[go: up one dir, main page]

JP7068096B2 - Grinding method for workpieces - Google Patents

Grinding method for workpieces Download PDF

Info

Publication number
JP7068096B2
JP7068096B2 JP2018152657A JP2018152657A JP7068096B2 JP 7068096 B2 JP7068096 B2 JP 7068096B2 JP 2018152657 A JP2018152657 A JP 2018152657A JP 2018152657 A JP2018152657 A JP 2018152657A JP 7068096 B2 JP7068096 B2 JP 7068096B2
Authority
JP
Japan
Prior art keywords
thickness
grinding
workpiece
measuring means
protective member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018152657A
Other languages
Japanese (ja)
Other versions
JP2020026010A (en
Inventor
真司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2018152657A priority Critical patent/JP7068096B2/en
Publication of JP2020026010A publication Critical patent/JP2020026010A/en
Application granted granted Critical
Publication of JP7068096B2 publication Critical patent/JP7068096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、被加工物の研削方法に関する。 The present invention relates to a method for grinding a workpiece.

半導体デバイスの製造プロセスでは、デバイスの目的厚さを得るために、多数のデバイスの集合体である半導体ウェーハの段階で、裏面研削して薄化することが行われている。昨今のデバイスの顕著な薄型化に応じて、ウェーハは一層薄く加工されており、このため、厚さの管理にはより高い精度が求められる。従って、被加工物が仕上げ厚さに形成されるまで、被加工物の厚さを測定しながら研削工具の移動量の制御を行っている。 In the semiconductor device manufacturing process, in order to obtain the desired thickness of the device, the back surface is ground and thinned at the stage of the semiconductor wafer, which is an aggregate of a large number of devices. Wafers are being machined thinner in response to the remarkable thinning of devices these days, which requires higher precision in thickness control. Therefore, the movement amount of the grinding tool is controlled while measuring the thickness of the workpiece until the workpiece is formed to the finish thickness.

被加工物の研削中における厚さ測定の方法には、例えば、特許文献1に示すような、プローブを接触させて測定する接触式厚さ測定方法と、特許文献2に示すような、レーザーを用いて測定する非接触式厚さ測定方法とがある。 As a method for measuring the thickness during grinding of the workpiece, for example, a contact-type thickness measuring method for measuring by contacting a probe as shown in Patent Document 1 and a laser as shown in Patent Document 2 are used. There is a non-contact thickness measuring method for measuring using.

被加工物にプローブ等を接触させることなく厚さを測定できる非接触式の厚さ測定方法が、被加工物を傷つけず抗折強度を低下させない点で接触式よりも有利とされる。さらに、非接触式の厚さ測定方法には、パターンの凹凸や表面保護部材の厚さばらつきに制限されることなく測定することができるという利点もある。 A non-contact type thickness measuring method that can measure the thickness without contacting the workpiece with a probe or the like is considered to be more advantageous than the contact type in that it does not damage the workpiece and does not reduce the bending strength. Further, the non-contact thickness measuring method has an advantage that the measurement can be performed without being limited by the unevenness of the pattern or the thickness variation of the surface protection member.

特開2001-9716号公報Japanese Unexamined Patent Publication No. 2001-9716 特許第3491337号公報Japanese Patent No. 34913337

しかし、現状、レーザーを用いた非接触式測定手段の厚さの測定範囲には限界があり、一定厚さを下回ると非接触式測定手段では被加工物の厚さ測定ができない。このことは、被加工物の極薄化を目指す上で障壁となる。 However, at present, there is a limit to the thickness measurement range of the non-contact measuring means using a laser, and if the thickness falls below a certain thickness, the non-contact measuring means cannot measure the thickness of the workpiece. This poses a barrier to the ultra-thinning of the workpiece.

本発明は、上記事実に鑑みてなされたものであって、その主たる技術課題は、非接触式厚み測定手段の測定限界厚さよりも更に薄く研削する場合において、被加工物の厚さ測定を高精度に行うことである。 The present invention has been made in view of the above facts, and its main technical problem is to measure the thickness of the workpiece to be high in the case of grinding thinner than the measurement limit thickness of the non-contact type thickness measuring means. Do it with precision.

本発明に係る研削方法は、保護部材が表面に貼着された被加工物の該保護部材側を保持する保持面を有し回転可能なチャックテーブルと、該チャックテーブルに保持された該被加工物を研削する研削砥石が環状に配置された、研削ホイールを回転可能に支持する研削手段と、測定光を該被加工物に向けて照射し、照射した測定光が該被加工物の上面で反射した光と該被加工物を透過して下面で反射した光とを受光した時間差から該被加工物の厚さを算出する非接触式厚さ測定手段と、プローブを接触させて該被加工物と保護部材とを含めた厚さを測定する接触式厚さ測定手段と、を少なくとも備えた研削装置によって、被加工物の裏面を所望の仕上げ厚さまで研削する研削方法であって、該非接触厚さ測定手段で被加工物の厚さを測定しながら、該チャックテーブルを回転させると共に該研削砥石を回転させ且つ該チャックテーブルに向けて該研削砥石を移動して該チャックテーブルに保持された該被加工物の裏面を研削する第一研削ステップと、該接触式厚さ測定手段の測定値から、該非接触石厚さ測定手段の測定値を差し引き、該保護部材の厚さを算出する保護部材厚算出ステップと、該接触式厚さ測定手段の測定値から、該保護部材厚算出ステップにて算出した該保護部材の厚さを差し引いた値で仕上げ厚さを制御しながら、該チャックテーブルを回転させると共に該研削砥石を回転させ且つ該チャックテーブルに向けて該研削砥石を移動させて該チャックテーブルに保持された該被加工物の裏面を研削する第2研削ステップと、を備え、該保護部材の厚みを算出することで、該非接触式厚さ測定手段で測定不可能な厚さ領域においても、接触式厚さ測定手段を用いて、該被加工物単体の厚さの管理が可能となることを特徴とする被加工物の研削方法である。 The grinding method according to the present invention comprises a rotatable chuck table having a holding surface for holding the protective member side of the workpiece to which the protective member is attached to the surface, and the workpiece held on the chuck table. Grinding means that rotatably support the grinding wheel, in which grinding grindstones for grinding an object are arranged in an annular shape, and measurement light is radiated toward the workpiece, and the irradiated measurement light is on the upper surface of the workpiece. The probe is brought into contact with a non-contact thickness measuring means that calculates the thickness of the workpiece from the time difference between the reflected light and the light transmitted through the workpiece and reflected on the lower surface. A non-contact grinding method for grinding the back surface of a work piece to a desired finish thickness by a grinding device equipped with at least a contact-type thickness measuring means for measuring the thickness of an object and a protective member. While measuring the thickness of the workpiece by the thickness measuring means, the chuck table was rotated, the grinding wheel was rotated, and the grinding wheel was moved toward the chuck table and held on the chuck table. Protection that calculates the thickness of the protective member by subtracting the measured value of the non-contact stone thickness measuring means from the first grinding step for grinding the back surface of the workpiece and the measured value of the contact type thickness measuring means. The chuck table is controlled while controlling the finish thickness with a value obtained by subtracting the thickness of the protective member calculated in the protective member thickness calculation step from the measured values of the member thickness calculation step and the contact type thickness measuring means. A second grinding step for grinding the back surface of the workpiece held on the chuck table by rotating the grinding wheel and moving the grinding wheel toward the chuck table. By calculating the thickness of the protective member, it is possible to control the thickness of the work piece by using the contact type thickness measuring means even in a thickness region that cannot be measured by the non-contact type thickness measuring means. This is a method for grinding a workpiece, which is characterized by the above.

本発明にかかる研削方法は、非接触式厚さ測定手段によって測定可能な薄さよりも更に薄く被加工物を研削したい場合において、測定可能な厚さより薄くなった被加工物の厚さ測定に、非接触式厚さ測定手段により測定可能な範囲において測定した被加工物の厚さと、接触式厚さ測定手段により測定した被加工物の厚さと保護部材の厚さとの和の値とを使用することにより、非接触式厚さ測定手段と同等の精度で厚さを測定しながら研削を行うことを可能にする。また、この測定方法では、パターンの凹凸や表面保護部材の厚さばらつきに制限されることなく厚さ測定をすることができる。接触式厚さ測定手段を使用することにより、非接触式厚さ測定手段の測定レンジを広げるために別個の厚さ測定手段を設置することなく、より幅広い厚さの研削が精度良く遂行できる。 The grinding method according to the present invention is used for measuring the thickness of a workpiece thinner than the measurable thickness when it is desired to grind the workpiece thinner than the thickness measurable by the non-contact thickness measuring means. The value of the sum of the thickness of the work piece measured by the non-contact thickness measuring means within the measurable range and the thickness of the work piece measured by the contact type thickness measuring means and the thickness of the protective member is used. This makes it possible to perform grinding while measuring the thickness with the same accuracy as the non-contact type thickness measuring means. Further, in this measuring method, the thickness can be measured without being limited by the unevenness of the pattern and the thickness variation of the surface protection member. By using the contact type thickness measuring means, grinding of a wider range of thickness can be performed accurately without installing a separate thickness measuring means in order to widen the measuring range of the non-contact type thickness measuring means.

昨今、自動車産業を含め、半導体デバイスを扱う多くの産業において、製品品質等の観点から、半導体ウェーハの削り終わりの厚さを数値データとして保存する必要が生じている。非接触式厚さ測定手段の計測レンジよりも薄い極薄領域における従来の研削では、非接触式厚さ測定手段の計測レンジを越えない厚さにおいて、予め研削する厚さを定め、該予め定めた厚さまで研削をした後、非接触式厚さ測定手段での測定を停止し、該予め定めた厚さと仕上げ厚さとの差に対応した量だけ研削工具を研削方向へ移動させることで研削をする。この研削方法では、該予め定めた厚さから該仕上げ厚さまで研削する際には、厚さデータを測定しながらの研削ができず、厚さデータの信頼の度合は研削工具の移動の精度に依存する。研削工具が研削途中に摩耗すること、研削工具の移動制御に誤差が生じうること等のため、研削工具の移動量が研削したウェーハの厚さと必ずしも合致しないという事情を鑑みると、この方法による研削では厚さデータの信頼性に疑問の余地がある。一方、本発明では接触式厚さ測定手段による厚さ測定を、被加工物が仕上げ厚さに達するまで使用するため、研削終了時の実際の厚さデータを取得することができる。 In recent years, in many industries dealing with semiconductor devices, including the automobile industry, it has become necessary to store the thickness of the semiconductor wafer at the end of cutting as numerical data from the viewpoint of product quality and the like. In the conventional grinding in an ultra-thin region thinner than the measurement range of the non-contact type thickness measuring means, the thickness to be ground is determined in advance at a thickness not exceeding the measuring range of the non-contact type thickness measuring means, and the predetermined thickness is determined. After grinding to the thickness, the measurement by the non-contact thickness measuring means is stopped, and the grinding tool is moved in the grinding direction by the amount corresponding to the difference between the predetermined thickness and the finish thickness. do. In this grinding method, when grinding from the predetermined thickness to the finish thickness, it is not possible to grind while measuring the thickness data, and the degree of reliability of the thickness data depends on the accuracy of the movement of the grinding tool. Dependent. Grinding by this method in view of the fact that the amount of movement of the grinding tool does not always match the thickness of the ground wafer because the grinding tool wears during grinding and the movement control of the grinding tool may have an error. Then, the reliability of the thickness data is questionable. On the other hand, in the present invention, since the thickness measurement by the contact type thickness measuring means is used until the workpiece reaches the finished thickness, the actual thickness data at the end of grinding can be obtained.

被加工物の研削の様子を表す断面図である。It is sectional drawing which shows the state of grinding of the workpiece. 被加工物の研削の様子を表す斜視図である。It is a perspective view which shows the state of grinding of the workpiece. 接触式厚さ測定手段と非接触式厚さ測定手段との働きを簡略的に表す説明図である。It is explanatory drawing which simply shows the operation of the contact type thickness measuring means and non-contact type thickness measuring means. 第1研削ステップにおける被加工物の厚さ測定の様子を示す説明図である。It is explanatory drawing which shows the state of the thickness measurement of the workpiece in the 1st grinding step. 保護部材厚算出ステップにおける被加工物及び保護部材の厚さ測定の様子を示す説明図である。It is explanatory drawing which shows the state of the thickness measurement of the workpiece and the protective member in the protection member thickness calculation step. 第2研削ステップにおける被加工物及び保護部材の厚さの測定の様子を示す説明図である。It is explanatory drawing which shows the state of the measurement of the thickness of the workpiece and the protective member in the 2nd grinding step.

図1に示す研削装置10は、被加工物110を研削して所望の仕上げ厚さまで薄化する装置である。研削装置10は、被加工物110を保持するチャックテーブル14と、チャックテーブル14が保持する被加工物110を研削するための研削手段15と、研削時に、被加工物の厚さを測定する非接触式厚さ測定手段12と、同研削時に、被加工物の厚さと被加工物110に貼着された保護部材の厚さとを合わせた総厚さを測定する接触式厚さ測定手段13とを備える。 The grinding device 10 shown in FIG. 1 is a device that grinds the workpiece 110 and thins it to a desired finish thickness. The grinding device 10 includes a chuck table 14 for holding the workpiece 110, a grinding means 15 for grinding the workpiece 110 held by the chuck table 14, and a non-measurement for measuring the thickness of the workpiece at the time of grinding. The contact-type thickness measuring means 12 and the contact-type thickness measuring means 13 for measuring the total thickness of the work piece and the thickness of the protective member attached to the work piece 110 at the time of the grinding. To prepare for.

チャックテーブル14は、上面に多孔質のセラミックス材からなる円形の吸着エリア140を有し、この吸着エリア140の上面である保持面140aに保護部材111が吸着される結果、保護部材111が貼着された被加工物110がチャックテーブル14に保持されるようになっている。吸着エリア140の周囲には環状の枠体141が形成されており、この枠体141の上面141aは、吸着エリア140の上面140aと連続して同一平面をなしている。チャックテーブル14は、図示しない回転手段によってXY平面に垂直な±Z方向に平行な回転軸を中心として回転可能となっている。 The chuck table 14 has a circular suction area 140 made of a porous ceramic material on the upper surface, and as a result of the protective member 111 being sucked on the holding surface 140a which is the upper surface of the suction area 140, the protective member 111 is attached. The work piece 110 is held on the chuck table 14. An annular frame body 141 is formed around the suction area 140, and the upper surface 141a of the frame body 141 is continuously in the same plane as the upper surface 140a of the suction area 140. The chuck table 14 can be rotated about a rotation axis parallel to the ± Z direction perpendicular to the XY plane by a rotation means (not shown).

図2に示すように、研削手段15は、±Z方向に平行な回転軸の先端のマウント150と、マウント150に装着された研削ホイール151とから構成される。研削ホイール151の下端には、研削砥石152が固着されている。研削ホイール151に固着された研削砥石152は、円環状に配置されており、研削ホイール151が回転すると、チャックテーブル14の回転軸上を通過する。非接触式厚さ測定手段12と接触式厚さ測定手段13とは、共に、研削の最中であっても、厚さを測定することができる。 As shown in FIG. 2, the grinding means 15 includes a mount 150 at the tip of a rotating shaft parallel to the ± Z direction, and a grinding wheel 151 mounted on the mount 150. A grinding wheel 152 is fixed to the lower end of the grinding wheel 151. The grinding wheel 152 fixed to the grinding wheel 151 is arranged in an annular shape, and when the grinding wheel 151 rotates, it passes on the rotation axis of the chuck table 14. Both the non-contact type thickness measuring means 12 and the contact type thickness measuring means 13 can measure the thickness even during grinding.

図3に示すように、非接触式厚さ測定手段12は、レーザー光を用いて、被加工物の厚さT2を、被加工物上面110aに触れることなく測定する。非接触式厚さ測定手段12は、測定光を被加工物110に向けて照射し、照射した測定光が被加工物の上面110aで反射した光(反射光L1)と、被加工物110を透過して被加工物下面110bで反射した光(透過光L2)とを受光した時間差から被加工物の厚さT2を測定する。 As shown in FIG. 3, the non-contact thickness measuring means 12 measures the thickness T2 of the workpiece by using a laser beam without touching the upper surface 110a of the workpiece. The non-contact thickness measuring means 12 irradiates the work piece 110 with the measurement light, and the irradiated measurement light reflects the light (reflected light L1) on the upper surface 110a of the work piece and the work piece 110. The thickness T2 of the workpiece is measured from the time difference between the light transmitted and reflected by the lower surface 110b of the workpiece (transmitted light L2) and the received light.

接触式厚さ測定手段13は、2本の接触子を備える。一方の接触子(基準プローブ130a)をチャックテーブル14の枠体上面141aに接触させ、他方の接触子(変動プローブ130b)を被加工物110の上面110aに接触させることにより、2本の接触子の高さの差を、チャックテーブル14が保持する保護部材と被加工物の厚さを合わせた総厚さT1として測定する。 The contact type thickness measuring means 13 includes two contacts. Two contacts by contacting one contact (reference probe 130a) with the upper surface 141a of the frame of the chuck table 14 and the other contact (variable probe 130b) with the upper surface 110a of the workpiece 110. The difference in height is measured as the total thickness T1 which is the sum of the thickness of the protective member held by the chuck table 14 and the work piece.

以下では、上述の研削装置10を用いて被加工物を研削する研削方法について、第1研削ステップ、保護部材厚算出ステップ、第2研削ステップにわけて説明する。 Hereinafter, a grinding method for grinding a workpiece using the above-mentioned grinding device 10 will be described separately for a first grinding step, a protective member thickness calculation step, and a second grinding step.

(第1研削ステップ)
まず、非接触式厚さ測定手段12によって測定する被加工物110の限界測定厚さT21を定める。この限界測定厚さT21は、非接触式厚さ測定手段12を用いて測定する厚さの最小値であり、非接触式厚さ測定手段12の仕様上の測定可能厚さの下限値或いはこれに可及的に近くこれよりは厚い厚さであるのが好ましい。図4に示すように、最初に、非接触式厚さ測定手段12で初期厚さがT20の被加工物110の厚さを測定しながら、チャックテーブル14を回転させるとともに研削砥石152を回転させ且つチャックテーブル14の保持面140aに垂直な方向(-Z方向)に研削砥石152を移動させ、被加工物上面110aを研削し、非接触式厚さ測定手段12による被加工物110の厚さの測定値T2が限界測定厚さT21になるまで研削を行う。なお、非接触式厚さ測定手段12によって厚さを測定する間、接触式厚さ測定手段13の基準プローブ130aは、枠体上面141aに接触させておいてもよいが、変動プローブ130bは、被加工物上面110aに接触させないでおく。また、図4以降では、図1及び図2に示した研削手段15の図示を省略する。
(1st grinding step)
First, the limit measurement thickness T21 of the workpiece 110 to be measured by the non-contact thickness measuring means 12 is determined. The limit measurement thickness T21 is the minimum value of the thickness measured by the non-contact type thickness measuring means 12, and is the lower limit of the measurable thickness in the specifications of the non-contact type thickness measuring means 12 or this. It is preferable that the thickness is as close as possible to and thicker than this. As shown in FIG. 4, first, the chuck table 14 is rotated and the grinding wheel 152 is rotated while measuring the thickness of the workpiece 110 having an initial thickness of T20 by the non-contact thickness measuring means 12. Further, the grinding wheel 152 is moved in a direction (−Z direction) perpendicular to the holding surface 140a of the chuck table 14, the upper surface 110a of the workpiece is ground, and the thickness of the workpiece 110 by the non-contact thickness measuring means 12 Grinding is performed until the measured value T2 of is the limit measured thickness T21. While the thickness is measured by the non-contact type thickness measuring means 12, the reference probe 130a of the contact type thickness measuring means 13 may be kept in contact with the upper surface 141a of the frame, but the variable probe 130b may be kept in contact with the upper surface 141a. Keep out of contact with the upper surface 110a of the workpiece. Further, in FIGS. 4 and later, the illustration of the grinding means 15 shown in FIGS. 1 and 2 is omitted.

(保護部材厚算出ステップ)
非接触式厚さ測定手段12による被加工物110の厚さの測定値T2が限界測定厚さT21になった時に、図5に示すように、被加工物110の研削を続行しつつ、接触式厚さ測定手段13の基準プローブ130aを枠体上面141aに接触させるとともに変動プローブ130bを被加工物上面110aに接触させ、接触式厚さ測定手段13を用いて、被加工物の厚さT21と保護部材111の厚さT3とを合わせた総厚さT1の測定を開始する。そして、その測定値T10から非接触式厚さ測定手段12により測定した被加工物110の限界測定厚さT21を差し引き、保護部材111の厚さT3を、T3=T10-T21により算出する。なお、非接触式厚さ測定手段12による被加工物110の厚さの測定値T2が限界測定厚さT21になった直後に、非接触式厚さ測定手段12による被加工物110の厚さの測定を停止する。
(Protective member thickness calculation step)
When the measured value T2 of the thickness of the workpiece 110 by the non-contact thickness measuring means 12 reaches the limit measured thickness T21, as shown in FIG. 5, the workpiece 110 is contacted while continuing grinding. The reference probe 130a of the formula thickness measuring means 13 is brought into contact with the upper surface 141a of the frame body, and the variable probe 130b is brought into contact with the upper surface 110a of the workpiece. And the thickness T3 of the protective member 111 are combined, and the measurement of the total thickness T1 is started. Then, the limit measurement thickness T21 of the workpiece 110 measured by the non-contact thickness measuring means 12 is subtracted from the measured value T10, and the thickness T3 of the protective member 111 is calculated by T3 = T10-T21. Immediately after the measured value T2 of the thickness of the workpiece 110 by the non-contact thickness measuring means 12 becomes the limit measurement thickness T21, the thickness of the workpiece 110 by the non-contact thickness measuring means 12 Stop the measurement.

(第2研削ステップ)
保護部材厚算出ステップの後、引き続き被加工物110の研削を続行し、接触式厚さ測定手段13によって測定される現在の総厚さT1から、前記保護部材厚算出ステップで算出した保護部材111の厚さT3を差し引き、被加工物の現在の厚さT2をT2=T1-T3として計測しながら、図6に示すように、被加工物110の現在の厚さT2が所望の仕上げ厚さT22になるまで研削する。すなわち、被加工物110の現在の厚さT2が所望の仕上げ厚さT22になるまで、チャックテーブル14と研削砥石152を回転させながら且つチャックテーブル14の保持面140aに垂直な方向(-Z方向)に研削砥石を移動させ、被加工物上面110aを研削する。このとき、保護部材111の厚さT3は一定の値を保ち、研削による薄化でT1の値が減少するため、被加工物110の現在の厚さT2=T1-T3は、常に、T1と同じ量だけ減少する。総厚さT1の値の変化を接触式厚さ測定手段13で読み取れば、計算により間接的に、被加工物110の現在の厚さT2がわかる。これにより、非接触式厚さ測定手段12の測定可能範囲を下回る厚さ領域において、非接触式測定手段12と同等の測定精度で被加工物の厚さT2を測定しながら研削が可能となる。
(Second grinding step)
After the protective member thickness calculation step, the grinding of the workpiece 110 is continued, and the protective member 111 calculated in the protective member thickness calculation step from the current total thickness T1 measured by the contact type thickness measuring means 13. As shown in FIG. 6, the current thickness T2 of the workpiece 110 is the desired finish thickness, while subtracting the thickness T3 of the workpiece and measuring the current thickness T2 of the workpiece as T2 = T1-T3. Grind until T22. That is, the direction (−Z direction) perpendicular to the holding surface 140a of the chuck table 14 while rotating the chuck table 14 and the grinding wheel 152 until the current thickness T2 of the workpiece 110 reaches the desired finish thickness T22. ), The grinding wheel is moved to grind the upper surface 110a of the workpiece. At this time, the thickness T3 of the protective member 111 keeps a constant value, and the value of T1 decreases due to thinning by grinding. Therefore, the current thickness T2 = T1-T3 of the workpiece 110 is always T1. Decrease by the same amount. If the change in the value of the total thickness T1 is read by the contact-type thickness measuring means 13, the current thickness T2 of the workpiece 110 can be indirectly obtained by calculation. As a result, in a thickness region below the measurable range of the non-contact type thickness measuring means 12, grinding is possible while measuring the thickness T2 of the workpiece with the same measurement accuracy as the non-contact type measuring means 12. ..

10:研削装置
110:被加工物 110a:被加工物上面 110b:被加工物下面
111:保護部材
12:非接触式厚さ測定手段
L1:反射光 L2:透過光
13:接触式厚さ測定手段
130a:基準プローブ 130b:変動プローブ
14:チャックテーブル
140:吸引エリア 140a:保持面 141:枠体 141a:枠体上面
15:研削手段 150:マウント 151:研削ホイール 152:研削砥石
T1:総厚さ T2:被加工物の厚さ T3:保護部材の厚さ
T10:総厚さ(保護部材厚算出ステップ時測定値)
T11:総厚さ(第二研削ステップ時測定値)
T20:初期厚さ T21:限界測定厚さ T22:所望の仕上げ厚さ
10: Grinding device 110: Work piece 110a: Work piece upper surface 110b: Work piece lower surface 111: Protective member 12: Non-contact thickness measuring means
L1: Reflected light L2: Transmitted light 13: Contact type thickness measuring means 130a: Reference probe 130b: Variable probe 14: Chuck table 140: Suction area 140a: Holding surface 141: Frame body 141a: Frame body top surface 15: Grinding means 150 : Mount 151: Grinding wheel 152: Grinding wheel T1: Total thickness T2: Thickness of workpiece T3: Thickness of protective member T10: Total thickness (measured value at the step of calculating protective member thickness)
T11: Total thickness (measured value at the second grinding step)
T20: Initial thickness T21: Limit measurement thickness T22: Desired finish thickness

Claims (1)

保護部材が表面に貼着された被加工物の該保護部材側を保持する保持面を有し回転可能なチャックテーブルと、
該チャックテーブルに保持された該被加工物を研削する研削砥石が環状に配置された研削ホイールを回転可能に支持する研削手段と、
測定光を該被加工物に向けて照射し、照射した測定光が該被加工物の上面で反射した光と該被加工物を透過して下面で反射した光とを受光した時間差から該被加工物の厚さを算出する非接触式厚さ測定手段と、
プローブを接触させて該被加工物と保護部材とを含めた厚さを測定する接触式厚さ測定手段と、を少なくとも備えた研削装置によって、
被加工物の裏面を所望の仕上げ厚さまで研削する研削方法であって、
該非接触厚さ測定手段で被加工物の厚さを測定しながら、該チャックテーブルを回転させると共に該研削砥石を回転させ且つ該チャックテーブルに向けて該研削砥石を移動させて該チャックテーブルに保持された該被加工物の裏面を研削する第一研削ステップと、
該接触式厚さ測定手段の測定値から、該非接触石厚さ測定手段の測定値を差し引き、該保護部材の厚さを算出する保護部材厚算出ステップと、
該接触式厚さ測定手段の測定値から、該保護部材厚算出ステップにて算出した該保護部材の厚さを差し引いた値で仕上げ厚さを制御しながら、該チャックテーブルを回転させると共に該研削砥石を回転させ且つ該チャックテーブルに向けて該研削砥石を移動させて該チャックテーブルに保持された該被加工物の裏面を研削する第2研削ステップと、を備え、
該保護部材の厚みを算出することで、該非接触式厚さ測定手段で測定不可能な厚さ領域においても、接触式厚さ測定手段を用いて、該被加工物単体の厚さの管理が可能となることを特徴とする被加工物の研削方法。
A rotatable chuck table having a holding surface for holding the protective member side of the workpiece to which the protective member is attached to the surface, and
A grinding means that rotatably supports a grinding wheel in which a grinding wheel for grinding a workpiece held on the chuck table is arranged in an annular shape, and a grinding tool.
The object is irradiated with the measurement light toward the workpiece, and the light received by the irradiated measurement light between the light reflected on the upper surface of the workpiece and the light transmitted through the workpiece and reflected on the lower surface is the subject. Non-contact thickness measuring means for calculating the thickness of the workpiece,
By a grinding device provided with at least a contact-type thickness measuring means for contacting a probe and measuring the thickness including the workpiece and the protective member.
A grinding method that grinds the back surface of a work piece to a desired finish thickness.
While measuring the thickness of the workpiece with the non-contact thickness measuring means, the chuck table is rotated, the grinding wheel is rotated, and the grinding wheel is moved toward the chuck table and held on the chuck table. The first grinding step for grinding the back surface of the workpiece, and
A protective member thickness calculation step for calculating the thickness of the protective member by subtracting the measured value of the non-contact stone thickness measuring means from the measured value of the contact type thickness measuring means.
While controlling the finish thickness with a value obtained by subtracting the thickness of the protective member calculated in the protective member thickness calculation step from the measured value of the contact type thickness measuring means, the chuck table is rotated and the grinding is performed. A second grinding step for rotating the grindstone and moving the grinding wheel toward the chuck table to grind the back surface of the workpiece held on the chuck table is provided.
By calculating the thickness of the protective member, the thickness of the work piece can be controlled by using the contact type thickness measuring means even in a thickness region that cannot be measured by the non-contact type thickness measuring means. A method for grinding a workpiece, which is characterized by being possible.
JP2018152657A 2018-08-14 2018-08-14 Grinding method for workpieces Active JP7068096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152657A JP7068096B2 (en) 2018-08-14 2018-08-14 Grinding method for workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152657A JP7068096B2 (en) 2018-08-14 2018-08-14 Grinding method for workpieces

Publications (2)

Publication Number Publication Date
JP2020026010A JP2020026010A (en) 2020-02-20
JP7068096B2 true JP7068096B2 (en) 2022-05-16

Family

ID=69620866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152657A Active JP7068096B2 (en) 2018-08-14 2018-08-14 Grinding method for workpieces

Country Status (1)

Country Link
JP (1) JP7068096B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7536393B2 (en) 2020-06-02 2024-08-20 株式会社ディスコ Wafer processing method, protective member attachment device, and processing device
KR102524072B1 (en) * 2021-03-08 2023-04-21 에이엠테크놀로지 주식회사 Circuit board grinding system and grinding method
JP2023000307A (en) 2021-06-17 2023-01-04 株式会社ディスコ Grinding equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220775A (en) 2006-02-15 2007-08-30 Mitsubishi Electric Corp Grinder for semiconductor substrate, and method of manufacturing semiconductor device
JP2007335458A (en) 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd Wafer grinder
JP2016132047A (en) 2015-01-16 2016-07-25 株式会社ディスコ Griding method for workpiece
JP2017140656A (en) 2016-02-08 2017-08-17 株式会社ディスコ Method for detecting wear amount of grinding wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220775A (en) 2006-02-15 2007-08-30 Mitsubishi Electric Corp Grinder for semiconductor substrate, and method of manufacturing semiconductor device
JP2007335458A (en) 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd Wafer grinder
JP2016132047A (en) 2015-01-16 2016-07-25 株式会社ディスコ Griding method for workpiece
JP2017140656A (en) 2016-02-08 2017-08-17 株式会社ディスコ Method for detecting wear amount of grinding wheel

Also Published As

Publication number Publication date
JP2020026010A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
TWI728181B (en) Dressing method of grinding grindstone
TWI382464B (en) Wafer grinding method and wafer grinding machine
JP7068096B2 (en) Grinding method for workpieces
CN106563980B (en) Grinding method
JP6000643B2 (en) Workpiece processing method, and optical element, mold, and semiconductor substrate processed by the processing method
JP6618822B2 (en) Method for detecting wear amount of grinding wheel
KR100895902B1 (en) Method of grinding back surface of semiconductor wafer and semiconductor wafer grinding apparatus
CN110293456B (en) Wafer grinding method
JP2020069600A (en) Machine tool
JP2020049557A (en) Grinding device
JP6539467B2 (en) Grinding machine
JP2020049593A (en) Grinding method
JP2011235388A (en) Method for measuring thickness of ground material to be processed, and grinding device
JP6736728B2 (en) Grinding machine
JP2002001655A (en) Device and method for grinding workpiece
TWI651163B (en) Grinding method
JP2017163018A (en) Wafer processing apparatus and wafer processing method
JP2015023113A (en) Flattening and grinding method of semiconductor substrate
JP2017013144A (en) Grinding device
JP7405649B2 (en) Grinding method of workpiece
JP7114926B2 (en) Machine tool with swivel table and processing method using the machine tool
JP7185446B2 (en) Grinding device and grinding method for workpiece
JP2021079483A (en) Processing device
KR20230120572A (en) Grinding apparatus and grinding method
JP2024109215A (en) Grinding method for work piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 7068096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150