善し、より正確な介入を可能にする。
図10は、介入デバイス先端を対象者において音響撮像されている関心領域内の所望の目標とする場所に位置付けるために音響プローブのデバイス挿入ポート内に設けられる器具ガイドを配向する動作例を例証する。具体的な説明を提供するため、図1のシステム100、並びに、音響プローブ200、器具ガイド800、及びジョイスティック1010の組合せである配置1000に関して言及する。しかしながら、一般に、本動作は、配置1000と異なる構成及び音響プローブ200と異なる構成(例えば、音響プローブ400及び500)を有する配置によって実施されてもよいということを理解されたい。
図10は、音響撮像平面50と、器具ガイド800を所望の配向へと動かすために使用されるジョイスティック1010とを示し、この所望の配向は、介入デバイスの先端を目標とする場所15に置くために音響撮像機110のプロセッサ112によって計算されたものである。
動作中、音響プローブ1000が介入手技の対象者上に満足に位置付けられると、臨床医/外科医は、例えば、ユーザインターフェース114及びディスプレイ118を介して、超音波画像上で、点をクリックするか、又は目標とする場所若しくは領域を描くことによって、音響画像平面50の関心領域内の目標とする場所15を規定する。次いで、プロセッサ112が、音響スキャナから目標とする場所15を検索する。器具ガイド800が、音響プローブ200の音響変換器素子222のアレイに取り付けられている、ひいてはそれにレジストレーションされているため、プロセッサ112は、介入デバイス300が目標とする領域15に到達することを可能にするのに必要な器具ガイド800の配向を自動的に計算する。
いくつかの実施形態において、器具ガイド800の配向は、器具ガイド800を備えたエンコーダによって規定される。
エンコーダの一実施形態において、ボール構造体820は、その上に固有の空間的に変化する光学パターンが提供(例えば、塗装)され、この光学パターンは、自在クランプ810に埋め込まれた高解像度小型カメラを使用して読み出される。そのようなパターンは、例えば、経度及び緯度の座標に応じた線厚を有する緯度線及び経度線の格子である。さらなる区別のため、経度線はまた、緯度線とは異なる色を有する。そのような配置は、ボール構造体820を移動させるための3つの自由度(即ち、チップ/チルト/回転)を提供する。その場合、プロセッサ112は、器具ガイド800の所望の配向及び関連するエンコーダ値を計算し、実際のエンコーダ値を計算されたエンコーダ値と比較することによって、フィードバックを介して計算された配向を有するように器具ガイド800を自動的に動かす。いくつかの実施形態において、これは、介入デバイスが器具ガイド800から導入される前に行われる。プロセッサ112と器具ガイド800との間の電子通信は、プローブケーブル205に含まれ得る有線接続を使用して有効にされる。器具ガイド800が所望の配向に調整されると、介入デバイスが必要に応じて挿入される。
いくつかの実施形態は、対象者内の目標とする場所15において介入デバイスを挿入するプロセスのために追加の符号化を利用する。例えば、いくつかの実施形態において、介入デバイスは、1つ又は複数の長さマーカ、並びに長さ概算及び介入デバイスの係止のための小さい溝を有する。これらの長さマーカ及び/又は小さい溝に基づく長さ及び角度測定値は、介入デバイスの配向及び位置を概算するために使用される。
別の実施形態において、プロセッサ112は、器具ガイド800の所望の配向及び関連するエンコーダ値を計算し、ユーザが器具ガイド800を手動で動かして(例えば、ジョイスティック1010により)、計算されたエンコーダ値に一致させる。
器具ガイド800の手動調整を助けるため、ジョイスティック1010は、一時的に器具ガイド800に取り付けられる。配向/調整プロセスが完了すると、ジョイスティック1010を取り外して、介入デバイスと交換することができる。別の実施形態において、ジョイスティック1010は中空の側溝を有し、そこを通って介入デバイスが挿入され、これによりジョイスティック1010を取り外す必要なく介入手技が実施されることを可能にする。代替的に、ジョイスティック1010は、位置合わせされた配向で器具ガイド800に恒久的に取り付けられるが、介入デバイスの挿入を可能にするために介入デバイスの挿入点に対してわずかに並進移動される。
器具ガイド800の手動調整の最中、投影された器具経路25は、ディスプレイデバイス118上に表示され、ユーザがこれを器具ガイド800を正しく位置合わせするためのフィードバックとして使用することができるように継続的に更新される。いくつかの場合において、要求される調整が画像平面50外である場合、画像ベースのフィードバックのみを使用して器具ガイド800を位置合わせすることは不可能である。
面外の調整を助けるため、図11は、デバイス挿入ポート230を有する音響プローブ1100、及びデバイス挿入ポート230内に設けられる器具ガイド800のさらに別の実施形態例を例証する。デバイス挿入ポート230を囲む、音響プローブ1100の基板210の上面は、異なる色の光素子(例えば、発光ダイオード(LED))1100の3つの円形の同心円状の輪と合致する。例えば、いくつかの実施形態において、LEDの最も内側の輪1112は黄色であり、真ん中の輪114は緑色であり、最も外側の輪1116は赤色である。これらのLED光は、ユーザが器具ガイド800をデバイス挿入ポート230内の所望の配向へ動かす間、ガイダンスとしての役割を果たす。いくつかの実施形態において、任意の所与の時間において、ユーザが器具ガイド800を動かすべき方向を示すために1つのみのLEDが照明される。
図12は、介入デバイス先端を所望の場所15に位置付けるために音響プローブ1100のデバイス挿入ポート230内に設けられる器具ガイド800を配向しながらユーザフィードバックを提供するプロセスを例証する。
プロセッサ112が器具ガイド800のためのエンコーダ値を計算すると、適切な配向を示すためのLEDが以下のように有効化される。まず、決定された方向における最も内側の輪1112の黄色のLEDが有効化されて、器具ガイド800がその方向に枢動される必要があることをユーザに示す。ユーザがプロセッサ112によって決定されるような正しい量だけ器具ガイド800を枢動させると、最も内側の輪1112の黄色のLEDは無効化され、真ん中の輪1114の緑色のLEDが有効化され、器具ガイド800がプロセッサ112によって決定されるような最適な配向にあることを示す。ユーザが目標を飛び越えて器具ガイド800を枢動させ過ぎた場合、真ん中の輪1114の緑色のLEDは無効化され、最も外側の輪1116の赤色のLEDが有効化され、ユーザが器具ガイド800を枢動させ過ぎたことを示す。任意選択的に、この段階で、正反対の場所にある黄色のLEDも有効化され、最適な配向に到達するためにはユーザがここで器具ガイド800を正反対の方向に枢動させて戻す必要があることを示す。
プロセッサ112による器具ガイド800の自動配向の場合と同様に、器具ガイド800が所望の配向に調整されると、器具ガイド800は上記のように所望の配向にしっかりと保持され、介入デバイスが必要に応じて挿入される。
いくつかの実施形態において、図12に関する上記のLEDベースのワークフローは、器具ガイド800の配向の粗調整のために使用され、現在のエンコーダ値(及び所望の最適なエンコーダ値)も、必要な場合、ユーザが器具ガイド800の配向のさらなる微調整を行うことを可能にするために、ディスプレイ118に表示される。いくつかの実施形態において、音響撮像機110は、器具ガイド800の最適な配向に到達したことを示すために音声フィードバック(例えば、ビープ音)をユーザに提供する。
器具ガイド800を含むデバイス挿入ポートの形状に応じて、器具ガイド800は、デバイス挿入ポートから挿入される介入デバイスを動かすための利用可能な異なる自由度(DOF)により複数のやり方で調整される。
例えば、デバイス挿入ポート(例えば、デバイス挿入ポート230)内で、器具ガイド800のチップ又はチルト(ピッチ及びヨー)のみを行うことができ、並進移動が可能でない実施形態においては、介入デバイスを動かすための4つのDOFが存在する。
器具ガイド800を1つの軸(例えば、デバイス挿入ポート430又は539)に沿って並進移動させることができる他の実施形態においては、介入デバイスを動かすための5つのDOFが存在する。
器具ガイド800を2つの垂直軸(例えば、デバイス挿入ポートがX形状のスリット又はスロットである)に沿って並進移動させることができるさらに他の実施形態においては、介入デバイスを動かすための6つのDOFが存在する。
いくつかの実施形態において、挿入経路25に沿った介入デバイスの追跡は、音響(例えば、超音波)追跡(その場追跡)を使用して達成することができる。その場追跡では、介入デバイスのシャフト上の1つ又は複数の音響センサが音響画像内で追跡される。器具ガイド上のエンコーダを使用して、例えば上記の長さマーカを使用して、器具ガイド内の介入デバイスの挿入の程度も定量化することができる。この方法は、介入デバイスのいかなる湾曲も考慮しないが、介入デバイスの先端の位置の良好な初期概算として役に立ち、後でその場追跡などの他の追跡方法によって利用されてもよい。
好ましい実施形態が本明細書に詳細に開示されるが、本発明の概念及び範囲内に留まる多くの変形形態が可能である。そのような変形形態は、本文書における明細書、図面、及び特許請求の範囲の精査後に当業者には明白になる。したがって、本発明は、添付の特許請求の範囲内を除いて制限されないものとする。

Claims (13)

  1. 音響プローブと前記音響プローブに接続される音響撮像機とを備える、関心領域の画像を提供するための超音波システムであって、前記音響プローブは、
    第1の主面及び第2の主面を有する基板であって、前記第1の主面から前記第2の主面まで前記基板を通過する開口部を備える少なくとも1つのデバイス挿入ポートをさらに有し、前記開口部が介入デバイスの挿入に好適である、基板と、
    前記基板によって支持され、前記基板の活性領域を画定する音響変換器素子のアレイであって、前記アレイが前記少なくとも1つのデバイス挿入ポートの周りに配置される、音響変換器素子のアレイとを有し、
    前記音響撮像機は、
    前記音響変換器素子の選択を体系的に変化させ、また、各選択について、
    選択の音響変換器素子が音響プローブ信号を関心領域へ送信させるために前記選択の音響変換器素子に送信信号を提供し、
    前記デバイス挿入ポートを通過して前記関心領域内へと入る前記介入デバイスの遠位端に設けられた音響受信器からの前記送信信号のフィードバック信号を記録し、
    前記音響撮像機がさらに、
    前記音響変換器素子の好ましい選択を特定するために、前記音響受信器上への前記送信信号の焦点の質を評定するためのメトリックを使用して、記録された前記フィードバック信号を評価し、
    前記介入デバイスが前記関心領域内に再位置付けされるまで、好ましい選択の音響変換器素子がさらなる音響プローブ信号を前記関心領域へ送信させるために前記好ましい選択の音響変換器素子にさらなる信号を送信し、
    前記さらなる音響プローブ信号に応答して前記関心領域からの前記音響プローブによって受信される音響エコーから前記関心領域の音響画像を生成する、超音波システム。
  2. 各選択が、前記音響プローブの活性アパーチャを画定し、前記音響撮像機が、前記活性アパーチャの場所及び前記活性アパーチャのサイズのうちの少なくとも一方の体系的変化によって前記音響変換器素子の前記選択を体系的に変化させる、請求項1に記載の超音波システム。
  3. 前記音響撮像機が、
    規定のサイズを有する前記活性アパーチャの場所を体系的に変化させること、及び
    前記活性アパーチャの規定のサイズ範囲に基づいて、前記規定のサイズ範囲内の各サイズが使用されるまで、前記活性アパーチャのサイズを再規定すること
    を繰り返し行うことによって、前記音響変換器素子の前記選択を体系的に変化させる、請求項2に記載の超音波システム。
  4. 前記音響撮像機がさらに、前記音響変換器素子の前記選択の体系的変化の間、前記音響変換器素子の各選択についてビームステアリング角を体系的に変化させる、請求項1に記載の超音波システム。
  5. 前記音響撮像機がさらに、前記音響受信器からの前記フィードバック信号を使用して、前記音響プローブによって受信される前記音響エコーに対して前記音響受信器の場所をレジストレーションする、請求項1に記載の超音波システム。
  6. 前記音響撮像機がさらに、前記音響受信器のレジストレーションされた前記場所に基づいて前記音響画像内の収差アーチファクトを軽減するように配置されるプロセッサを備える、請求項5に記載の超音波システム。
  7. 前記基板が、凹状ディスクの形状を有し、前記音響変換器素子の前記アレイによって画定される前記基板の前記活性領域が、少なくとも12cmの直径を有する、請求項1に記載の超音波システム。
  8. 音響プローブと前記音響プローブに接続される音響撮像機とを備える、関心領域の画像を提供するための超音波システムの作動方法であって、前記音響プローブが、対象者の皮膚に適用される基板であって、前記基板が、第1の主面及び第2の主面を有し、前記第1の主面から前記第2の主面まで前記基板を通過する開口部を備える少なくとも1つのデバイス挿入ポートをさらに有する、基板と、前記基板によって支持され、前記少なくとも1つのデバイス挿入ポートの周りに配置される音響変換器素子のアレイと、を備え、
    前記音響撮像機が、前記音響変換器素子の選択を体系的に変化させ、また、各選択について、
    選択の音響変換器素子が音響プローブ信号を関心領域へ送信させるために前記選択の音響変換器素子に送信信号を提供し、
    前記デバイス挿入ポートを通過して前記関心領域内へと入る介入デバイスの遠位端に設けられた音響受信器からの前記送信信号のフィードバック信号を記録する、ステップと、
    前記音響撮像機が、前記音響変換器素子の好ましい選択を特定するために、前記音響受信器上への前記送信信号の焦点の質を評定するためのメトリックを使用して、記録された前記フィードバック信号を評価するステップと、
    前記音響撮像機が、前記介入デバイスが前記関心領域内に再位置付けされるまで、好ましい選択の音響変換器素子がさらなる音響プローブ信号を前記関心領域へ送信させるために前記好ましい選択の音響変換器素子にさらなる信号を送信するステップと、
    前記音響撮像機が、前記さらなる音響プローブ信号に応答して前記関心領域からの前記音響プローブによって受信される音響エコーから前記関心領域の音響画像を生成するステップと
    を有する、方法。
  9. 各選択が、前記音響プローブの活性アパーチャを画定し、前記音響変換器素子の選択を体系的に変化させるステップが、前記音響撮像機が、前記活性アパーチャの場所及び前記活性アパーチャのサイズのうちの少なくとも一方を体系的に変化させることを含む、請求項8に記載の方法。
  10. 前記音響変換器素子の選択を体系的に変化させるステップが、
    前記音響撮像機が、規定のサイズを有する前記活性アパーチャの場所を体系的に変化させること、及び前記活性アパーチャの規定のサイズ範囲に基づいて、前記規定のサイズ範囲内の各サイズが使用されるまで、前記活性アパーチャのサイズを再規定することを繰り返し行うことを含む、請求項9に記載の方法。
  11. 前記音響撮像機が、前記音響変換器素子の前記選択の体系的変化の間、前記音響変換器素子の各選択についてビームステアリング角を体系的に変化させるステップをさらに有する、請求項8に記載の方法。
  12. 前記音響撮像機が、前記音響受信器からの前記フィードバック信号を使用して、前記音響プローブによって受信される前記音響エコーに対して前記音響受信器の場所をレジストレーションするステップと、
    前記音響撮像機が、前記音響エコーに対する前記音響受信器の前記場所の前記レジストレーションを使用して、前記音響画像内の収差アーチファクトを軽減するステップとをさらに有する、請求項8に記載の方法。
  13. 前記関心領域内の前記介入デバイスの位置の変化に応答して前記音響変換器素子の好ましい選択を特定するために、前記音響撮像機が、前記音響変換器素子の前記選択の体系的変化と、記録された前記フィードバック信号の前記評価とを繰り返すステップをさらに有する、請求項8に記載の方法。
JP2018533866A 2015-12-31 2016-12-21 介入音響撮像のためのシステム及び方法 Active JP7076369B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562273667P 2015-12-31 2015-12-31
US62/273,667 2015-12-31
EP16157457.9 2016-02-25
EP16157457 2016-02-25
PCT/EP2016/082045 WO2017114701A1 (en) 2015-12-31 2016-12-21 System and method for interventional acoustic imaging

Publications (3)

Publication Number Publication Date
JP2019500144A JP2019500144A (ja) 2019-01-10
JP2019500144A5 JP2019500144A5 (ja) 2020-02-06
JP7076369B2 true JP7076369B2 (ja) 2022-05-27

Family

ID=55486502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533866A Active JP7076369B2 (ja) 2015-12-31 2016-12-21 介入音響撮像のためのシステム及び方法

Country Status (5)

Country Link
US (1) US11331070B2 (ja)
EP (1) EP3397170B1 (ja)
JP (1) JP7076369B2 (ja)
CN (1) CN108430335B (ja)
WO (1) WO2017114701A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266374B2 (en) 2015-12-31 2022-03-08 Koninklijke Philips N.V. Device for interventional acoustic imaging
WO2019008127A1 (en) 2017-07-07 2019-01-10 Koninklijke Philips N.V. INTEGRATION OF ROBOTIC INSTRUMENT GUIDE WITH AN ACOUSTIC PROBE
WO2019238618A1 (en) * 2018-06-15 2019-12-19 Koninklijke Philips N.V. Relative device orientation determination
CA3109611A1 (en) * 2018-08-20 2020-02-27 Butterfly Network, Inc. Methods and apparatuses for guiding collection of ultrasound data
WO2020038766A1 (en) * 2018-08-22 2020-02-27 Koninklijke Philips N.V. System, device and method for constraining sensor tracking estimates in interventional acoustic imaging
EP3900846A1 (en) * 2020-04-21 2021-10-27 Koninklijke Philips N.V. Acoustic imaging probe with a transducer element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511781A (ja) 1997-04-24 2002-04-16 ウィルク パテント ディベロプメント コーポレイション 医療映像化装置と方法
JP2013081764A (ja) 2011-09-27 2013-05-09 Toshiba Corp 超音波診断装置及び超音波走査プログラム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7442924U (de) 1974-12-23 1976-07-15 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ultraschallapplikator
US4407294A (en) * 1982-01-07 1983-10-04 Technicare Corporation Ultrasound tissue probe localization system
US5158088A (en) 1990-11-14 1992-10-27 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic systems for imaging medical instruments within the body
US5448997A (en) * 1993-10-15 1995-09-12 Medtronic, Inc. Heart pacing pulse detection system
JP3611636B2 (ja) 1995-07-21 2005-01-19 古野電気株式会社 超音波診断装置
DE10115341A1 (de) 2001-03-28 2002-10-02 Philips Corp Intellectual Pty Verfahren und bildgebendes Ultraschallsystem zur Besimmung der Position eines Katheters
CN1764849B (zh) 2003-03-27 2010-05-26 皇家飞利浦电子股份有限公司 通过广角三维超声成像引导侵入式医疗设备
US7244234B2 (en) * 2003-11-11 2007-07-17 Soma Development Llc Ultrasound guided probe device and method of using same
JP2006271874A (ja) 2005-03-30 2006-10-12 Toshiba Corp 超音波ガイド下穿刺針
US20070149880A1 (en) * 2005-12-22 2007-06-28 Boston Scientific Scimed, Inc. Device and method for determining the location of a vascular opening prior to application of HIFU energy to seal the opening
US8556888B2 (en) * 2006-08-04 2013-10-15 INTIO, Inc. Methods and apparatuses for performing and monitoring thermal ablation
CN101467896B (zh) * 2007-12-29 2010-12-01 西门子(中国)有限公司 超声波设备
JP2011104052A (ja) * 2009-11-16 2011-06-02 Ritsumeikan 超音波探触子
JP5889874B2 (ja) * 2010-05-03 2016-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 介入器具に搭載される超音波トランスデューサの超音波トラッキング
EP3563768A3 (en) * 2010-10-13 2020-02-12 Maui Imaging, Inc. Concave ultrasound transducers and 3d arrays
CN103747743B (zh) 2011-07-01 2016-10-12 皇家飞利浦有限公司 对超声波束形成器进行基于对象姿态的初始化
MX2013015358A (es) * 2011-07-01 2014-02-11 Koninkl Philips Nv Correccion de imagen intraoperativa para intervenciones guiadas por imagen.
JP5976441B2 (ja) * 2011-08-03 2016-08-23 東芝メディカルシステムズ株式会社 超音波プローブ及び超音波診断装置
US8792295B2 (en) 2012-01-31 2014-07-29 General Electric Company Method and system for monitoring a transducer array in an ultrasound system
JP2013240507A (ja) * 2012-05-22 2013-12-05 Ritsumeikan 超音波探触子
CN104411251B (zh) 2012-06-28 2017-08-25 皇家飞利浦有限公司 三维中超声引导的活检
CN103505288B (zh) * 2012-06-29 2017-11-17 通用电气公司 超声成像方法和超声成像设备
IN2015DN00556A (ja) * 2012-08-10 2015-06-26 Maui Imaging Inc
RU2015121359A (ru) * 2012-11-08 2016-12-27 Конинклейке Филипс Н.В. Интервенционное устройство, способ сборки и система сборки
US9913624B2 (en) * 2013-02-28 2018-03-13 Wisconsin Alumni Research Foundation Method and apparatus for rapid acquisition of elasticity data in three dimensions
US11464482B2 (en) 2013-03-04 2022-10-11 Sunnybrook Research Institute System and method for measuring and correcting ultrasound phase distortions induced by aberrating media
CN103222897B (zh) * 2013-05-07 2015-06-17 王琛 超声引导平面外穿刺适配器及设有其的超声引导穿刺装置和方法
CN103230304B (zh) * 2013-05-17 2015-05-13 深圳先进技术研究院 手术导航系统及其方法
US10028723B2 (en) * 2013-09-03 2018-07-24 The Trustees Of Columbia University In The City Of New York Systems and methods for real-time, transcranial monitoring of blood-brain barrier opening
EP3049013B1 (en) 2013-09-24 2017-11-15 Koninklijke Philips N.V. Acoustic 3d tracking of interventional tool
JP6405712B2 (ja) 2014-05-30 2018-10-17 コニカミノルタ株式会社 超音波診断装置
KR20160030753A (ko) * 2014-09-11 2016-03-21 삼성전자주식회사 송신 빔포밍 장치, 수신 빔포밍 장치, 이들을 포함하는 초음파 프로브 및 빔포밍 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511781A (ja) 1997-04-24 2002-04-16 ウィルク パテント ディベロプメント コーポレイション 医療映像化装置と方法
JP2013081764A (ja) 2011-09-27 2013-05-09 Toshiba Corp 超音波診断装置及び超音波走査プログラム

Also Published As

Publication number Publication date
EP3397170A1 (en) 2018-11-07
WO2017114701A1 (en) 2017-07-06
JP2019500144A (ja) 2019-01-10
EP3397170B1 (en) 2019-04-24
CN108430335A (zh) 2018-08-21
CN108430335B (zh) 2021-07-30
US20190008476A1 (en) 2019-01-10
US11331070B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP7076369B2 (ja) 介入音響撮像のためのシステム及び方法
US6585651B2 (en) Method and device for percutaneous determination of points associated with the surface of an organ
JP6636641B2 (ja) 介入音響撮像のためのデバイス
JP5159041B2 (ja) 超音波診断装置およびその画像処理プログラム
US6517478B2 (en) Apparatus and method for calibrating an endoscope
US6511418B2 (en) Apparatus and method for calibrating and endoscope
US6850794B2 (en) Endoscopic targeting method and system
US6884217B2 (en) System for aiming ultrasonic bladder instruments
EP2945560B1 (en) Method of adjusting focal zone in ultrasound-guided medical procedure and system employing the method
JP2006116319A (ja) 画像化システムと共に使用するための外科装置案内手段
JP2006142007A (ja) 基準として組織を用いるその組織の治療のためのシステムおよび方法
JP2006116318A (ja) 組織の治療をプランニングするためのシステムおよび方法
US11707251B2 (en) Ultrasound system for enhanced instrument visualization
US20110046636A1 (en) Surgical Guide Instrument Capable of Omni-Directional Positioning and Omni-Directional Positioning Unit Thereof
US20050261591A1 (en) Image guided interventions with interstitial or transmission ultrasound
US20140024940A1 (en) Ultrasonic diagnostic apparatus and sensor selection apparatus
JP7360946B2 (ja) 装置追跡に対する超音波システムにおける焦点追跡
WO2022156569A1 (zh) 手术追踪系统及其控制方法
JP2022511553A (ja) 自動化されたニードル検出
US20120029352A1 (en) Ultrasound device for medical applications
EP1768568A4 (en) IMAGE-LEADING INTERVENTIONS WITH INTERSTITIAL ULTRASOUND OR TRANSMISSIONSULTRASCHALL

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220201

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150