JP7074149B2 - High calorific value gas manufacturing method, manufacturing equipment, operation method and calorific value adjustment method - Google Patents
High calorific value gas manufacturing method, manufacturing equipment, operation method and calorific value adjustment method Download PDFInfo
- Publication number
- JP7074149B2 JP7074149B2 JP2020024055A JP2020024055A JP7074149B2 JP 7074149 B2 JP7074149 B2 JP 7074149B2 JP 2020024055 A JP2020024055 A JP 2020024055A JP 2020024055 A JP2020024055 A JP 2020024055A JP 7074149 B2 JP7074149 B2 JP 7074149B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- calorific value
- blast furnace
- high calorific
- furnace gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
Landscapes
- Blast Furnaces (AREA)
- Industrial Gases (AREA)
Description
本発明は、高熱量ガスの製造方法、製造設備、運用方法および熱量調整方法に関し、特に、製鉄所などから排出される高炉ガスを高熱量化して高熱量ガスとする高熱量ガスの製造方法、製造設備、運用方法および熱量調整方法に関するものである。 The present invention relates to a method for producing a high calorific value gas, a manufacturing facility, an operation method, and a calorific value adjusting method. It relates to manufacturing equipment, operation method and calorific value adjustment method.
製鉄所においては、コークス炉、高炉、転炉などの設備から副生ガスと呼ばれるガスが発生する。この副生ガスには、水素(以下、「H2」とも言う。)、一酸化炭素(以下、「CO」とも言う。)、メタン(以下、「CH4」とも言う。)といった燃料として利用可能な成分のほかに、窒素(以下、「N2」とも言う。)、二酸化炭素(以下、「CO2」とも言う。)が含有されており、これらのガスは製鉄所内の熱風炉、コークス炉、加熱炉あるいは発電所などにおいて燃料として使用されている。 At steelworks, gas called by-product gas is generated from equipment such as coke ovens, blast furnaces, and converters. This by-product gas is used as fuel such as hydrogen (hereinafter, also referred to as "H 2 "), carbon monoxide (hereinafter, also referred to as "CO"), and methane (hereinafter, also referred to as "CH 4 "). In addition to the possible components, nitrogen (hereinafter, also referred to as "N 2 ") and carbon dioxide (hereinafter, also referred to as "CO 2 ") are contained, and these gases are the hot air furnace and coke in the steel mill. It is used as fuel in furnaces, heating furnaces, power plants, etc.
高炉から排出される高炉ガスは、体積当たりの熱量が低く(3~3.5MJ/Nm3)、そのままでは燃料として利用するには難がある(例えば、非特許文献1参照)。そのため、製鉄所内の加熱炉向け(10MJ/Nm3程度)や、発電所向け(5MJ/Nm3程度)の燃料ガスとするためには、他の熱量の高い転炉ガス(8MJ/Nm3程度)やコークス炉ガス(19MJ/Nm3程度)と混合して、体積当たりの熱量を増大させる必要がある。 The blast furnace gas discharged from the blast furnace has a low calorific value per volume (3 to 3.5 MJ / Nm 3 ), and it is difficult to use it as a fuel as it is (see, for example, Non-Patent Document 1). Therefore, in order to use fuel gas for heating furnaces in steelworks (about 10MJ / Nm 3 ) and power plants (about 5MJ / Nm 3 ), other high-calorie linz-Donaw gas (about 8MJ / Nm 3 ) ) And coke oven gas (about 19MJ / Nm3 ) to increase the amount of heat per volume.
また、これらのガスを燃焼することによってCO2が排出されるが、排出量の4割は高炉ガスに元々含まれるCO2であり、さらに4割が高炉ガス中に含まれるCOを燃焼させた後にCO2として排出される。 In addition, CO 2 is emitted by burning these gases, but 40% of the emissions are CO 2 originally contained in the blast furnace gas, and another 40% burns the CO contained in the blast furnace gas. It is later emitted as CO 2 .
高炉ガスの体積当たりの熱量を増大させるために、高炉ガスに含まれる成分(CO、H2、N2、CO2)のうち、不燃性成分であるN2およびCO2を圧力スイング法(PSA法)などのガス分離技術を用いて分離することによって、体積当たりの熱量を増大させることは可能である。しかし、上記ガス分離によっても得られるガスがCO(一部H2を含む)を主成分とするガスであるため体積当の熱量が低く、このようなガスを得るメリットは分離コストに比べて小さいため、これまで実施されてこなかった。 In order to increase the amount of heat per volume of the blast furnace gas, among the components (CO, H 2 , N 2 , CO 2 ) contained in the blast furnace gas, the nonflammable components N 2 and CO 2 are used in the pressure swing method (PSA). It is possible to increase the amount of heat per volume by separating using a gas separation technique such as (method). However, since the gas obtained by the above gas separation is a gas containing CO (including a part of H 2 ) as a main component, the calorific value of the volume is low, and the merit of obtaining such a gas is small compared to the separation cost. Therefore, it has not been implemented so far.
一方で、体積当たりの熱量が高く、製鉄所内での利用価値の高いコークス炉ガスは、コークス炉の経年劣化に伴ってガス発生量が漸減する傾向にある。そのため、コークス炉ガスが不足する場合には、製鉄所外から天然ガスなどの購入で補うなどする必要があり、ガスの運用は容易ではない。また、転炉ガスは発生量が少なく、ガス組成および量の変動が大きいために利便性が低い。 On the other hand, coke oven gas, which has a high amount of heat per volume and has high utility value in a steel mill, tends to gradually reduce the amount of gas generated as the coke oven deteriorates over time. Therefore, when the coke oven gas is insufficient, it is necessary to supplement it by purchasing natural gas from outside the steelworks, and it is not easy to operate the gas. In addition, the amount of linz-donaw gas generated is small, and the gas composition and amount fluctuate greatly, so that the convenience is low.
また、昨今のCO2排出削減要請により、これらの副生ガス、特に排出量の多くを含む高炉ガスからのCO2の分離回収が検討されてきているが、元々の高炉ガスに含まれるCO2濃度は20体積%程度であるため、CO2分離回収設備に加圧・送ガスするための動力はCO2以外の成分にも必要となっていた。 In addition, due to recent demands for CO 2 emission reduction, separation and recovery of CO 2 from these by-product gases, especially blast furnace gas containing most of the emissions, has been considered, but CO 2 contained in the original blast furnace gas has been studied. Since the concentration is about 20% by volume, the power for pressurizing and sending gas to the CO 2 separation and recovery facility is required for components other than CO 2 .
本発明は上記事情に鑑みてなされたものであり、その目的とするところは、高炉ガスを高熱量化して体積当たりの熱量の高い高熱量ガスとするとともに、高炉ガスに含まれるCO2をより効率的に分離回収するための、方法、設備、運用方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to increase the calorific value of the blast furnace gas to obtain a high calorific value gas having a high calorific value per volume, and to increase the CO 2 contained in the blast furnace gas. The purpose is to provide methods, equipment, and operation methods for efficient separation and recovery.
上記課題を解決する本発明は、以下の通りである。
[1]高炉ガスに水を加えて前記高炉ガスと前記水とを反応させることによって改質高炉ガスとする改質工程と、
前記改質高炉ガスから二酸化炭素を主成分とするガスを分離することによって体積当たりの熱量の大きいガスを分離して回収するガス分離工程と、を有することを特徴とする高熱量ガスの製造方法。
The present invention that solves the above problems is as follows.
[1] A reforming step of adding water to the blast furnace gas and reacting the blast furnace gas with the water to obtain a reformed blast furnace gas.
A method for producing a high calorific value gas, which comprises a gas separation step of separating and recovering a gas having a large calorific value per volume by separating a gas containing carbon dioxide as a main component from the reformed blast furnace gas. ..
[2]前記改質工程の前段に、前記高炉ガスを精製する精製工程をさらに有することを特徴とする、前記請求項1に記載の高熱量ガスの製造方法。
[2] The method for producing a high calorific value gas according to
[3]前記改質工程が前記高炉ガス中の一酸化炭素をメタンに改質する工程であることを特徴とする、前記請求項1または2に記載の高熱量ガスの製造方法。
[3] The method for producing a high calorific value gas according to
[4]前記ガス分離工程が圧力スイング吸着法に基づく工程であることを特徴とする、前記請求項1~3のいずれか一項に記載の高熱量ガスの製造方法。
[4] The method for producing a high calorific value gas according to any one of
[5]前記ガス分離工程が二段階のガス分離工程であることを特徴とする、前記請求項1~4のいずれか一項に記載の高熱量ガスの製造方法。
[5] The method for producing a high calorific value gas according to any one of
[6]高炉ガスに水を加え、前記高炉ガスを改質して改質高炉ガスとする改質反応手段と、前記改質高炉ガスから高熱量ガス成分を分離するガス分離手段とを有することを特徴とする高熱量ガスの製造設備。 [6] Having a reforming reaction means for adding water to the blast furnace gas and reforming the blast furnace gas to obtain a reformed blast furnace gas, and a gas separating means for separating a high calorific value gas component from the reformed blast furnace gas. A blast furnace gas production facility characterized by.
[7]前記改質反応手段の前段に、高炉ガスを精製する精製手段をさらに有することを特徴とする、請求項6に記載の高熱量ガスの製造設備。
[7] The equipment for producing a high calorific value gas according to
[8]前記ガス分離手段が圧力スイング吸着設備であることを特徴とする、請求項6または7に記載の高熱量ガスの製造設備。
[8] The equipment for producing a high calorific value gas according to
[9]前記ガス分離手段が二段階のガス分離手段であることを特徴とする、請求項6~8のいずれか一項に記載の高熱量ガスの製造設備。
[9] The equipment for producing a high calorific value gas according to any one of
[10]請求項1~5のいずれか一項に記載の方法によって製造された、前記体積当たりの熱量の大きいガスを、製鉄所副生ガスの代替として使用することを特徴とする高熱量ガスの運用方法。
[10] A high calorific value gas produced by the method according to any one of
[11]前記請求項1~5のいずれか一項に記載の方法によって製造された、前記体積当たりの熱量の大きいガスと、前記改質高炉ガスから前記体積当たりの熱量の大きいガスが分離されたガスとを混合し、所定の熱量のガスとすることを特徴とする高熱量ガスの熱量調整方法。
[11] The gas having a large amount of heat per volume produced by the method according to any one of
本発明によれば、高炉ガスを高熱量化して、体積当たりの熱量の高い高熱量ガスとする、とともに、高炉ガスに含まれるCO2を効率的に分離回収することができる。 According to the present invention, the blast furnace gas can be increased in calorific value to be a high calorific value gas having a high calorific value per volume, and CO 2 contained in the blast furnace gas can be efficiently separated and recovered.
以下、図面を参照して、本発明の実施形態について説明する。本発明による高熱量ガスの製造方法、およびCO2の分離回収方法は、高炉ガスに水を加えて反応させることによって改質高炉ガスとする改質工程と、前記改質高炉ガスからCO2を主成分とするガスを分離して回収するガス分離回収工程とを有することを特徴とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The method for producing a high calorific value gas and the method for separating and recovering CO 2 according to the present invention include a reforming step of adding water to a blast furnace gas and reacting it to obtain a reformed blast furnace gas, and a reforming step of converting CO 2 from the reformed blast furnace gas. It is characterized by having a gas separation and recovery step of separating and recovering a gas as a main component.
図1は、本発明の好適な実施形態のフロー図を示している。まず、製鉄所内の高炉1で発生する高炉ガスaを、高炉ガスaを送るガス母管より分岐した配管によって精製手段2に導入する。
FIG. 1 shows a flow chart of a preferred embodiment of the present invention. First, the blast furnace gas a generated in the
精製手段2は、ガスを送るための送ガス装置、ガス中に含まれるダストやミストを除去する装置のほか、硫黄分を除去する装置を含む。高炉ガスa中のダストやミストは、精製手段2より後段の各手段において装置内部を閉塞させるおそれがあるため、除去することが好ましい。特に指定するものではないが、高炉ガスaに含まれるダストおよびミストの含有量は、合計で1mg/Nm3以下とすることが好ましい。 The refining means 2 includes a gas sending device for sending gas, a device for removing dust and mist contained in the gas, and a device for removing sulfur content. It is preferable to remove dust and mist in the blast furnace gas a because there is a possibility that the inside of the apparatus may be blocked in each means after the refining means 2. Although not particularly specified, the total content of dust and mist contained in the blast furnace gas a is preferably 1 mg / Nm 3 or less.
また、高炉ガスaに含まれる硫黄分は、後述する改質反応手段3において使用される触媒の反応性に影響を与えるため除去することが好ましい。例えば、触媒として銅-亜鉛系の触媒を使用する際には、高炉ガスaに含まれる硫黄分を3ppm以下とすることが好ましい。 Further, it is preferable to remove the sulfur content contained in the blast furnace gas a because it affects the reactivity of the catalyst used in the reforming reaction means 3 described later. For example, when a copper-zinc catalyst is used as the catalyst, the sulfur content in the blast furnace gas a is preferably 3 ppm or less.
次いで、精製手段2においてダストやミスト、硫黄分が除去されて精製された高炉ガスbを、改質反応手段3に導入する。改質反応手段3は、ガス加熱装置、水(水蒸気)を導入して高炉ガスbに混合させるための配管、改質反応させるための触媒が充填された反応器、ガス冷却装置、および冷却したガスから凝縮した水分を除去する気液分離器を含む。 Next, the blast furnace gas b purified by removing dust, mist, and sulfur in the purification means 2 is introduced into the reforming reaction means 3. The reforming reaction means 3 includes a gas heating device, a pipe for introducing water (steam) and mixing it with the blast furnace gas b, a reactor filled with a catalyst for reforming reaction, a gas cooling device, and cooling. Includes a gas-liquid separator that removes condensed water from the gas.
なお、上記「改質反応」とは、下記(1)式で示される反応であり、高炉ガスbに水(「H2O」とも言う。)を加えて、COおよびH2OからメタンおよびCO2が生成される反応である。この改質反応により、高炉ガスbを改質して改質高炉ガスcとすることができる。
4CO+2H2O ⇔ CH4+3CO2 (1)
The above-mentioned "reform reaction" is a reaction represented by the following formula (1), in which water (also referred to as "H 2 O") is added to the blast furnace gas b, and methane and methane and H 2 O are added to CO and H 2 O. This is a reaction in which CO 2 is generated. By this reforming reaction, the blast furnace gas b can be reformed into the reformed blast furnace gas c.
4CO + 2H 2 O ⇔ CH 4 + 3CO 2 (1)
ガス加熱装置は通常、後段のガス冷却装置も兼ねる熱交換器と、改質反応温度までガス温度を上昇させる加熱器とからなる。原料ガスである高炉ガスbとH2Oとの混合ガスの温度は、混合ガスが反応器に入る時点で200~400℃程度となるように制御することが好ましい。反応器に入る時点での混合ガスの温度を200℃以上とすることにより、十分な反応速度で上記式(1)の改質反応を行わせることができる。また、混合ガスの温度を400℃以下とすることにより、別の反応を生じさせることなく、十分なメタンの生成量を確保することができる。 The gas heater usually includes a heat exchanger that also serves as a gas cooling device in the subsequent stage, and a heater that raises the gas temperature to the reforming reaction temperature. The temperature of the mixed gas of the blast furnace gas b and H2O , which is the raw material gas, is preferably controlled to be about 200 to 400 ° C. when the mixed gas enters the reactor. By setting the temperature of the mixed gas at the time of entering the reactor to 200 ° C. or higher, the reforming reaction of the above formula (1) can be carried out at a sufficient reaction rate. Further, by setting the temperature of the mixed gas to 400 ° C. or lower, it is possible to secure a sufficient amount of methane produced without causing another reaction.
原料ガスである高炉ガスbとH2Oとの混合ガスの体積比は、H2O/COのモル比で0.5~2.0となるように、それぞれの流量を調整するのが好ましい。H2O/COのモル比を0.5以上とすることにより、COの改質反応に必要なH2Oの量を確保して、上記式(1)の改質反応を効率的に行うことができる。また、H2O/COのモル比を2.0以下とすることにより、別の反応を生じさせることなく、十分なメタンの生成量を確保することができる。 It is preferable to adjust the volume ratio of the mixed gas of the blast furnace gas b, which is the raw material gas, and H 2 O so that the molar ratio of H 2 O / CO is 0.5 to 2.0. .. By setting the molar ratio of H 2 O / CO to 0.5 or more, the amount of H 2 O required for the reforming reaction of CO is secured, and the reforming reaction of the above formula (1) is efficiently performed. be able to. Further, by setting the molar ratio of H 2 O / CO to 2.0 or less, it is possible to secure a sufficient amount of methane produced without causing another reaction.
反応器に充填される触媒としては、COをメタン化させる改質反応を生じさせるものであれば、任意の触媒を使用できるが、特にはニッケル系の触媒を好適に使用できる。 As the catalyst to be filled in the reactor, any catalyst can be used as long as it causes a reforming reaction to methanate CO, but a nickel-based catalyst can be particularly preferably used.
反応器から排出された改質高炉ガスcは、前述した熱交換器(図示せず)で原料ガスと熱交換され、さらに水分が凝縮する温度にまで冷却された後、気液分離器で水分とガス成分とに分離される。水分の除去程度は、後述する後段の第1の分離手段4、および第2の分離手段6にどのような手法を用いるかで異なる。例えば、分離手段4、6が圧力スイング吸着法(PSA法)に基づくものであり、かつ、吸着剤にゼオライトのような水分が吸着性能に影響する剤を使用する場合には、改質高炉ガスcに含まれる大部分の水分を除去することが好ましい。例えば、吸着剤として13X型ゼオライトを使用する場合には、少なくとも露点-30℃以下となるよう水分を低減することが好ましい。 The reformed blast furnace gas c discharged from the reactor is heat-exchanged with the raw material gas in the above-mentioned heat exchanger (not shown), further cooled to a temperature at which water condenses, and then water is contained in the gas-liquid separator. And the gas component. The degree of water removal differs depending on what method is used for the first separation means 4 and the second separation means 6 described later. For example, when the separation means 4 and 6 are based on the pressure swing adsorption method (PSA method) and an agent such as zeolite whose adsorption performance is affected by water is used as the adsorbent, the reformed blast furnace gas is used. It is preferable to remove most of the water contained in c. For example, when 13X-type zeolite is used as an adsorbent, it is preferable to reduce the water content so that the dew point is at least −30 ° C. or lower.
続いて、改質反応手段3から排出された改質高炉ガスcを、第1の分離手段4、および第2の分離手段6に導入し、改質高炉ガスcから高炉ガスよりも体積当たりの熱量が大きいガス(高熱量ガス)を分離する。ここで使用される分離手段4、6としては、改質反応手段3から排出された改質高炉ガスcから、より体積当たりの熱量を増大させたガスを分離することが可能な手段であれば、いずれのものでも選択可能である。中でも、吸着法(圧力スイング吸着法、温度スイング吸着法)に基づくガス分離手段を好適に用いることができる。吸着法に基づく分離手段は、ガスを送風するブロアなどの送ガス装置、吸着剤を充填した吸着塔、配管およびガスの流通を制御する自動弁、吸着塔内を減圧するための真空ポンプなどの排気装置を含む。 Subsequently, the reformed blast furnace gas c discharged from the reforming reaction means 3 is introduced into the first separation means 4 and the second separation means 6, and the volume of the reformed blast furnace gas c is higher than that of the blast furnace gas. Separate gas with large calorific value (blast furnace gas). The separation means 4 and 6 used here are any means capable of separating the gas having a larger amount of heat per volume from the reformed blast furnace gas c discharged from the reforming reaction means 3. , Any one can be selected. Above all, a gas separation means based on an adsorption method (pressure swing adsorption method, temperature swing adsorption method) can be preferably used. Separation means based on the adsorption method include a gas blowing device such as a blower that blows gas, an adsorption tower filled with an adsorbent, an automatic valve that controls piping and gas flow, and a vacuum pump for reducing the pressure inside the adsorption tower. Includes exhaust system.
吸着法は、前述したように、吸着剤(活性炭、ゼオライトなど)に対する各ガス成分の吸着力の差を利用したガス分離方法であり、通常、H2は最も吸着し難い一方、CO2は最も吸着し易い。そのため、吸着剤を充填した吸着塔にガスを通気させると、H2は吸着し難いため、吸着剤にあまり吸着することなく吸着塔から比較的短時間で排出される。一方、CO2は吸着剤に吸着しやすいため、真空ポンプなどによって吸着塔内を減圧することによって、吸着剤から脱着させて回収する。
As described above, the adsorption method is a gas separation method that utilizes the difference in the adsorption power of each gas component with respect to an adsorbent (activated carbon, zeolite, etc.). Normally, H 2 is the most difficult to adsorb, while CO 2 is the most. Easy to adsorb. Therefore, when the gas is aerated through the adsorption tower filled with the adsorbent, H 2 is difficult to be adsorbed and is discharged from the adsorption tower in a relatively short time without being adsorbed so much by the adsorbent. On the other hand, since CO 2 is easily adsorbed by the adsorbent, the inside of the adsorption tower is depressurized by a vacuum pump or the like to desorb and recover the
改質反応手段3において高炉ガスbを反応させて得られる改質高炉ガスcは、N2、CO2、メタンおよびH2の混合ガスであり、吸着剤への吸着のし易さの順で表すと、CO2>メタン>N2>H2となる。こうした混合ガスから不燃分であるN2やCO2を分離するには、少なくとも二段階の分離が必要である。どちらを先に分離するかは任意であり、吸着剤の性能に基づいて選択することが好ましい。ここで、例として第1の分離手段4によりN2を分離し、第2の分離手段6によりCO2を分離するプロセスについて概略を説明する。 The reformed blast furnace gas c obtained by reacting the blast furnace gas b in the reforming reaction means 3 is a mixed gas of N 2 , CO 2 , methane and H 2 , and is in the order of ease of adsorption to the adsorbent. Expressed as CO 2 >methane> N 2 > H 2 . In order to separate the incombustibles N 2 and CO 2 from such a mixed gas, at least two steps of separation are required. Which one is separated first is arbitrary, and it is preferable to select it based on the performance of the adsorbent. Here, as an example, the process of separating N 2 by the first separation means 4 and separating CO 2 by the second separation means 6 will be outlined.
まず、第1の分離手段4では、吸着塔に充填する吸着剤として、CO2およびメタンを強く吸着し、N2およびH2の吸着が弱い剤、例えば活性炭やゼオライトなどから選択することが可能である。吸着剤に改質高炉ガスcを送ガスする際には、改質高炉ガスcの圧力は、送風装置により常圧~100kPaG程度とするのが好ましい。改質高炉ガスcが吸着塔に充填された吸着剤の層を通過する際に、CO2およびメタンが吸着剤に吸着し、N2およびH2からなるガスd1は、吸着塔を通過してオフガスとして排出され、熱量調整用のガスの貯蔵設備10(図示せず)に送られ、後段で得られる高熱量ガス(脱着ガスd2およびオフガスe1)と混合されて、熱量調整に使用される。 First, in the first separation means 4, as the adsorbent to be filled in the adsorption tower, it is possible to select from agents that strongly adsorb CO 2 and methane and weakly adsorb N 2 and H 2 , such as activated carbon and zeolite. Is. When the reformed blast furnace gas c is sent to the adsorbent, the pressure of the reformed blast furnace gas c is preferably about normal pressure to about 100 kPaG by a blower. When the reformed blast furnace gas c passes through the layer of the adsorbent filled in the adsorption tower, CO 2 and methane are adsorbed on the adsorbent, and the gas d 1 composed of N 2 and H 2 passes through the adsorption tower. Is discharged as off-gas, sent to a gas storage facility 10 (not shown) for calorific value adjustment, mixed with high calorific value gas (desorbable gas d 2 and off-gas e 1 ) obtained in the subsequent stage, and used for calorific value adjustment. Will be done.
ある程度の改質高炉ガスcを吸着塔内を流通させた後、ガス流通を停止させ、真空ポンプなどのガス排気装置により吸着塔内を減圧すると、吸着剤に吸着していたCO2およびメタンからなるガスd2が脱着する。脱着したガスd2は、第1の貯蔵手段5に一旦貯蔵される。この脱着ガスd2は、数MJ/Nm3程度の発熱量を有するため、それほど高い発熱量を必要としない、比較的熱量の低い燃料を使用する設備8(図示せず)で燃料として使用することが可能である。これよりもさらに高い発熱量のガスが必要な場合には、この脱着ガスd2をさらに第2の分離手段6に導入する。 After circulating the reformed blast furnace gas c to some extent in the adsorption tower, the gas flow is stopped, and when the pressure inside the adsorption tower is reduced by a gas exhaust device such as a vacuum pump, the CO 2 and methane adsorbed on the adsorbent are released. Gas d 2 is attached and detached. The desorbed gas d 2 is temporarily stored in the first storage means 5. Since the desorbed gas d 2 has a calorific value of about several MJ / Nm 3 , it is used as a fuel in the equipment 8 (not shown) that uses a fuel having a relatively low calorific value and does not require a very high calorific value. It is possible. When a gas having a calorific value higher than this is required, the desorbed gas d 2 is further introduced into the second separation means 6.
第2の分離手段6は、吸着塔に充填する吸着剤としては、CO2をより強く吸着し、メタンの吸着がより弱い剤、例えばゼオライトや活性炭などから選択することができる。吸着剤にガスd1を送ガスする際には、脱着ガスd2の圧力は、送風装置により常圧~100kPaG程度とするのが好ましい。脱着ガスd2が吸着塔の充填された吸着剤の層を通過する際に、CO2が吸着剤に吸着し、メタンからなるガスe1は吸着塔を通過してオフガスとして排出され、第2の貯蔵手段7に一旦貯蔵される。このオフガスe1は、10MJ/Nm3程度の発熱量を有するため、加熱炉などの比較的熱量の高い燃料を使用する設備9(図示せず)に送られる。 The second separation means 6 can be selected from agents that adsorb CO 2 more strongly and adsorb less methane, such as zeolite and activated carbon, as the adsorbent to be filled in the adsorption tower. When the gas d 1 is sent to the adsorbent, the pressure of the desorbed gas d 2 is preferably set to a normal pressure to about 100 kPaG by a blower. When the desorbed gas d 2 passes through the layer of the adsorbent filled in the adsorption tower, CO 2 is adsorbed by the adsorbent, and the gas e 1 composed of methane passes through the adsorption tower and is discharged as off gas, and the second gas is discharged. It is temporarily stored in the storage means 7 of the above. Since this off-gas e 1 has a calorific value of about 10 MJ / Nm 3 , it is sent to a facility 9 (not shown) that uses a fuel having a relatively high calorific value, such as a heating furnace.
ある程度の脱着ガスd2を吸着塔に流通させた後、ガス流通を停止させて、真空ポンプなどのガス排気装置で吸着内を減圧することによって、吸着剤に吸着していたCO2からなるガスe2が脱着する。脱着したガスe2は、CO2の貯蔵設備や利用設備11(図示せず)に送られる。 After a certain amount of desorbed gas d 2 is circulated through the adsorption tower, the gas flow is stopped and the inside of the adsorption is depressurized by a gas exhaust device such as a vacuum pump, so that the gas consisting of CO 2 adsorbed by the adsorbent is used. e 2 is attached and detached. The desorbed gas e 2 is sent to the CO 2 storage facility and the utilization facility 11 (not shown).
こうして、高炉ガスを高熱量化して、高熱量ガスを製造することができる。本発明により、コークス炉ガスや外部からの購入燃料を使用することなく、製鉄所内で利用可能な体積当たりの熱量が増大したガスを、高炉ガスのみを原料として得ることができる、とともに、CO2の効率的な分離回収が可能である。 In this way, the blast furnace gas can be increased in calorific value to produce a high calorific value gas. According to the present invention, it is possible to obtain a gas having an increased amount of heat per volume that can be used in a steel mill without using coke oven gas or fuel purchased from the outside, using only blast furnace gas as a raw material, and CO 2 Efficient separation and recovery is possible.
図1に示したフロー図に従って高熱量ガスを製造した。まず、高炉ガスを模擬したガス(N2:52体積%、CO:24体積%、CO2:22体積%、H2:4体積%)を用意した。次いで、改質反応手段3を構成する反応器にNi系触媒(NiO/Al2O3)を充填し、触媒層の中心部が300℃になるよう加熱した。このように構成した反応器に、上記模擬ガスにCOの体積の2倍相当の水を添加し、SV 3600hr-1の流量で流通させて、模擬ガスに含まれるCOをメタンに改質した。反応後の改質ガスの組成は、乾燥ベースでN2:51体積%、CO2:40体積%、メタン:7体積%、H2:2体積%であった。 A high calorific value gas was produced according to the flow chart shown in FIG. First, a gas simulating a blast furnace gas (N 2 : 52% by volume, CO: 24% by volume, CO 2 : 22% by volume, H 2 : 4% by volume) was prepared. Next, the reactor constituting the reforming reaction means 3 was filled with a Ni-based catalyst (NiO / Al 2O 3 ), and the central portion of the catalyst layer was heated to 300 ° C. To the reactor configured in this way, water equivalent to twice the volume of CO was added to the simulated gas and circulated at a flow rate of SV 3600 hr -1 , and the CO contained in the simulated gas was reformed into methane. The composition of the reformed gas after the reaction was N 2 : 51% by volume, CO 2 : 40% by volume, methane: 7% by volume, and H2: 2 % by volume on a dry basis.
反応後の改質ガスを、第1の分離手段4として構成された、圧力スイング吸着法に基づくガス分離装置に導入した。具体的には、改質ガスを、活性炭を充填した吸着塔に流通させて、非吸着ガスと吸着ガス(脱着ガス)とに分離した。改質ガスの流通時の塔内の圧力は50kPaGとなるよう吸着塔の後に背圧弁を設けて調整し、流量が45NL/kg-吸着剤となる量まで流通させ、吸着塔から排出されるガスを非吸着ガス(オフガス)として回収した。その後、改質ガスの流通を停止させて、吸着塔内を真空ポンプを用いて-95kPaGとなるまで減圧し、排気されたガスを脱着ガスとして回収した。オフガスの組成は、N2:84体積%、CO2:10体積%、H2:4体積%、メタン:1体積%であり、熱量は1MJ/Nm3程度、脱着ガスの組成は、CO2:78体積%、メタン:14体積%、N2:8体積%であり、熱量は5MJ/Nm3であった。 The reformed gas after the reaction was introduced into a gas separation device based on the pressure swing adsorption method, which was configured as the first separation means 4. Specifically, the reformed gas was circulated through an adsorption tower filled with activated carbon and separated into a non-adsorbed gas and an adsorbed gas (desorbable gas). The pressure inside the tower during the flow of the reformed gas is adjusted by installing a back pressure valve after the adsorption tower so that the pressure inside the tower is 50 kPaG. Was recovered as a non-adsorbed gas (off gas). After that, the flow of the reforming gas was stopped, the pressure inside the adsorption tower was reduced to −95 kPaG using a vacuum pump, and the exhausted gas was recovered as a desorbable gas. The composition of the off-gas is N 2 : 84% by volume, CO 2 : 10% by volume, H 2 : 4% by volume, methane: 1% by volume, the calorific value is about 1MJ / Nm 3 , and the composition of the desorbed gas is CO 2 . : 78% by volume, methane: 14% by volume, N 2 : 8% by volume, and the calorific value was 5MJ / Nm 3 .
上述のように得られた脱着ガスを、第2の分離手段6として構成された、圧力スイング吸着法に基づくガス分離装置に導入した。上記脱着ガスを、ゼオライトを充填した吸着塔に流通させて、非吸着ガスと吸着ガス(脱着ガス)とに分離した。脱着ガスの流通時の塔内の圧力が50kPaGとなるよう吸着塔の後に背圧弁を設けて調整し、流量が55NL/kg-吸着剤となる量まで流通させ、吸着塔から排出されるガスを非吸着ガス(オフガス)として回収した。その後、脱着ガスの流通を停止させて、吸着塔内を真空ポンプを用いて-95kPaGとなるまで減圧して排気されるガスを脱着ガスとして回収した。オフガスの組成は、CO2:43体積%、メタン:36体積%、N2:22体積%であり、熱量は13MJ/Nm3、脱着ガスの組成は、ほぼCO2(99.99体積%以上)であった。 The desorbed gas obtained as described above was introduced into a gas separation device based on the pressure swing adsorption method configured as the second separation means 6. The desorbed gas was circulated through an adsorption tower filled with zeolite to separate it into a non-adsorbed gas and an adsorbed gas (desorbed gas). A back pressure valve is provided after the adsorption tower so that the pressure inside the tower during the flow of the desorbed gas is 50 kPaG, and the flow is adjusted to 55 NL / kg-adsorbent, and the gas discharged from the adsorption tower is discharged. It was recovered as a non-adsorbed gas (off gas). After that, the flow of the desorbed gas was stopped, the inside of the adsorption tower was depressurized to -95 kPaG using a vacuum pump, and the exhausted gas was recovered as the desorbed gas. The composition of off-gas is CO 2 : 43% by volume, methane: 36% by volume, N 2 : 22% by volume, the calorific value is 13MJ / Nm 3 , and the composition of desorption gas is almost CO 2 (99.99% by volume or more). )Met.
第2の分離手段6より得られた脱着ガスの性状を元に、製鉄所内の高炉ガスの全量を本法で反応させて分離して高熱量ガスを得た場合の運用について検討した。高熱量ガスは高炉ガス、転炉ガス、コークス炉ガスを所定量混合することによって熱量10MJ/Nm3のガスとするが、本発明における高炉ガスからの高熱量ガスが得られた場合、この3割を代替できることが分かった。これにより、高熱量ガス向けに使用していたコークス炉ガスを3割削減することができる。 Based on the properties of the desorbed gas obtained from the second separation means 6, the operation when the entire amount of the blast furnace gas in the steelworks was reacted by this method and separated to obtain a high calorific value gas was examined. The high calorific value gas is a gas having a calorific value of 10 MJ / Nm 3 by mixing a predetermined amount of the blast furnace gas, the linz-donaw gas, and the coke oven gas. When the high calorific value gas from the blast furnace gas in the present invention is obtained, this 3 It turned out that it could be used as a substitute. As a result, the coke oven gas used for high calorific value gas can be reduced by 30%.
本発明によれば、熱量の低い高炉ガスを製鉄所内で利用可能な熱量のガスとすることができ、製鉄所のエネルギー運用を改善し、外部からの購入燃料を削減できるとともに、より効率的なCO2の分離回収が可能であるため、製鉄業において有用である。 According to the present invention, a blast furnace gas having a low calorific value can be used as a gas having a calorific value that can be used in a steel mill, improving the energy operation of the steel mill, reducing the amount of fuel purchased from the outside, and making it more efficient. It is useful in the steel industry because CO 2 can be separated and recovered.
1 高炉
2 精製手段
3 改質反応手段
4 第1の分離手段
5 第1の貯蔵手段
6 第2の分離手段
7 第2の貯蔵手段
8 比較的熱量の低い燃料を使用する設備(発電所など)
9 比較的熱量の高い燃料を使用する設備(加熱炉など)
10 熱量調整用のガスの貯蔵設備
11 CO2の貯蔵設備や利用設備
a 高炉ガス
b 精製した高炉ガス
c 改質高炉ガス
d1 第1の分離手段で分離された吸着オフガス
d2 第1の分離手段で分離された脱着ガス
e1 第2の分離手段で分離された吸着オフガス
e2 第2の分離手段で分離された脱着ガス
1
9 Equipment that uses fuel with a relatively high calorific value (heating furnace, etc.)
10 Gas storage facility for
Claims (10)
前記改質高炉ガスから二酸化炭素を主成分とするガスを分離することによって体積当たりの熱量の大きいガスを分離して回収するガス分離工程と、を有し、
前記改質工程が前記高炉ガス中の一酸化炭素をメタンに改質する工程であることを特徴とする高熱量ガスの製造方法。 A reforming step of adding water to the blast furnace gas and reacting the blast furnace gas with the water to obtain a reformed blast furnace gas.
It has a gas separation step of separating and recovering a gas having a large amount of heat per volume by separating a gas containing carbon dioxide as a main component from the reformed blast furnace gas.
A method for producing a high calorific value gas, wherein the reforming step is a step of reforming carbon monoxide in the blast furnace gas into methane .
前記改質反応手段が前記高炉ガス中の一酸化炭素をメタンに改質する手段であることを特徴とする高熱量ガスの製造設備。 It has a reforming reaction means for adding water to the blast furnace gas and reacting the blast furnace gas with the water to obtain a reformed blast furnace gas, and a gas separating means for separating a high calorific value gas component from the reformed blast furnace gas. death,
A facility for producing a high calorific value gas, wherein the reforming reaction means is a means for reforming carbon monoxide in the blast furnace gas into methane .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026588 | 2019-02-18 | ||
JP2019026588 | 2019-02-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020132879A JP2020132879A (en) | 2020-08-31 |
JP7074149B2 true JP7074149B2 (en) | 2022-05-24 |
Family
ID=72262352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020024055A Active JP7074149B2 (en) | 2019-02-18 | 2020-02-17 | High calorific value gas manufacturing method, manufacturing equipment, operation method and calorific value adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7074149B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016108256A (en) | 2014-12-03 | 2016-06-20 | 三菱化学株式会社 | Simultaneous production method of methane and hydrogen |
JP2017189750A (en) | 2016-04-15 | 2017-10-19 | Jfeスチール株式会社 | Method for separating and recovering carbon dioxide from blast furnace gas and method for utilizing blast furnace gas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5849322A (en) * | 1981-09-18 | 1983-03-23 | Hitachi Zosen Corp | Methanation method using hydrogen-rich and low-concentration gas as raw material |
JPS58157897A (en) * | 1982-03-15 | 1983-09-20 | Kobe Steel Ltd | Method for increasing calorific power of gas generated from iron manufacturing plant |
-
2020
- 2020-02-17 JP JP2020024055A patent/JP7074149B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016108256A (en) | 2014-12-03 | 2016-06-20 | 三菱化学株式会社 | Simultaneous production method of methane and hydrogen |
JP2017189750A (en) | 2016-04-15 | 2017-10-19 | Jfeスチール株式会社 | Method for separating and recovering carbon dioxide from blast furnace gas and method for utilizing blast furnace gas |
Also Published As
Publication number | Publication date |
---|---|
JP2020132879A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2759379C2 (en) | Method for ammonia synthesis characterized in low level of co2 emissions into atmosphere | |
CA2657669C (en) | Steam-hydrocarbon reforming method with limited steam export | |
JP4707665B2 (en) | Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process | |
EP2407421B1 (en) | A method and apparatus for producing power and hydrogen | |
EP2103569B1 (en) | Steam-hydrocarbon reforming method with limited steam export | |
JP2017189750A (en) | Method for separating and recovering carbon dioxide from blast furnace gas and method for utilizing blast furnace gas | |
JP2008528423A (en) | Syngas production method with low carbon dioxide emission | |
RU2532757C2 (en) | Method of reduction based on reforming-gas with reduced nox emissions | |
JP5270903B2 (en) | Blast furnace gas calorie increase method | |
JP2018071894A (en) | Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas | |
CN102712469B (en) | Method for operating an IGCC power plant process having integrated CO2 separation | |
CN113830735A (en) | Medium-temperature purification hydrogen production method and equipment for reforming hydrocarbon fuel and fuel cell energy supply system | |
JP7147727B2 (en) | Gas separation and recovery method | |
JPH0798643B2 (en) | Method for producing ammonia synthesis gas | |
JP5665120B2 (en) | Argon gas purification method and purification apparatus | |
JP6930513B2 (en) | Organic matter synthesizer and synthesis method | |
JP7074149B2 (en) | High calorific value gas manufacturing method, manufacturing equipment, operation method and calorific value adjustment method | |
JP5714750B1 (en) | Directly reduced iron manufacturing facility and direct reduced iron manufacturing method | |
JP5403685B2 (en) | Argon gas purification method and purification apparatus | |
JPS6039050B2 (en) | Methanol manufacturing method | |
JP3944657B2 (en) | Power generation facilities that suppress the generation of carbon dioxide | |
JP2004292240A (en) | Method for reducing carbon-dioxide emission in hydrogen production equipment | |
JP2006096622A (en) | Hydrogen production system | |
KR101856961B1 (en) | The method for preparing high purity hydrogen by using carbon monoxide-containing by-product gas generated from steelwork and Water-Gas shift reaction system | |
JP2025506787A (en) | Reforming with Carbon Capture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200923 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7074149 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |