JP7068044B2 - Board processing method and board processing equipment - Google Patents
Board processing method and board processing equipment Download PDFInfo
- Publication number
- JP7068044B2 JP7068044B2 JP2018103873A JP2018103873A JP7068044B2 JP 7068044 B2 JP7068044 B2 JP 7068044B2 JP 2018103873 A JP2018103873 A JP 2018103873A JP 2018103873 A JP2018103873 A JP 2018103873A JP 7068044 B2 JP7068044 B2 JP 7068044B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- spm
- supplying
- unit
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 164
- 238000003672 processing method Methods 0.000 title claims description 20
- 239000000758 substrate Substances 0.000 claims description 722
- 239000007788 liquid Substances 0.000 claims description 252
- 239000002826 coolant Substances 0.000 claims description 90
- 238000000034 method Methods 0.000 claims description 68
- 230000002093 peripheral effect Effects 0.000 claims description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 239000000110 cooling liquid Substances 0.000 claims description 26
- 230000003028 elevating effect Effects 0.000 claims description 25
- 238000007599 discharging Methods 0.000 claims description 16
- 238000012423 maintenance Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 11
- 239000003517 fume Substances 0.000 description 58
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 48
- 239000010408 film Substances 0.000 description 28
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 27
- 230000000903 blocking effect Effects 0.000 description 27
- 239000007789 gas Substances 0.000 description 16
- 239000011261 inert gas Substances 0.000 description 13
- 230000035939 shock Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 238000005192 partition Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 239000013256 coordination polymer Substances 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000007562 laser obscuration time method Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012487 rinsing solution Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Description
この発明は、基板処理方法および基板処理装置に関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus. The substrates to be processed include, for example, semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, optomagnetic disk substrates, and photomasks. Substrates, ceramic substrates, solar cell substrates, etc. are included.
従来から、基板の表面に、高温のSPM(H2SO4(硫酸)およびH2O2(過酸化水素水)を含む硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture)を供給することにより、基板の表面からレジストを除去する手法が提案されている(たとえば下記の特許文献1参照)。このような、SPMを用いた処理を行う枚葉式の基板処理装置は基板をほぼ水平に保持して回転させるスピンチャックと、このスピンチャックによって回転される基板に処理液を供給するためのノズルとを含む。基板処理装置では、スピンチャックに保持された基板に対して高温のSPMが供給されるSPM工程が実行される。その後、リンス液が基板に供給されるリンス工程が実行される。
Conventionally, a high-temperature SPM (sulfuric acid / hydrogen peroxide mixture) containing H 2 SO 4 (sulfuric acid) and H 2 O 2 (hydrogen peroxide solution) is supplied to the surface of the substrate. Therefore, a method of removing the resist from the surface of the substrate has been proposed (see, for example,
特許文献1のSPM工程後には、基板の表面にSPMが存在している。SPM工程に次いで実行されるリンス工程において基板の表面にリンス液が供給されると、基板の表面に存在しているSPMとリンス液とが反応し、SPMのヒュームが大量に発生するおそれがある。SPMのヒュームを含む雰囲気が、処理カップの上部開口を通って処理カップ外に流出しチャンバの内部に拡散すると、SPMのヒュームを含む雰囲気がパーティクルとなって基板に付着して当該基板を汚染したり、チャンバの内壁を汚染したりする原因になる。したがって、SPMのヒュームを含む雰囲気が周囲に拡散することを抑制または防止することが望ましい。
After the SPM process of
また、SPMは、硫酸と過酸化水素水との反応に伴う大きな反応熱により、硫酸の液温よりも高温まで温度上昇している。そのため、基板の表面に対するSPMの供給終了後、SPMの供給により高温になっている基板の表面に低温のリンス液が供給されると、基板の表面温度が急激に低下し、基板の表面に形成されているパターンなどにヒートショックを与えることがあった。このヒートショックは、パターン倒壊の原因の1つであると考えられる。 Further, the temperature of SPM rises to a temperature higher than the liquid temperature of sulfuric acid due to the large reaction heat accompanying the reaction between sulfuric acid and the hydrogen peroxide solution. Therefore, when a low-temperature rinse solution is supplied to the surface of the substrate which has become hot due to the supply of SPM after the supply of SPM to the surface of the substrate is completed, the surface temperature of the substrate drops sharply and is formed on the surface of the substrate. It sometimes gave a heat shock to the pattern that was used. This heat shock is considered to be one of the causes of the pattern collapse.
この発明の目的の一つは、SPMのヒュームを含む雰囲気の周囲への拡散を抑制できる基板処理方法および基板処理装置を提供することである。
また、この発明の他の目的は、リンス液の供給に伴うヒートショックの発生を抑制でき、これにより、基板の表面へのダメージの付与を抑制または防止できる、基板処理方法および基板処理装置を提供することである。
One of the objects of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of suppressing diffusion of SPM containing a fume to the surroundings.
Another object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of suppressing the generation of heat shock associated with the supply of the rinsing liquid, thereby suppressing or preventing the damage to the surface of the substrate. It is to be.
この発明は、基板の表面を上方に向けた状態で基板保持ユニットによって水平姿勢に保持されている前記基板の表面にSPMを供給するSPM工程と、前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、前記SPM低減工程の後、前記基板の表面に、水を含むリンス液を供給するリンス工程とを含む、基板処理方法を提供する。 The present invention follows the SPM step of supplying SPM to the surface of the substrate held in a horizontal position by the substrate holding unit with the surface of the substrate facing upward, and the end of the SPM step. By rotating the substrate around the axis of rotation passing through the central portion of the substrate without supplying SPM to the surface of the substrate, SPM is discharged from the surface of the substrate, and the surface of the substrate is not dried to the extent that the surface of the substrate is not dried. Provided is a substrate processing method including an SPM reduction step of reducing the amount of SPM present on the surface, and a rinsing step of supplying a rinse liquid containing water to the surface of the substrate after the SPM reduction step.
高温のSPMにリンス液が供給されることにより、基板の表面の周囲に多量のヒュームが発生するおそれがある。
この方法によれば、SPM工程の終了に引き続きリンス工程の開始に先立って、基板の表面にSPMを供給せずに基板を回転させ、基板の表面からSPMを排出させる。これにより、リンス工程の開始に先立って、基板の表面を乾燥させない程度に、基板の表面に存在する高温のSPMの量を低減できる。基板の表面に存在する高温のSPMの量を低減した後にリンス工程を開始するので、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量を抑制できる。これにより、SPMのヒュームを含む雰囲気の周囲への拡散を抑制できる。
By supplying the rinse liquid to the high temperature SPM, a large amount of fume may be generated around the surface of the substrate.
According to this method, following the end of the SPM process and prior to the start of the rinsing process, the substrate is rotated without supplying the SPM to the surface of the substrate, and the SPM is discharged from the surface of the substrate. This makes it possible to reduce the amount of high temperature SPM present on the surface of the substrate to the extent that the surface of the substrate is not dried prior to the start of the rinsing process. Since the rinsing step is started after reducing the amount of high-temperature SPM present on the surface of the substrate, the amount of SPM fume generated around the surface of the substrate in the rinsing step can be suppressed. As a result, it is possible to suppress the diffusion of the SPM including the fume to the surroundings.
また、基板の表面に存在する高温のSPMの量が低減することにより、基板が温度低下する。加えて、基板の回転(空転)により、基板と周囲雰囲気との、単位時間当たりの接触面積が増大する。これらにより、基板が冷却される。そのため、SPM工程の終了時よりも温度低下した状態で、リンス工程を開始できる。よってリンス液の供給に伴うヒートショックの発生を抑制でき、これにより、基板の表面へのダメージの付与を抑制または防止できる。 Further, the temperature of the substrate is lowered by reducing the amount of high-temperature SPM present on the surface of the substrate. In addition, the rotation (idle) of the substrate increases the contact area between the substrate and the surrounding atmosphere per unit time. These cool the substrate. Therefore, the rinsing process can be started in a state where the temperature is lower than that at the end of the SPM process. Therefore, it is possible to suppress the occurrence of heat shock due to the supply of the rinsing liquid, and thereby it is possible to suppress or prevent the damage to the surface of the substrate.
前記SPM工程が、加熱されたSPMを供給してもよい。前記SPM低減工程が、基板の温度を低下させる前記SPM低減低温化工程であってもよい。
また、前記SPM低減工程が、前記基板の表面に存在するSPMが液膜状をなさない状態になるまで前記基板の表面に存在するSPMの量を低減させる工程と、前記基板の表面に液体を供給しない工程とを含んでいてもよい。
この発明の一実施形態では、前記基板処理方法が、前記SPM低減工程に並行して、前記基板における表面とは反対側の裏面に、前記基板の表面に供給されるSPMよりも低い液温を有する冷却液を供給する裏面冷却液供給工程をさらに含む。
この方法によれば、SPM低減工程に並行して、基板の裏面に冷却液が供給される(裏面冷却液供給工程)。そのため、SPM低減工程において、基板の表面に存在するSPMを冷却できる。そのため、リンス工程の開始時における、基板の表面に存在するSPMの温度を低くできる。SPMが高温になるのに従って、SPMのヒュームの発生量が増大する。これにより、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
The SPM step may supply heated SPM. The SPM reduction step may be the SPM reduction low temperature step of lowering the temperature of the substrate.
Further, the SPM reduction step is a step of reducing the amount of SPM existing on the surface of the substrate until the SPM existing on the surface of the substrate does not form a liquid film, and a liquid is applied to the surface of the substrate. It may include a step of not supplying.
In one embodiment of the invention, the substrate processing method is a liquid lower than the SPM supplied to the surface of the substrate on the back surface of the substrate opposite to the front surface in parallel with the SPM reduction step. It further comprises a backside coolant supply step of supplying a warm coolant.
According to this method, the coolant is supplied to the back surface of the substrate in parallel with the SPM reduction step (back surface coolant supply step). Therefore, in the SPM reduction step, the SPM existing on the surface of the substrate can be cooled. Therefore, the temperature of the SPM existing on the surface of the substrate at the start of the rinsing process can be lowered. As the temperature of the SPM increases, the amount of fume generated in the SPM increases. As a result, the amount of SPM fume generated around the surface of the substrate in the rinsing process can be further suppressed.
また、基板の裏面に冷却液が供給されるので、リンス工程の開始に先立って基板を温度低下できる。そのため、基板の温度が十分に低下した後にリンス工程を開始できる。これにより、リンス液の供給に伴うヒートショックの発生をより一層抑制でき、これにより、基板の表面へのダメージの付与をより効果的に抑制または防止できる。
この発明の一実施形態では、前記基板処理方法が、前記裏面冷却液供給工程が、前記基板の裏面の中央部に向けて前記冷却液を吐出する中央部吐出工程と、前記中央部吐出工程に並行して、前記基板の裏面の周縁部に向けて前記冷却液を吐出する周縁部吐出工程とを含む。
Further, since the coolant is supplied to the back surface of the substrate, the temperature of the substrate can be lowered prior to the start of the rinsing process. Therefore, the rinsing process can be started after the temperature of the substrate is sufficiently lowered. As a result, the occurrence of heat shock due to the supply of the rinsing liquid can be further suppressed, and thereby the damage to the surface of the substrate can be more effectively suppressed or prevented.
In one embodiment of the present invention, the substrate processing method includes a central portion discharge step in which the back surface coolant supply step discharges the coolant toward the central portion of the back surface of the substrate, and the central portion discharge. In parallel with the process, the peripheral portion discharging step of discharging the coolant toward the peripheral edge portion of the back surface of the substrate is included.
この方法によれば、SPM低減工程に並行して、基板の裏面の中央部と基板の裏面の周縁部とに、冷却液が供給される。これにより、基板を均一に冷却できる。
前記冷却液が、前記リンス液よりも高い液温を有していてもよい。
この方法によれば、基板にリンス液が供給される前に、当該リンス液よりも高い液温を有する冷却液が基板に供給される。そのため、冷却液による冷却とリンス液による冷却とを順に行うことにより、基板を段階的に温度低下できる。これにより、ヒートショックの発生をより一層抑制できる。
According to this method, the coolant is supplied to the central portion of the back surface of the substrate and the peripheral portion of the back surface of the substrate in parallel with the SPM reduction step. As a result, the substrate can be cooled uniformly.
The cooling liquid may have a liquid temperature higher than that of the rinsing liquid.
According to this method, a cooling liquid having a liquid temperature higher than that of the rinse liquid is supplied to the substrate before the rinse liquid is supplied to the substrate. Therefore, the temperature of the substrate can be lowered stepwise by sequentially cooling with the cooling liquid and cooling with the rinsing liquid. As a result, the occurrence of heat shock can be further suppressed.
前記冷却液が、前記リンス液と同じ液温を有していてもよい。
この方法によれば、基板の裏面に供給される冷却液がリンス液と同じ温度であるので、基板の表面に存在するSPMの液温をより一層低下できる。基板の表面に存在するSPMの液温が十分に低下した後にリンス工程を開始するので、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
The cooling liquid may have the same liquid temperature as the rinsing liquid.
According to this method, since the cooling liquid supplied to the back surface of the substrate has the same temperature as the rinsing liquid, the liquid temperature of the SPM existing on the front surface of the substrate can be further lowered. Since the rinsing step is started after the temperature of the SPM liquid existing on the surface of the substrate is sufficiently lowered, the amount of SPM fume generated around the surface of the substrate in the rinsing step can be further suppressed.
この発明の一実施形態では、前記リンス工程が、前記基板の表面の温度がSPM低減工程によって所定の低温まで降下させられた後に開始する。
この方法によれば、所定の低温まで降下させられた後にリンス工程が開始される。そのため、SPM低減工程において、基板の表面に存在するSPMを冷却できる。そのため、リンス工程の開始時における、基板の表面に存在するSPMの温度を低くできる。これにより、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
In one embodiment of the present invention, the rinsing step is started after the temperature of the surface of the substrate has been lowered to a predetermined low temperature by the SPM reducing step .
According to this method, the rinsing step is started after the temperature has been lowered to a predetermined low temperature. Therefore, in the SPM reduction step, the SPM existing on the surface of the substrate can be cooled. Therefore, the temperature of the SPM existing on the surface of the substrate at the start of the rinsing process can be lowered. As a result, the amount of SPM fume generated around the surface of the substrate in the rinsing process can be further suppressed.
この発明の一実施形態では、前記基板処理方法が、前記SPM低減工程に並行して前記基板の温度を温度センサによって検出する温度検出工程をさらに含む。そして、検出された温度が前記所定の低温に達した場合に、前記SPM低減工程が終了しかつ前記リンス工程が開始する。
この方法によれば、温度センサによって検出された温度が前記所定の低温に達した場合に、リンス工程が開始する。これにより、基板の表面に存在するSPMの温度が所定の低温まで確実に降下した後に、リンス工程を開始できる。これにより、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
In one embodiment of the present invention, the substrate processing method further includes a temperature detection step of detecting the temperature of the substrate by a temperature sensor in parallel with the SPM reduction step. Then , when the detected temperature reaches the predetermined low temperature, the SPM reduction step is completed and the rinsing step is started .
According to this method, the rinsing step is started when the temperature detected by the temperature sensor reaches the predetermined low temperature. As a result, the rinsing step can be started after the temperature of the SPM existing on the surface of the substrate has been surely lowered to a predetermined low temperature. As a result, the amount of SPM fume generated around the surface of the substrate in the rinsing process can be further suppressed.
この発明の一実施形態では、前記基板処理方法が、前記SPM工程に並行して、前記基板を前記回転軸線回りに回転させる第1の基板回転工程をさらに含む。そして、前記SPM低減工程が、前記第1の基板回転工程と同じか、または前記第1の基板回転工程よりも速い回転速度で前記基板を回転させる工程を含む。 In one embodiment of the invention, the substrate processing method further comprises a first substrate rotation step of rotating the substrate about the axis of rotation in parallel with the SPM step. The SPM reduction step includes a step of rotating the substrate at a rotation speed that is the same as that of the first substrate rotation step or faster than that of the first substrate rotation step.
この方法によれば、SPM低減工程において、第1の基板回転工程と同じかまたは第1の基板回転工程よりも速い回転速度で基板が回転される。そのため、基板の表面に存在するSPMに作用する遠心力が増大する。これにより、基板の表面らのSPMの排出を促すことができる。
この発明の一実施形態では、前記基板処理方法が、前記リンス工程に並行して、前記基板を前記回転軸線回りに回転させる第2の基板回転工程と、前記SPM低減工程および前記リンス工程に並行して、前記基板保持ユニットの周囲を取り囲む筒状のガードを有し、当該基板保持ユニットを収容する処理カップの内部を排気するガード内排気工程と、前記リンス工程に並行して、前記ガードを、第1の高さ位置に維持する第1の高さ維持工程と、前記SPM低減工程に並行して、前記ガードを、前記第1の高さ位置よりも高い第2の高さ位置に維持する第2の高さ維持工程とを含む。
According to this method, in the SPM reduction step, the substrate is rotated at the same rotation speed as the first substrate rotation step or faster than the first substrate rotation step. Therefore, the centrifugal force acting on the SPM existing on the surface of the substrate increases. This makes it possible to promote the emission of SPM from the surface of the substrate.
In one embodiment of the present invention, the substrate processing method includes a second substrate rotation step of rotating the substrate around the rotation axis, a SPM reduction step, and the rinsing step in parallel with the rinsing step. In parallel with the guard internal exhaust step of having a cylindrical guard surrounding the substrate holding unit and exhausting the inside of the processing cup accommodating the substrate holding unit, and in parallel with the rinsing step, the said In parallel with the first height maintenance step of maintaining the guard at the first height position and the SPM reduction step, the guard is held at a second height position higher than the first height position. Includes a second height maintenance step to maintain.
この方法によれば、SPM低減工程およびリンス工程に並行して、処理カップの内部が排気される。また、SPM低減工程に並行して、第2の高さ位置にガードが維持される。さらに、SPM低減工程の後のリンス工程に並行して、第1の高さ位置に維持される。
基板の表面へのSPMの供給の際に、基板の表面の周囲に大量のSPMのヒュームが発生する。また、リンス工程においても、基板の表面に存在するSPMとリンス液との反応により、基板の表面の周囲にSPMのヒュームが発生する。SPM低減工程において、第2の高さ位置にガードを配置しかつ処理カップの内部を排気している。SPM低減工程において、SPMの供給の停止を維持することにより、基板の周囲に存在するSPMのヒュームの量が減少する。すなわち、基板の表面の周囲に存在するSPMのヒュームの量が低減した状態で、基板の表面へのリンス液の供給を開始できる。したがって、基板の表面へのリンス液の供給に伴ってSPMのヒュームが発生したとしても、SPMのヒュームを含む雰囲気が処理カップ外に流出するようなことはない。これにより、SPMのヒュームを含む雰囲気の、周囲への拡散を抑制できる。
According to this method, the inside of the processing cup is exhausted in parallel with the SPM reduction step and the rinsing step. Further, in parallel with the SPM reduction step, the guard is maintained at the second height position. Further, it is maintained at the first height position in parallel with the rinsing step after the SPM reduction step.
When supplying SPM to the surface of the substrate, a large amount of SPM fume is generated around the surface of the substrate. Further, also in the rinsing step, a fume of SPM is generated around the surface of the substrate due to the reaction between the SPM existing on the surface of the substrate and the rinsing liquid. In the SPM reduction step, a guard is arranged at the second height position and the inside of the processing cup is exhausted. By keeping the supply of SPM stopped in the SPM reduction step, the amount of SPM fume present around the substrate is reduced. That is, it is possible to start supplying the rinse liquid to the surface of the substrate in a state where the amount of SPM fume existing around the surface of the substrate is reduced. Therefore, even if the SPM fume is generated due to the supply of the rinse liquid to the surface of the substrate, the atmosphere containing the SPM fume does not flow out of the processing cup. This makes it possible to suppress the diffusion of the atmosphere containing the SPM fume to the surroundings.
この発明の一実施形態では、前記基板処理方法が、前記リンス工程の後、前記基板の表面にSC1を供給する工程をさらに含む。
この方法によれば、基板の表面に付着しているレジスト残渣を良好に取り除くことができる。また、基板の表面に残留している硫黄成分を良好に取り除くこともできる。
In one embodiment of the invention, the substrate processing method further comprises the step of supplying SC1 to the surface of the substrate after the rinsing step.
According to this method, the resist residue adhering to the surface of the substrate can be satisfactorily removed. In addition, the sulfur component remaining on the surface of the substrate can be satisfactorily removed.
この発明は、基板の表面を上方に向けた状態で、当該基板を水平姿勢に保持する基板保持ユニットと、前記基板保持ユニットに保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための回転ユニットと、前記基板保持ユニットに保持されている基板の表面にSPMを供給するためのSPM供給ユニットと、前記基板保持ユニットに保持されている基板の表面に、水を含むリンス液を供給するためのリンス液供給ユニットと、前記回転ユニット、前記SPM供給ユニットおよび前記リンス液供給ユニットを制御する制御装置とを含む、基板処理装置を提供する。そして、前記制御装置が、前記SPM供給ユニットによって前記基板の表面にSPMを供給するSPM工程と、前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記回転ユニットによって前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、前記SPM低減工程の後、前記リンス液供給ユニットによって前記基板の表面にリンス液を供給するリンス工程とを実行する。 In the present invention, a substrate holding unit that holds the substrate in a horizontal position and a substrate held by the substrate holding unit with the surface of the substrate facing upward pass through the center of the substrate. Water is applied to the rotating unit for rotating around, the SPM supply unit for supplying SPM to the surface of the substrate held by the substrate holding unit, and the surface of the substrate held by the substrate holding unit. Provided is a substrate processing apparatus including a rinse liquid supply unit for supplying the containing rinse liquid, and a control device for controlling the rotation unit, the SPM supply unit, and the rinse liquid supply unit. Then , following the SPM step of supplying SPM to the surface of the substrate by the SPM supply unit and the end of the SPM step, the control device does not supply SPM to the surface of the substrate, and the center of the substrate. By rotating the substrate by the rotating unit around the rotation axis passing through the unit, SPM is discharged from the surface of the substrate, and the amount of SPM present on the surface of the substrate is reduced to the extent that the surface of the substrate is not dried. After the SPM reduction step and the SPM reduction step, a rinsing step of supplying the rinsing liquid to the surface of the substrate by the rinsing liquid supply unit is executed .
高温のSPMにリンス液が供給されることにより、基板の表面の周囲に多量のヒュームが発生するおそれがある。
この構成によれば、SPM工程の終了に引き続きリンス工程の開始に先立って、基板の表面にSPMを供給せずに基板を回転させ、基板の表面からSPMを排出させる。これにより、リンス工程の開始に先立って、基板の表面を乾燥させない程度に、基板の表面に存在する高温のSPMの量を低減できる。基板の表面に存在する高温のSPMの量を低減した後にリンス工程を開始するので、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量を抑制できる。これにより、SPMのヒュームを含む雰囲気の周囲への拡散を抑制できる。
By supplying the rinse liquid to the high temperature SPM, a large amount of fume may be generated around the surface of the substrate.
According to this configuration, following the end of the SPM process and prior to the start of the rinsing process, the substrate is rotated without supplying the SPM to the surface of the substrate, and the SPM is discharged from the surface of the substrate. This makes it possible to reduce the amount of high temperature SPM present on the surface of the substrate to the extent that the surface of the substrate is not dried prior to the start of the rinsing process. Since the rinsing step is started after reducing the amount of high-temperature SPM present on the surface of the substrate, the amount of SPM fume generated around the surface of the substrate in the rinsing step can be suppressed. As a result, it is possible to suppress the diffusion of the SPM including the fume to the surroundings.
また、基板の表面に存在する高温のSPMの量が低減することにより、基板が温度低下する。加えて、基板の回転(空転)により、基板と周囲雰囲気との、単位時間当たりの接触面積が増大する。これらにより、基板が冷却される。そのため、SPM工程の終了時よりも温度低下した状態で、リンス工程を開始できる。よってリンス液の供給に伴うヒートショックの発生を抑制でき、これにより、基板の表面へのダメージの付与を抑制または防止できる。 Further, the temperature of the substrate is lowered by reducing the amount of high-temperature SPM present on the surface of the substrate. In addition, the rotation (idle) of the substrate increases the contact area between the substrate and the surrounding atmosphere per unit time. These cool the substrate. Therefore, the rinsing process can be started in a state where the temperature is lower than that at the end of the SPM process. Therefore, it is possible to suppress the occurrence of heat shock due to the supply of the rinsing liquid, and thereby it is possible to suppress or prevent the damage to the surface of the substrate.
この発明の一実施形態では、前記基板処理装置が、前記基板における表面とは反対側の裏面に、前記基板の表面に供給されるSPMよりも低い液温を有する冷却液を供給する冷却液供給ユニットをさらに含む。そして、前記制御装置が、前記SPM低減工程に並行して、前記冷却液供給ユニットによって前記冷却液を供給する裏面冷却液供給工程をさらに実行する。 In one embodiment of the present invention, the substrate processing apparatus supplies a cooling liquid having a liquid temperature lower than the SPM supplied to the front surface of the substrate to the back surface of the substrate opposite to the front surface. Further includes a liquid supply unit. Then , the control device further executes the back surface coolant supply step of supplying the coolant by the coolant supply unit in parallel with the SPM reduction step .
この構成によれば、SPM低減工程に並行して、基板の裏面に冷却液が供給される(裏面冷却液供給工程)。そのため、SPM低減工程において、基板の表面に存在するSPMを冷却できる。そのため、リンス工程の開始時における、基板の表面に存在するSPMの温度を低くできる。SPMが高温になるのに従って、SPMのヒュームの発生量が増大する。これにより、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。 According to this configuration, the coolant is supplied to the back surface of the substrate in parallel with the SPM reduction step (back surface coolant supply step). Therefore, in the SPM reduction step, the SPM existing on the surface of the substrate can be cooled. Therefore, the temperature of the SPM existing on the surface of the substrate at the start of the rinsing process can be lowered. As the temperature of the SPM increases, the amount of fume generated in the SPM increases. As a result, the amount of SPM fume generated around the surface of the substrate in the rinsing process can be further suppressed.
また、基板の裏面に冷却液が供給されるので、リンス工程の開始に先立って基板を温度低下できる。そのため、基板の温度が十分に低下した後にリンス工程を開始できる。これにより、リンス液の供給に伴うヒートショックの発生をより一層抑制でき、これにより、基板の表面へのダメージの付与をより効果的に抑制または防止できる。
この発明の一実施形態では、前記冷却液供給ユニットが、前記基板保持ユニットに保持されている基板の裏面の中央部に対向する中央部吐出口と、前記基板保持ユニットに保持されている基板の裏面の周縁部に対向する周縁部吐出口とを有し、前記制御装置が、前記裏面冷却液供給工程において、前記基板の裏面の中央部に向けて前記中央部吐出口から前記冷却液を吐出する中央部吐出工程と、前記中央部吐出工程に並行して、前記周縁部吐出口から前記基板の裏面の周縁部に向けて前記冷却液を吐出する周縁部吐出工程とを実行する。
Further, since the coolant is supplied to the back surface of the substrate, the temperature of the substrate can be lowered prior to the start of the rinsing process. Therefore, the rinsing process can be started after the temperature of the substrate is sufficiently lowered. As a result, the occurrence of heat shock due to the supply of the rinsing liquid can be further suppressed, and thereby the damage to the surface of the substrate can be more effectively suppressed or prevented.
In one embodiment of the present invention, the coolant supply unit is held by the substrate holding unit and a central discharge port facing the center of the back surface of the substrate held by the substrate holding unit. It has a peripheral edge discharge port facing the peripheral edge portion of the back surface of the substrate, and the control device has the coolant from the central portion discharge port toward the central portion of the back surface of the substrate in the back surface coolant supply step. In parallel with the central portion discharging process, the peripheral portion discharging step of discharging the cooling liquid from the peripheral portion discharging port toward the peripheral edge portion of the back surface of the substrate is executed . ..
この構成によれば、PM低減工程に並行して、基板の裏面の中央部と基板の裏面の周縁部とに、冷却液が供給される。これにより、基板を均一に冷却できる。
前記冷却液が、常温よりも高い液温を有していてもよい。
この構成によれば、基板にリンス液が供給される前に、当該リンス液よりも高い液温を有する冷却液が基板に供給される。そのため、冷却液による冷却とリンス液による冷却とを順に行うことにより、基板を段階的に温度低下できる。これにより、ヒートショックの発生をより一層抑制できる。
According to this configuration, the coolant is supplied to the central portion of the back surface of the substrate and the peripheral portion of the back surface of the substrate in parallel with the PM reduction step. As a result, the substrate can be cooled uniformly.
The cooling liquid may have a liquid temperature higher than normal temperature.
According to this configuration, a cooling liquid having a liquid temperature higher than that of the rinse liquid is supplied to the substrate before the rinse liquid is supplied to the substrate. Therefore, the temperature of the substrate can be lowered stepwise by sequentially cooling with the cooling liquid and cooling with the rinsing liquid. As a result, the occurrence of heat shock can be further suppressed.
前記冷却液が、前記リンス液と同じ液温を有していてもよい。
この構成によれば、基板の裏面に供給される冷却液がリンス液と同じ温度であるので、基板の表面に存在するSPMの液温をより一層低下できる。基板の表面に存在するSPMの液温が十分に低下した後にリンス工程を開始するので、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
The cooling liquid may have the same liquid temperature as the rinsing liquid.
According to this configuration, since the cooling liquid supplied to the back surface of the substrate has the same temperature as the rinsing liquid, the liquid temperature of the SPM existing on the front surface of the substrate can be further lowered. Since the rinsing step is started after the temperature of the SPM liquid existing on the surface of the substrate is sufficiently lowered, the amount of SPM fume generated around the surface of the substrate in the rinsing step can be further suppressed.
この発明の一実施形態では、前記制御装置が、前記基板の温度がSPM低減工程によって所定の低温まで降下させられた後に、前記リンス工程を開始する。
この構成によれば、所定の低温まで降下させられた後にリンス工程が開始される。そのため、SPM低減工程において、基板の表面に存在するSPMを冷却できる。そのため、リンス工程の開始時における、基板の表面に存在するSPMの温度を低くできる。これにより、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
In one embodiment of the present invention, the control device starts the rinsing step after the temperature of the substrate has been lowered to a predetermined low temperature by the SPM reducing step.
According to this configuration, the rinsing process is started after the temperature has been lowered to a predetermined low temperature. Therefore, in the SPM reduction step, the SPM existing on the surface of the substrate can be cooled. Therefore, the temperature of the SPM existing on the surface of the substrate at the start of the rinsing process can be lowered. As a result, the amount of SPM fume generated around the surface of the substrate in the rinsing process can be further suppressed.
この発明の一実施形態では、前記基板処理装置が、前記基板の温度を検出するための温度センサをさらに含む。そして、前記制御装置が、前記SPM低減工程に並行して前記基板の温度を前記温度センサによって検出する温度検出工程をさらに実行する。さらに、前記制御装置が、検出され温度が前記所定の低温に達した場合に、前記SPM低減工程を終了し、前記リンス工程を開始する。 In one embodiment of the invention, the substrate processing apparatus further comprises a temperature sensor for detecting the temperature of the substrate. Then , the control device further executes a temperature detection step of detecting the temperature of the substrate by the temperature sensor in parallel with the SPM reduction step. Further , when the control device is detected and the temperature reaches the predetermined low temperature, the SPM reduction step is terminated and the rinsing step is started .
この構成によれば、温度センサによって検出された温度が前記所定の低温に達した場合に、リンス工程が開始する。これにより、基板の表面に存在するSPMの温度が所定の低温まで確実に降下した後に、リンス工程を開始できる。これにより、リンス工程において基板の表面の周囲に発生するSPMのヒュームの量をより一層抑制できる。
この発明の一実施形態では、前記制御装置が、前記SPM工程に並行して、前記基板を前記回転軸線回りに回転させる第1の基板回転工程をさらに実行する。そして、前記制御装置が、前記SPM低減工程において、前記第1の基板回転工程と同じか、または前記第1の基板回転工程よりも速い回転速度で前記基板を回転させる工程を実行する。
According to this configuration, the rinsing step starts when the temperature detected by the temperature sensor reaches the predetermined low temperature. As a result, the rinsing step can be started after the temperature of the SPM existing on the surface of the substrate has been surely lowered to a predetermined low temperature. As a result, the amount of SPM fume generated around the surface of the substrate in the rinsing process can be further suppressed.
In one embodiment of the invention, the control device further performs a first substrate rotation step of rotating the substrate about the rotation axis in parallel with the SPM step. Then , the control device executes the step of rotating the substrate in the SPM reduction step, which is the same as the first substrate rotation step or at a rotation speed faster than the first substrate rotation step .
この構成によれば、SPM低減工程において、第1の基板回転工程と同じかまたは第1の基板回転工程よりも速い回転速度で基板が回転される。そのため、基板の表面に存在するSPMに作用する遠心力が増大する。これにより、基板の表面らのSPMの排出を促すことができる。
この発明の一実施形態では、前記基板処理装置が、前記基板保持ユニットの周囲を取り囲み、前記基板保持ユニットに保持されている基板から排出される処理液を捕獲するガードを有する処理カップと、前記処理カップの内部を排気する排気ユニットと、前記ガードを昇降させるガード昇降ユニットとをさらに含む。そして、前記制御装置が、前記排気ユニットおよび前記ガード昇降ユニットをさらに制御し、前記制御装置が、前記リンス工程に並行して、前記基板を前記回転軸線回りに回転させる第2の基板回転工程と、前記SPM低減工程および前記リンス工程に並行して前記ガードの内部を排気するガード内排気工程と、前記リンス工程に並行して、前記ガードを、第1の高さ位置に維持する第1の高さ維持工程と、前記SPM低減工程に並行して、前記ガードを、前記第1の高さ位置よりも高い第2の高さ位置に維持する第2の高さ維持工程とを実行する。
According to this configuration, in the SPM reduction step, the substrate is rotated at the same rotation speed as the first substrate rotation step or faster than the first substrate rotation step. Therefore, the centrifugal force acting on the SPM existing on the surface of the substrate increases. This makes it possible to promote the emission of SPM from the surface of the substrate.
In one embodiment of the present invention, the substrate processing apparatus surrounds the substrate holding unit and has a processing cup having a guard for capturing the processing liquid discharged from the substrate held by the substrate holding unit. Further includes an exhaust unit for exhausting the inside of the processing cup and a guard elevating unit for raising and lowering the guard. Then , the control device further controls the exhaust unit and the guard elevating unit, and the control device rotates the substrate around the rotation axis in parallel with the rinsing process. In parallel with the SPM reduction step and the rinsing step, the inside of the guard is exhausted, and in parallel with the rinsing step, the guard is maintained at the first height position. In parallel with the height maintenance step and the SPM reduction step, a second height maintenance step of maintaining the guard at a second height position higher than the first height position is executed . ..
この構成によれば、SPM低減工程およびリンス工程に並行して、処理カップの内部が排気される。また、SPM低減工程に並行して、第2の高さ位置にガードが維持される。さらに、SPM低減工程の後のリンス工程に並行して、第1の高さ位置に維持される。
基板の表面へのSPMの供給の際に、基板の表面の周囲に大量のSPMのヒュームが発生する。また、リンス工程においても、基板の表面に存在するSPMとリンス液との反応により、基板の表面の周囲にSPMのヒュームが発生する。SPM低減工程において、第2の高さ位置にガードを配置しかつ処理カップの内部を排気している。SPM低減工程において、SPMの供給の停止を維持することにより、基板の周囲に存在するSPMのヒュームの量が減少する。すなわち、基板の表面の周囲に存在するSPMのヒュームの量が低減した状態で、基板の表面へのリンス液の供給を開始できる。したがって、基板の表面へのリンス液の供給に伴ってSPMのヒュームが発生したとしても、SPMのヒュームを含む雰囲気が処理カップ外に流出するようなことはない。これにより、SPMのヒュームを含む雰囲気の、周囲への拡散を抑制できる。
According to this configuration, the inside of the processing cup is exhausted in parallel with the SPM reduction step and the rinsing step. Further, in parallel with the SPM reduction step, the guard is maintained at the second height position. Further, it is maintained at the first height position in parallel with the rinsing step after the SPM reduction step.
When supplying SPM to the surface of the substrate, a large amount of SPM fume is generated around the surface of the substrate. Further, also in the rinsing step, a fume of SPM is generated around the surface of the substrate due to the reaction between the SPM existing on the surface of the substrate and the rinsing liquid. In the SPM reduction step, a guard is arranged at the second height position and the inside of the processing cup is exhausted. By keeping the supply of SPM stopped in the SPM reduction step, the amount of SPM fume present around the substrate is reduced. That is, it is possible to start supplying the rinse liquid to the surface of the substrate in a state where the amount of SPM fume existing around the surface of the substrate is reduced. Therefore, even if the SPM fume is generated due to the supply of the rinse liquid to the surface of the substrate, the atmosphere containing the SPM fume does not flow out of the processing cup. This makes it possible to suppress the diffusion of the atmosphere containing the SPM fume to the surroundings.
この発明の一実施形態では、前記基板処理装置が前記基板保持ユニットに保持されている基板にSC1を供給するためのSC1供給ユニットをさらに含み、前記制御装置が、前記リンス工程の後、前記基板の表面にSC1を供給する工程をさらに実行する。
この構成によれば、基板の表面に付着しているレジスト残渣を良好に取り除くことができる。また、基板の表面に残留している硫黄成分を良好に取り除くこともできる。
In one embodiment of the invention, the substrate processing apparatus further comprises an SC1 supply unit for supplying SC1 to the substrate held in the substrate holding unit, wherein the control device is subjected to the rinsing step. The step of supplying SC1 to the surface of the substrate is further executed .
According to this configuration, the resist residue adhering to the surface of the substrate can be satisfactorily removed. In addition, the sulfur component remaining on the surface of the substrate can be satisfactorily removed.
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
<第1の実施形態>
図1は、この発明の第1の実施形態に係る基板処理装置1の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、シリコンウエハなどの基板Wを一枚ずつ処理する枚葉式の装置である。この実施形態では、基板Wは、円板状の基板である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<First Embodiment>
FIG. 1 is a schematic plan view for explaining the internal layout of the
基板処理装置1は、処理液およびリンス液で基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容する基板収容器Cが載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送するインデクサロボットIRおよび基板搬送ロボットCRと、基板処理装置1を制御する制御装置3とを含む。インデクサロボットIRは、基板収容器Cと基板搬送ロボットCRとの間で基板Wを搬送する。基板搬送ロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
The
図2は、処理ユニット2の構成例を説明するための図解的な断面図である。
処理ユニット2は、内部空間を有する箱形のチャンバ4と、チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの表面Waに、SPM(H2SO4(硫酸)およびH2O2(過酸化水素水)を含む硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture)を供給するためのSPM供給ユニット6と、スピンチャック5に保持されている基板Wの表面Waに、SC1(NH4OHとH2O2とを含む混合液)を供給するためのSC1供給ユニット7と、スピンチャック5に保持されている基板Wの表面Wa(上面)に対向する遮断部材8と、遮断部材8の内部を上下に挿通し、スピンチャック5に保持されている基板Wの上面の中央部に向けて、リンス液を含む処理流体を吐出するための中心軸ノズル9と、中心軸ノズル9にリンス液を供給するためのリンス液供給ユニット10と、スピンチャック5に保持されている基板Wの下面(基板Wの裏面Wb)の中央部に向けて処理液を吐出する下面ノズル11と、スピンチャック5を取り囲む筒状の処理カップ12とを含む。
FIG. 2 is a schematic cross-sectional view for explaining a configuration example of the
The
チャンバ4は、箱状の隔壁14と、隔壁14の上部から隔壁14内(チャンバ4内に相当)に清浄空気を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)15と、隔壁14の下部からチャンバ4内の気体を排出する排気ユニット13とを含む。
FFU15は隔壁14の上方に配置されており、隔壁14の天井に取り付けられている。FFU15は、隔壁14の天井からチャンバ4内に清浄空気を送る。排気ユニット13は、処理カップ12内に接続された排気ダクト16を介して処理カップ12の底部に接続されており、処理カップ12の底部から処理カップ12の内部を吸引する。FFU15および排気ユニット13により、チャンバ4内にダウンフロー(下降流)が形成される。
The
The FFU 15 is arranged above the
スピンチャック5として、基板Wを水平方向に挟んで基板Wを水平に保持する挟持式のチャックが採用されている。具体的には、スピンチャック5は、スピンモータ(回転ユニット)17と、このスピンモータ17の駆動軸と一体化された回転軸18と、回転軸18の上端に略水平に取り付けられた円板状のスピンベース19とを含む。
スピンベース19は、基板Wの外径よりも大きな外径を有する水平な円形の上面19aを含む。上面19aには、その周縁部に複数個(3個以上。たとえば6個)の挟持部材20が配置されている。複数個の挟持部材20は、スピンベース19の上面周縁部において、基板Wの外周形状に対応する円周上で適当な間隔を空けてたとえば等間隔に配置されている。
As the
The
SPM供給ユニット6は、SPMノズル21と、SPMノズル21が先端部に取り付けられたノズルアーム22と、ノズルアーム22を移動させることにより、SPMノズル21を移動させるノズル移動ユニット23(図3参照)とを含む。
SPMノズル21は、たとえば、連続流の状態で、SPMの一例としてのSPMを吐出するストレートノズルである。SPMノズル21は、たとえば、基板Wの上面に向けて、垂直方向、傾斜方向または水平な方向に、SPMを吐出する垂直姿勢でノズルアーム22に取り付けられている。ノズルアーム22は水平方向に延びている。
The SPM supply unit 6 is a nozzle moving unit 23 that moves the
The
ノズル移動ユニット23は、揺動軸線まわりにノズルアーム22を水平移動させることにより、SPMノズル21を水平に移動させる。ノズル移動ユニット23は、モータ等を含む構成である。ノズル移動ユニット23は、SPMノズル21から吐出されたSPMが基板Wの上面に着液する処理位置と、SPMノズル21が平面視でスピンチャック5の周囲に設定された退避位置との間で、SPMノズル21を水平に移動させる。この実施形態では、処理位置は、たとえば、SPMノズル21から吐出されたSPMが基板Wの上面中央部に着液する中央位置である。
The nozzle movement unit 23 horizontally moves the
SPM供給ユニット6は、SPMノズル21にH2SO4を供給する硫酸供給ユニット24と、SPMノズル21にH2O2を供給する過酸化水素水供給ユニット25とをさらに含む。
硫酸供給ユニット24は、SPMノズル21に一端が接続された硫酸配管26と、硫酸配管26を開閉するための硫酸バルブ27とを含む。硫酸配管26には、硫酸供給源から所定の高温に保たれたH2SO4が供給される。硫酸供給ユニット24は、硫酸配管26の開度を調整して、硫酸配管26を流通するH2SO4の流量を調整する硫酸流量調整バルブをさらに備えていてもよい。この硫酸流量調整バルブは、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。他の流量調整バルブについても同様である。
The SPM supply unit 6 further includes a sulfuric
The sulfuric
過酸化水素水供給ユニット25は、SPMノズル21に一端が接続された過酸化水素水配管28と、過酸化水素水配管28を開閉するための過酸化水素水バルブ29とを含む。過酸化水素水配管28には、過酸化水素水供給源から温度調整されていない常温(RT。約23℃)程度のH2O2が供給される。過酸化水素水供給ユニット25は、過酸化水素水配管28の開度を調整して、過酸化水素水配管28を流通するH2O2の流量を調整する過酸化水素水量調整バルブをさらに備えていてもよい。
The hydrogen peroxide
硫酸バルブ27および過酸化水素水バルブ29が開かれると、硫酸配管26からのH2SO4および過酸化水素水配管28からのH2O2が、SPMノズル21のケーシング内へと供給され、ケーシング内において十分に混合(攪拌)される。この混合によって、H2SO4とH2O2とが均一に混ざり合い、H2SO4とH2O2との反応によってH2SO4およびH2O2の混合液(SPM)が生成される。SPMは、酸化力が強いペルオキソ一硫酸(Peroxymonosulfuric acid;H2SO5)を含み、混合前のH2SO4の温度よりも高い温度(100℃以上。たとえば160~220℃)まで昇温させられる。生成された高温のSPMは、SPMノズル21のケーシングの先端部(たとえば下端部)に開口した吐出口から吐出される。
When the sulfuric acid valve 27 and the hydrogen
SC1供給ユニット7は、SC1ノズル30と、SC1ノズル30が先端部に取り付けられたノズルアーム31と、ノズルアーム31を移動させることにより、SC1ノズル30を移動させるノズル移動ユニット32(図3参照)とを含む。ノズル移動ユニット32は、揺動軸線まわりにノズルアーム31を水平移動させることにより、SC1ノズル30を水平に移動させる。ノズル移動ユニット32は、モータ等を含む構成である。ノズル移動ユニット32は、SC1ノズル30から吐出されたSC1が基板Wの表面Waに着液する処理位置と、平面視でスピンチャック5の周囲に設定された退避位置との間で、SC1ノズル30を水平に移動させる。換言すると、処理位置は、SC1ノズル30から吐出されたSC1の液滴の噴流が基板Wの表面Waに吹き付けられる位置である。また、ノズル移動ユニット32は、SC1ノズル30から吐出されたSC1の着液位置が基板Wの表面Waの中央部と基板Wの表面Waの周縁部との間で移動するように、SC1ノズル30を水平に移動させる。
The SC1 supply unit 7 is a nozzle moving unit 32 that moves the
SC1ノズル30は、スピンチャック5に保持されている基板Wの表面Waに、SC1の液滴の噴流を吐出する(SC1を噴霧状に吐出する)。SC1ノズル30は、SC1の微小の液滴を噴出する、公知の二流体ノズル(たとえば特開2017-005230号公報等参照)の形態を有している。
SC1供給ユニット7は、SC1供給源からの常温の液体のSC1をSC1ノズル30に供給するSC1配管34と、SC1配管34を開閉するSC1バルブ35と、気体供給源からの気体をSC1ノズル30に供給する気体配管36と、気体配管36を開閉する気体バルブ37とをさらに含む。SC1ノズル30に供給される気体としては、一例として窒素ガス(N2)等の不活性ガスを例示できるが、それ以外に、たとえば乾燥空気や清浄空気などを採用できる。
The
The SC1 supply unit 7 has an
気体バルブ37を開いてSC1ノズル30の気体吐出口から気体を吐出させながら、SC1バルブ35を開いて液体吐出口からSC1を吐出させる。これにより、SC1ノズル30の下方近傍でSC1に気体が衝突(混合)する。これにより、SC1の微小の液滴を生成することができ、SC1を噴霧状に吐出できる。SC1ノズル30は、二流体ノズルの形態ではなく、SC1を連続流の態様で吐出するストレートノズルの形態を有していてもよい。
While opening the
遮断部材8は、遮断板41と、遮断板41に一体回転可能に設けられた回転軸42とを含む。遮断板41は、基板Wとほぼ同じ径またはそれ以上の径を有する円板状である。遮断板41は、その下面に基板Wの表面Waの全域に対向する円形の水平平坦面からなる基板対向面41aを有している。
回転軸42は、遮断板41の中心を通り鉛直に延びる回転軸線A2(基板Wの回転軸線A1と一致する軸線)まわりに回転可能に設けられている。回転軸42は、円筒状である。回転軸42は、遮断板41の上方で水平に延びる支持アーム43に相対回転可能に支持されている。
The blocking
The
遮断板41の中央部には、遮断板41および回転軸42を上下に貫通する円筒状の貫通穴40が形成されている。貫通穴40には、中心軸ノズル9が上下に挿通している。すなわち、中心軸ノズル9は、遮断板41および回転軸42を上下に貫通している。
中心軸ノズル9は、貫通穴40の内部を上下に延びる円柱状のケーシングを備えている。中心軸ノズル9の下端は、基板対向面41aに開口して、吐出口9aを形成している。
In the central portion of the blocking
The
中心軸ノズル9は、支持アーム43によって、当該支持アーム43に対し回転不能に支持されている。中心軸ノズル9は、遮断板41、回転軸42および支持アーム43と共に昇降する。中心軸ノズル9の上流端には、リンス液供給ユニット10が接続されている。
リンス液供給ユニット10は、中心軸ノズル9にリンス液を案内するリンス液配管44と、リンス液配管44を開閉するリンス液バルブ45とを含む。リンス液は、たとえば水である。この実施形態において、水は、純水(脱イオン水)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)のアンモニア水のいずれかである。リンス液バルブ45が開かれると、リンス液供給源からのリンス液が、リンス液配管44から中心軸ノズル9に供給される。これにより、中心軸ノズル9の吐出口9aから下方に向けてリンス液が吐出される。
The
The rinsing
中心軸ノズル9には、不活性ガス供給ユニット46が接続されている。不活性ガス供給ユニット46は、中心軸ノズル9の上流端に接続された不活性ガス配管47と、不活性ガス配管47の途中部に介装された不活性ガスバルブ48とを含む。不活性ガスは、たとえば窒素ガス(N2)である。不活性ガスバルブ48が開かれると、中心軸ノズル9の吐出口9aから下方に向けて不活性ガスが吐出される。不活性ガスバルブ48が閉じられると、吐出口9aからの不活性ガスの吐出が停止される。
The inert gas supply unit 46 is connected to the
遮断板41には、電動モータ等を含む構成の遮断板回転ユニット49が結合されている。遮断板回転ユニット49は、遮断板41および回転軸42を、支持アーム43に対して回転軸線A2まわりに回転させる。
支持アーム43には、電動モータ、ボールねじ等を含む構成の遮断部材昇降ユニット50が結合されている。遮断部材昇降ユニット50は、遮断部材8(遮断板41および回転軸42)ならびに中心軸ノズル9を、支持アーム43と共に鉛直方向に昇降する。
A cutoff
A blocking
遮断部材昇降ユニット50は、遮断板41を、基板対向面41aがスピンチャック5に保持されている基板Wの上面に近接する遮断位置(図6Fに示す位置)と、遮断位置よりも大きく上方に退避した退避位置(図2に実線で図示)の間で昇降させる。遮断部材昇降ユニット50は、遮断位置、中間位置(図6Cおよび図6Dに示す位置)および退避位置で遮断板41を保持可能である。遮断板41が遮断位置にある状態の、基板対向面41aが基板Wの上面との間の空間は、その周囲の空間から完全に隔離されているわけではないが、当該空間に対する、周囲の空間からの気体の流入はない。すなわち、当該空間は、実質的にその周囲の空間と遮断されている。
The cutoff
下面ノズル11は、スピンチャック5に保持された基板Wの下面(裏面Wb)の中央部に対向する単一の吐出口11aを有している。吐出口11aは、鉛直上方に向けて液を吐出する。吐出された液は、スピンチャック5に保持されている基板Wの下面の中央部に対してほぼ垂直に入射する。下面ノズル11には、下面供給配管51が接続されている。下面供給配管51は、鉛直に配置された中空軸からなる回転軸18の内部に挿通されている。
The
下面供給配管51には、リンス液配管52と、冷却液配管53と、SC1配管54とが、それぞれ接続されている。
リンス液配管52には、リンス液配管52を開閉するためのリンス液バルブ55が介装されている。リンス液配管52に供給されるリンス液は、たとえば常温(RT。約23℃)の水である。この実施形態において、水は、純水(脱イオン水)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)のアンモニア水のいずれかである。リンス液配管52およびリンス液バルブ55によって、下リンス液供給ユニット71が構成されている。
The rinse
The rinse
冷却液配管53には、冷却液配管53を開閉するための冷却液バルブ56が介装されている。冷却液は、たとえば常温(RT。約23℃)の水である。この実施形態において、水は、純水(脱イオン水)、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10~100ppm程度)のアンモニア水のいずれかである。この実施形態では、冷却液配管53および冷却液バルブ56によって、冷却液供給ユニット72が構成されている。
The
SC1配管54には、SC1配管54を開閉するためのSC1バルブ57が介装されている。
冷却液バルブ56およびSC1バルブ57が閉じられている状態でリンス液バルブ55が開かれると、リンス液供給源からのリンス液が、リンス液配管52および下面供給配管51を介して下面ノズル11に供給される。下面ノズル11に供給されたリンス液は、吐出口11aからほぼ鉛直上向きに吐出される。下面ノズル11から吐出されたリンス液は、スピンチャック5に保持された基板Wの下面中央部に対してほぼ垂直に入射する。
The
When the rinse
リンス液バルブ55およびSC1バルブ57が閉じられている状態で冷却液バルブ56が開かれると、冷却液供給源からの冷却液が、冷却液配管53および下面供給配管51を介して下面ノズル11に供給される。下面ノズル11に供給された冷却液は、吐出口11aからほぼ鉛直上向きに吐出される。下面ノズル11から吐出された冷却液は、スピンチャック5に保持された基板Wの下面中央部に対してほぼ垂直に入射する。
When the
リンス液バルブ55および冷却液バルブ56が閉じられている状態でSC1バルブ57が開かれると、SC1供給源からのSC1が、SC1配管54および下面供給配管51を介して下面ノズル11に供給される。下面ノズル11に供給されたSC1は、吐出口11aからほぼ鉛直上向きに吐出される。下面ノズル11から吐出されたSC1は、スピンチャック5に保持された基板Wの下面中央部に対してほぼ垂直に入射する。
When the
処理カップ12は折り畳み可能であり、ガード昇降ユニット66(図3参照)が3つのガード63~65のうちの少なくとも一つを昇降させることにより、処理カップ12の展開および折り畳みが行われる。
処理カップ12は、スピンベース19の周囲を取り囲む複数のカップ61,62と、基板Wの周囲に飛散した処理液を受け止める複数のガード63~65と、複数のガード63~65を個別に昇降させるガード昇降ユニット66(図3参照)とを含む。処理カップ12は、スピンチャック5に保持されている基板Wの外周よりも外側に配置されている。
The
The
各カップ61,62は、円筒状であり、スピンチャック5の周囲を取り囲んでいる。内側から2番目の第2のカップ62は、第1のカップ61よりも外側に配置されている。各カップ61,62は、上向きに開いた環状の溝を形成している。第1のカップ61の溝には、回収/排液配管67が接続されている。第1のカップ61の溝に導かれた処理液は、回収/排液配管67を通して回収設備または廃液設備に選択的に送られ、当該設備で処理される。第2のカップ62の溝には、回収/排液配管68が接続されている。第2のカップ62の溝に導かれた処理液は、回収/排液配管68を通して回収設備または廃液設備に選択的に送られ、当該設備で処理される。
Each
各ガード63~65は、円筒状であり、スピンチャック5の周囲を取り囲んでいる。各ガード63~65は、スピンチャック5の周囲を取り囲む円筒状の案内部69と、案内部69の上端から中心側(基板Wの回転軸線A1に近づく方向)に斜め上方に延びる円筒状の傾斜部70とを含む。各傾斜部70の上端部は、ガード63~65の内周部を構成しており、基板Wおよびスピンベース19よりも大きな直径を有している。3つの傾斜部70は、上下に重ねられており、3つの案内部69は、同軸的に配置されている。案内部69(ガード63,ガード64の案内部69)は、それぞれ、対応するカップ61,62内に出入り可能である。すなわち、処理カップ12は、折り畳み可能であり、ガード昇降ユニット66が3つのガード63~65の少なくとも一つを昇降させることにより、処理カップ12の展開および折り畳みが行われる。なお、傾斜部70は、その断面形状が図2に示すように直線状であってもよいし、また、たとえば滑らかな上に凸の円弧を描きつつ延びていてもよい。
Each
ガード昇降ユニット66(図3参照)は、ガードの上端部が基板Wより上方に位置する上位置(第2の高さ位置)UPと、ガードの上端部が基板Wより下方に位置する退避位置RPとの間で、各ガード63~65を昇降させる。ガード昇降ユニット66は、上位置UPと退避位置RPとの間の任意の位置で各ガード63~65を保持可能である。基板Wへの処理液の供給や基板Wの乾燥は、いずれかのガード63~65が基板Wの周端面に対向している状態で行われる。
The guard elevating unit 66 (see FIG. 3) has an upper position (second height position) UP in which the upper end of the guard is located above the board W and a retracted position in which the upper end of the guard is located below the board W. Each
最も内側の第1のガード63を基板Wの周端面に対向させる、処理カップ12の第1のガード対向状態(図6C~6E参照)では、第1~第3のガード63~65の全てが、ガードの上端部が基板Wより上方に位置する液捕獲位置(第1の高さ位置)CPに配置される。内側から2番目の第2のガード64を基板Wの周端面に対向させる、処理カップ12の第2のガード対向状態(図示しない)では、第2および第3のガード64,65が液捕獲位置CPに配置され、かつ第1のガード63が退避位置RPに配置される。最も外側の第3のガード65を基板Wの周端面に対向させる、処理カップ12の第3のガード対向状態(図6F参照)では、第3のガード65が液捕獲位置CPに配置され、かつ第1および第2のガード63,64が退避位置RPに配置される。全てのガードを、基板Wの周端面から退避させる退避状態(図2参照)では、第1~第3のガード63~65の全てが退避位置に配置される。
In the first guard facing state of the processing cup 12 (see FIGS. 6C to 6E) in which the innermost
また、処理カップ12には、第1のガード63が基板Wの周端面に対向する状態として、第1のガード対向状態の他に、第1のガード捕獲状態(図6A,6B参照)がさらに用意されている。処理カップ12の第1のガード捕獲状態では、第1、第2および第3のガード63,64,65のいずれもが、液捕獲位置CPよりも上方に設定された上位置UPに配置される。第1のガード63が上位置UPに位置する状態(すなわち、処理カップ12の第1のガード捕獲状態)で、第1のガード63の内周端(上端)とスピンチャック5に保持されている基板Wとの間の距離が大きく確保される。
Further, in the
図3は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。
制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット、固定メモリデバイス、ハードディスクドライブ等の記憶ユニット、および入出力ユニットを有している。記憶ユニットは、演算ユニットが実行するコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体を含む。記録媒体には、制御装置3に後述する第1の基板処理例または第2の基板処理例を実行させるようにステップ群が組み込まれている。
FIG. 3 is a block diagram for explaining the electrical configuration of the main part of the
The
制御装置3は、予め定められたプログラムに従って、排気ユニット13、スピンモータ17、第1のノズル移動ユニット23、第2のノズル移動ユニット32、遮断板回転ユニット49および遮断部材昇降ユニット50、ガード昇降ユニット66等の動作を制御する。また、制御装置3は、予め定められたプログラムに従って、硫酸バルブ27、過酸化水素水バルブ29、SC1バルブ35、気体バルブ37、リンス液バルブ45、不活性ガスバルブ48、リンス液バルブ55、冷却液バルブ56、SC1バルブ57等の開閉動作を制御する。
The
図4は、基板処理装置1による処理対象の基板Wの表面Waを拡大して示す断面図である。処理対象の基板Wは、たとえばシリコンウエハであり、そのパターン形成面である表面Waにパターン100が形成されている。パターン100は、たとえば微細パターンである。パターン100は、図4に示すように、凸形状(柱状)を有する構造体101が行列状に配置されたものであってもよい。この場合、構造体101の線幅W1はたとえば10nm~45nm程度に、パターン100の隙間W2はたとえば10nm~数μm程度に、それぞれ設けられている。パターン100の膜厚Tは、たとえば、1μm程度である。また、パターン100は、たとえば、アスペクト比(線幅W1に対する膜厚Tの比)が、たとえば、5~500程度であってもよい(典型的には、5~50程度である)。
FIG. 4 is an enlarged cross-sectional view showing the surface Wa of the substrate W to be processed by the
また、パターン100は、微細なトレンチにより形成されたライン状のパターンが、繰り返し並ぶものであってもよい。また、パターン100は、薄膜に、複数の微細穴(ボイド(void)またはポア(pore))を設けることにより形成されていてもよい。
パターン100は、たとえば絶縁膜を含む。また、パターン100は、導体膜を含んでいてもよい。より具体的には、パターン100は、複数の膜を積層した積層膜により形成されており、さらには、絶縁膜と導体膜とを含んでいてもよい。パターン100は、単層膜で構成されるパターンであってもよい。絶縁膜は、シリコン酸化膜(SiO2膜)やシリコン窒化膜(SiN膜)であってもよい。また、導体膜は、低抵抗化のための不純物を導入したアモルファスシリコン膜であってもよいし、金属膜(たとえば金属配線膜)であってもよい。
Further, the
The
また、パターン100は、親水性膜であってもよい。親水性膜として、TEOS膜(シリコン酸化膜の一種)を例示できる。
図5は、処理ユニット2による第1の基板処理例を説明するための流れ図である。図1~図5を参照しながら第1の基板処理例について説明する。この第1の基板処理例は、基板Wの上面(主面)からレジストを除去するレジスト除去処理である。基板Wの表面Wa(図4参照)には、その表面Waの全域を覆うようにレジストが堆積されている。基板Wは、レジストをアッシングするための処理を受けていないものとする。
Further, the
FIG. 5 is a flow chart for explaining a first substrate processing example by the
処理ユニット2によって基板Wに第1の基板処理例が施されるときには、チャンバ4の内部に、高ドーズでのイオン注入処理後の基板Wが搬入される(図5のステップS1)。
制御装置3は、ノズル等が全てスピンチャック5の上方から退避しており、かつ全てのガード63~65が退避位置RPに配置されている状態で、基板Wを保持している基板搬送ロボットCR(図1参照)のハンドHをチャンバ4の内部に進入させる。これにより、基板Wがその表面Wa(デバイス形成面)を上方に向けた状態でスピンチャック5に受け渡され、スピンチャック5に保持される。
When the first substrate processing example is applied to the substrate W by the
The
また、この第1の基板処理例は、排気ユニット13によって処理カップ12の内部が吸引されている状態で実行される(ガード内排気工程)。排気ユニット13の排気により、チャンバ4の内部空間に、下方に向かう気流が形成される。
スピンチャック5に基板Wが保持された後、制御装置3は、スピンモータ17を制御して基板Wの回転を開始させる(図5のステップS2)。基板Wは予め定める液処理速度(100~500rpmの範囲内で、たとえば300rpm)まで上昇させられ、その液処理速度に維持される。また、制御装置3は、ガード昇降ユニット66を制御して、第1~第3のガード63~65の各々を、退避位置RPから上位置UPまで上昇させる。これにより、図6Aに示すように、処理カップ12が第1のガード捕獲状態になる(第2の高さ維持工程)。
Further, this first substrate processing example is executed in a state where the inside of the
After the substrate W is held by the
基板Wの回転速度が液処理速度に達すると、制御装置3は、図6Aに示すように、SPM工程(図5のステップS3)を実行開始する(第1の基板回転工程)。
具体的には、制御装置3は、ノズル移動ユニット23を制御して、SPMノズル21を、退避位置から処理位置に移動させる。また、制御装置3は、硫酸バルブ27および過酸化水素水バルブ29を同時に開く。これにより、硫酸配管26を通ってH2SO4がSPMノズル21に供給されると共に、過酸化水素水配管28を通ってH2O2がSPMノズル21に供給される。SPMノズル21の内部においてH2SO4とH2O2とが混合され、高温(たとえば、160~220℃)のSPMが生成される。そのSPMが、SPMノズル21の吐出口から吐出され、基板Wの表面Waの中央部に着液する。
When the rotation speed of the substrate W reaches the liquid processing speed, the
Specifically, the
SPMノズル21から吐出されたSPMは、基板Wの表面Waに着液した後、遠心力によって基板Wの表面Waに沿って外方に流れる。そのため、SPMが基板Wの表面Waの全域に供給され、基板Wの表面Waの全域を覆うSPMの液膜LFが基板W上に形成される。これにより、レジストとSPMとが化学反応し、基板W上のレジストがSPMによって基板Wから除去される。基板Wの周縁部に移動したSPMは、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード63の内壁に捕獲される。捕獲されたSPMは、第1のガード63の内壁を伝って流下し、第1のカップ61に集められた後、回収/排液配管67を介して、回収設備または廃液設備に選択的に送られる。
The SPM discharged from the
また、SPM工程(S3)では、使用されるSPMが極めて高温(たとえば、160~220℃)であるため、基板WへのSPMの供給により、大量のSPMのヒュームFが基板Wの表面Waの周囲に発生し、基板Wの表面Waの周囲に浮遊する。
SPM工程(S3)において、処理カップ12が第1のガード対向状態である場合(処理カップ12が図6Cに示す状態である場合)、第1~第3のガード63~65の高さ位置が、基板Wから飛散するSPMを受け止めるという目的を達成するためには十分である。しかしながら、基板Wの表面Waの周囲に存在するSPMのヒュームFを含む雰囲気が、処理カップ12の上部開口12a(第3のガード65の上端によって区画される)を通って処理カップ12外に流出して、チャンバ4の内部に拡散するおそれがある。SPMのヒュームFを含む雰囲気は、パーティクルとなって基板Wに付着して当該基板Wを汚染したり、チャンバ4の隔壁14の内壁を汚染したりする原因となるので、このような雰囲気が周囲に拡散することは望ましくない。そのため、SPM工程(S3)に並行して、処理カップ12が第1のガード捕獲状態に維持されている。
Further, in the SPM step (S3), since the SPM used is extremely high temperature (for example, 160 to 220 ° C.), a large amount of SPM fume F is generated on the surface Wa of the substrate W by supplying the SPM to the substrate W. It is generated in the surroundings and floats around the surface Wa of the substrate W.
In the SPM step (S3), when the
また、SPM工程(S3)において、制御装置3が、ノズル移動ユニット23を制御して、SPMノズル21を、基板Wの表面Waの周縁部に対向する周縁位置と、基板Wの上面の中央部に対向する中央位置との間で移動するようにしてもよい。この場合、基板Wの上面におけるSPMの着液位置が、基板Wの上面の全域を走査させられる。これにより、基板Wの上面全域を均一に処理できる。
Further, in the SPM step (S3), the
SPMの吐出開始から予め定める期間(たとえば、約30秒間)が経過すると、SPM工程(S3)が終了し、SPM工程(S3)の終了に引き続いてSPM低減工程(SPM低減低温化工程。図5のステップS4)が開始される。このSPM低減工程(S4)においても、処理カップ12が第1のガード捕獲状態のまま維持される(第2の高さ維持工程)。
具体的には、制御装置3は、硫酸バルブ27および過酸化水素水バルブ29を閉じる。これにより、図6Bに示すように、SPMノズル21からのSPMの吐出が停止する。その後、制御装置3は、基板Wの回転速度を、液処理速度のまま維持し続ける。基板Wの表面WaへのSPMの供給を停止した状態で、液処理速度のまま回転し続けるので、基板のWの回転による遠心力を受けて、基板Wの表面Waに形成されているSPMの液膜LFに含まれるSPMが、基板W外に排出される。これにより、図6Bに示すように、基板Wの表面Waに形成されているSPMの液膜LFの厚みが薄くなり、やがて、基板Wの表面Waに存在するSPMが液膜状をなさないようになる。
When a predetermined period (for example, about 30 seconds) has elapsed from the start of SPM discharge, the SPM step (S3) is completed, and the SPM reduction step ( SPM reduction low temperature step. FIG. 5) is followed by the end of the SPM step (S3). Step S4) is started. Also in this SPM reduction step (S4), the
Specifically, the
また、SPM低減工程(S4)において、制御装置3は、ノズル移動ユニット23を制御して、SPMノズル21を退避位置に戻させる。また、制御装置3は遮断部材昇降ユニット50を制御して、退避位置に配置されている遮断部材8を、退避位置と遮断位置との間に設定されたリンス処理位置(図6Bに示す位置)まで降下させ、そのリンス処理位置に保持させる。
Further, in the SPM reduction step (S4), the
また、SPM低減工程(S4)に並行して、制御装置3は、図6Bに示すように、基板Wの裏面Wbの中央部に冷却液を供給する。具体的には、制御装置3は、SPMノズル21からのSPMの吐出と同期して冷却液バルブ56を開く。これにより、下面ノズル11の吐出口11aから冷却液が上向きに吐出され、基板Wの裏面Wbの中央部に供給される。下面ノズル11から吐出される冷却液は、常温(RT)の水である。
Further, in parallel with the SPM reduction step (S4), the
基板Wの裏面Wbの中央部に供給された冷却液は、基板Wの回転による遠心力を受けて、基板Wの裏面Wbの全域に広がる。これにより、基板Wの裏面Wbの全域に冷却液が供給される。基板Wの裏面Wbを移動する冷却液は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード63の内壁に捕獲される。捕獲された冷却液は、第1のガード63の内壁を伝って流下し、第1のカップ61に集められた後、回収/排液配管67を介して廃液設備に送られる。
The coolant supplied to the central portion of the back surface Wb of the substrate W receives centrifugal force due to the rotation of the substrate W and spreads over the entire back surface Wb of the substrate W. As a result, the coolant is supplied to the entire area of the back surface Wb of the substrate W. The coolant moving on the back surface Wb of the substrate W scatters from the peripheral edge of the substrate W toward the side of the substrate W and is captured by the inner wall of the
SPM低減工程(S4)の回転速度および/またはSPM低減工程(S4)の期間が、基板Wの表面Waに存在するSPMを排出させるものの、基板Wの表面Waが乾燥することのないような回転速度および/または期間に設定されている。なぜなら、SPM低減工程(S4)において、基板Wの表面Waが乾燥してしまうとパーティクルが発生するからである。 The rotation speed of the SPM reduction step (S4) and / or the period of the SPM reduction step (S4) causes the SPM existing on the surface Wa of the substrate W to be discharged, but the surface Wa of the substrate W is not dried. Set to speed and / or duration. This is because, in the SPM reduction step (S4), particles are generated when the surface Wa of the substrate W is dried.
また、SPM低減工程(S4)において、第1のガード63を上位置UPに維持し(処理カップ12が第1のガード捕獲状態に維持され)かつ処理カップ12の内部を排気している。SPM低減工程(S4)において、SPMの供給を停止し続けることにより、基板Wの表面Waの周囲に存在するSPMのヒュームFの量が、SPM工程(S4)に比べて減少する。
Further, in the SPM reduction step (S4), the
次いで、図6C,6Dに示すように、基板Wの表面Waに付着しているSPMを、リンス液を用いて洗い流す第1のリンス工程(図5のステップS5)が行われる。図6Cは、第1のリンス工程(S5)の初期段階を示し、図6Dは、第1のリンス工程(S5)の初期段階よりも後の段階を示している。第1のリンス工程(S5)において、基板Wの回転速度は、液処理速度に維持されている(第2の基板回転工程)。 Next, as shown in FIGS. 6C and 6D, a first rinsing step (step S5 in FIG. 5) is performed in which the SPM adhering to the surface Wa of the substrate W is washed away with a rinsing solution. FIG. 6C shows an initial stage of the first rinsing step (S5), and FIG. 6D shows a stage after the initial stage of the first rinsing step (S5). In the first rinsing step (S5), the rotation speed of the substrate W is maintained at the liquid treatment speed (second substrate rotation step).
具体的には、SPMの吐出停止から予め定める期間(たとえば、約3.5秒間)が経過すると、制御装置3は、ガード昇降ユニット66を制御して、第1~第3のガード63~65を、それぞれ上位置UPから液捕獲位置CPまで下降させる。これにより、図6Cに示すように、処理カップ12が第1のガード対向状態になる(第2の高さ維持工程)。また、制御装置3は、冷却液バルブ56を閉じると共に、リンス液バルブ45およびリンス液バルブ55を開く。
Specifically, when a predetermined period (for example, about 3.5 seconds) has elapsed from the SPM discharge stop, the
リンス液バルブ45の開成により、液処理速度で回転している基板Wの表面Waの中央部に向けて、中心軸ノズル9の吐出口9aからリンス液が吐出される。中心軸ノズル9から吐出されたリンス液は、SPMが付着している基板Wの表面Waの中央部に着液する。基板Wの表面Waの中央部に着液したリンス液は、基板Wの回転による遠心力を受けて基板Wの表面Waを基板Wの周縁部に向けて流れる。これにより、図6Cに示すように、基板Wの表面Waの全域においてSPMおよびレジスト(およびレジスト残渣)が洗い流される。基板Wの周縁部に移動したリンス液は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード63の内壁に捕獲される。
By opening the rinse
また、第1のリンス工程(S5)において、図6Dに示すように、基板Wの表面Waへのリンス液の供給に伴ってSPMのヒュームFが発生する場合がある。しかしながら、前述のように、SPM低減工程(S4)の終了時には、基板の表面Waの周囲に存在するSPMのヒュームFの量が低減している。この状態で、基板Wの表面Waへのリンス液の供給を開始するので、第1のリンス工程(S5)において、SPMのヒュームFを含む雰囲気が、処理カップ12の上部開口12aを通って処理カップ12外に流出するようなことはない。これにより、SPMのヒュームFを含む雰囲気の、周囲への拡散を抑制できる。
Further, in the first rinsing step (S5), as shown in FIG. 6D, SPM fume F may be generated with the supply of the rinsing liquid to the surface Wa of the substrate W. However, as described above, at the end of the SPM reduction step (S4), the amount of SPM fume F existing around the surface Wa of the substrate is reduced. In this state, the supply of the rinsing liquid to the surface Wa of the substrate W is started, so that in the first rinsing step (S5), the atmosphere containing the fume F of SPM is processed through the
また、冷却液バルブ56の閉成およびリンス液バルブ55の開成により、下面ノズル11の吐出口11aからリンス液が上向きに吐出され、基板Wの裏面Wbの中央部に供給される。下面ノズル11から吐出されるリンス液は、常温の水である。すなわち、この基板処理例では、下面ノズル11から吐出される冷却液が、下面ノズル11から吐出されるリンス液と同じ液温を有している。
Further, by closing the
基板Wの裏面Wbの中央部に供給されたリンス液は、基板Wの回転による遠心力を受けて基板Wの裏面Wbの全域に広がる。これにより、図6Dに示すように、基板Wの裏面Wbの全域にリンス液が供給される。基板Wの裏面Wbを移動するリンス液は、基板Wの周縁部から基板Wの側方に向けて飛散する。基板Wの周縁部から飛散するリンス液は、第1のガード63の内壁に捕獲される。
The rinse liquid supplied to the central portion of the back surface Wb of the substrate W receives centrifugal force due to the rotation of the substrate W and spreads over the entire back surface Wb of the substrate W. As a result, as shown in FIG. 6D, the rinsing liquid is supplied to the entire area of the back surface Wb of the substrate W. The rinse liquid moving on the back surface Wb of the substrate W scatters from the peripheral edge portion of the substrate W toward the side of the substrate W. The rinse liquid scattered from the peripheral edge of the substrate W is captured by the inner wall of the
第1のガード63の内壁に捕獲されたリンス液は、第1のガード63の内壁を伝って流下し、第1のカップ61に集められた後、回収/排液配管67を介して廃液設備に送られる。
リンス液バルブ45およびリンス液バルブ55の開成から予め定める期間(たとえば約23秒間)が経過すると、制御装置3は、リンス液バルブ45およびリンス液バルブ55を閉じる。これにより、中心軸ノズル9の吐出口9aからのリンス液の吐出が停止され、かつ下面ノズル11の吐出口11aからのリンス液の吐出が停止される。また、制御装置3は遮断部材昇降ユニット50を制御して、リンス処理位置に配置されている遮断部材8を、退避位置まで上昇させ、その退避位置に保持させる。
The rinse liquid captured on the inner wall of the
After a predetermined period (for example, about 23 seconds) has elapsed from the opening of the rinse
次いで、図6Eに示すように、SC1を用いて基板Wの表面Waを洗浄するSC1工程(図5のステップS6)が行われる。具体的には、SC1工程(S6)において、制御装置3は、ノズル移動ユニット32を制御することにより、SC1ノズル30を退避位置から処理位置に移動させる。その後、制御装置3は、SC1バルブ35および気体バルブ37を開く。これにより、図6Eに示すように、SC1ノズル30から、SC1の液滴の噴流が吐出される。また、制御装置3は、SC1ノズル30からのSC1の液滴の噴流の吐出に並行して、ノズル移動ユニット32を制御して、SC1ノズル30を中央位置と周縁位置との間で往復移動させる(ハーフスキャン)。これにより、SC1ノズル30からのSC1の着液位置を、基板Wの表面Waの中央部と基板Wの表面Waの周縁部との間で往復移動できる。これにより、SC1の着液位置を、基板Wの表面Waの全域を走査できる。基板Wの表面WaへのSC1の供給により、レジスト残渣を、基板Wの表面Waから除去できる。また、基板Wの表面WaへのSC1の供給により、基板Wの表面Waから硫黄成分を除去できる。基板Wの表面Waに供給されたSC1は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード63の内壁に捕獲される。
Next, as shown in FIG. 6E, an SC1 step (step S6 in FIG. 5) of cleaning the surface Wa of the substrate W using SC1 is performed. Specifically, in the SC1 step (S6), the
また、SC1工程(S6)において、基板Wの表面WaへのSC1の供給に並行して、図6Dに示すように、基板Wの裏面WbにSC1を供給する。具体的には、制御装置3が、SC1バルブ57を開く。これにより、下面ノズル11の吐出口11aからSC1が上向きに吐出され、基板Wの裏面Wbの中央部に供給される。基板Wの裏面Wbの中央部に供給されたSC1は、基板Wの回転による遠心力を受けて基板Wの裏面Wbの全域に広がる。これにより、基板Wの裏面Wbの全域にSC1が供給される。基板Wの裏面Wbを移動するSC1は、基板Wの周縁部から基板Wの側方に向けて飛散する。基板Wの周縁部から飛散するSC1は、第1のガード63の内壁に捕獲される。
Further, in the SC1 step (S6), SC1 is supplied to the back surface Wb of the substrate W in parallel with the supply of SC1 to the front surface Wa of the substrate W, as shown in FIG. 6D. Specifically, the
第1のガード63の内壁に捕獲されたSC1は、第1のガード63の内壁を伝って流下し、第1のカップ61に集められた後、回収/排液配管67を介して廃液設備に送られる。
そして、SC1バルブ35およびSC1バルブ57の開成から予め定める期間が経過すると、制御装置3は、SC1バルブ35および気体バルブ37を閉じると共に、SC1バルブ57を閉じる。これにより、SC1ノズル30からのSC1の液滴の噴流の吐出が停止され、かつ下面ノズル11の吐出口11aからのSC1の吐出が停止される。これにより、SC1工程(S6)が終了する。その後、制御装置3がノズル移動ユニット32を制御して、SC1ノズル30を退避位置に戻させる。
The SC1 captured on the inner wall of the
Then, when a predetermined period elapses from the opening of the
次いで、基板Wの表面Waに付着しているSC1を、リンス液を用いて洗い流す第2のリンス工程(図5のステップS7)が行われる。
具体的には、制御装置3は遮断部材昇降ユニット50を制御して、退避位置に配置されている遮断部材8を、リンス処理位置まで降下させ、そのリンス処理位置に保持させる。
また、制御装置3は、リンス液バルブ45を開く。これにより、処理速度で回転している基板Wの表面Waの中央部に向けて、中心軸ノズル9の吐出口9aからリンス液が吐出される。中心軸ノズル9から吐出されたリンス液は、SPMによって覆われている基板Wの表面Waの中央部に着液し、基板Wの回転による遠心力を受けて基板Wの表面Waを基板Wの周縁部に向けて流れる。これにより、基板Wの表面Waの全域においてSC1(およびレジスト残渣)が洗い流される。基板Wの周縁部に移動したリンス液は、基板Wの周縁部から基板Wの側方に向けて飛散し、第1のガード63の内壁に捕獲される。
Next, a second rinsing step (step S7 in FIG. 5) is performed in which the SC1 adhering to the surface Wa of the substrate W is washed away with a rinsing liquid.
Specifically, the
Further, the
また、リンス液バルブ55の開成により、下面ノズル11の吐出口11aからリンス液が上向きに吐出され、基板Wの裏面Wbの中央部に供給される。基板Wの裏面Wbの中央部に供給されたリンス液は、基板Wの回転による遠心力を受けて基板Wの裏面Wbの全域に広がる。これにより、基板Wの裏面Wbの全域にリンス液が供給される。基板Wの裏面Wbを移動するリンス液は、基板Wの周縁部から基板Wの側方に向けて飛散する。基板Wの周縁部から飛散するリンス液は、第1のガード63の内壁に捕獲される。
Further, by opening the rinse
第1のガード63の内壁に捕獲されたリンス液は、第1のガード63の内壁を伝って流下し、第1のカップ61に集められた後、回収/排液配管67を介して廃液設備に送られる。
リンス液バルブ45およびリンス液バルブ55の開成から予め定める期間(たとえば約23秒間)が経過すると、制御装置3は、リンス液バルブ45およびリンス液バルブ55を閉じる。これにより、中心軸ノズル9の吐出口9aからのリンス液の吐出が停止され、かつ下面ノズル11の吐出口11aからのリンス液の吐出が停止される。
The rinse liquid captured on the inner wall of the
After a predetermined period (for example, about 23 seconds) has elapsed from the opening of the rinse
また、制御装置3は、ガード昇降ユニット66を制御して、第1および第2のガード63,64を、液捕獲位置CPから退避位置まで下降させる。これにより、処理カップ12が第3のガード対向状態になる。
また、制御装置3は、遮断部材昇降ユニット50を制御して、遮断部材8を遮断位置に向けて下降させ、遮断位置に保持する。
Further, the
Further, the
次いで、図6Fに示すように、基板Wを乾燥させる乾燥工程(図5のステップS8)が行われる。具体的には、この状態で、制御装置3はスピンモータ17を制御することにより、基板Wの回転を、SPM工程(S3)から第2のリンス工程(S7)までの回転速度よりも大きい乾燥速度(たとえば数千rpm)まで加速させ、乾燥速度に維持する。これにより、大きな遠心力が基板W上の液体に加わり、基板Wに付着している液体が基板Wの周囲に振り切られる。
Next, as shown in FIG. 6F, a drying step (step S8 in FIG. 5) for drying the substrate W is performed. Specifically, in this state, the
また、制御装置3は遮断板回転ユニット49を制御することにより、遮断板41を回転軸線A2回りに回転させる。これにより、遮断板41の回転に同期して基板Wが回転する。また、制御装置3は、不活性ガスバルブ48を開いて、吐出口9aから不活性ガスを吐出する。
基板Wの高速回転が開始されてから所定時間が経過すると、制御装置3は、スピンモータ17を制御することにより、スピンチャック5による基板Wの回転を停止させる(図5のステップS9)。制御装置3は、遮断部材昇降ユニット50を制御して、遮断部材8を上昇させ、退避位置まで退避させる。
Further, the
When a predetermined time has elapsed from the start of high-speed rotation of the substrate W, the
次いで、チャンバ4内から基板Wが搬出される(図5のステップS10)。具体的には、制御装置3は、基板搬送ロボットCRのハンドをチャンバ4の内部に進入させる。そして、制御装置3は、基板搬送ロボットCRのハンドにスピンチャック5上の基板Wを保持させる。その後、制御装置3は、基板搬送ロボットCRのハンドをチャンバ4内から退避させる。これにより、表面Waからレジストが除去された基板Wがチャンバ4から搬出される。
Next, the substrate W is carried out from the chamber 4 (step S10 in FIG. 5). Specifically, the
以上により、この実施形態によれば、SPM工程(S3)の終了に引き続き第1のリンス工程(S5)の開始に先立って、基板Wの表面WaにSPMを供給せずに基板Wを回転させ、基板Wの表面WaからSPMを排出させる(SPM低減工程(S4))。これにより、第1のリンス工程(S5)の開始に先立って、基板Wの表面Waを乾燥させない程度に、基板Wの表面Waに存在する高温のSPMの量を低減できる。基板Wの表面Waに存在する高温のSPMの量を低減した後に第1のリンス工程(S5)を開始するので、第1のリンス工程(S5)において基板Wの表面Waの周囲に発生するSPMのヒュームFの量を抑制できる。これにより、SPMのヒュームFを含む雰囲気の周囲への拡散を抑制できる。ゆえに、SPMのヒュームFを含む雰囲気がパーティクルとなって基板Wに付着して当該基板Wを汚染したり、チャンバ4の隔壁14の内面(内壁)を汚染したりすることを抑制できる。
As described above, according to this embodiment, the substrate W is rotated without supplying SPM to the surface Wa of the substrate W prior to the start of the first rinsing step (S5) following the end of the SPM step (S3). , SPM is discharged from the surface Wa of the substrate W (SPM reduction step (S4)). Thereby, prior to the start of the first rinsing step (S5), the amount of high-temperature SPM present on the surface Wa of the substrate W can be reduced to the extent that the surface Wa of the substrate W is not dried. Since the first rinsing step (S5) is started after reducing the amount of high-temperature SPM present on the surface Wa of the substrate W, the SPM generated around the surface Wa of the substrate W in the first rinsing step (S5). The amount of fume F can be suppressed. This makes it possible to suppress the diffusion of SPM to the surroundings including the atmosphere containing fume F. Therefore, it is possible to prevent the atmosphere containing the fume F of the SPM from becoming particles and adhering to the substrate W to contaminate the substrate W or contaminating the inner surface (inner wall) of the
また、SPM低減工程(S4)では、基板Wの表面Waに存在する高温のSPMの量が低減することにより、基板Wが温度低下する。加えて、基板Wの回転(空転)により、基板Wと周囲雰囲気との、単位時間当たりの接触面積が増大する。これらにより、基板Wが冷却される。そのため、SPM工程(S3)の終了時よりも温度低下した状態で、第1のリンス工程(S5)を開始できる。よって、リンス液の供給に伴うヒートショックの発生を抑制でき、これにより、基板Wの表面Waに形成されるパターン100へのダメージの付与を抑制または防止できる。
Further, in the SPM reduction step (S4), the temperature of the substrate W is lowered by reducing the amount of high-temperature SPM existing on the surface Wa of the substrate W. In addition, the rotation (idle) of the substrate W increases the contact area between the substrate W and the surrounding atmosphere per unit time. As a result, the substrate W is cooled. Therefore, the first rinsing step (S5) can be started in a state where the temperature is lower than that at the end of the SPM step (S3). Therefore, it is possible to suppress the generation of heat shock due to the supply of the rinsing liquid, thereby suppressing or preventing the damage to the
また、SPM低減工程(S4)に並行して、基板Wの裏面Wbに冷却液が供給される(裏面冷却液供給工程)。そのため、SPM低減工程(S4)において、基板Wの表面Waに存在するSPMを冷却できる。そのため、第1のリンス工程(S5)の開始時における、基板Wの表面Waに存在するSPMの温度を低くできる。SPMが高温になるのに従ってSPMのヒュームFの発生量が増大する。これにより、第1のリンス工程(S5)において基板Wの表面Waの周囲に発生するSPMのヒュームFの量をより一層抑制できる。 Further, in parallel with the SPM reduction step (S4), the coolant is supplied to the back surface Wb of the substrate W (back surface coolant supply step). Therefore, in the SPM reduction step (S4), the SPM existing on the surface Wa of the substrate W can be cooled. Therefore, the temperature of the SPM existing on the surface Wa of the substrate W at the start of the first rinsing step (S5) can be lowered. As the temperature of SPM increases, the amount of fume F generated in SPM increases. Thereby, the amount of fume F of SPM generated around the surface Wa of the substrate W in the first rinsing step (S5) can be further suppressed.
とくに、この実施形態では、基板Wの裏面Wbに供給される冷却液がリンス液と同じ温度であるので、基板Wの表面Waに存在するSPMの液温をより一層低下できる。基板Wの表面Waに存在するSPMの液温が十分に低下した後に第1のリンス工程(S5)を開始するので、第1のリンス工程(S5)において基板Wの表面Waの周囲に発生するSPMのヒュームFの量をより一層抑制できる。 In particular, in this embodiment, since the cooling liquid supplied to the back surface Wb of the substrate W has the same temperature as the rinsing liquid, the liquid temperature of the SPM existing on the front surface Wa of the substrate W can be further lowered. Since the first rinsing step (S5) is started after the liquid temperature of SPM existing on the surface Wa of the substrate W is sufficiently lowered, it is generated around the surface Wa of the substrate W in the first rinsing step (S5). The amount of fume F in SPM can be further suppressed.
また、裏面冷却液供給工程において、基板Wの裏面Wbに冷却液が供給されるので、第1のリンス工程(S5)の開始に先立って基板Wを温度低下できる。そのため、基板Wの温度が十分に低下した後に第1のリンス工程(S5)を開始できる。これにより、リンス液の供給に伴うヒートショックの発生をより一層抑制でき、これにより、基板Wの表面Waへのダメージの付与をより効果的に抑制または防止できる。 Further, in the back surface coolant supply step, since the coolant is supplied to the back surface Wb of the substrate W, the temperature of the substrate W can be lowered prior to the start of the first rinsing step (S5). Therefore, the first rinsing step (S5) can be started after the temperature of the substrate W is sufficiently lowered. As a result, the occurrence of heat shock due to the supply of the rinsing liquid can be further suppressed, and thereby the damage to the surface Wa of the substrate W can be more effectively suppressed or prevented.
また、SPM低減工程(S4)に並行して、第1のガード63が上位置UPに維持される(処理カップ12が第1のガード捕獲状態に維持される)。また、SPM低減工程(S4)および第1のリンス工程(S5)に並行して、第1のガード63の内部が排気される。
SPM低減工程(S4)において、第1のガード63を上位置UPに維持し(処理カップ12が第1のガード捕獲状態に維持され)かつ処理カップ12の内部を排気する。SPM低減工程(S4)において、SPMの供給を停止し続けることにより、基板Wの表面Waの周囲に存在するSPMのヒュームFの量が減少する。すなわち、基板の表面Waの周囲に存在するSPMのヒュームFの量が低減した状態で、基板Wの表面Waへのリンス液の供給を開始できる。したがって、第1のリンス工程(S5)において、基板Wの表面Waへのリンス液の供給に伴ってSPMのヒュームFが発生したとしても、SPMのヒュームFを含む雰囲気が上部開口12aを通って処理カップ12外に流出するようなことはない。これにより、SPMのヒュームFを含む雰囲気の、周囲への拡散を抑制できる。
Further, in parallel with the SPM reduction step (S4), the
In the SPM reduction step (S4), the
図7は、第2の基板処理例に係るSPM低減工程(S4)を説明するための模式的な図である。
第2の基板処理例が第1の基板処理例と相違する点は、SPM低減工程(S4)に並行して実行される裏面冷却液供給工程において、常温の水でなく、常温よりも高い液温(約40℃~約60℃)を有する温水(HOT DIW)を冷却液として、基板Wの裏面Wbに供給するようにした点である。
FIG. 7 is a schematic diagram for explaining the SPM reduction step (S4) according to the second substrate processing example.
The difference between the second substrate processing example and the first substrate processing example is that in the backside coolant supply step executed in parallel with the SPM reduction step (S4), the liquid is higher than the normal temperature, not the water at the normal temperature. The point is that hot water (HOT DIW) having a temperature (about 40 ° C. to about 60 ° C.) is supplied as a cooling liquid to the back surface Wb of the substrate W.
この場合、SPM低減工程(S4)に次いで実行される第1のリンス工程(S5)において、基板Wの裏面Wbに供給されるリンス液は、たとえば常温である。すなわち、この基板処理例では、下面ノズル11から吐出される冷却液が、下面ノズル11から吐出されるリンス液よりも高い液温を有している。
その他の点において、第2の基板処理例は、第1の基板処理例と共通している。
In this case, in the first rinsing step (S5) executed after the SPM reduction step (S4), the rinsing liquid supplied to the back surface Wb of the substrate W is, for example, normal temperature. That is, in this substrate processing example, the cooling liquid discharged from the
In other respects, the second substrate processing example is common to the first substrate processing example.
第2の基板処理例によれば、基板Wにリンス液が供給される前に、当該リンス液よりも高い液温を有する冷却液が基板Wに供給される。そのため、冷却液による冷却とリンス液による冷却とを順に行うことにより、基板Wを段階的に温度低下できる。これにより、ヒートショックをより一層抑制できる。
図8は、第3の基板処理例に係るSPM低減工程(S4)を説明するための模式的な図である。図9は、SPM低減工程(S4)から第1のリンス工程(S5)への移行時のフローチャートである。
According to the second substrate processing example, before the rinse liquid is supplied to the substrate W, a cooling liquid having a liquid temperature higher than that of the rinse liquid is supplied to the substrate W. Therefore, the temperature of the substrate W can be lowered stepwise by sequentially cooling with the cooling liquid and cooling with the rinsing liquid. As a result, heat shock can be further suppressed.
FIG. 8 is a schematic diagram for explaining the SPM reduction step (S4) according to the third substrate processing example. FIG. 9 is a flowchart at the time of transition from the SPM reduction step (S4) to the first rinsing step (S5).
図8に示すように、処理ユニット2が、基板Wの表面Waの温度を検出する温度センサ102をさらに備えていてもよい。温度センサ102は、たとえば放射温度計である。温度センサ102による検出出力が制御装置3(図3等参照)に入力されるようになっている。
SPM低減工程(S4)中は、制御装置3は、温度センサ102の検出出力を常時監視している(温度検出工程。図9のステップT1)。
As shown in FIG. 8, the
During the SPM reduction step (S4), the
そして、検出温度が、閾値(所定の低温)にまで下がった場合(図9のステップT2でYES)には、制御装置3は、リンス液バルブ45およびリンス液バルブ55を開いて、中心軸ノズル9および下面ノズル11からのリンス液の吐出を開始する(図9のステップT3)。これにより、SPM低減工程(S4)が終了して、第1のリンス工程(S5)に移行する(図9のステップT4)。一方、検出温度が閾値に達した場合(図9のステップT2でNO)には、図9の処理がリターンされ、この処理が繰り返し実行(ループ)される。
Then, when the detection temperature drops to the threshold value (predetermined low temperature) (YES in step T2 of FIG. 9), the
すなわち、検出温度が閾値に下がるまで第1のリンス工程(S5)には移行せず、SPM低減工程(S4)が継続される。そして、検出温度が閾値に達した場合に、SPM低減工程(S4)が終了しかつ第1のリンス工程(S5)が開始する。
この基板処理例によれば、温度センサ102による検出温度が閾値に達した場合に、第1のリンス工程(S5)が開始する。これにより、基板Wの表面Waに存在するSPMの温度が低温まで確実に降下した後に、第1のリンス工程(S5)を開始できる。これにより、第1のリンス工程(S5)において基板Wの表面Waの周囲に発生するSPMのヒュームFの量をより一層抑制できる。これにより、SPMのヒュームFに起因する基板Wのパーティクル汚染を抑制または防止できる。
<第2の実施形態>
図10は、本発明の第2の実施形態に係る処理ユニット202の下面ノズル211の構成例を説明するための図解的な断面図である。図11は、下面ノズル211の構成例を説明するための模式的な平面図である。
That is, the process does not shift to the first rinsing step (S5) until the detection temperature drops to the threshold value, and the SPM reduction step (S4) is continued. Then, when the detection temperature reaches the threshold value, the SPM reduction step (S4) is completed and the first rinsing step (S5) is started.
According to this substrate processing example, when the temperature detected by the
<Second embodiment>
FIG. 10 is a schematic cross-sectional view for explaining a configuration example of the
処理ユニット202は、単一の吐出口11aを有する下面ノズル11に代えて、バーノズルの形態を有する下面ノズル211を備えている。下面ノズル211は、図10および図11に示すように、基板Wの中央部から基板Wの周縁部まで、基板Wの回転半径方向DLに沿って水平に延びるバー状(棒状)のノズル部204を含む。ノズル部204の上面には、冷却液を吐出する複数の吐出口205が開口している。複数の吐出口205は、基板Wの回転半径方向DLに沿って配列されている。複数の吐出口205は、基板Wの裏面Wbの中央部に対向する中央部吐出口205aと、基板Wの裏面Wbの周縁部に対向する周縁部吐出口205bとを含む。
The
ノズル部204の内部には、複数の吐出口205に供給される冷却液を案内する内部流路206が形成されている。複数の吐出口205は、内部流路206に連通している。ノズル部204には、冷却液配管53に連通している。内部流路206は、下面供給配管51の下流端(上端)に接続されている。これにより、基板Wを回転半径方向DLに均一に冷却できる。図10および図11の例では、各吐出口205の開口面積は互いに等しい。しかしながら、吐出口205の開口面積を互いに異ならせてもよい。
Inside the
吐出口205は、基板Wの裏面Wbに向けて吐出方向に冷却液を吐出する。この吐出方向は、鉛直上方であってもよいし、鉛直上方に対し、基板Wの回転方向Drの上流側または下流側に傾いていてもよい。
この場合、制御装置3が、SPM低減工程(S4)に並行して実行される裏面冷却液供給工程において、基板Wの裏面Wbの中央部に向けて中央部吐出口205aから冷却液を吐出する中央部吐出工程と、基板Wの裏面Wbの周縁部に向けて周縁部吐出口205bから冷却液を吐出する周縁部吐出工程とを実行する。
The
In this case, in the back surface coolant supply step executed in parallel with the SPM reduction step (S4), the
第2の実施形態に係る処理ユニット202においては、第1の基板処理例だけでなく、第2の基板処理例や第3の基板処理例を実行可能である。
以上、この発明の2つの実施形態について説明したが、この発明はさらに他の形態で実施することもできる。
たとえば、第1~第3の基板処理例において、SPM低減工程(S4)における基板Wの回転速度が、SPM工程(S3)における基板Wの回転速度と同等である。しかしながら、SPM低減工程(S4)における基板Wの回転速度が、SPM工程(S3)における基板Wの回転速度(たとえば約300rpm)よりも速くてもよい(たとえば500rpm)。
In the
Although the two embodiments of the present invention have been described above, the present invention can also be implemented in other embodiments.
For example, in the first to third substrate processing examples, the rotation speed of the substrate W in the SPM reduction step (S4) is equivalent to the rotation speed of the substrate W in the SPM step (S3). However, the rotation speed of the substrate W in the SPM reduction step (S4) may be faster than the rotation speed of the substrate W in the SPM step (S3) (for example, about 300 rpm) (for example, 500 rpm).
この場合、SPM低減工程(S4)において基板Wの表面Waに作用する遠心力が増大するので、基板Wの表面WaからのSPMの排出を促すことができる。これにより、第1のリンス工程(S5)の開始時における、基板Wの表面Waに存在する高温のSPMの量をより一層低減できる。そのため、第1のリンス工程(S5)において基板Wの表面Waの周囲に発生するSPMのヒュームFの量をより一層抑制できる。 In this case, since the centrifugal force acting on the surface Wa of the substrate W increases in the SPM reduction step (S4), it is possible to promote the discharge of SPM from the surface Wa of the substrate W. As a result, the amount of high-temperature SPM present on the surface Wa of the substrate W at the start of the first rinsing step (S5) can be further reduced. Therefore, the amount of fume F of SPM generated around the surface Wa of the substrate W in the first rinsing step (S5) can be further suppressed.
また、第1および第2の基板処理例において、SPM低減工程(S4)の回転速度および/またはSPM低減工程(S4)の期間が、SPM低減工程(S4)の終了時に、基板Wの表面Waの温度が閾値(所定の低温)まで下がるような速度および/または期間に設定されていてもよい。この場合、基板Wの表面Waの温度が閾値(所定の低温)まで下がった後に、第1のリンス工程(S5)が開始される。この場合、基板Wの表面Waに存在するSPMの液温が十分に低下した後に第1のリンス工程(S5)を開始するので、第1のリンス工程(S5)において基板Wの表面Waの周囲に発生するSPMのヒュームの量をより一層抑制できる。 Further, in the first and second substrate processing examples, the rotation speed of the SPM reduction step (S4) and / or the period of the SPM reduction step (S4) is the surface Wa of the substrate W at the end of the SPM reduction step (S4). The temperature may be set at a rate and / or a period such that the temperature of the temperature drops to a threshold value (predetermined low temperature). In this case, the first rinsing step (S5) is started after the temperature of the surface Wa of the substrate W drops to a threshold value (predetermined low temperature). In this case, since the first rinsing step (S5) is started after the liquid temperature of SPM existing on the surface Wa of the substrate W is sufficiently lowered, the periphery of the surface Wa of the substrate W in the first rinsing step (S5). The amount of SPM fume generated in the air conditioner can be further suppressed.
また、第1の基板処理例および第3の基板処理例のように、同じ液種で同じ温度の液体を、リンス液および冷却液として用いる場合には、下リンス液供給ユニット71を、冷却液供給ユニットとして使用することもできる。この場合、SPM低減工程(S4)の開始時に、リンス液バルブ55を開き、下面ノズル11から吐出されるリンス液を冷却液と使用する。そして、SPM低減工程(S4)の終了時も、リンス液バルブ55を閉じることなく、下面ノズル11からのリンス液の吐出を継続したまま、第1のリンス工程(S5)に移行する。この場合、冷却液供給ユニット72を廃止してもよい。
Further, when liquids of the same liquid type and the same temperature are used as the rinse liquid and the coolant as in the first substrate treatment example and the third substrate treatment example, the lower rinse liquid supply unit 71 is used as a coolant. It can also be used as a supply unit. In this case, at the start of the SPM reduction step (S4), the rinse
また、第1~第3の基板処理例において、リンス液が常温であるとして説明したが、リンス液として、常温の水でなく、常温よりも高い液温(約40℃~約60℃)を有する温水(HOT DIW)を使用してもよい。
第1~第3の基板処理例を互いに組み合わせてもよい。
また、第1~第3の基板処理例において、SPM低減工程(S4)に並行して、裏面冷却液供給工程を実行しなくてもよい。
Further, in the first to third substrate treatment examples, it has been described that the rinsing liquid is at room temperature, but the rinsing liquid is not water at room temperature but a liquid temperature higher than room temperature (about 40 ° C to about 60 ° C). Hot water (HOT DIW) may be used.
The first to third substrate processing examples may be combined with each other.
Further, in the first to third substrate processing examples, it is not necessary to execute the back surface coolant supply step in parallel with the SPM reduction step (S4).
また、前述の第1~第3の基板処理例において、SPM工程(S3)に先立って、基板Wの表面Waに除電液を供給する第1の除電液供給工程が実行されてもよい。除電液は、たとえば炭酸水である。この場合、基板Wの持ち込み帯電に起因する静電気放電の発生を効果的に抑制できる。
また、第1~第3の基板処理例において、SPM工程(S3)に先立って、基板Wの表面Waを、第1の洗浄薬液を用いて洗浄する第1の洗浄工程が実行されてもよい。このような第1の洗浄薬液として、たとえばフッ酸(HF)を例示できる。
Further, in the above-mentioned first to third substrate processing examples, the first static elimination liquid supply step of supplying the static elimination liquid to the surface Wa of the substrate W may be executed prior to the SPM step (S3). The static eliminator is, for example, carbonated water. In this case, it is possible to effectively suppress the generation of electrostatic discharge due to the carry-on charge of the substrate W.
Further, in the first to third substrate processing examples, the first cleaning step of cleaning the surface Wa of the substrate W with the first cleaning chemical solution may be executed prior to the SPM step (S3). .. As such a first cleaning chemical solution, for example, hydrofluoric acid (HF) can be exemplified.
また、第1~第3の基板処理例において、乾燥工程(S8)に先立って、低表面張力を有する有機溶剤(乾燥液)を供給して基板Wの表面Waに存在するリンス液を有機溶剤によって置換する有機溶剤置換工程が実行されてもよい。この有機溶剤置換工程は、処理カップ12が第3のガード対向状態にある状態で実行される。
また、第1~第3の基板処理例において、遮断部材8に一体化された中心軸ノズル9からリンス液を吐出するものを例に挙げて説明したが、遮断部材8とは別に設けられたリンス液ノズルから、基板Wの表面Waの中央部に向けてリンス液を吐出するようにしてもよい。
Further, in the first to third substrate processing examples, prior to the drying step (S8), an organic solvent (drying solution) having a low surface tension is supplied to use the rinse solution existing on the surface Wa of the substrate W as the organic solvent. An organic solvent replacement step may be performed. This organic solvent replacement step is performed with the
Further, in the first to third substrate processing examples, the one that discharges the rinse liquid from the
また、第1~第3の基板処理例としてレジスト除去処理を例に挙げたが、レジストに限られず、SPMを用いて、他の有機物の除去をする処理であってもよい。
また、第1および第2実施形態において、SPM供給ユニット6として、H2SO4およびH2O2の混合をSPMノズル21の内部で行うノズル混合タイプのものを例に挙げて説明したが、SPMノズル21の上流側に配管を介して接続された混合部を設け、この混合部において、H2SO4とH2O2との混合が行われる配管混合タイプのものを採用することもできる。
Further, although the resist removing process is taken as an example of the first to third substrate processing examples, the process is not limited to the resist, and may be a process of removing other organic substances by using SPM.
Further, in the first and second embodiments, as the SPM supply unit 6, a nozzle mixing type in which H 2 SO 4 and H 2 O 2 are mixed inside the
また、前述の各実施形態において、基板処理装置1が半導体ウエハからなる基板Wの表面Waを処理する装置である場合について説明したが、基板処理装置が、液晶表示装置用基板、有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などの基板を処理する装置であってもよい。
Further, in each of the above-described embodiments, the case where the
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 In addition, various design changes can be made within the scope of the matters described in the claims.
1 :基板処理装置
2 :処理ユニット
3 :制御装置
4 :チャンバ
5 :スピンチャック(基板保持ユニット)
6 :SPM供給ユニット
10 :リンス液供給ユニット
12 :処理カップ
13 :排気ユニット
17 :スピンモータ(回転)
63 :第1のガード(ガード)
66 :ガード昇降ユニット
71 :下リンス液供給ユニット
72 :冷却液供給ユニット
CP :液捕獲位置(第1の高さ位置)
A1 :回転軸線
F :ヒューム
LF :液膜
UP :上位置(第2の高さ位置)
W :基板
Wa :表面
Wb :裏面
1: Board processing device 2: Processing unit 3: Control device 4: Chamber 5: Spin chuck (board holding unit)
6: SPM supply unit 10: Rinse liquid supply unit 12: Processing cup 13: Exhaust unit 17: Spin motor (rotation)
63: First guard (guard)
66: Guard elevating unit 71: Lower rinse liquid supply unit 72: Coolant supply unit CP: Liquid capture position (first height position)
A1: Rotation axis F: Fume LF: Liquid film UP: Upper position (second height position)
W: Substrate Wa: Front surface Wb: Back surface
Claims (22)
前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記基板を回転させることにより前記基板の表面からSPMを排出させることにより、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させかつ前記基板の温度を低下させるSPM低減低温化工程と、
前記SPM低減低温化工程の後、前記基板の表面に、水を含むリンス液を供給するリンス工程とを含む、基板処理方法。 An SPM step of supplying heated SPM to the surface of the substrate held in a horizontal position by the substrate holding unit with the surface of the substrate facing upward.
Following the end of the SPM process, the SPM is discharged from the surface of the substrate by rotating the substrate around a rotation axis passing through the central portion of the substrate without supplying the SPM to the surface of the substrate. The SPM reduction low temperature step of reducing the amount of SPM present on the surface of the substrate and lowering the temperature of the substrate to the extent that the surface of the substrate is not dried.
A substrate treatment method comprising a rinsing step of supplying a rinsing liquid containing water to the surface of the substrate after the SPM reduction low temperature step.
前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、
前記SPM低減工程に並行して、前記基板における表面とは反対側の裏面に、前記基板の表面に供給されるSPMよりも低い液温を有する冷却液を供給する裏面冷却液供給工程と、
前記SPM低減工程の後、前記基板の表面に、水を含むリンス液を供給するリンス工程とを含み、
前記裏面冷却液供給工程が、前記基板の裏面の中央部に向けて前記冷却液を吐出する中央部吐出工程と、前記中央部吐出工程に並行して、前記基板の裏面の周縁部に向けて前記冷却液を吐出する周縁部吐出工程とを含む、基板処理方法。 The SPM process of supplying SPM to the surface of the substrate held in a horizontal position by the substrate holding unit with the surface of the substrate facing upward.
Following the end of the SPM process, the SPM is discharged from the surface of the substrate by rotating the substrate around a rotation axis passing through the central portion of the substrate without supplying the SPM to the surface of the substrate. An SPM reduction step that reduces the amount of SPM present on the surface of the substrate to the extent that the surface of the substrate is not dried.
In parallel with the SPM reduction step, a back surface coolant supply step of supplying a coolant having a liquid temperature lower than the SPM supplied to the surface of the substrate to the back surface of the substrate opposite to the front surface.
After the SPM reduction step, a rinsing step of supplying a rinsing liquid containing water to the surface of the substrate is included.
The back surface coolant supply step is directed toward the peripheral edge portion of the back surface of the substrate in parallel with the central portion discharge step of discharging the coolant toward the central portion of the back surface of the substrate and the central portion discharge process. A substrate processing method including a peripheral edge discharge step of discharging the coolant.
前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、
前記SPM低減工程に並行して、前記基板における表面とは反対側の裏面に、前記基板の表面に供給されるSPMよりも低い液温を有する冷却液を供給する裏面冷却液供給工程と、
前記SPM低減工程の後、前記基板の表面に、水を含むリンス液を供給するリンス工程とを含み、
前記冷却液が、前記リンス液と同じ液温を有している、基板処理方法。 The SPM process of supplying SPM to the surface of the substrate held in a horizontal position by the substrate holding unit with the surface of the substrate facing upward.
Following the end of the SPM process, the SPM is discharged from the surface of the substrate by rotating the substrate around a rotation axis passing through the central portion of the substrate without supplying the SPM to the surface of the substrate. An SPM reduction step that reduces the amount of SPM present on the surface of the substrate to the extent that the surface of the substrate is not dried.
In parallel with the SPM reduction step, a back surface coolant supply step of supplying a coolant having a liquid temperature lower than the SPM supplied to the surface of the substrate to the back surface of the substrate opposite to the front surface.
After the SPM reduction step, a rinsing step of supplying a rinsing liquid containing water to the surface of the substrate is included.
A substrate processing method in which the coolant has the same liquid temperature as the rinse liquid.
検出された温度が前記所定の低温に達した場合に、前記SPM低減低温化工程が終了しかつ前記リンス工程が開始する、請求項6に記載の基板処理方法。 In parallel with the SPM reduction and low temperature step, a temperature detection step of detecting the temperature of the substrate by a temperature sensor is further included.
The substrate processing method according to claim 6, wherein when the detected temperature reaches the predetermined low temperature, the SPM reduction low temperature step is completed and the rinsing step is started.
前記SPM低減低温化工程が、前記第1の基板回転工程と同じか、または前記第1の基板回転工程よりも速い回転速度で前記基板を回転させる工程を含む、請求項1、2、6および7のいずれか一項に記載の基板処理方法。 In parallel with the SPM step, a first substrate rotation step of rotating the substrate around the rotation axis is further included.
2 . 7. The substrate processing method according to any one of 7.
前記SPM低減低温化工程および前記リンス工程に並行して、前記基板保持ユニットの周囲を取り囲む筒状のガードを有し、当該基板保持ユニットを収容する処理カップの内部を排気するガード内排気工程と、
前記リンス工程に並行して、前記ガードを、第1の高さ位置に維持する第1の高さ維持工程と、
前記SPM低減低温化工程に並行して、前記ガードを、前記第1の高さ位置よりも高い第2の高さ位置に維持する第2の高さ維持工程とを含む、請求項1、2、6、7および8のいずれか一項に記載の基板処理方法。 A second substrate rotation step of rotating the substrate around the rotation axis in parallel with the rinsing step,
In parallel with the SPM reduction and lowering temperature step and the rinsing step, an exhaust step in the guard having a cylindrical guard surrounding the substrate holding unit and exhausting the inside of a processing cup accommodating the substrate holding unit. ,
In parallel with the rinsing step, a first height maintenance step of maintaining the guard at the first height position and a first height maintenance step.
Claims 1 , 2 include, in parallel with the SPM reduction low temperature step, a second height maintenance step of maintaining the guard at a second height position higher than the first height position. , 6, 7 and 8, wherein the substrate processing method is described.
前記SPM工程の終了に引き続いて、前記基板の表面に液体を供給することなく前記基板の中央部を通る回転軸線回りに前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面が乾燥せずかつ前記基板の表面に存在するSPMが液膜状をなさない状態になるまで前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、 Following the end of the SPM process, SPM is discharged from the surface of the substrate by rotating the substrate around a rotation axis passing through the central portion of the substrate without supplying a liquid to the surface of the substrate, and the substrate is discharged. An SPM reduction step of reducing the amount of SPM present on the surface of the substrate until the surface of the substrate is not dried and the SPM present on the surface of the substrate does not form a liquid film.
前記SPM低減工程の後、前記基板の表面に、水を含むリンス液を供給するリンス工程とを含む、基板処理方法。 A substrate treatment method comprising a rinsing step of supplying a rinsing liquid containing water to the surface of the substrate after the SPM reduction step.
前記基板保持ユニットに保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための回転ユニットと、
前記基板保持ユニットに保持されている基板の表面にSPMを供給するためのSPM供給ユニットと、
前記基板保持ユニットに保持されている基板の表面に、水を含むリンス液を供給するためのリンス液供給ユニットと、
前記回転ユニット、前記SPM供給ユニットおよび前記リンス液供給ユニットを制御する制御装置とを含み、
前記制御装置が、前記SPM供給ユニットによって前記基板の表面に、加熱されたSPMを供給するSPM工程と、前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記回転ユニットによって前記基板を回転させることにより前記基板の表面からSPMを排出させることにより、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させかつ前記基板の温度を低下させるSPM低減低温化工程と、前記SPM低減低温化工程の後、前記リンス液供給ユニットによって前記基板の表面にリンス液を供給するリンス工程とを実行する、基板処理装置。 A board holding unit that holds the board in a horizontal position with the surface of the board facing upward.
A rotation unit for rotating the substrate held by the substrate holding unit around a rotation axis passing through the center of the substrate, and a rotation unit.
An SPM supply unit for supplying SPM to the surface of the substrate held by the substrate holding unit, and
A rinse liquid supply unit for supplying a rinse liquid containing water to the surface of the substrate held by the substrate holding unit, and a rinse liquid supply unit.
The rotation unit, the SPM supply unit, and a control device for controlling the rinse liquid supply unit are included.
Following the end of the SPM step of supplying the heated SPM to the surface of the substrate by the SPM supply unit and the end of the SPM step, the control device does not supply SPM to the surface of the substrate, and the substrate is used. SPM present on the surface of the substrate to the extent that the surface of the substrate is not dried by discharging SPM from the surface of the substrate by rotating the substrate with the rotation unit around the rotation axis passing through the central portion of the substrate. The SPM reduction low temperature step of reducing the amount of the substrate and lowering the temperature of the substrate, and the rinsing step of supplying the rinse liquid to the surface of the substrate by the rinse liquid supply unit after the SPM reduction low temperature step. Board processing equipment to execute.
前記制御装置が、前記SPM低減低温化工程に並行して、前記冷却液供給ユニットによって前記冷却液を供給する裏面冷却液供給工程をさらに実行する、請求項12に記載の基板処理装置。 The back surface of the substrate opposite to the front surface further comprises a coolant supply unit that supplies a coolant having a liquid temperature lower than the SPM supplied to the surface of the substrate.
The substrate processing apparatus according to claim 12 , wherein the control device further executes a back surface coolant supply step of supplying the coolant by the coolant supply unit in parallel with the SPM reduction temperature reduction step.
前記基板保持ユニットに保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための回転ユニットと、
前記基板保持ユニットに保持されている基板の表面にSPMを供給するためのSPM供給ユニットと、
前記基板保持ユニットに保持されている基板の表面に、水を含むリンス液を供給するためのリンス液供給ユニットと、
前記基板における表面とは反対側の裏面に、前記基板の表面に供給されるSPMよりも低い液温を有する冷却液を供給する冷却液供給ユニットとを含み、
前記回転ユニット、前記SPM供給ユニット、前記リンス液供給ユニットおよび前記冷却液供給ユニットを制御する制御装置とを含み、
前記制御装置が、前記SPM供給ユニットによって前記基板の表面にSPMを供給するSPM工程と、前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記回転ユニットによって前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、前記SPM低減工程に並行して、前記冷却液供給ユニットによって前記冷却液を供給する裏面冷却液供給工程と、前記SPM低減工程の後、前記リンス液供給ユニットによって前記基板の表面にリンス液を供給するリンス工程とを実行し、
前記冷却液供給ユニットが、前記基板保持ユニットに保持されている基板の裏面の中央部に対向する中央部吐出口と、前記基板保持ユニットに保持されている基板の裏面の周縁部に対向する周縁部吐出口とを有し、
前記制御装置が、前記裏面冷却液供給工程において、前記基板の裏面の中央部に向けて前記中央部吐出口から前記冷却液を吐出する中央部吐出工程と、前記中央部吐出工程に並行して、前記周縁部吐出口から前記基板の裏面の周縁部に向けて前記冷却液を吐出する周縁部吐出工程とを実行する、基板処理装置。 A board holding unit that holds the board in a horizontal position with the surface of the board facing upward.
A rotation unit for rotating the substrate held by the substrate holding unit around a rotation axis passing through the center of the substrate, and a rotation unit.
An SPM supply unit for supplying SPM to the surface of the substrate held by the substrate holding unit, and
A rinse liquid supply unit for supplying a rinse liquid containing water to the surface of the substrate held by the substrate holding unit, and a rinse liquid supply unit.
The back surface of the substrate opposite to the front surface includes a coolant supply unit that supplies a coolant having a liquid temperature lower than the SPM supplied to the surface of the substrate.
The rotation unit, the SPM supply unit, the rinse liquid supply unit, and the control device for controlling the coolant supply unit are included.
Following the SPM step of supplying SPM to the surface of the substrate by the SPM supply unit and the end of the SPM step, the control device performs the central portion of the substrate without supplying SPM to the surface of the substrate. SPM is discharged from the surface of the substrate by rotating the substrate with the rotation unit around the axis of rotation through which the substrate passes, and the amount of SPM present on the surface of the substrate is reduced to the extent that the surface of the substrate is not dried. In parallel with the step and the SPM reduction step, after the back surface coolant supply step of supplying the coolant by the coolant supply unit and the SPM reduction step, the surface of the substrate is rinsed by the rinse liquid supply unit. Perform a rinsing process to supply the liquid and
The peripheral edge of the coolant supply unit facing the central portion of the back surface of the substrate held by the substrate holding unit and the peripheral edge of the back surface of the substrate held by the substrate holding unit. It has a part discharge port and
In the back surface coolant supply step, the control device is in parallel with the central portion discharge step of discharging the coolant from the central portion discharge port toward the central portion of the back surface of the substrate and the central portion discharge process. A substrate processing apparatus that executes a peripheral edge discharge step of discharging the cooling liquid from the peripheral edge discharge port toward the peripheral edge of the back surface of the substrate.
前記基板保持ユニットに保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための回転ユニットと、
前記基板保持ユニットに保持されている基板の表面にSPMを供給するためのSPM供給ユニットと、
前記基板保持ユニットに保持されている基板の表面に、水を含むリンス液を供給するためのリンス液供給ユニットと、
前記基板における表面とは反対側の裏面に、前記基板の表面に供給されるSPMよりも低い液温を有する冷却液を供給する冷却液供給ユニットとを含み、
前記回転ユニット、前記SPM供給ユニット、前記リンス液供給ユニットおよび前記冷却液供給ユニットを制御する制御装置とを含み、
前記制御装置が、前記SPM供給ユニットによって前記基板の表面にSPMを供給するSPM工程と、前記SPM工程の終了に引き続いて、前記基板の表面にSPMを供給することなく、前記基板の中央部を通る回転軸線回りに前記回転ユニットによって前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面を乾燥させない程度に前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、前記SPM低減工程に並行して、前記冷却液供給ユニットによって前記冷却液を供給する裏面冷却液供給工程と、前記SPM低減工程の後、前記リンス液供給ユニットによって前記基板の表面にリンス液を供給するリンス工程とを実行し、
前記冷却液が、前記リンス液と同じ液温を有している、基板処理装置。 A board holding unit that holds the board in a horizontal position with the surface of the board facing upward.
A rotation unit for rotating the substrate held by the substrate holding unit around a rotation axis passing through the center of the substrate, and a rotation unit.
An SPM supply unit for supplying SPM to the surface of the substrate held by the substrate holding unit, and
A rinse liquid supply unit for supplying a rinse liquid containing water to the surface of the substrate held by the substrate holding unit, and a rinse liquid supply unit.
The back surface of the substrate opposite to the front surface includes a coolant supply unit that supplies a coolant having a liquid temperature lower than the SPM supplied to the surface of the substrate.
The rotation unit, the SPM supply unit, the rinse liquid supply unit, and the control device for controlling the coolant supply unit are included.
Following the SPM step of supplying SPM to the surface of the substrate by the SPM supply unit and the end of the SPM step, the control device performs the central portion of the substrate without supplying SPM to the surface of the substrate. SPM is discharged from the surface of the substrate by rotating the substrate with the rotation unit around the axis of rotation through which the substrate passes, and the amount of SPM present on the surface of the substrate is reduced to the extent that the surface of the substrate is not dried. In parallel with the step and the SPM reduction step, after the back surface coolant supply step of supplying the coolant by the coolant supply unit and the SPM reduction step, the surface of the substrate is rinsed by the rinse liquid supply unit. Perform a rinsing process to supply the liquid and
A substrate processing apparatus in which the coolant has the same liquid temperature as the rinse liquid.
前記制御装置が、前記SPM低減低温化工程に並行して前記基板の温度を前記温度センサによって検出する温度検出工程をさらに実行し、
前記制御装置が、検出された温度が前記所定の低温に達した場合に、前記SPM低減低温化工程を終了し、前記リンス工程を開始する、請求項17に記載の基板処理装置。 Further including a temperature sensor for detecting the temperature of the substrate,
The control device further executes a temperature detection step of detecting the temperature of the substrate by the temperature sensor in parallel with the SPM reduction and low temperature step.
The substrate processing apparatus according to claim 17 , wherein when the detected temperature reaches the predetermined low temperature, the control device ends the SPM reduction low temperature step and starts the rinsing step .
前記制御装置が、前記SPM低減低温化工程において、前記第1の基板回転工程と同じか、または前記第1の基板回転工程よりも速い回転速度で前記基板を回転させる工程を実行する、請求項12、13、17および18のいずれか一項に記載の基板処理装置。 In parallel with the SPM process, the control device further executes a first substrate rotation step of rotating the substrate around the rotation axis.
The control device performs the step of rotating the substrate in the SPM reduction and lowering temperature step, which is the same as the first substrate rotation step or at a rotation speed higher than that of the first substrate rotation step. 12. The substrate processing apparatus according to any one of 13, 17, and 18 .
前記処理カップの内部を排気する排気ユニットと、
前記ガードを昇降させるガード昇降ユニットとをさらに含み、
前記制御装置が、前記排気ユニットおよび前記ガード昇降ユニットをさらに制御し、
前記制御装置が、前記リンス工程に並行して、前記基板を前記回転軸線回りに回転させる第2の基板回転工程と、前記SPM低減低温化工程および前記リンス工程に並行して前記ガードの内部を排気するガード内排気工程と、前記リンス工程に並行して、前記ガードを、第1の高さ位置に維持する第1の高さ維持工程と、前記SPM低減低温化工程に並行して、前記ガードを、前記第1の高さ位置よりも高い第2の高さ位置に維持する第2の高さ維持工程とを実行する、請求項12、13、17、18および19のいずれか一項に記載の基板処理装置。 A processing cup that surrounds the substrate holding unit and has a guard that captures the processing liquid discharged from the substrate held by the substrate holding unit.
An exhaust unit that exhausts the inside of the processing cup and
Further including a guard elevating unit for elevating and elevating the guard.
The control device further controls the exhaust unit and the guard elevating unit.
The control device performs the inside of the guard in parallel with the second substrate rotation step of rotating the substrate around the rotation axis in parallel with the rinsing step, the SPM reduction and lowering temperature step, and the rinsing step. In parallel with the exhaust step in the guard for exhausting, the first height maintenance step for maintaining the guard at the first height position in parallel with the rinsing step, and the SPM reduction low temperature step, the said One of claims 12, 13, 17, 18 and 19 , which performs a second height maintenance step of maintaining the guard at a second height position higher than the first height position. The substrate processing apparatus according to.
前記制御装置が、前記リンス工程の後、前記基板の表面にSC1を供給する工程をさらに実行する、請求項12~20のいずれか一項に記載の基板処理装置。 The SC1 supply unit for supplying SC1 to the substrate held by the substrate holding unit is further included.
The substrate processing apparatus according to any one of claims 12 to 20 , wherein the control device further executes a step of supplying SC1 to the surface of the substrate after the rinsing step.
前記基板保持ユニットに保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための回転ユニットと、 A rotation unit for rotating the substrate held by the substrate holding unit around a rotation axis passing through the center of the substrate, and a rotation unit.
前記基板保持ユニットに保持されている基板の表面にSPMを供給するためのSPM供給ユニットと、 An SPM supply unit for supplying SPM to the surface of the substrate held by the substrate holding unit, and
前記基板保持ユニットに保持されている基板の表面に、水を含むリンス液を供給するためのリンス液供給ユニットと、 A rinse liquid supply unit for supplying a rinse liquid containing water to the surface of the substrate held by the substrate holding unit, and a rinse liquid supply unit.
前記回転ユニット、前記SPM供給ユニットおよび前記リンス液供給ユニットを制御する制御装置とを含み、 The rotation unit, the SPM supply unit, and a control device for controlling the rinse liquid supply unit are included.
前記制御装置が、前記SPM供給ユニットによって前記基板の表面にSPMを供給するSPM工程と、前記SPM工程の終了に引き続いて、前記基板の表面に液体を供給することなく前記基板の中央部を通る回転軸線回りに前記回転ユニットによって前記基板を回転させることにより前記基板の表面からSPMを排出させ、前記基板の表面が乾燥せずかつ前記基板の表面に存在するSPMが液膜状をなさない状態になるまで前記基板の表面に存在するSPMの量を低減させるSPM低減工程と、前記SPM低減工程の後、前記リンス液供給ユニットによって前記基板の表面にリンス液を供給するリンス工程とを実行する、基板処理装置。 Following the SPM step of supplying SPM to the surface of the substrate by the SPM supply unit and the end of the SPM step, the control device passes through the central portion of the substrate without supplying a liquid to the surface of the substrate. A state in which SPM is discharged from the surface of the substrate by rotating the substrate with the rotation unit around the rotation axis, the surface of the substrate is not dried, and the SPM existing on the surface of the substrate does not form a liquid film. After the SPM reduction step, the SPM reduction step of reducing the amount of SPM existing on the surface of the substrate is executed, and then the rinse step of supplying the rinse liquid to the surface of the substrate by the rinse liquid supply unit is executed. , Substrate processing equipment.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018103873A JP7068044B2 (en) | 2018-05-30 | 2018-05-30 | Board processing method and board processing equipment |
PCT/JP2019/020769 WO2019230612A1 (en) | 2018-05-30 | 2019-05-24 | Substrate processing method and substrate processing device |
TW108118478A TWI776063B (en) | 2018-05-30 | 2019-05-29 | Substrate processing method and substrate processing apparatus |
TW111127928A TWI834229B (en) | 2018-05-30 | 2019-05-29 | Substrate processing method and substrate processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018103873A JP7068044B2 (en) | 2018-05-30 | 2018-05-30 | Board processing method and board processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019207986A JP2019207986A (en) | 2019-12-05 |
JP7068044B2 true JP7068044B2 (en) | 2022-05-16 |
Family
ID=68698089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018103873A Active JP7068044B2 (en) | 2018-05-30 | 2018-05-30 | Board processing method and board processing equipment |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7068044B2 (en) |
TW (2) | TWI834229B (en) |
WO (1) | WO2019230612A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471108B (en) * | 2021-07-06 | 2022-10-21 | 华海清科股份有限公司 | Vertical rotatory processing apparatus of wafer based on marangoni effect |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014011174A (en) | 2012-06-27 | 2014-01-20 | Dainippon Screen Mfg Co Ltd | Substrate processing method |
JP2015050351A (en) | 2013-09-02 | 2015-03-16 | 株式会社Screenホールディングス | Substrate processing method and substrate processing apparatus |
JP2018032728A (en) | 2016-08-24 | 2018-03-01 | 株式会社Screenホールディングス | Substrate processing apparatus and substrate processing method |
JP2018056293A (en) | 2016-09-28 | 2018-04-05 | 東京エレクトロン株式会社 | Substrate processing apparatus and processing liquid supply method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5454108B2 (en) * | 2009-11-30 | 2014-03-26 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, and storage medium |
CN103295936B (en) * | 2012-02-29 | 2016-01-13 | 斯克林集团公司 | Substrate board treatment and substrate processing method using same |
JP6438649B2 (en) * | 2013-12-10 | 2018-12-19 | 株式会社Screenホールディングス | Substrate processing method and substrate processing apparatus |
-
2018
- 2018-05-30 JP JP2018103873A patent/JP7068044B2/en active Active
-
2019
- 2019-05-24 WO PCT/JP2019/020769 patent/WO2019230612A1/en active Application Filing
- 2019-05-29 TW TW111127928A patent/TWI834229B/en active
- 2019-05-29 TW TW108118478A patent/TWI776063B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014011174A (en) | 2012-06-27 | 2014-01-20 | Dainippon Screen Mfg Co Ltd | Substrate processing method |
JP2015050351A (en) | 2013-09-02 | 2015-03-16 | 株式会社Screenホールディングス | Substrate processing method and substrate processing apparatus |
JP2018032728A (en) | 2016-08-24 | 2018-03-01 | 株式会社Screenホールディングス | Substrate processing apparatus and substrate processing method |
JP2018056293A (en) | 2016-09-28 | 2018-04-05 | 東京エレクトロン株式会社 | Substrate processing apparatus and processing liquid supply method |
Also Published As
Publication number | Publication date |
---|---|
TW202243750A (en) | 2022-11-16 |
TWI776063B (en) | 2022-09-01 |
WO2019230612A1 (en) | 2019-12-05 |
JP2019207986A (en) | 2019-12-05 |
TWI834229B (en) | 2024-03-01 |
TW202019564A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9956594B2 (en) | Substrate processing method | |
JP6817748B2 (en) | Substrate processing equipment and substrate processing method | |
JP6611172B2 (en) | Substrate processing method | |
KR20180029914A (en) | Substrate processing method and substrate processing apparatus | |
TWI775574B (en) | Substrate processing method and substrate processing apparatus | |
TWI669769B (en) | Method of processing substrate and substrate processing apparatus | |
JP6966899B2 (en) | Substrate drying method and substrate processing equipment | |
TWI735798B (en) | Substrate processing apparatus | |
TWI723347B (en) | Substrate processing method and substrate processing apparatus | |
JP7194645B2 (en) | Substrate processing method and substrate processing apparatus | |
JP7683102B2 (en) | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD | |
WO2020110709A1 (en) | Substrate processing device and substrate processing method | |
JP7010629B2 (en) | Substrate drying method and substrate processing equipment | |
JP7068044B2 (en) | Board processing method and board processing equipment | |
JP6593920B2 (en) | Substrate processing method and substrate processing apparatus | |
JP7066471B2 (en) | Board processing method and board processing equipment | |
JP2018049918A (en) | Evaluation sample manufacturing method, evaluation sample manufacturing device, and substrate processing device | |
JP2020174193A (en) | Wafer processing device and wafer processing method | |
JP2016143873A (en) | Substrate processing method and substrate processing device | |
JP7315389B2 (en) | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD | |
TW202345227A (en) | Substrate processing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7068044 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |