[go: up one dir, main page]

JP7067325B2 - Hydrogen gas generation system and hydrogen gas generation method - Google Patents

Hydrogen gas generation system and hydrogen gas generation method Download PDF

Info

Publication number
JP7067325B2
JP7067325B2 JP2018129920A JP2018129920A JP7067325B2 JP 7067325 B2 JP7067325 B2 JP 7067325B2 JP 2018129920 A JP2018129920 A JP 2018129920A JP 2018129920 A JP2018129920 A JP 2018129920A JP 7067325 B2 JP7067325 B2 JP 7067325B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
storage chamber
gas
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018129920A
Other languages
Japanese (ja)
Other versions
JP2020007187A5 (en
JP2020007187A (en
Inventor
俊行 近藤
正之介 周布
健太郎 音窪
慎治 佐々
広樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018129920A priority Critical patent/JP7067325B2/en
Priority to US16/446,782 priority patent/US20200010963A1/en
Priority to CN201910593938.1A priority patent/CN110699699A/en
Publication of JP2020007187A publication Critical patent/JP2020007187A/en
Publication of JP2020007187A5 publication Critical patent/JP2020007187A5/ja
Application granted granted Critical
Publication of JP7067325B2 publication Critical patent/JP7067325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素ガスの生成に関する。 The present invention relates to the generation of hydrogen gas.

燃料電池の発電のために用いられる燃料として、或いは、工業用原料として、水素の需要が高まっている。水素製造プラント等で製造された水素ガスは、水素製造プラントまたは水素ガスステーションにて圧縮された後に容器に貯蔵され、ディスペンサを介して燃料電池車両等の燃料消費装置に供給されることがある。特許文献1には、ガス製造装置にて製造された水素ガスが圧縮機において圧縮されて蓄圧器に一時的に貯留され、その後、ディスペンサを介して車両に充填される構成が開示されている。 Demand for hydrogen is increasing as a fuel used for power generation of fuel cells or as an industrial raw material. Hydrogen gas produced in a hydrogen production plant or the like may be compressed in a hydrogen production plant or a hydrogen gas station, stored in a container, and supplied to a fuel consumption device such as a fuel cell vehicle via a dispenser. Patent Document 1 discloses a configuration in which hydrogen gas produced by a gas production apparatus is compressed in a compressor, temporarily stored in a pressure accumulator, and then filled in a vehicle via a dispenser.

特開2017-131862号公報Japanese Unexamined Patent Publication No. 2017-131862

特許文献1のように、一般に水素ガスを貯蔵する際には、多量のガスを貯蔵するために例えば70MPa(メガパスカル)という高圧ガスになるまで水素ガスが圧縮される。このため、圧縮機が必要となり、水素ガス供給の圧縮コストが大きいという問題がある。そこで、水素ガスの圧縮に要するコストを抑えることを可能な水素ガスの生成技術が望まれている。 As in Patent Document 1, when hydrogen gas is generally stored, the hydrogen gas is compressed to a high pressure gas of, for example, 70 MPa (megapascal) in order to store a large amount of gas. Therefore, a compressor is required, and there is a problem that the compression cost of hydrogen gas supply is high. Therefore, a hydrogen gas generation technique capable of suppressing the cost required for compression of hydrogen gas is desired.

本発明は、以下の形態として実現することが可能である。
[形態1]水素ガス生成システムであって、水中の予め定められた水深に配置され、電源に接続された水の電気分解用の一対の電極と、前記水深に配置され、周囲の水が流入可能な連通孔を有するガス貯蔵室であって、電気分解により前記一対の電極のうちの陰極において発生する水素ガスを貯蔵するガス貯蔵室と、前記水深よりも上方の海面に位置する船に搭載されている水素回収装置と、前記ガス貯蔵室内の水素ガスを前記水素回収装置に導く管であって、前記水素回収装置に対して着脱自在に取り付けられる管と、を備え、前記船に搭載され、前記電源として機能する電源装置と、前記電源装置と前記一対の電極とを電気的に接続する配線であって、前記電源装置に着脱自在に接続可能な配線と、をさらに備え、前記管における前記水素回収装置に接続され得る端部と、前記配線における前記電源装置に接続され得る端部とは、互いに締結具により固定されると共に、前記海面に浮かぶブイに固定されている、水素ガス生成システム。
The present invention can be realized as the following forms.
[Form 1] A hydrogen gas generation system, in which a pair of electrodes for electrolysis of water arranged at a predetermined depth in water and connected to a power source and a pair of electrodes arranged at the water depth and surrounding water flow in. It is a gas storage chamber having a possible communication hole, and is mounted on a gas storage chamber that stores hydrogen gas generated at the cathode of the pair of electrodes by electrolysis and a ship located on the sea surface above the water depth. The hydrogen recovery device is provided, and a tube for guiding hydrogen gas in the gas storage chamber to the hydrogen recovery device, which is detachably attached to the hydrogen recovery device, is provided and mounted on the ship. Further, the tube further includes a power supply device that functions as the power source, and wiring that electrically connects the power supply device and the pair of electrodes and is detachably connectable to the power supply device. The end portion that can be connected to the hydrogen recovery device and the end portion that can be connected to the power supply device in the wiring are fixed to each other by fasteners and are fixed to the buoy floating on the sea surface to generate hydrogen gas. system.

(1)本発明の一形態によれば、水素ガス生成システムが提供される。この水素ガス生成システムは、水中の予め定められた水深に配置され、電源に接続された水の電気分解用の一対の電極と;前記水深に配置され、周囲の水が流入可能な連通孔を有するガス貯蔵室であって、電気分解により前記一対の電極のうちの陰極において発生する水素ガスを貯蔵するガス貯蔵室と;前記水深よりも上方に配置された水素回収装置と;前記ガス貯蔵室内の水素ガスを前記水素回収装置に導く管と;を備える。 (1) According to one embodiment of the present invention, a hydrogen gas generation system is provided. This hydrogen gas generation system is located at a predetermined depth of water and has a pair of electrodes for electrolysis of water connected to a power source; A gas storage chamber having a gas storage chamber for storing hydrogen gas generated at the cathode of the pair of electrodes by electrolysis; a hydrogen recovery device arranged above the water depth; and the gas storage chamber. A tube for guiding the hydrogen gas of the above to the hydrogen recovery device;

この形態の水素ガス生成システムによれば、水中において予め定められた水深に配置された一対の電極による水の電気分解によって水素ガスを発生させるので、かかる水深の水圧に相当する圧力の水素ガスを生成できる。したがって、かかる水深よりも上方において水素ガスを生成する構成に比べて、高圧の水素ガスを圧縮機などの設備を用いずに生成でき、水素ガスの圧縮に要するコストを抑えて水素ガスを生成できる。加えて、生成された水素ガスを周囲の水が流入するガス貯蔵室に貯蔵するので、水素ガスを、かかる水深の水圧に相当する圧力の水素ガスのまま貯蔵することができる。このため、水素ガスの圧力に耐え得るほどの大掛かりな設備を要せず、水素ガスの貯蔵コストを抑えることができる。したがって、水素ガスの貯蔵のために高圧に耐えうる貯蔵設備を要しないので、水素ガスの貯蔵に要するコストを抑えることができる。 According to this form of hydrogen gas generation system, hydrogen gas is generated by electrolysis of water by a pair of electrodes arranged at a predetermined water depth in water, so that hydrogen gas having a pressure corresponding to the water pressure at the water depth is generated. Can be generated. Therefore, compared to the configuration in which hydrogen gas is generated above the water depth, high-pressure hydrogen gas can be generated without using equipment such as a compressor, and hydrogen gas can be generated while suppressing the cost required for compression of hydrogen gas. .. In addition, since the generated hydrogen gas is stored in the gas storage chamber into which the surrounding water flows, the hydrogen gas can be stored as the hydrogen gas having a pressure corresponding to the water pressure at the water depth. Therefore, a large-scale facility that can withstand the pressure of hydrogen gas is not required, and the storage cost of hydrogen gas can be suppressed. Therefore, since a storage facility capable of withstanding high pressure is not required for storing hydrogen gas, the cost required for storing hydrogen gas can be suppressed.

(2)上記形態の水素ガス生成システムにおいて、前記電源は、前記水深よりも上方に位置し;前記電源と前記一対の電極とを電気的に接続する配線を、さらに備え;前記配線は、前記管に沿って配置され、少なくとも一部が前記管に固定されていてもよい。この形態の水素ガス生成システムによれば、電源と一対の電極とを電気的に接続する配線は、ガス貯蔵室内と水素回収装置とを連通する管に沿って配置され、少なくとも一部が前記管に固定されているので、配線が水中において何ら支持なく設置されている構成に比べて、配線の変位を抑制し、かかる変位に起因する配線の損傷を抑制できる。 (2) In the hydrogen gas generation system of the above embodiment, the power source is located above the water depth; further includes a wiring for electrically connecting the power source and the pair of electrodes; the wiring is the above. It may be arranged along the tube and at least a part thereof may be fixed to the tube. According to this form of the hydrogen gas generation system, the wiring that electrically connects the power supply and the pair of electrodes is arranged along the pipe connecting the gas storage chamber and the hydrogen recovery device, and at least a part of the pipe is said. Since it is fixed to the wire, the displacement of the wiring can be suppressed and the damage of the wiring due to the displacement can be suppressed as compared with the configuration in which the wiring is installed without any support in water.

(3)上記形態の水素ガス生成システムにおいて、前記ガス貯蔵室は、前記ガス貯蔵室の外郭を形成する外壁部と、前記外壁部のうちの上方壁面から前記ガス貯蔵室内に突出する隔壁部であって、前記ガス貯蔵室内の上方の空間を水素貯蔵部と酸素貯蔵部とに区画する隔壁部と、を有し;前記一対の電極のうちの前記陰極は、前記水素貯蔵部の下方に配置され;前記一対の電極のうちの陽極は、前記酸素貯蔵部の下方に配置され;前記管は、前記水素貯蔵部と連通してもよい。この形態の水素ガス生成システムによれば、ガス貯蔵室は、ガス貯蔵室内の上方の空間を水素貯蔵部と酸素貯蔵部とに区画され、また、陰極は水素貯蔵部の下方に配置され、陽極は酸素貯蔵部の下方に配置され、管は水素貯蔵部と連通するので、水の電気分解により陽極から発生する酸素ガスを、管を介して水素回収装置に導くことを抑制でき、高濃度の水素ガスを水素回収装置に導くことができる。 (3) In the hydrogen gas generation system of the above embodiment, the gas storage chamber is an outer wall portion forming an outer shell of the gas storage chamber and a partition wall portion protruding from the upper wall surface of the outer wall portion into the gas storage chamber. It has a partition wall that divides the space above the gas storage chamber into a hydrogen storage unit and an oxygen storage unit; the cathode of the pair of electrodes is arranged below the hydrogen storage unit. The anode of the pair of electrodes is located below the oxygen reservoir; the tube may communicate with the hydrogen reservoir. According to this form of the hydrogen gas generation system, the gas storage chamber is divided into a hydrogen storage section and an oxygen storage section in the space above the gas storage chamber, and the cathode is arranged below the hydrogen storage section, and the anode. Is located below the oxygen reservoir, and the tube communicates with the hydrogen reservoir, so it is possible to suppress the oxygen gas generated from the anode by the electrolysis of water being guided to the hydrogen recovery device through the tube, and the concentration is high. Hydrogen gas can be guided to a hydrogen recovery device.

本発明は、種々の形態で実現することも可能である。例えば、水素ガス貯蔵システム、水素ガス生成方法、水素ガス圧縮方法、水素ガス貯蔵方法等の形態で実現することができる。 The present invention can also be realized in various forms. For example, it can be realized in the form of a hydrogen gas storage system, a hydrogen gas generation method, a hydrogen gas compression method, a hydrogen gas storage method, or the like.

本発明の一実施形態としての水素ガス生成システムの概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of the hydrogen gas generation system as one Embodiment of this invention. 水素ガス生成処理の手順を示す工程図である。It is a process drawing which shows the procedure of a hydrogen gas generation process.

A.実施形態:
A1.システム構成:
図1は、本発明の一実施形態としての水素ガス生成システム100の概略構成を示す説明図である。水素ガス生成システム100は、海中において水の電気分解を行うことにより、水圧相当の圧力の水素ガスを生成して貯蔵する。水素ガス生成システム100は、一対の電極10と、ガス貯蔵室20と、水素回収装置30と、管40と、配線50とを備える。
A. Embodiment:
A1. System configuration:
FIG. 1 is an explanatory diagram showing a schematic configuration of a hydrogen gas generation system 100 as an embodiment of the present invention. The hydrogen gas generation system 100 generates and stores hydrogen gas having a pressure corresponding to water pressure by electrolyzing water in the sea. The hydrogen gas generation system 100 includes a pair of electrodes 10, a gas storage chamber 20, a hydrogen recovery device 30, a pipe 40, and a wiring 50.

一対の電極10は、陰極11と陽極12とを備える。一対の電極10は、水の電気分解に用いられる。一対の電極10は、所定の水深D1の海底B1の近傍に配置され、周囲の水に曝されている。本実施形態において水深D1は、およそ7000m(メートル)である。一対の電極10は、ガス貯蔵室20内に配置されている。一対の電極10には、配線50を介して、後述の電源装置510から直流電力が供給される。これにより、陰極11では、下記式(1)に示す化学反応が起こり、水素ガスが発生する。また、陽極12では、下記式(2)に示す化学反応が起こり、酸素ガスが発生する。
2HO+2e→H+2OH・・・(1)
2OH→1/2O+HO+2e・・・(2)
The pair of electrodes 10 includes a cathode 11 and an anode 12. The pair of electrodes 10 are used for electrolysis of water. The pair of electrodes 10 are arranged in the vicinity of the seabed B1 at a predetermined water depth D1 and are exposed to the surrounding water. In this embodiment, the water depth D1 is about 7000 m (meters). The pair of electrodes 10 are arranged in the gas storage chamber 20. DC power is supplied to the pair of electrodes 10 from the power supply device 510 described later via the wiring 50. As a result, at the cathode 11, a chemical reaction represented by the following formula (1) occurs, and hydrogen gas is generated. Further, at the anode 12, a chemical reaction represented by the following formula (2) occurs, and oxygen gas is generated.
2H 2 O + 2e → H 2 + 2OH ・ ・ ・ (1)
2OH → 1 / 2O 2 + H 2 O + 2e ・ ・ ・ (2)

ガス貯蔵室20は、海底B1に固定して設置されている。ガス貯蔵室20は、一対の電極10のうちの陰極11に電流が流れることにより陰極11において発生する水素ガス、換言すると、水の電気分解により陰極11に発生する水素ガスを貯蔵する。ガス貯蔵室20は、外壁部21と、隔壁部22とを有する。外壁部21および隔壁部22は、いずれも耐食性に優れた樹脂、例えば、ポリエチレン(PE)により形成されている。後述するように、ガス貯蔵室20の内部と外部とは連通しており、ガス貯蔵室20の内圧と外圧の差圧は小さい。このため、ガス貯蔵室20の材料として水深D1の水圧に耐え得るほどの耐久性は求められない。 The gas storage chamber 20 is fixedly installed on the seabed B1. The gas storage chamber 20 stores hydrogen gas generated at the cathode 11 by flowing an electric current through the cathode 11 of the pair of electrodes 10, in other words, hydrogen gas generated at the cathode 11 by electrolysis of water. The gas storage chamber 20 has an outer wall portion 21 and a partition wall portion 22. Both the outer wall portion 21 and the partition wall portion 22 are made of a resin having excellent corrosion resistance, for example, polyethylene (PE). As will be described later, the inside and the outside of the gas storage chamber 20 communicate with each other, and the difference pressure between the internal pressure and the external pressure of the gas storage chamber 20 is small. Therefore, the material of the gas storage chamber 20 is not required to be durable enough to withstand the water pressure at the water depth D1.

外壁部21は、ガス貯蔵室20の外殻を形成する。本実施形態において、外壁部21は、略円筒状の下方部211と、下方部211の上方に連なる上方部212とを有する。上方部212は、中空の円錐状の外観形状を有する。下方部211における海底B1の近傍には、周方向に互いに所定の距離だけ離れた並んだ複数の連通孔26が形成されている。かかる連通孔26は、下方部211の厚さ方向を貫く貫通孔として形成されている。このため、かかる連通孔26を介してガス貯蔵室20内には周囲の海水が流入する。換言すると、ガス貯蔵室20の内部と外部とは連通している。 The outer wall portion 21 forms the outer shell of the gas storage chamber 20. In the present embodiment, the outer wall portion 21 has a substantially cylindrical lower portion 211 and an upper portion 212 connected above the lower portion 211. The upper portion 212 has a hollow conical external shape. In the vicinity of the seabed B1 in the lower portion 211, a plurality of communication holes 26 arranged side by side separated from each other by a predetermined distance in the circumferential direction are formed. The communication hole 26 is formed as a through hole penetrating the thickness direction of the lower portion 211. Therefore, the surrounding seawater flows into the gas storage chamber 20 through the communication hole 26. In other words, the inside and outside of the gas storage chamber 20 communicate with each other.

隔壁部22は、上方部212の上方壁面29からガス貯蔵室20内に向けて鉛直下方に突出する板状部材により形成されている。隔壁部22は、ガス貯蔵室20内における上方を、一対の気体貯蔵部23に区画する。一対の気体貯蔵部23は、水素貯蔵部24と、酸素貯蔵部25とを備える。水素貯蔵部24は、陰極11に対応する貯蔵室である。具体的には、水素貯蔵部24は、陰極11の上方に位置し、陰極11において生成される水素ガスを貯蔵する。酸素貯蔵部25は、陽極12に対応する貯蔵室である。具体的には、酸素貯蔵部25は、陽極12の上方に位置し、陽極12において生成される酸素ガスを貯蔵する。 The partition wall portion 22 is formed of a plate-shaped member that projects vertically downward from the upper wall surface 29 of the upper portion 212 toward the inside of the gas storage chamber 20. The partition wall portion 22 partitions the upper part of the gas storage chamber 20 into a pair of gas storage portions 23. The pair of gas storage units 23 includes a hydrogen storage unit 24 and an oxygen storage unit 25. The hydrogen storage unit 24 is a storage chamber corresponding to the cathode 11. Specifically, the hydrogen storage unit 24 is located above the cathode 11 and stores the hydrogen gas generated in the cathode 11. The oxygen storage unit 25 is a storage chamber corresponding to the anode 12. Specifically, the oxygen storage unit 25 is located above the anode 12 and stores the oxygen gas generated in the anode 12.

上述のように、ガス貯蔵室20内は周りの水と連通しているため、ガス貯蔵室20内において上記式(1)の化学反応により生じる水素ガスは、水深D1の水圧相当の圧力であるおよそ70.9MPa(メガパスカル)の水素ガスである。したがって、水素貯蔵部24には、およそ70.9MPa(メガパスカル)の水素ガスが貯蔵される。 As described above, since the inside of the gas storage chamber 20 communicates with the surrounding water, the hydrogen gas generated by the chemical reaction of the above formula (1) in the gas storage chamber 20 has a pressure equivalent to the water pressure at the water depth D1. It is a hydrogen gas of about 70.9 MPa (megapascal). Therefore, about 70.9 MPa (megapascal) of hydrogen gas is stored in the hydrogen storage unit 24.

なお、ガス貯蔵室20の外壁部21には、一対の電極10をそれぞれ各貯蔵部24、25に対応する位置に固定するための図示しない支持部が形成されている。なお、かかる支持部を、外壁部21とは独立した部材として構成して海底B1に配置してもよい。 The outer wall portion 21 of the gas storage chamber 20 is formed with a support portion (not shown) for fixing the pair of electrodes 10 at positions corresponding to the storage portions 24 and 25, respectively. The support portion may be configured as a member independent of the outer wall portion 21 and arranged on the seabed B1.

外壁部21の上方部212のうち、酸素貯蔵部25に対応する領域には、排気口27が形成されている。排気口27は、上方部212の厚さ方向を貫く貫通孔として形成されている。したがって、酸素貯蔵部25は、連通孔26および排気口27を介して周囲の水が流入可能に構成されている。排気口27は、上記式(2)の化学反応により陽極12において発生してガス貯蔵室20に溜まった酸素ガスを、ガス貯蔵室20の外部へと排出する。 An exhaust port 27 is formed in a region of the upper portion 212 of the outer wall portion 21 corresponding to the oxygen storage portion 25. The exhaust port 27 is formed as a through hole penetrating the thickness direction of the upper portion 212. Therefore, the oxygen storage unit 25 is configured so that the surrounding water can flow in through the communication hole 26 and the exhaust port 27. The exhaust port 27 discharges the oxygen gas generated at the anode 12 by the chemical reaction of the above formula (2) and accumulated in the gas storage chamber 20 to the outside of the gas storage chamber 20.

水素回収装置30は、船500に搭載されており、管40を介して送られる水素ガスを回収する。水素回収装置30は、遮断弁31と、水素処理部32とを備える。遮断弁31は、電磁弁であり、図示しない制御装置からの制御信号に基づき、管40の開閉を行う。水素処理部32は、管40を介してガス貯蔵室20から送られてきた水素ガスを処理する。かかる処理としては、例えば、水素ガスの検査処理や、図示しない水素ガスタンクに水素ガスを充填する処理などが該当する。 The hydrogen recovery device 30 is mounted on the ship 500 and recovers the hydrogen gas sent through the pipe 40. The hydrogen recovery device 30 includes a isolation valve 31 and a hydrogen treatment unit 32. The isolation valve 31 is a solenoid valve, and opens and closes the pipe 40 based on a control signal from a control device (not shown). The hydrogen processing unit 32 processes the hydrogen gas sent from the gas storage chamber 20 via the pipe 40. Such a process corresponds to, for example, a hydrogen gas inspection process, a process of filling a hydrogen gas tank (not shown) with hydrogen gas, and the like.

管40は、ガス貯蔵室20内と水素回収装置30とを連通し、ガス貯蔵室20内の水素ガスを水素回収装置30に導く。管40の大部分は海中において鉛直方向に沿って配置されている。管40の一端は図示しない固定金具によりガス貯蔵室20に固定され、他端は遮断弁31に接続されている。管40の内部は、水素貯蔵部24と連通している。管40は、内圧と外圧の差圧に耐え得るように設計されている。具体的には、管40の内圧は、ガス貯蔵室20内の水素ガスの圧力と一致し、およそ70.9MPaである。これに対して、管40の外圧は、水面上が最も小さくおよそ0.1MPaであり、ガス貯蔵室20の設置部分において最も大きくおよそ70.9MPaである。したがって、管40は、最大差圧である70.9MPaと0.1MPaとの差圧(70.8MPa)に耐え得るように設計されている。本実施形態において、管40は、ニッケルおよびチタンを含む合金により形成されている。管40は、例えば、複数の部分管を継ぎ合わせて形成してもよい。 The pipe 40 communicates the inside of the gas storage chamber 20 with the hydrogen recovery device 30, and guides the hydrogen gas in the gas storage chamber 20 to the hydrogen recovery device 30. Most of the pipes 40 are arranged along the vertical direction in the sea. One end of the pipe 40 is fixed to the gas storage chamber 20 by a fixing bracket (not shown), and the other end is connected to the isolation valve 31. The inside of the tube 40 communicates with the hydrogen storage unit 24. The tube 40 is designed to withstand the differential pressure between the internal pressure and the external pressure. Specifically, the internal pressure of the pipe 40 coincides with the pressure of the hydrogen gas in the gas storage chamber 20, and is about 70.9 MPa. On the other hand, the external pressure of the pipe 40 is the smallest on the water surface and is about 0.1 MPa, and the largest is about 70.9 MPa in the installation portion of the gas storage chamber 20. Therefore, the tube 40 is designed to withstand the maximum differential pressure of 70.9 MPa and 0.1 MPa (70.8 MPa). In this embodiment, the tube 40 is made of an alloy containing nickel and titanium. The pipe 40 may be formed by joining a plurality of partial pipes, for example.

配線50は、電源装置510と一対の電極10とを電気的に接続する。配線50は、管40に沿って配置され、複数の位置において締結具45により管40に固定されている。このような構成により、潮流や波による変位に起因する配線50の損傷を抑制できる。配線50は、耐食性に優れた素材、例えばポリエチレンの被覆層で覆われている。電源装置510は、船500に搭載された直流電源である。 The wiring 50 electrically connects the power supply device 510 and the pair of electrodes 10. The wiring 50 is arranged along the pipe 40 and is fixed to the pipe 40 by fasteners 45 at a plurality of positions. With such a configuration, damage to the wiring 50 due to displacement due to tidal current or wave can be suppressed. The wiring 50 is covered with a material having excellent corrosion resistance, for example, a coating layer of polyethylene. The power supply device 510 is a DC power supply mounted on the ship 500.

船500が図1に示す位置におらず、水素ガス生成システム100による水素ガスの生成が行われない状況(以下、「水素ガス非生成状況」と呼ぶ)では、配線50における一対の電極10と接続された側とは反対側の端部は、電源装置510に接続されていない。また、水素ガス非生成状況では、管40におけるガス貯蔵室20と接続された側とは反対側の端部は、遮断弁31に接続されていない。配線50における電源装置510と接続されるべき端部と、管40における遮断弁31に接続されるべき端部とは、水素ガス非生成状況において、互いに締結具45で固定されると共に、海面に浮かぶブイに固定されている。 In a situation where the ship 500 is not in the position shown in FIG. 1 and hydrogen gas is not generated by the hydrogen gas generation system 100 (hereinafter referred to as “hydrogen gas non-generation state”), the pair of electrodes 10 in the wiring 50 The end opposite to the connected side is not connected to the power supply 510. Further, in the hydrogen gas non-generation state, the end portion of the pipe 40 on the side opposite to the side connected to the gas storage chamber 20 is not connected to the isolation valve 31. The end portion of the wiring 50 to be connected to the power supply device 510 and the end portion to be connected to the isolation valve 31 of the pipe 40 are fixed to each other by the fastener 45 in the hydrogen gas non-generation state and are attached to the sea surface. It is fixed to the floating buoy.

A2.水素ガス生成処理:
図2は、水素ガス生成処理の手順を示す工程表である。この水素ガス生成処理は、およそ70.9MPaの高圧水素ガスを生成するために実行される。
A2. Hydrogen gas generation process:
FIG. 2 is a process chart showing a procedure for hydrogen gas generation processing. This hydrogen gas generation process is carried out to generate a high pressure hydrogen gas of about 70.9 MPa.

電源に接続された一対の電極10を所定の水深D1において周囲の水に曝して配置する(工程P105)。この工程P105は、複数の工程を含む。具体的には、海底B1にガス貯蔵室20と一対の電極10とを配置する工程と、管40をガス貯蔵室20に接続する工程と、管40に沿って配線50を配置すると共に、複数の締結具45により配線50を管40に固定する工程と、管40の海上側の端部と配線50の海上側端部とを、図示しないブイに取り付ける工程と、電源装置510および水素回収装置30を積載した船500を、ガス貯蔵室20の上方の位置に配置する工程と、ブイに取り付けられた配線50の端部を電源装置510に接続する工程と、ブイに取り付けられた管40の端部を遮断弁31に接続する工程と、を含む。なお、これらの工程のうちの多くの工程は、例えば、作業アームを有する潜水艇を利用して行なってもよい。 The pair of electrodes 10 connected to the power source are exposed to the surrounding water at a predetermined water depth D1 and arranged (step P105). This step P105 includes a plurality of steps. Specifically, a step of arranging the gas storage chamber 20 and the pair of electrodes 10 on the seabed B1, a step of connecting the pipe 40 to the gas storage chamber 20, and a plurality of wirings 50 arranged along the pipe 40. A step of fixing the wiring 50 to the pipe 40 by the fastener 45 of the above, a step of attaching the seaside end of the pipe 40 and the seaside end of the wiring 50 to a buoy (not shown), a power supply device 510 and a hydrogen recovery device. The step of arranging the ship 500 loaded with 30 at a position above the gas storage chamber 20, the step of connecting the end of the wiring 50 attached to the buoy to the power supply device 510, and the step of connecting the pipe 40 attached to the buoy. Includes a step of connecting the end to the shutoff valve 31. It should be noted that many of these steps may be performed using, for example, a submersible having a working arm.

一対の電極10に電流を流すことにより、陰極11から水素ガスを発生させる(工程P110)。工程P110により発生した水素ガスをガス貯蔵室20、より詳細には、水素貯蔵部24に貯蔵する(工程P115)。ガス貯蔵室20内に貯蔵された水素ガスを、管40を用いて水素回収装置30に導く(工程P120)。このようにして、水深D1に配置された一対の電極10のうちの陰極11において発生したおよそ70.9MPaの水素ガスは、ガス貯蔵室20において貯蔵され、また、管40を介して水素処理部32へと導かれる。 Hydrogen gas is generated from the cathode 11 by passing an electric current through the pair of electrodes 10 (step P110). The hydrogen gas generated by the step P110 is stored in the gas storage chamber 20, more specifically, the hydrogen storage section 24 (step P115). The hydrogen gas stored in the gas storage chamber 20 is guided to the hydrogen recovery device 30 using the pipe 40 (step P120). In this way, the hydrogen gas of about 70.9 MPa generated at the cathode 11 of the pair of electrodes 10 arranged at the water depth D1 is stored in the gas storage chamber 20, and is also stored in the gas storage chamber 20 and the hydrogen treatment unit via the pipe 40. You will be led to 32.

以上説明した実施形態の水素ガス生成システム100によれば、海中において予め定められた水深D1に配置された一対の電極10による水の電気分解によって水素ガスを生成するので、かかる水深D1の水圧、すなわち、およそ70.9MPaの圧力の水素ガスを発生させることができる。したがって、かかる水深D1よりも上方において水素ガスを生成する構成に比べて高圧の水素ガスを、圧縮機などの設備を用いずに生成でき、水素ガスの圧縮に要するコストを抑えて水素ガスを生成できる。加えて、生成された水素ガスを周囲の水が流入するガス貯蔵室20に貯蔵するので、水素ガスを、かかる水深の水圧に相当する圧力の水素ガスのまま貯蔵することができる。このため、水素ガスの圧力に耐え得るほどの大掛かりな設備を要せず、水素ガスの貯蔵コストを抑えることができる。したがって、水素ガスの貯蔵のために高圧に耐えうる貯蔵設備を要しないので、水素ガスの貯蔵に要するコストを抑えることができる。 According to the hydrogen gas generation system 100 of the embodiment described above, hydrogen gas is generated by electrolysis of water by a pair of electrodes 10 arranged at a predetermined water depth D1 in the sea. That is, hydrogen gas having a pressure of about 70.9 MPa can be generated. Therefore, it is possible to generate high-pressure hydrogen gas without using equipment such as a compressor as compared with the configuration in which hydrogen gas is generated above the water depth D1, and hydrogen gas is generated while suppressing the cost required for compressing the hydrogen gas. can. In addition, since the generated hydrogen gas is stored in the gas storage chamber 20 into which the surrounding water flows, the hydrogen gas can be stored as the hydrogen gas having a pressure corresponding to the water pressure at the water depth. Therefore, a large-scale facility that can withstand the pressure of hydrogen gas is not required, and the storage cost of hydrogen gas can be suppressed. Therefore, since a storage facility capable of withstanding high pressure is not required for storing hydrogen gas, the cost required for storing hydrogen gas can be suppressed.

また、電源装置510と一対の電極10とを電気的に接続する配線50は、ガス貯蔵室20内と水素回収装置30とを連通する管40に沿って配置され、複数個所において管40に固定されているので、配線50が海中において何ら支持なく設置されている構成に比べて、潮流や波による変位を抑制して配線50の損傷を抑制できる。 Further, the wiring 50 for electrically connecting the power supply device 510 and the pair of electrodes 10 is arranged along the pipe 40 communicating the inside of the gas storage chamber 20 and the hydrogen recovery device 30, and is fixed to the pipe 40 at a plurality of places. Therefore, as compared with the configuration in which the wiring 50 is installed in the sea without any support, it is possible to suppress the displacement due to the tidal current or the wave and suppress the damage to the wiring 50.

また、ガス貯蔵室20は、ガス貯蔵室20内の上方の空間を水素貯蔵部24と酸素貯蔵部25とに区画され、また、陰極11は水素貯蔵部24の下方に配置され、陽極12は酸素貯蔵部25の下方に配置され、管40は水素貯蔵部24と連通するので、水の電気分解により陽極12から発生する酸素ガスを、管40を介して水素回収装置30に導くことを抑制でき、高濃度の水素ガスを水素回収装置30に導くことができる。 Further, in the gas storage chamber 20, the space above the gas storage chamber 20 is divided into a hydrogen storage unit 24 and an oxygen storage unit 25, the cathode 11 is arranged below the hydrogen storage unit 24, and the anode 12 is. Since the pipe 40 is arranged below the oxygen storage unit 25 and communicates with the hydrogen storage unit 24, it is possible to suppress the oxygen gas generated from the anode 12 due to the electric decomposition of water from being guided to the hydrogen recovery device 30 via the pipe 40. It is possible to guide high-concentration hydrogen gas to the hydrogen recovery device 30.

B.他の実施形態:
B1.他の実施形態1:
上記実施形態では、電源装置510は、船500に積載されていたが、本開示はこれに限定されない。例えば、海底油田から原油を掘削するためのリグやプラットフォームや、水素ガス製造のための専用のリグやプラットフォームに積載されてもよい。また、例えば、電源装置510は、陸上に配置されていてもよい。かかる構成においては、電源装置510と一対の電極10とを接続する配線を、陸上に近い位置まで海底B1に沿って配置し、電源装置510の配置位置近傍において、鉛直に配置して電源装置510と接続させてもよい。また、例えば、電源装置510を海中に配置してもよい。かかる構成においては、電源装置510を二次電池などにより構成し、充電後の電源装置510を海底B1に配置しておいてもよい。かかる構成においては、電源装置510を、スクリューや舵を備えた潜水艇として構成し、蓄電量が所定の閾値以下になった場合には、かかる電源装置510を海上まで浮上させるようにしてもよい。そして、充電後の電源装置510をガス貯蔵室20の近傍まで沈降させてもよい。
B. Other embodiments:
B1. Other Embodiment 1:
In the above embodiment, the power supply device 510 is loaded on the ship 500, but the present disclosure is not limited to this. For example, it may be loaded on a rig or platform for drilling crude oil from an offshore oil field, or on a dedicated rig or platform for hydrogen gas production. Further, for example, the power supply device 510 may be arranged on land. In such a configuration, the wiring connecting the power supply device 510 and the pair of electrodes 10 is arranged along the seabed B1 up to a position close to land, and is arranged vertically in the vicinity of the arrangement position of the power supply device 510. May be connected with. Further, for example, the power supply device 510 may be arranged in the sea. In such a configuration, the power supply device 510 may be configured by a secondary battery or the like, and the power supply device 510 after charging may be arranged on the seabed B1. In such a configuration, the power supply device 510 may be configured as a submersible boat equipped with a screw and a rudder, and when the amount of stored electricity becomes equal to or less than a predetermined threshold value, the power supply device 510 may be levitated to the sea. .. Then, the power supply device 510 after charging may be settled to the vicinity of the gas storage chamber 20.

B2.他の実施形態2:
上記実施形態において、隔壁部22を省略してもよい。かかる構成においては、排気口27を省略してもよい。かかる構成においては、ガス貯蔵室20内に、水素ガスと酸素ガスの両方のガスが貯蔵されることとなる。しかし、水素ガスは、酸素ガスよりも比重が軽いため、ガス貯蔵室20の内部においてより上方に貯蔵される。また、管40は、ガス貯蔵室20における上方部212と接続されている。このため、かかる構成においても、ガス貯蔵室20に貯蔵された水素ガスを酸素ガスに比べて優先して、管40を介して水素回収装置30に導くことができる。
B2. Other Embodiment 2:
In the above embodiment, the partition wall portion 22 may be omitted. In such a configuration, the exhaust port 27 may be omitted. In such a configuration, both hydrogen gas and oxygen gas are stored in the gas storage chamber 20. However, since hydrogen gas has a lighter specific gravity than oxygen gas, it is stored higher inside the gas storage chamber 20. Further, the pipe 40 is connected to the upper portion 212 in the gas storage chamber 20. Therefore, even in such a configuration, the hydrogen gas stored in the gas storage chamber 20 can be guided to the hydrogen recovery device 30 via the pipe 40 in preference to the oxygen gas.

B3.他の実施形態3:
上記実施形態では、水の電気分解により水素ガスを生成していたが、他の方法により水素ガスを生成してもよい。例えば、水深D1の水圧で開放される排気口を備えた断熱容器に液体水素を充填して、かかる断熱容器を船500からガス貯蔵室20に向かって投下して沈降させてもよい。また、かかる構成においては、断熱容器がガス貯蔵室20内に向かうようにガイドする部材を予め用意してもよい。かかる構成では、沈降する断熱容器の排気口は、海底B1に達すると開く。このとき、断熱容器内に充填されていた液体水素が急激に気化して水素ガスが発生して断熱容器の外部へと排出される。断熱容器がガス貯蔵室20内にガイドされる構成においては、断熱容器から排出された水素ガスはガス貯蔵室20内に貯留されることとなる。なお、断熱容器としては、例えば、およそ70.9MPaの圧力(差圧)に耐え得る材料により形成された二重構造の容器を用いてもよい。また、かかる容器の外観形状を、略球状の外観形状としてもよい。かかる構成によれば、断熱容器を、より高圧に耐え得るようにできる。また、水深D1の水圧で開放される排気口としては、例えば、弁体と、かかる弁体を断熱容器の内側から外側に向けて付勢するバネ部材とを有する弁装置を備えた排気口として構成してもよい。かかる構成においては、バネ部材の付勢力を水深D1における水圧よりも小さく設定しておくことにより、水深D1の水圧で排気口を開放することができる。
B3. Other Embodiment 3:
In the above embodiment, hydrogen gas is generated by electrolysis of water, but hydrogen gas may be generated by another method. For example, a heat insulating container provided with an exhaust port opened by water pressure at a water depth D1 may be filled with liquid hydrogen, and the heat insulating container may be dropped from the ship 500 toward the gas storage chamber 20 and settled. Further, in such a configuration, a member for guiding the heat insulating container toward the inside of the gas storage chamber 20 may be prepared in advance. In such a configuration, the exhaust port of the settling heat insulating container opens when it reaches the seabed B1. At this time, the liquid hydrogen filled in the heat insulating container is rapidly vaporized to generate hydrogen gas, which is discharged to the outside of the heat insulating container. In the configuration in which the heat insulating container is guided in the gas storage chamber 20, the hydrogen gas discharged from the heat insulating container is stored in the gas storage chamber 20. As the heat insulating container, for example, a container having a double structure formed of a material capable of withstanding a pressure (differential pressure) of about 70.9 MPa may be used. Further, the appearance shape of the container may be a substantially spherical appearance shape. According to such a configuration, the heat insulating container can withstand higher pressure. Further, as the exhaust port opened by the water pressure at the water depth D1, for example, as an exhaust port provided with a valve body and a valve device having a spring member for urging the valve body from the inside to the outside of the heat insulating container. It may be configured. In such a configuration, by setting the urging force of the spring member to be smaller than the water pressure at the water depth D1, the exhaust port can be opened by the water pressure at the water depth D1.

B4.他の実施形態4:
上記実施形態においてガス貯蔵室20は、海底B1に固定的に設置されていたが、これに代えて、ガス貯蔵室20を移動式の部屋としてもよい。具体的には、通常時はガス貯蔵室20を船500に積載しておき、水素ガス生成処理の工程P105において、ガス貯蔵室20を船500から海中に投下して、海底B1近傍まで沈降させてもよい。このとき、管40をガイド部材として利用してガス貯蔵室20を沈降させてもよい。例えば、上方部212に排気口27とは別に貫通孔を予め形成しておき、かかる貫通孔に管40を挿入して、その状態のまま管40によってガイドされながらガス貯蔵室20を沈降させてもよい。この構成においては、ガス貯蔵室20が最も沈降した状態において、貫通孔から管40が外れないように、管40の端部を大きなフランジ状に形成しておいてもよい。また、かかる構成においては、一対の電極10を予めガス貯蔵室20に固定しておき、ガス貯蔵室20と一緒に沈降させてもよい。
B4. Other Embodiment 4:
In the above embodiment, the gas storage chamber 20 is fixedly installed on the seabed B1, but instead of this, the gas storage chamber 20 may be a mobile room. Specifically, normally, the gas storage chamber 20 is loaded on the ship 500, and in the hydrogen gas generation processing step P105, the gas storage chamber 20 is dropped from the ship 500 into the sea and settled to the vicinity of the seabed B1. You may. At this time, the gas storage chamber 20 may be settled by using the pipe 40 as a guide member. For example, a through hole is formed in advance in the upper portion 212 separately from the exhaust port 27, a pipe 40 is inserted into the through hole, and the gas storage chamber 20 is settled while being guided by the pipe 40 in that state. May be good. In this configuration, the end of the pipe 40 may be formed in a large flange shape so that the pipe 40 does not come off from the through hole in the state where the gas storage chamber 20 is most subsided. Further, in such a configuration, the pair of electrodes 10 may be fixed in advance in the gas storage chamber 20 and settled together with the gas storage chamber 20.

B5.他の実施形態5:
各実施形態において、ガス貯蔵室20は、水深7000mの海底に配置されていたが、本開示はこれに限定されない。例えば、水深10mから8000mまでの範囲における任意の水深に配置されてもよい。より好ましくは、水深100mから7000mまでの範囲における任意の水深に配置されてもよい。この構成においては、かかる水深の位置が海底でなくてもよい。さらに、海に限らず、湖や沼など、任意の水環境に配置されてもよい。
B5. Other Embodiment 5:
In each embodiment, the gas storage chamber 20 is arranged on the seabed at a depth of 7,000 m, but the present disclosure is not limited to this. For example, it may be arranged at any water depth in the range of water depths of 10 m to 8000 m. More preferably, it may be arranged at any water depth in the range of 100 m to 7000 m. In this configuration, the position of such water depth does not have to be the seabed. Further, it may be arranged not only in the sea but also in any water environment such as a lake or a swamp.

B6.他の実施形態6:
上記実施形態における水素ガス生成システム100の構成は、あくまでも一例であり、様々に変更可能である。例えば、隔壁部22を省略しないまま排気口27のみを省略してもよい。また、水素回収装置30は、船500に積載されていたが、これに代えて、陸上または海中に配置されていてもよい。水素回収装置30が海中に配置される構成においては、一対の電極10が配置された水深よりも上方に配置することにより、かかる水深において水素ガスを発生させる構成に比べて、より圧力の高い水素ガスを回収できる。また、上記実施形態において外壁部21および隔壁部22は、ポリエチレンにより形成されていたが、ポリエチレンに代えて、他の任意の種類の樹脂、金属、およびセラミックス等の任意の材料により形成されてもよい。また、水素回収装置30が圧縮機を備える構成としてもよい。かかる構成においては、例えば、ガス貯蔵室20が水深7000mよりも浅い水深の位置に配置されている場合に、70.9MPaよりも低い圧力の水素ガスを、圧縮機を用いてさらに70.9MPaまで圧縮することができる。このような構成においても、かかる水深の圧力よりも低い圧力の水素ガスを70.9MPaまで圧縮する構成に比べて、例えば、多段に圧縮する複数の圧縮機のうちの一部を省略できる、或いは、圧縮に要する電力を抑えることができる、といった効果を奏する。また、上記実施形態において、工程P120を省略してもよい。すなわち、水素ガス生成処理から回収工程を省略し、別処理として回収処理を実行してもよい。また、上記実施形態において、水素回収装置30は、ガス貯蔵室20内の水素ガスを、管40を介して水素処理部32に積極的に送るためのポンプを備えてもよい。また、上記実施形態において、海水中の配線50の全体が管40に固定されていてもよい。
B6. Other Embodiment 6:
The configuration of the hydrogen gas generation system 100 in the above embodiment is merely an example and can be changed in various ways. For example, only the exhaust port 27 may be omitted without omitting the partition wall portion 22. Further, although the hydrogen recovery device 30 was loaded on the ship 500, it may be arranged on land or in the sea instead. In the configuration in which the hydrogen recovery device 30 is arranged in the sea, hydrogen having a higher pressure than the configuration in which hydrogen gas is generated at such a water depth by arranging the pair of electrodes 10 above the water depth in which the pair of electrodes 10 are arranged. Gas can be recovered. Further, although the outer wall portion 21 and the partition wall portion 22 are formed of polyethylene in the above embodiment, they may be formed of any other material such as resin, metal, and ceramics instead of polyethylene. good. Further, the hydrogen recovery device 30 may be configured to include a compressor. In such a configuration, for example, when the gas storage chamber 20 is arranged at a water depth shallower than 7000 m, hydrogen gas having a pressure lower than 70.9 MPa can be further applied to 70.9 MPa using a compressor. Can be compressed. Even in such a configuration, for example, a part of a plurality of compressors that compress in multiple stages can be omitted, as compared with a configuration in which hydrogen gas having a pressure lower than the pressure at such a water depth is compressed to 70.9 MPa. , The power required for compression can be suppressed. Further, in the above embodiment, the step P120 may be omitted. That is, the recovery process may be omitted from the hydrogen gas generation process, and the recovery process may be executed as a separate process. Further, in the above embodiment, the hydrogen recovery device 30 may include a pump for positively sending the hydrogen gas in the gas storage chamber 20 to the hydrogen treatment unit 32 via the pipe 40. Further, in the above embodiment, the entire wiring 50 in seawater may be fixed to the pipe 40.

本発明は、上記実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present invention is not limited to the above embodiment, and can be realized with various configurations within a range not deviating from the gist thereof. For example, the technical features in the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve the part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

10…一対の電極、11…陰極、12…陽極、20…ガス貯蔵室、21…外壁部、22…隔壁部、23…一対の気体貯蔵部、24…水素貯蔵部、25…酸素貯蔵部、26…開口、27…排気口、29…上方壁面、30…水素回収装置、31…遮断弁、32…水素処理部、40…管、45…締結具、50…配線、100…水素ガス生成システム、211…下方部、212…上方部、500…船、510…電源装置、B1…海底、D1…水深 10 ... a pair of electrodes, 11 ... cathode, 12 ... anode, 20 ... gas storage chamber, 21 ... outer wall part, 22 ... partition wall part, 23 ... pair of gas storage parts, 24 ... hydrogen storage part, 25 ... oxygen storage part, 26 ... Opening, 27 ... Exhaust port, 29 ... Upper wall surface, 30 ... Hydrogen recovery device, 31 ... Shutoff valve, 32 ... Hydrogen processing unit, 40 ... Pipe, 45 ... Fastener, 50 ... Wiring, 100 ... Hydrogen gas generation system , 211 ... lower part, 212 ... upper part, 500 ... ship, 510 ... power supply, B1 ... seabed, D1 ... water depth

Claims (4)

水素ガス生成システムであって、
水中の予め定められた水深に配置され、電源に接続された水の電気分解用の一対の電極と、
前記水深に配置され、周囲の水が流入可能な連通孔を有するガス貯蔵室であって、電気分解により前記一対の電極のうちの陰極において発生する水素ガスを貯蔵するガス貯蔵室と、
前記水深よりも上方の海面に位置する船に搭載されている水素回収装置と、
前記ガス貯蔵室内の水素ガスを前記水素回収装置に導く管であって、前記水素回収装置に対して着脱自在に取り付けられる管と、
を備え
前記船に搭載され、前記電源として機能する電源装置と、
前記電源装置と前記一対の電極とを電気的に接続する配線であって、前記電源装置に着脱自在に接続可能な配線と、
をさらに備え、
前記管における前記水素回収装置に接続され得る端部と、前記配線における前記電源装置に接続され得る端部とは、締結具により互いに固定されると共に、それぞれ前記海面に浮かぶブイに固定されている、水素ガス生成システム。
It ’s a hydrogen gas generation system.
A pair of electrodes for electrolysis of water placed in a predetermined depth of water and connected to a power source,
A gas storage chamber arranged at the water depth and having a communication hole through which surrounding water can flow, and a gas storage chamber for storing hydrogen gas generated at the cathode of the pair of electrodes by electrolysis.
The hydrogen recovery device mounted on the ship located on the sea surface above the water depth,
A pipe that guides hydrogen gas in the gas storage chamber to the hydrogen recovery device, and a pipe that is detachably attached to the hydrogen recovery device .
Equipped with
A power supply device mounted on the ship and functioning as the power source,
Wiring that electrically connects the power supply device and the pair of electrodes, and that can be detachably connected to the power supply device.
Further prepare
The end portion of the pipe that can be connected to the hydrogen recovery device and the end portion of the wiring that can be connected to the power supply device are fixed to each other by fasteners and fixed to a buoy floating on the sea surface. , Hydrogen gas generation system.
請求項1に記載の水素ガス生成システムにおいて
記配線は、前記管に沿って配置され、少なくとも一部が前記管に固定されている、水素ガス生成システム。
In the hydrogen gas generation system according to claim 1 ,
A hydrogen gas generation system in which the wiring is arranged along the pipe and at least a part thereof is fixed to the pipe.
請求項1または請求項2に記載の水素ガス生成システムにおいて、
前記ガス貯蔵室は、前記ガス貯蔵室の外郭を形成する外壁部と、前記外壁部のうちの上方壁面から前記ガス貯蔵室内に突出する隔壁部であって、前記ガス貯蔵室内の上方の空間を水素貯蔵部と酸素貯蔵部とに区画する隔壁部と、を有し、
前記一対の電極のうちの前記陰極は、前記水素貯蔵部の下方に配置され、
前記一対の電極のうちの陽極は、前記酸素貯蔵部の下方に配置され、
前記管は、前記水素貯蔵部と連通する、水素ガス生成システム。
In the hydrogen gas generation system according to claim 1 or 2.
The gas storage chamber is an outer wall portion forming an outer shell of the gas storage chamber and a partition wall portion protruding from the upper wall surface of the outer wall portion into the gas storage chamber, and provides a space above the gas storage chamber. It has a partition wall that divides it into a hydrogen storage part and an oxygen storage part.
The cathode of the pair of electrodes is located below the hydrogen reservoir.
The anode of the pair of electrodes is located below the oxygen reservoir.
The tube is a hydrogen gas generation system that communicates with the hydrogen storage unit.
水素ガスの生成方法であって、
電源に接続された水の電気分解用の一対の電極を、水中における予め定められた水深において周囲の水に曝して配置する工程と、
前記一対の電極に電流を流すことにより、前記一対の電極のうちの陰極から水素ガスを発生させる工程と、
前記発生した水素ガスを、前記水深に配置され、周囲の水と連通するガス貯蔵室に貯蔵する工程と、
前記水深よりも上方の海面に位置する船に搭載されている水素回収装置と前記ガス貯蔵室とを連通する管を介して、前記ガス貯蔵室内に貯蔵された水素ガスを、前記水素回収装置に導く工程と、
を備え
前記船には、前記一対の電極に接続される電源として機能する電源装置がさらに搭載され、
前記水素ガスの生成方法は、
前記電源装置と前記一対の電極とを電気的に接続する配線と、前記管と、を準備する準備工程であって、前記配線の一端を前記一対の電極に接続し、前記管の一端を前記ガス貯蔵室に接続し、前記配線の他端と前記管の他端とを、締結具により互いに固定すると共に、それぞれ前記海面に浮かぶブイに固定する準備工程と、
前記船を前記ガス貯蔵室の上方の位置に配置する工程と、
前記ブイに固定された前記配線の他端を、前記電源装置に電気的に接続する工程と、
前記ブイに固定された前記管の他端を、前記水素回収装置に接続する工程と、
をさらに備える、水素ガスの生成方法。
It is a method of producing hydrogen gas.
A process of arranging a pair of electrodes for electrolysis of water connected to a power source by exposing them to surrounding water at a predetermined depth in water.
A step of generating hydrogen gas from the cathode of the pair of electrodes by passing an electric current through the pair of electrodes.
A step of storing the generated hydrogen gas in a gas storage chamber arranged at the water depth and communicating with the surrounding water.
The hydrogen gas stored in the gas storage chamber is transferred to the hydrogen recovery device via a pipe connecting the hydrogen recovery device mounted on the ship located on the sea surface above the water depth and the gas storage chamber. The process of guiding and
Equipped with
The ship is further equipped with a power supply that functions as a power source connected to the pair of electrodes.
The hydrogen gas generation method is as follows.
In the preparatory step of preparing the wiring for electrically connecting the power supply device and the pair of electrodes and the tube, one end of the wiring is connected to the pair of electrodes and one end of the tube is connected to the tube. A preparatory step of connecting to a gas storage chamber, fixing the other end of the wiring and the other end of the pipe to each other with fasteners, and fixing them to the buoy floating on the sea surface, respectively.
The process of arranging the ship above the gas storage chamber and
A step of electrically connecting the other end of the wiring fixed to the buoy to the power supply device,
A step of connecting the other end of the pipe fixed to the buoy to the hydrogen recovery device, and
A method for producing hydrogen gas.
JP2018129920A 2018-07-09 2018-07-09 Hydrogen gas generation system and hydrogen gas generation method Active JP7067325B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018129920A JP7067325B2 (en) 2018-07-09 2018-07-09 Hydrogen gas generation system and hydrogen gas generation method
US16/446,782 US20200010963A1 (en) 2018-07-09 2019-06-20 System and method for producing hydrogen gas
CN201910593938.1A CN110699699A (en) 2018-07-09 2019-07-03 Hydrogen generation system and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129920A JP7067325B2 (en) 2018-07-09 2018-07-09 Hydrogen gas generation system and hydrogen gas generation method

Publications (3)

Publication Number Publication Date
JP2020007187A JP2020007187A (en) 2020-01-16
JP2020007187A5 JP2020007187A5 (en) 2021-04-08
JP7067325B2 true JP7067325B2 (en) 2022-05-16

Family

ID=69102547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129920A Active JP7067325B2 (en) 2018-07-09 2018-07-09 Hydrogen gas generation system and hydrogen gas generation method

Country Status (3)

Country Link
US (1) US20200010963A1 (en)
JP (1) JP7067325B2 (en)
CN (1) CN110699699A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003005A (en) * 2018-06-28 2020-01-09 トヨタ自動車株式会社 Hydrogen gas compression system and hydrogen gas compression method
CN114935106B (en) * 2022-05-24 2024-04-05 苏州西热节能环保技术有限公司 Deep sea compressed hydrogen structure
WO2024030542A2 (en) * 2022-08-04 2024-02-08 Astron Aerospace Llc Systems and methods for production of hydrogen and oxygen
WO2024241227A1 (en) * 2023-05-23 2024-11-28 Shchepanovskyi Yevhenii Adamovych Method for producing hydrogen in a compressed or liquid state
WO2025045345A1 (en) * 2023-08-28 2025-03-06 Royal Eijkelkamp B.V. Device for generation and storage of hydrogen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218385A (en) 2005-02-10 2006-08-24 Shiga Pref Gov Hydrogen recovery type electrolytic water quality improvement device and hydrogen recovery type electrolytic water quality improvement method.
US20120222953A1 (en) 2011-03-02 2012-09-06 Anderson Kenneth W Systems and Methods for Producing Pressurized Gases from Polar Molecular Liquids at Depth
WO2018105166A1 (en) 2016-12-09 2018-06-14 1H3H株式会社 System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271383A (en) * 1990-03-20 1991-12-03 Taisei Corp Apparatus for producing and storing gaseous hydrogen
US6692621B1 (en) * 1999-07-28 2004-02-17 Nate International Apparatus for hydrogen production
CN102212837B (en) * 2011-05-10 2013-05-01 北京博莱特威能源技术有限公司 Hydrogen production technology and generation device with high efficiency
WO2013028594A2 (en) * 2011-08-24 2013-02-28 Dresser-Rand Company Efficient and reliable subsea compression system
US9309601B2 (en) * 2012-10-16 2016-04-12 GenEon Technologies LLC Electrochemical activation of water
US9222178B2 (en) * 2013-01-22 2015-12-29 GTA, Inc. Electrolyzer
FR3004179B1 (en) * 2013-04-08 2015-05-01 Commissariat Energie Atomique METHODS FOR OBTAINING COMBUSTIBLE GAS FROM WATER ELECTROLYSIS (EHT) OR CO-ELECTROLYSIS WITH H2O / CO2 WITHIN THE SAME ENCLOSURE, CATALYTIC REACTOR AND SYSTEM THEREOF
US20150144500A1 (en) * 2013-07-31 2015-05-28 Guy L. James Devices and methods for producing and utilizing hydrogen
US10011912B2 (en) * 2013-08-05 2018-07-03 University Of Yamanashi Hydrogen refining pressure-boosting device
JP6139594B2 (en) * 2014-08-06 2017-05-31 日本システム企画株式会社 Hydrogen energy supply system using ocean current power generation
TWM555856U (en) * 2016-08-10 2018-02-21 Tanah Process Ltd Hydrogen generator, and hydrogen gas inhaler including the same
KR102005805B1 (en) * 2018-06-05 2019-10-01 (주)케이워터크레프트 Self contained oceanic drone and method for oceanographic survey and surveillance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218385A (en) 2005-02-10 2006-08-24 Shiga Pref Gov Hydrogen recovery type electrolytic water quality improvement device and hydrogen recovery type electrolytic water quality improvement method.
US20120222953A1 (en) 2011-03-02 2012-09-06 Anderson Kenneth W Systems and Methods for Producing Pressurized Gases from Polar Molecular Liquids at Depth
WO2018105166A1 (en) 2016-12-09 2018-06-14 1H3H株式会社 System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system

Also Published As

Publication number Publication date
US20200010963A1 (en) 2020-01-09
CN110699699A (en) 2020-01-17
JP2020007187A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7067325B2 (en) Hydrogen gas generation system and hydrogen gas generation method
AU2014245928B2 (en) Seabed resource lifting device
CA2835615C (en) Blue power generation system
JP7019159B1 (en) Power generation system
KR20120038062A (en) A plant for producting hydrogen using offshore wind power generator
ATE491053T1 (en) HIGH PRESSURE ELECTROLYSIS PLANT AND METHOD FOR INERTIZING SUCH A PLANT
CN102586785A (en) System and method for cathodic protection of a subsea well-assembly
US20200003365A1 (en) Hydrogen gas compressing system and hydrogen gas compression method
WO2018096713A1 (en) Regenerative fuel cell system and water electrolysis system
US12286199B2 (en) Offshore production facility arrangement
CN108909993A (en) A kind of unmanned submarines and cabin pressure adjusting method
US9222178B2 (en) Electrolyzer
JP5152569B2 (en) Energy system
EP4298341A1 (en) Floatable wind turbine for producing hydrogen
KR20120026337A (en) Hydrogen generator for offshore wind turbine
US20060011472A1 (en) Deep well geothermal hydrogen generator
US20120222953A1 (en) Systems and Methods for Producing Pressurized Gases from Polar Molecular Liquids at Depth
JP2020012481A (en) Gas storage system
GB2579779A (en) Power generation for subsea marine applications
US20130341182A1 (en) Modular Systems for Producing Pressurized Gases from Polar Molecular Liquids at Depth or Under Pressure
CN104021827A (en) Semisubmersible platform floating nuclear power station and material changing method
JPH05225991A (en) Power supply for deep sea station
JP4909521B2 (en) Solid polymer water electrolyzer
JP2006348328A (en) Electrolysis cell and gas generation and storage device
JP2006199995A (en) High pressure vessel storage type water electrolysis hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151