[go: up one dir, main page]

JP7065797B2 - Fibrous cellulose-containing composition, its production method, and membrane - Google Patents

Fibrous cellulose-containing composition, its production method, and membrane Download PDF

Info

Publication number
JP7065797B2
JP7065797B2 JP2019019741A JP2019019741A JP7065797B2 JP 7065797 B2 JP7065797 B2 JP 7065797B2 JP 2019019741 A JP2019019741 A JP 2019019741A JP 2019019741 A JP2019019741 A JP 2019019741A JP 7065797 B2 JP7065797 B2 JP 7065797B2
Authority
JP
Japan
Prior art keywords
cellulose
mass
less
fibrous cellulose
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019741A
Other languages
Japanese (ja)
Other versions
JP2020125425A (en
Inventor
萌 水上
速雄 伏見
寛一 砂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2019019741A priority Critical patent/JP7065797B2/en
Publication of JP2020125425A publication Critical patent/JP2020125425A/en
Application granted granted Critical
Publication of JP7065797B2 publication Critical patent/JP7065797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、微細繊維状セルロース含有組成物、その製造方法及び膜に関する。 The present invention relates to a fine fibrous cellulose-containing composition, a method for producing the same, and a membrane thereof.

近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10μm以上50μm以下の繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。 In recent years, due to the substitution of petroleum resources and the growing environmental awareness, materials using reproducible natural fibers have been attracting attention. Among natural fibers, fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less, particularly fibrous cellulose (pulp) derived from wood, has been widely used mainly as paper products.

繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。近年は、このような微細繊維状セルロースから構成されるシートや、微細繊維状セルロース含有シートと樹脂を含む複合シートが開発されている。また、微細繊維状セルロースは増粘作用を発揮することができるため、微細繊維状セルロースを増粘剤として各種用途に用いることも検討されている。 As the fibrous cellulose, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known. In recent years, a sheet composed of such fine fibrous cellulose and a composite sheet containing a fine fibrous cellulose-containing sheet and a resin have been developed. Further, since the fine fibrous cellulose can exert a thickening effect, it is also considered to use the fine fibrous cellulose as a thickener for various purposes.

微細繊維状セルロースの分散体の製造方法として、特許文献1には、化学変性したセルロース繊維を解繊してセルロースナノファイバー分散体とすることが記載されている。特許文献1には、化学変性したセルロース繊維として、酵素で処理されたセルロース繊維を使用してもよいことが記載されている。また、特許文献2には、酸化セルロースを水性媒体中で微細化して、微細セルロース繊維の分散液を得ることが記載されている。特許文献2にはセルロース原料に酵素処理を行ってもよいことが記載されている。 As a method for producing a dispersion of fine fibrous cellulose, Patent Document 1 describes that chemically modified cellulose fibers are defibrated to obtain a cellulose nanofiber dispersion. Patent Document 1 describes that an enzyme-treated cellulose fiber may be used as the chemically modified cellulose fiber. Further, Patent Document 2 describes that finely divided cellulose oxide is made into an aqueous medium to obtain a dispersion liquid of fine cellulose fibers. Patent Document 2 describes that the cellulose raw material may be treated with an enzyme.

特開2017-2136号公報Japanese Unexamined Patent Publication No. 2017-2136 特開2015-221844号公報JP-A-2015-221844

本発明者らは、塗料の補強を目的として微細繊維状セルロースを使用することを検討してきた。しかし、微細繊維状セルロースは高粘度であることから、粘度上昇を望まない使用用途では、補強に十分な量の微細繊維状セルロースを添加することが困難であった。たとえば塗料により塗膜を形成する際には、微細繊維状セルロースは、粘度が低い方がより塗工適性に優れている。本発明は、塗工適性に優れたセルロース含有組成物、その製造方法、および膜を提供することを解決すべき課題とする。 The present inventors have considered the use of fine fibrous cellulose for the purpose of reinforcing paints. However, since the fine fibrous cellulose has a high viscosity, it is difficult to add a sufficient amount of the fine fibrous cellulose for reinforcement in the usage where the increase in viscosity is not desired. For example, when forming a coating film with a paint, the lower the viscosity of the fine fibrous cellulose, the better the coating suitability. An object to be solved by the present invention is to provide a cellulose-containing composition having excellent coatability, a method for producing the same, and a film.

本発明者らは上記の課題を解決するために鋭意検討を行った結果、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースを含有する組成物において、酵素を添加して組成物の粘度を調節することにより、塗工適性に優れたセルロース含有組成物を提供できることを見出した。本発明はこれらの知見に基づいて完成したものである。
本発明は、以下の構成を有する。
As a result of diligent studies to solve the above problems, the present inventors have a fiber width of 1000 nm or less and contain a phosphite group or a fibrous cellulose having a substituent derived from the phosphite group. It has been found that a cellulose-containing composition having excellent coatability can be provided by adding an enzyme to the composition to adjust the viscosity of the composition. The present invention has been completed based on these findings.
The present invention has the following configurations.

[1] 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、タンパク質とを含むセルロース含有組成物であって、前記タンパク質は酵素を含み、前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-3質量部以下であり、前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が10mPa・s以上11000mPa・s以下である、セルロース含有組成物。
[2] 前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-7質量部以上である、[1]に記載のセルロース含有組成物。
[3] 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースとタンパク質とを含むセルロース含有組成物であって、前記タンパク質は酵素を含み、前記酵素のエンドグルカナーゼ活性が840U/L以下であり、前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が10mPa・s以上11000mPa・s以下である、セルロース含有組成物。
[4] 前記酵素のエンドグルカナーゼ活性が0.084U/L以上である、[3]に記載のセルロース含有組成物。
[5] 前記繊維状セルロースの重合度が、200以上450以下である、[1]から[4]の何れか一に記載のセルロース含有組成物。
[6] 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、タンパク質とを含む膜であって、前記タンパク質は酵素を含み、前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-3質量部以下である、膜。
[7] 前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-7質量部以上である、[6]に記載の膜。
[8] 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロース1質量部に対して、1×10-3質量部以下の酵素を添加する工程を含む、セルロース含有組成物の製造方法。
[1] A cellulose-containing composition containing a protein and a fibrous cellulose having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from the phosphite group, wherein the protein contains an enzyme. The protein content is 1 × 10 -3 parts by mass or less with respect to 1 part by mass of the fibrous cellulose, and the solid content concentration of the fibrous cellulose is 0.4% by mass at 25 ° C. and 3 rpm. A cellulose-containing composition having a viscosity of 10 mPa · s or more and 11000 mPa · s or less measured under the above conditions.
[2] The cellulose-containing composition according to [1], wherein the content of the protein is 1 × 10 -7 parts by mass or more with respect to 1 part by mass of the fibrous cellulose.
[3] A cellulose-containing composition having a fiber width of 1000 nm or less and containing a fibrous cellulose having a phosphite group or a substituent derived from the phosphite group and a protein, wherein the protein contains an enzyme. The endoglucanase activity of the enzyme is 840 U / L or less, and the viscosity measured under the conditions of 25 ° C. and 3 rpm with a solid content concentration of 0.4% by mass of the fibrous cellulose is 10 mPa · s or more and 11000 mPa · s or less. Is a cellulose-containing composition.
[4] The cellulose-containing composition according to [3], wherein the endoglucanase activity of the enzyme is 0.084 U / L or more.
[5] The cellulose-containing composition according to any one of [1] to [4], wherein the degree of polymerization of the fibrous cellulose is 200 or more and 450 or less.
[6] A membrane containing a protein and a fibrous cellulose having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from the phosphite group, wherein the protein contains an enzyme and the protein. The content of the membrane is 1 × 10 -3 parts by mass or less with respect to 1 part by mass of the fibrous cellulose.
[7] The membrane according to [6], wherein the content of the protein is 1 × 10 -7 parts by mass or more with respect to 1 part by mass of the fibrous cellulose.
[8] Add an enzyme of 1 × 10 -3 parts by mass or less to 1 part by mass of fibrous cellulose having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from a phosphite group. A method for producing a cellulose-containing composition, which comprises a step.

本発明によれば、塗工適性に優れたセルロース含有組成物を提供することができる。 According to the present invention, it is possible to provide a cellulose-containing composition having excellent coatability.

図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and the pH of a fibrous cellulose-containing slurry having a phosphoric acid group. 図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to the fibrous cellulose-containing slurry having a carboxy group.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments and specific examples, but the present invention is not limited to such embodiments.

(セルロース含有組成物)
本発明は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロース(以下、微細繊維状セルロースともいう)とタンパク質とを含むセルロース含有組成物であって、前記タンパク質は酵素を含み、前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-3質量部以下であり、前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が10mPa・s以上11000mPa・s以下である、セルロース含有組成物に関する。
(Cellulose-containing composition)
INDUSTRIAL APPLICABILITY The present invention is a cellulose-containing composition containing a fibrous cellulose (hereinafter, also referred to as fine fibrous cellulose) having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from the phosphite group, and a protein. The protein contains an enzyme, the content of the protein is 1 × 10 -3 parts by mass or less with respect to 1 part by mass of the fibrous cellulose, and the solid content concentration of the fibrous cellulose is 0. The present invention relates to a cellulose-containing composition having a viscosity of 10 mPa · s or more and 11000 mPa · s or less measured under the conditions of 25 ° C. and 3 rpm as 4% by mass.

タンパク質の含有量は、繊維状セルロース1質量部に対して1×10-3質量部以下であればよく、1×10-4質量部以下が好ましく、1×10-5質量部以下がより好ましく、5.0×10-6質量部以下が特に好ましい。タンパク質の含有量は、繊維状セルロース1質量部に対して1×10-7質量部以上が好ましく、3×10-7質量部以上がより好ましく、1×10-6質量部以上がさらに好ましい。
タンパク質の含有量は、酵素の添加量を調整すること、又は酵素処理を含む微細繊維状セルロースの製造プロセスを調整すること等により制御できる。本実施形態では、たとえば酵素処理を行うタイミング等に起因してタンパク質量を調整することができる。タンパク質の含有量を上記の範囲内とすることにより良好な塗工適性を達成することができる。
The protein content may be 1 × 10 -3 parts by mass or less with respect to 1 part by mass of fibrous cellulose, preferably 1 × 10 -4 parts by mass or less, and more preferably 1 × 10 -5 parts by mass or less. , 5.0 × 10 -6 parts by mass or less is particularly preferable. The protein content is preferably 1 × 10 -7 parts by mass or more, more preferably 3 × 10 -7 parts by mass or more, and further preferably 1 × 10 -6 parts by mass or more with respect to 1 part by mass of fibrous cellulose.
The protein content can be controlled by adjusting the addition amount of the enzyme, adjusting the production process of the fine fibrous cellulose including the enzyme treatment, and the like. In this embodiment, the amount of protein can be adjusted, for example, depending on the timing of enzyme treatment. Good coatability can be achieved by keeping the protein content within the above range.

セルロース含有組成物におけるタンパク質の含有量は、例えばビュレット法、Lowry法、蛍光法、色素結合法によって求めることができる。ビュレット法によってタンパク質の含有量を求める場合には、牛血清アルブミン水溶液(タンパク質量が5.0質量%以下となるように調製したもの)に対し4倍量のビュレット薬を加えて混合し、20℃から25℃の環境下で30分放置した後、分光光度計を使用し540nmの吸光波長を測定し、測定値をもとに、検量線を引く。次に、セルロース含有組成物に対し、4倍量のビュレット試薬を加えてよく混合し、20℃から25℃の環境下で30分放置した後、分光光度計を使用し540nmの吸光波長を測定する。測定値を検量線へ書き込むことにより、セルロース含有組成物に含まれるタンパク質量を求めることができる。 The protein content in the cellulose-containing composition can be determined by, for example, a burette method, a Lowry method, a fluorescence method, or a dye binding method. When determining the protein content by the Bullet method, add 4 times the amount of the Bullet drug to the bovine serum albumin aqueous solution (prepared so that the protein content is 5.0% by mass or less), mix, and mix 20. After leaving it in an environment of ℃ to 25 ℃ for 30 minutes, the absorption wavelength of 540 nm is measured using a spectrophotometer, and a calibration curve is drawn based on the measured value. Next, 4 times the amount of the burette reagent was added to the cellulose-containing composition, mixed well, left to stand in an environment of 20 ° C to 25 ° C for 30 minutes, and then the absorption wavelength of 540 nm was measured using a spectrophotometer. do. By writing the measured value on the calibration curve, the amount of protein contained in the cellulose-containing composition can be determined.

さらに本発明は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースとタンパク質とを含むセルロース含有組成物であって、前記タンパク質は酵素を含み、前記酵素のエンドグルカナーゼ活性が840U/L以下であり、前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が10mPa・s以上11000mPa・s以下である、セルロース含有組成物に関する。 Further, the present invention is a cellulose-containing composition having a fiber width of 1000 nm or less and containing a fibrous cellulose having a phosphite group or a substituent derived from the phosphite group and a protein, wherein the protein comprises an enzyme. The endoglucanase activity of the enzyme is 840 U / L or less, and the viscosity measured under the conditions of 25 ° C. and 3 rpm with a solid content concentration of 0.4% by mass of the fibrous cellulose is 10 mPa · s or more and 11000 mPa ·. s or less, relating to a cellulose-containing composition.

酵素のエンドグルカナーゼ活性は、840U/L以下であればよい。酵素のエンドグルカナーゼ活性の下限値は、0.084U/L以上が好ましく、0.84U/L以上がより好ましく、1U/L以上がより好ましく、2U/L以上がさらに好ましく、3U/L以上が特に好ましい。酵素のエンドグルカナーゼ活性の上限値は、84U/L以下が好ましく、8.4U/L以下がより好ましく、7U/L以下がさらに好ましく、6U/L以下が特に好ましい。
酵素のエンドグルカナーゼ活性は、酵素の添加量を調整すること、又は酵素処理を含む微細繊維状セルロースの製造プロセスを調整すること等により制御できる。本実施形態では、たとえば酵素処理を行うタイミング等に起因して酵素のエンドグルカナーゼ活性を調整することができる。酵素のエンドグルカナーゼ活性を上記の範囲内とすることにより良好な塗工適性を達成することができる。
The endoglucanase activity of the enzyme may be 840 U / L or less. The lower limit of the endoglucanase activity of the enzyme is preferably 0.084 U / L or more, more preferably 0.84 U / L or more, more preferably 1 U / L or more, further preferably 2 U / L or more, and 3 U / L or more. Especially preferable. The upper limit of the endoglucanase activity of the enzyme is preferably 84 U / L or less, more preferably 8.4 U / L or less, further preferably 7 U / L or less, and particularly preferably 6 U / L or less.
The endoglucanase activity of the enzyme can be controlled by adjusting the addition amount of the enzyme, adjusting the production process of the fine fibrous cellulose including the enzyme treatment, and the like. In the present embodiment, the endoglucanase activity of the enzyme can be adjusted, for example, depending on the timing of the enzyme treatment. Good coatability can be achieved by keeping the endoglucanase activity of the enzyme within the above range.

セルロース含有組成物における酵素のエンドグルカナーゼ活性(EG活性とも言う)は、下記のように測定することができる。
濃度1%(W/V)のカルボキシメチルセルロースの基質溶液(濃度100mM、pH5.0の酢酸-酢酸ナトリウム緩衝液含有)を調製する。製造直後のセルロース含有組成物を予め緩衝液(前記同様)で希釈(希釈倍率は下記酵素溶液の吸光度が下記グルコース標準液から得られた検量線に入るようにする)する。90μlの前記基質溶液に前記希釈して得られた評価用スラリー溶液10μlを添加し、37℃、30分間反応させる。検量線を作成するために、イオン交換水(ブランク)、グルコース標準液(濃度0.5~5.6mMからすくなくとも濃度が異なる標準液4点)を選択し、それぞれ100μlを用意し、37℃、30分間保温する。前記反応後の酵素含有評価用スラリー溶液、検量線用ブランク及びグルコース標準液に、それぞれ300μlのDNS発色液(1.6質量%のNaOH、1質量%の3,5-ジニトロサリチル酸、30質量%の酒石酸カリウムナトリウム)を加えて、5分間煮沸し発色させる。発色後直ちに氷冷し、2mlのイオン交換水を加えてよく混合した。30分間静置した後、1時間以内に吸光度を測定する。吸光度の測定は96穴マイクロウェルプレートに200μlを分注し、マイクロプレートリーダーを用い、540nmの吸光度を測定する。ブランクの吸光度を差し引いた各グルコース標準液の吸光度とグルコース濃度を用い検量線を作成する。セルロース含有組成物中のグルコース相当生成量はセルロース含有組成物の吸光度からブランクの吸光度を引いてから検量線を用いて算出する。1分間に1μmolのグルコース等量の還元糖を生成する酵素量を1単位と定義し、下記式からEG活性を求める。
EG活性=緩衝液で希釈して得られたセルロース含有組成物1mlのグルコース相当生成量(μmol)/30分×希釈倍率
The endoglucanase activity (also referred to as EG activity) of the enzyme in the cellulose-containing composition can be measured as follows.
A substrate solution of carboxymethyl cellulose having a concentration of 1% (W / V) (concentration: 100 mM, containing a sodium acetate-sodium acetate buffer having a pH of 5.0) is prepared. Immediately after production, the cellulose-containing composition is diluted with a buffer solution (similar to the above) in advance (the dilution ratio is such that the absorbance of the enzyme solution below is within the calibration curve obtained from the glucose standard solution below). To 90 μl of the substrate solution, 10 μl of the diluted evaluation slurry solution is added, and the mixture is reacted at 37 ° C. for 30 minutes. To prepare a calibration curve, select ion-exchanged water (blank) and glucose standard solution (4 points of standard solution with at least different concentrations from 0.5 to 5.6 mM), prepare 100 μl each, and prepare at 37 ° C. Keep warm for 30 minutes. 300 μl of DNS color-developing solution (1.6% by mass NaOH, 1% by mass 3,5-dinitrosalicylic acid, 30% by mass, respectively, in the enzyme-containing evaluation slurry solution, calibration line blank, and glucose standard solution after the reaction. Add (potassium sodium tartrate) and boil for 5 minutes to develop color. Immediately after color development, the mixture was ice-cooled, 2 ml of ion-exchanged water was added, and the mixture was well mixed. After allowing to stand for 30 minutes, the absorbance is measured within 1 hour. For the measurement of absorbance, 200 μl is dispensed into a 96-well microwell plate, and the absorbance at 540 nm is measured using a microplate reader. A calibration curve is prepared using the absorbance and glucose concentration of each glucose standard solution minus the absorbance of the blank. The amount of glucose equivalent produced in the cellulose-containing composition is calculated by subtracting the absorbance of the blank from the absorbance of the cellulose-containing composition and then using a calibration curve. The amount of enzyme that produces 1 μmol of glucose equal amount of reducing sugar per minute is defined as 1 unit, and the EG activity is calculated from the following formula.
EG activity = Glucose equivalent production amount (μmol) of 1 ml of cellulose-containing composition obtained by diluting with a buffer solution / 30 minutes × dilution ratio

本発明のセルロース含有組成物は、繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が10mPa・s以上11000mPa・s以下であればよい。上記粘度の下限は、100mPa・s以上が好ましく、200mPa・s以上がより好ましく、500mPa・s以上がさらに好ましく、1000mPa・s以上が特に好ましい。上記粘度の上限は、10000mPa・s以下が好ましく、
8000mPa・s以下がより好ましく、6500mPa・s以下がより一層好ましく、5000mPa・s以下がさらに好ましく、4000mPa・s以下がさらに一層好ましく、3000mPa・s以下が特に好ましく、2000mPa・s以下が最も好ましい。
The cellulose-containing composition of the present invention may have a viscosity of 10 mPa · s or more and 11000 mPa · s or less measured under the conditions of 25 ° C. and a rotation speed of 3 rpm, where the solid content concentration of the fibrous cellulose is 0.4% by mass. The lower limit of the viscosity is preferably 100 mPa · s or more, more preferably 200 mPa · s or more, further preferably 500 mPa · s or more, and particularly preferably 1000 mPa · s or more. The upper limit of the viscosity is preferably 10,000 mPa · s or less.
It is more preferably 8000 mPa · s or less, further preferably 6500 mPa · s or less, further preferably 5000 mPa · s or less, further preferably 4000 mPa · s or less, particularly preferably 3000 mPa · s or less, and most preferably 2000 mPa · s or less.

上記粘度は、セルロース含有組成物の製造から24時間後に、イオン交換水を注ぎ、固形分濃度が0.4質量%となるよう調製し、その後、25℃の環境下にて24時間静置し、B型粘度計(No.3ローター、またはNo.2ローター、またはNo.1ローター)(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて25℃にて回転数3rpmで3分間回転させて測定した粘度である。 The viscosity is adjusted to a solid content concentration of 0.4% by mass by pouring ion-exchanged water 24 hours after the production of the cellulose-containing composition, and then allowed to stand for 24 hours in an environment of 25 ° C. , B-type viscometer (No. 3 rotor, No. 2 rotor, or No. 1 rotor) (BLOOKFIELD, analog viscometer T-LVT) was rotated at 25 ° C. at a rotation speed of 3 rpm for 3 minutes. It is the viscosity measured by.

本発明のセルロース含有組成物は、上記構成を有することにより、塗工適性が向上している。本発明においては、解繊後の微細繊維状セルロースに対して酵素を加えることにより機械的処理に頼らない微細繊維状セルロースの粘度の調整を効率的に行うことができ、これにより塗工適性の向上を図ることができる。また、解繊後の微細繊維状セルロースに酵素を添加することにより効率的な粘度の減少を実現できることから、添加する酵素の量を低減することができる。本発明のセルロース含有組成物を用いて膜を作製する場合には、上記した効果により、膜の光学物性及び機械物性を良好なものとすることができる。これは、酵素を多量に添加した場合には、酵素由来のタンパク質が結晶化することにより物性が劣化することを抑制できることによるものと推測される。 The cellulose-containing composition of the present invention has the above-mentioned structure, so that the coatability is improved. In the present invention, by adding an enzyme to the fine fibrous cellulose after defibration, the viscosity of the fine fibrous cellulose can be efficiently adjusted without relying on mechanical treatment, which makes it suitable for coating. It can be improved. Further, since the viscosity can be efficiently reduced by adding the enzyme to the fine fibrous cellulose after defibration, the amount of the enzyme to be added can be reduced. When a film is produced using the cellulose-containing composition of the present invention, the optical and mechanical properties of the film can be improved by the above-mentioned effects. It is presumed that this is because when a large amount of the enzyme is added, it is possible to suppress the deterioration of the physical properties due to the crystallization of the protein derived from the enzyme.

セルロース含有組成物の形態は特に制限されるものではなく、例えば、粉体や、スラリー、固体といった種々の形態で存在することができる。中でもセルロース含有組成物は、スラリーであることが好ましい。 The form of the cellulose-containing composition is not particularly limited, and can exist in various forms such as powder, slurry, and solid. Above all, the cellulose-containing composition is preferably a slurry.

(繊維状セルロース)
本発明のセルロース含有組成物は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基(単に亜リン酸基ということもある)を有する繊維状セルロース(微細繊維状セルロースとも言う)を含む。
(Fibrous cellulose)
The cellulose-containing composition of the present invention has a fiber width of 1000 nm or less and has a phosphite group or a substituent derived from the phosphite group (sometimes simply referred to as a phosphite group). Also called phosphoric acid).

微細繊維状セルロースの含有量は、セルロース含有組成物の全固形分量に対して、0.5質量%以上であることが好ましく、5質量%以上であることがより好ましく、20質量%以上であることがより一層好ましく、40質量%以上であることがさらに好ましく、50質量%以上であることがさらに一層好ましく、55質量%以上であることが最も好ましい。また、微細繊維状セルロースの含有量は95質量%以下であることが好ましい。 The content of the fine fibrous cellulose is preferably 0.5% by mass or more, more preferably 5% by mass or more, and more preferably 20% by mass or more, based on the total solid content of the cellulose-containing composition. It is even more preferably 40% by mass or more, further preferably 50% by mass or more, and most preferably 55% by mass or more. The content of the fine fibrous cellulose is preferably 95% by mass or less.

微細繊維状セルロースを得るための繊維状セルロース原料としては特に限定されないが、入手しやすく安価である点から、パルプを用いることが好ましい。パルプとしては、木材パルプ、非木材パルプ、脱墨パルプを挙げることができる。木材パルプとしては例えば、広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)、酸素漂白クラフトパルプ(OKP)等の化学パルプ等が挙げられる。また、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられるが、特に限定されない。非木材パルプとしてはコットンリンターやコットンリント等の綿系パルプ、麻、麦わら、バガス等の非木材系パルプ、ホヤや海草等から単離されるセルロース、キチン、キトサン等が挙げられるが、特に限定されない。脱墨パルプとしては古紙を原料とする脱墨パルプが挙げられるが、特に限定されない。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中で、入手のしやすさという点で、セルロースを含む木材パルプ、脱墨パルプが好ましい。木材パルプの中でも化学パルプはセルロース比率が大きいため、繊維微細化(解繊)時の微細繊維状セルロースの収率が高く、またパルプ中のセルロースの分解が小さく、軸比の大きい長繊維の微細繊維状セルロースが得られる点で好ましい。中でもクラフトパルプ、サルファイトパルプが最も好ましく選択される。軸比の大きい長繊維の微細繊維状セルロースを含有する膜は高強度が得られる傾向がある。 The raw material for fibrous cellulose for obtaining fine fibrous cellulose is not particularly limited, but pulp is preferable because it is easily available and inexpensive. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp. Examples of wood pulp include broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), unbleached kraft pulp (UKP), and oxygen bleached craft. Examples thereof include chemical pulp such as pulp (OKP). Examples thereof include semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), mechanical pulp such as crushed wood pulp (GP) and thermomechanical pulp (TMP, BCTMP), but are not particularly limited. Examples of the non-wood pulp include cotton pulp such as cotton linter and cotton lint, non-wood pulp such as hemp, straw and bagasse, cellulose isolated from sea squirts and seaweed, chitin, chitosan and the like, but are not particularly limited. .. Examples of the deinked pulp include deinked pulp made from recycled paper, but the pulp is not particularly limited. As the pulp of this embodiment, one of the above may be used alone, or two or more of them may be mixed and used. Among the above pulps, wood pulp containing cellulose and deinked pulp are preferable in terms of availability. Among wood pulps, chemical pulp has a large cellulose ratio, so the yield of fine fibrous cellulose during fiber finening (defibration) is high, the decomposition of cellulose in the pulp is small, and the fineness of long fibers with a large axial ratio It is preferable in that fibrous cellulose can be obtained. Of these, kraft pulp and sulfite pulp are most preferably selected. A film containing fine fibrous cellulose of long fibers having a large axial ratio tends to obtain high strength.

微細繊維状セルロースの平均繊維幅は、電子顕微鏡で観察して、1000nm以下である。平均繊維幅は、好ましくは2nm以上1000nm以下、より好ましくは2nm以上1000nm未満、より好ましくは2nm以上100nm以下であり、より好ましくは2nm以上50nm以下であり、さらに好ましくは2nm以上10nm以下であるが、特に限定されない。微細繊維状セルロースの平均繊維幅が2nm未満であると、セルロース分子として水に溶解しているため、微細繊維状セルロースとしての物性(強度や剛性、寸法安定性)が発現しにくくなる傾向がある。なお、微細繊維状セルロースは、たとえば繊維幅が1000nm以下である単繊維状のセルロースである。 The average fiber width of the fine fibrous cellulose is 1000 nm or less as observed with an electron microscope. The average fiber width is preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and less than 1000 nm, more preferably 2 nm or more and 100 nm or less, more preferably 2 nm or more and 50 nm or less, and further preferably 2 nm or more and 10 nm or less. , Not particularly limited. When the average fiber width of the fine fibrous cellulose is less than 2 nm, it is dissolved in water as a cellulose molecule, so that the physical properties (strength, rigidity, dimensional stability) of the fine fibrous cellulose tend to be difficult to develop. .. The fine fibrous cellulose is, for example, a single fibrous cellulose having a fiber width of 1000 nm or less.

微細繊維状セルロースの電子顕微鏡観察による繊維幅の測定は以下のようにして行う。濃度0.05質量%以上0.1質量%以下の微細繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。 The fiber width is measured by observing the fine fibrous cellulose with an electron microscope as follows. An aqueous suspension of fine fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less was prepared, and this suspension was cast onto a hydrophilized carbon film-coated grid to form a sample for TEM observation. do. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Observation with an electron microscope image is performed at a magnification of 1000 times, 5000 times, 10000 times, or 50,000 times depending on the width of the constituent fibers. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.

(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
(1) A straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.

上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。このように少なくとも20本×2×3=120本の繊維幅を読み取る。微細繊維状セルロースの平均繊維幅(単に、「繊維幅」ということもある。)はこのように読み取った繊維幅の平均値である。 The width of the fiber intersecting the straight line X and the straight line Y is visually read with respect to the observation image satisfying the above conditions. In this way, at least three sets of images of the non-overlapping surface portions are observed, and the widths of the fibers intersecting the straight lines X and Y are read for each image. In this way, at least 20 fibers × 2 × 3 = 120 fibers are read. The average fiber width of the fine fibrous cellulose (sometimes simply referred to as "fiber width") is the average value of the fiber width read in this way.

微細繊維状セルロースの繊維長は特に限定されないが、0.1μm以上1000μm以下が好ましく、0.1μm以上800μm以下がさらに好ましく、0.1μm以上600μm以下が特に好ましい。繊維長を上記範囲内とすることにより、微細繊維状セルロースの結晶領域の破壊を抑制でき、また微細繊維状セルロースのスラリー粘度を適切な範囲とすることができる。なお、微細繊維状セルロースの繊維長は、TEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and particularly preferably 0.1 μm or more and 600 μm or less. By setting the fiber length within the above range, the destruction of the crystal region of the fine fibrous cellulose can be suppressed, and the slurry viscosity of the fine fibrous cellulose can be set within an appropriate range. The fiber length of the fine fibrous cellulose can be obtained by image analysis by TEM, SEM, or AFM.

微細繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状セルロースがI型結晶構造をとっていることは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。
微細繊維状セルロースに占めるI型結晶構造の割合は30%以上であることが好ましく、より好ましくは50%以上、さらに好ましくは70%以上である。この場合、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
The fine fibrous cellulose preferably has an I-type crystal structure. Here, the fact that the fine fibrous cellulose has an I-type crystal structure can be identified in the diffraction profile obtained from the wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418 Å) monochromatic with graphite. Specifically, it can be identified by having typical peaks at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less.
The ratio of the type I crystal structure to the fine fibrous cellulose is preferably 30% or more, more preferably 50% or more, still more preferably 70% or more. In this case, further excellent performance can be expected in terms of heat resistance and the development of a low coefficient of linear thermal expansion. The crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).

微細繊維状セルロースは、亜リン酸基又は亜リン酸基由来の置換基を有することが好ましい。亜リン酸基に由来する置換基は、亜リン酸基の塩であってもよい。 The fine fibrous cellulose preferably has a phosphorous acid group or a substituent derived from the phosphorous acid group. The substituent derived from the phosphorous acid group may be a salt of the phosphorous acid group.

本発明では、亜リン酸基又は亜リン酸基に由来する置換基は、例えば、下記式(2)で表される置換基である。

Figure 0007065797000001
In the present invention, the phosphorous acid group or the substituent derived from the phosphorous acid group is, for example, a substituent represented by the following formula (2).
Figure 0007065797000001

式(2)中、bは自然数であり、mは任意の数であり、b×m=1である。αは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。中でも、αは水素原子であることが特に好ましい。なお、式(2)におけるαには、セルロース分子鎖に由来する基は含まれない。 In equation (2), b is a natural number, m is an arbitrary number, and b × m = 1. α is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon group. , An unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. Above all, it is particularly preferable that α is a hydrogen atom. The α in the formula (2) does not include a group derived from the cellulose molecular chain.

式(2)のαで表される飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group represented by α in the formula (2) include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited. Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but the group is not particularly limited. Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like. Examples of the unsaturated-linear hydrocarbon group include, but are not limited to, a vinyl group, an allyl group and the like. Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like. Examples of the aromatic group include, but are not limited to, a phenyl group, a naphthyl group and the like.

また、αにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、亜リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。 Further, as the inducing group in α, a functional group in which at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted with respect to the main chain or side chain of the above-mentioned various hydrocarbon groups. The group is mentioned, but is not particularly limited. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to the above range, the molecular weight of the phosphorous acid group can be set to an appropriate range, the penetration into the fiber raw material is facilitated, and the yield of the fine cellulose fiber is increased. It can also be increased.

式(2)におけるβb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 Β b + in the formula (2) is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include aliphatic ammonium or aromatic ammonium, and examples of monovalent or higher valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, and lithium. Examples thereof include cations of divalent metals such as calcium and magnesium, hydrogen ions and the like, but the present invention is not particularly limited. These may be applied alone or in combination of two or more. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β is heated and is easily industrially used, but is not particularly limited.

なお、微細繊維状セルロースは、亜リン酸基又は亜リン酸基由来の置換基に加えて、さらにリン酸基又はリン酸基に由来する基を有していてもよい。リン酸基又はリン酸基に由来する基は、例えば、下記式(1)もしくは(3)で表される置換基である。なお、リン酸基又はリン酸基に由来する基は、下記式(3)で表されるような縮合リンオキソ酸基であってもよい。 The fine fibrous cellulose may have a phosphoric acid group or a group derived from the phosphoric acid group in addition to the phosphite group or the substituent derived from the phosphite group. The phosphate group or the group derived from the phosphoric acid group is, for example, a substituent represented by the following formula (1) or (3). The phosphoric acid group or the group derived from the phosphoric acid group may be a condensed phosphorus oxo acid group as represented by the following formula (3).

Figure 0007065797000002
式(1)中、a及びbは自然数であり、mは任意の数である(ただし、a=b×mである)。α及びα’のうちa個がO-であり、残りはORである。ここで、Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(1)におけるαは、セルロース分子鎖に由来する基であってもよい。
Figure 0007065797000002
In the formula (1), a and b are natural numbers, and m is an arbitrary number (where a = b × m). Of α and α', a are O- and the rest are OR. Here, R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, or an unsaturated-branched chain. Hydrocarbon groups, unsaturated-cyclic hydrocarbon groups, aromatic groups, or inducing groups thereof. In addition, α in the formula (1) may be a group derived from a cellulose molecular chain.

Figure 0007065797000003
Figure 0007065797000003

式(3)中、a及びbは自然数であり、mは任意の数であり、nは2以上の自然数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR又はORのいずれかである。ここで、Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(3)におけるαは、セルロース分子鎖に由来する基であってもよい。 In the formula (3), a and b are natural numbers, m is an arbitrary number, and n is a natural number of 2 or more (where a = b × m). Of α 1 , α 2 , ..., α n and α', a are O - and the rest are either R or OR. Here, R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, or an unsaturated-branched chain. Hydrocarbon groups, unsaturated-cyclic hydrocarbon groups, aromatic groups, or inducing groups thereof. In addition, α in the formula (3) may be a group derived from a cellulose molecular chain.

式(1)及び(3)における各基の具体的例示は、式(2)における各基の具体的例示と同様である。また、式(1)及び(3)におけるβb+の具体的例示は、式(2)におけるβb+の具体的例示と同様である。 The specific examples of each group in the formulas (1) and (3) are the same as the specific examples of each group in the formula (2). Further, the specific examples of β b + in the formulas (1) and (3) are the same as the specific examples of β b + in the formula (2).

微細繊維状セルロースが亜リン酸基を置換基として有することは、微細繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースがリン酸基を置換基として有することは、繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1230cm-1付近にリン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースが亜リン酸基やリン酸基を置換基として有することは、NMRを用いて化学シフトを確認する方法や、元素分析に滴定を組み合わせる方法などでも確認できる。 The fact that the fine fibrous cellulose has a phosphite group as a substituent means that the infrared absorption spectrum of the dispersion containing the fine fibrous cellulose is measured, and the phosphite is a metamorphic form of the phosphite group in the vicinity of 1210 cm -1 . It can be confirmed by observing the absorption of a certain phosphonate group based on P = O. In addition, the fact that the fibrous cellulose has a phosphoric acid group as a substituent means that the infrared absorption spectrum of the dispersion containing the fibrous cellulose is measured, and the absorption of the phosphoric acid group based on P = O is performed in the vicinity of 1230 cm -1 . It can be confirmed by observing. Further, the fact that fibrous cellulose has a phosphite group or a phosphate group as a substituent can be confirmed by a method of confirming a chemical shift by using NMR, a method of combining titration with element analysis, or the like.

<亜リン酸基の導入>
亜リン酸基の導入は、セルロースを含む繊維原料に対し、亜リン酸基を有する化合物及びその塩から選択される少なくとも1種(以下、「亜リン酸化試薬」又は「化合物A」という)を反応させることにより行うことができる。このような亜リン酸化試薬は、乾燥状態または湿潤状態の繊維原料に粉末や水溶液の状態で混合してもよい。また別の例としては、繊維原料のスラリーに亜リン酸化試薬の粉末や水溶液を添加してもよい。
<Introduction of phosphorous acid group>
For the introduction of the phosphite group, at least one selected from a compound having a phosphite group and a salt thereof (hereinafter referred to as "subphosphorylation reagent" or "compound A") is introduced into the fiber raw material containing cellulose. It can be done by reacting. Such a subphosphorylation reagent may be mixed with a dry or wet fiber raw material in the form of a powder or an aqueous solution. As another example, a powder or an aqueous solution of a subphosphorylation reagent may be added to the slurry of the fiber raw material.

亜リン酸基の導入は、セルロースを含む繊維原料に対し、亜リン酸基を有する化合物及びその塩から選択される少なくとも1種(亜リン酸化試薬又は化合物A)を反応させることにより行うことができる。なお、この反応は、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」という)の存在下で行ってもよい。 The introduction of the phosphite group can be carried out by reacting a fiber raw material containing cellulose with at least one selected from a compound having a phosphite group and a salt thereof (subphosphorylation reagent or compound A). can. This reaction may be carried out in the presence of at least one selected from urea and its derivatives (hereinafter referred to as "Compound B").

化合物Aを化合物Bの共存下で繊維原料に作用させる方法の一例としては、乾燥状態または湿潤状態の繊維原料に化合物A及び化合物Bの粉末や水溶液を混合する方法が挙げられる。また別の例としては、繊維原料のスラリーに化合物A及び化合物Bの粉末や水溶液を添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態の繊維原料に化合物A及び化合物Bの水溶液を添加する方法、または湿潤状態の繊維原料に化合物A及び化合物Bの粉末や水溶液を添加する方法が好ましい。また、化合物Aと化合物Bは同時に添加してもよいし、別々に添加してもよい。また、初めに反応に供試する化合物Aと化合物Bを水溶液として添加して、圧搾により余剰の薬液を除いてもよい。繊維原料の形態は綿状や薄いシート状であることが好ましいが、特に限定されない。 As an example of the method of allowing the compound A to act on the fiber raw material in the coexistence of the compound B, there is a method of mixing the powder or the aqueous solution of the compound A and the compound B with the fiber raw material in a dry state or a wet state. Another example is a method of adding a powder or an aqueous solution of compound A and compound B to a slurry of a fiber raw material. Of these, since the reaction uniformity is high, a method of adding an aqueous solution of compound A and compound B to a dry fiber raw material, or adding a powder or aqueous solution of compound A and compound B to a wet fiber raw material. The method is preferred. Further, compound A and compound B may be added at the same time or separately. Further, the compound A and the compound B to be tested in the reaction may be added as an aqueous solution first, and the excess chemical solution may be removed by pressing. The form of the fiber raw material is preferably cotton-like or thin sheet-like, but is not particularly limited.

本実施態様で使用する化合物Aは、亜リン酸基を有する化合物及びその塩から選択される少なくとも1種である。亜リン酸基を有する化合物としては亜リン酸を挙げることができ、亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。亜リン酸基を有する化合物の塩としては、亜リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リンオキソ酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、または、亜リン酸のアンモニウム塩が好ましく用いられる。 The compound A used in this embodiment is at least one selected from a compound having a phosphorous acid group and a salt thereof. Examples of the compound having a phosphite group include phosphite, and examples of the phosphite include 99% phosphoric acid (phosphonic acid). Examples of the salt of the compound having a phosphite group include a lithium salt of phosphite, a sodium salt, a potassium salt, an ammonium salt and the like, and these can have various degrees of neutralization. Of these, phosphite and phosphite are highly efficient in introducing a phosphorus oxo acid group, are more likely to improve defibration efficiency in the defibration step described later, are low in cost, and are easy to apply industrially. Sodium salts of acids, potassium salts of phosphite, or ammonium salts of phosphite are preferably used.

また、反応の均一性が高まり、かつ亜リン酸基導入の効率が高くなることから化合物Aは水溶液として用いることが好ましい。化合物Aの水溶液のpHは特に限定されないが、亜リン酸基の導入の効率が高くなることから7以下であることが好ましく、パルプ繊維の加水分解を抑える観点からpH3以上pH7以下がさらに好ましい。化合物Aの水溶液のpHは例えば、亜リン酸基を有する化合物のうち、酸性を示すものとアルカリ性を示すものを併用し、その量比を変えて調整してもよい。化合物Aの水溶液のpHは、亜リン酸基を有する化合物のうち、酸性を示すものに無機アルカリまたは有機アルカリを添加すること等により調整してもよい。 Further, the compound A is preferably used as an aqueous solution because the uniformity of the reaction is enhanced and the efficiency of introducing the phosphite group is increased. The pH of the aqueous solution of the compound A is not particularly limited, but is preferably 7 or less because the efficiency of introducing a phosphorous acid group is high, and more preferably pH 3 or more and pH 7 or less from the viewpoint of suppressing hydrolysis of pulp fibers. The pH of the aqueous solution of the compound A may be adjusted, for example, by using a compound having a phosphorous acid group in combination with an acidic compound and an alkaline compound, and changing the amount ratio thereof. The pH of the aqueous solution of compound A may be adjusted by adding an inorganic alkali or an organic alkali to a compound having a phosphorous acid group and showing acidity.

繊維原料に対する化合物Aの添加量は特に限定されないが、化合物Aの添加量をリン原子量に換算した場合、繊維原料(絶乾質量)に対するリン原子の添加量は0.5質量%以上100質量%以下が好ましく、1質量%以上50質量%以下がより好ましく、2質量%以上30質量%以下が最も好ましい。繊維原料に対するリン原子の添加量が上記範囲内であれば、微細繊維状セルロースの収率をより向上させることができる。また、繊維原料に対するリン原子の添加量を100質量%以下とすることにより、亜リン酸化効率を高めつつも使用する化合物Aのコストを抑制することができる。 The amount of compound A added to the fiber raw material is not particularly limited, but when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more and 100% by mass. The following is preferable, 1% by mass or more and 50% by mass or less is more preferable, and 2% by mass or more and 30% by mass or less is most preferable. When the amount of phosphorus atom added to the fiber raw material is within the above range, the yield of fine fibrous cellulose can be further improved. Further, by setting the addition amount of the phosphorus atom to the fiber raw material to 100% by mass or less, the cost of the compound A to be used can be suppressed while increasing the subphosphorylation efficiency.

本実施態様で使用する化合物Bとしては、尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、1-エチル尿素などが挙げられる。 Examples of compound B used in this embodiment include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.

化合物Bは化合物A同様に水溶液として用いることが好ましい。また、反応の均一性が高まることから化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。繊維原料(絶乾質量)に対する化合物Bの添加量は1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましく、150質量%以上300質量%以下であることが特に好ましい。 Compound B is preferably used as an aqueous solution like compound A. Further, since the uniformity of the reaction is enhanced, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved. The amount of compound B added to the fiber raw material (absolute dry mass) is preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, and 100% by mass or more and 350% by mass or less. It is more preferably 150% by mass or more, and particularly preferably 300% by mass or less.

化合物Aと化合物Bの他に、アミド類またはアミン類を反応系に含んでもよい。アミド類としては、ホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In addition to compound A and compound B, amides or amines may be included in the reaction system. Examples of amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine in particular is known to act as a good reaction catalyst.

亜リン酸基の導入においては加熱処理を施すことが好ましい。加熱処理温度は、繊維の熱分解や加水分解反応を抑えながら、亜リン酸基を効率的に導入できる温度を選択することが好ましい。具体的には50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いてもよい。 When introducing a phosphorous acid group, it is preferable to perform a heat treatment. As the heat treatment temperature, it is preferable to select a temperature at which the phosphite group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. Specifically, it is preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower. In addition, equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and an air stream. A drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device may be used.

加熱処理の際、化合物Aを添加した繊維原料スラリーに水が含まれている間において、繊維原料を静置する時間が長くなると、乾燥に伴い水分子と溶存する化合物Aが繊維原料表面に移動する。そのため、繊維原料中の化合物Aの濃度にムラが生じる可能性があり、繊維表面への亜リン酸基の導入が均一に進行しない恐れがある。乾燥による繊維原料中の化合物Aの濃度ムラ発生を抑制するためには、ごく薄いシート状の繊維原料を用いるか、ニーダー等で繊維原料と化合物Aを混練又は攪拌しながら加熱乾燥又は減圧乾燥させる方法を採ればよい。 During the heat treatment, when the fiber raw material slurry containing the compound A contains water and the fiber raw material is allowed to stand for a long time, the water molecules and the dissolved compound A move to the surface of the fiber raw material as it dries. do. Therefore, the concentration of the compound A in the fiber raw material may be uneven, and the introduction of the phosphorous acid group to the fiber surface may not proceed uniformly. In order to suppress the occurrence of uneven concentration of compound A in the fiber raw material due to drying, a very thin sheet-shaped fiber raw material is used, or the fiber raw material and compound A are kneaded or stirred with a kneader or the like and dried by heating or under reduced pressure. You can take the method.

加熱処理に用いる加熱装置としては、スラリーが保持する水分及び亜リン酸基などの繊維の水酸基への付加反応で生じる水分を常に装置系外に排出できる装置であることが好ましく、例えば送風方式のオーブン等が好ましい。装置系内の水分を常に排出すれば、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもでき、軸比の高い微細繊維を得ることができる。 The heating device used for the heat treatment is preferably a device that can always discharge the water retained by the slurry and the water generated by the addition reaction of the fiber such as the phosphite group to the hydroxyl group to the outside of the device system. An oven or the like is preferable. If the water in the apparatus system is constantly discharged, not only the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, can be suppressed, but also the acid hydrolysis of the sugar chain in the fiber can be suppressed. , Fine fibers having a high axial ratio can be obtained.

加熱処理の時間は、加熱温度にも影響されるが繊維原料スラリーから実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本発明では、加熱温度と加熱時間を適切な範囲とすることにより、亜リン酸基の導入量を好ましい範囲内とすることができる。 Although the heat treatment time is affected by the heating temperature, it is preferably 1 second or more and 300 minutes or less after the water is substantially removed from the fiber raw material slurry, and more preferably 1 second or more and 1000 seconds or less. It is preferable, and it is more preferably 10 seconds or more and 800 seconds or less. In the present invention, the amount of phosphite group introduced can be within a preferable range by setting the heating temperature and the heating time within appropriate ranges.

亜リン酸基の導入量は、微細繊維状セルロース1g(質量)あたり、5.20mmol/g以下であることが好ましく、0.1mmol/g以上3.65mmol/g以下であることがより好ましく、0.14mmol/g以上3.5mmol/g以下がより一層好ましく、0.2mmol/g以上3.2mmol/g以下がさらに好ましく、0.4mmol/g以上3.0mmol/g以下が特に好ましく、最も好ましくは0.6mmol/g以上2.5mmol/g以下である。亜リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。また、亜リン酸基の導入量を上記範囲内とすることにより、微細化が容易でありながらも、微細繊維状セルロース同士の水素結合も残すことが可能で、膜とした場合には良好な強度発現が期待できる。 The amount of the phobic acid group introduced is preferably 5.20 mmol / g or less, more preferably 0.1 mmol / g or more and 3.65 mmol / g or less per 1 g (mass) of fine fibrous cellulose. 0.14 mmol / g or more and 3.5 mmol / g or less are even more preferable, 0.2 mmol / g or more and 3.2 mmol / g or less are further preferable, 0.4 mmol / g or more and 3.0 mmol / g or less are particularly preferable, and most. It is preferably 0.6 mmol / g or more and 2.5 mmol / g or less. By setting the amount of the phosphorous acid group introduced within the above range, it is possible to facilitate the miniaturization of the fiber raw material and enhance the stability of the fine fibrous cellulose. Further, by setting the introduction amount of the phosphorous acid group within the above range, it is possible to leave hydrogen bonds between fine fibrous celluloses while being easy to miniaturize, which is good when used as a film. Expected to develop strength.

微細繊維状セルロースに対するリンオキソ酸基(亜リン酸基を含む)の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた微細繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。 The amount of a phosphorous acid group (including a phosphorous acid group) introduced into the fine fibrous cellulose can be measured by, for example, a neutralization titration method. In the measurement by the neutralization titration method, the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous solution of sodium hydroxide to the obtained slurry containing the fine fibrous cellulose.

図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and the pH of a fibrous cellulose-containing slurry having a phosphoric acid group. The amount of the phosphorus oxo acid group introduced into the fibrous cellulose is measured, for example, as follows.
First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained. The titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, two points are confirmed in which the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid of the fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point. The amount is equal to the amount of the second dissociating acid of the fibrous cellulose contained in the slurry used for the titration, and the amount of alkali required from the start of the titration to the second end point is the total amount of the dissociating acid in the slurry used for the titration. Will be equal. Then, the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g). The amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
In FIG. 1, the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region. For example, when the phosphoric acid group is a phosphoric acid group and the phosphoric acid group causes condensation, the amount of weakly acidic groups in the phosphoric acid group (also referred to as the second dissociated acid amount in the present specification) is apparently. It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region. On the other hand, the amount of strongly acidic groups in the phosphorus oxo acid group (also referred to as the first dissociated acid amount in the present specification) is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. When the phosphorous acid group is a phosphorous acid group, the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximum.

なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
Since the denominator of the above-mentioned phosphorus oxo acid group introduction amount (mmol / g) indicates the mass of the acid-type fibrous cellulose, the phosphorus oxo acid group amount of the acid-type fibrous cellulose (hereinafter referred to as the phosphorus oxo acid group amount). (Called (acid type))). On the other hand, when the pair ion of the phosphorus oxo acid group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted into the mass of fibrous cellulose when the cation C is a pair ion. This makes it possible to determine the amount of phosphorus oxo acid groups (hereinafter referred to as the amount of phosphorus oxo acid groups (C type)) possessed by the fibrous cellulose in which the cation C is a counter ion.
That is, it is calculated by the following formula.
Amount of phosphorus oxo acid group (C type) = Amount of phosphorus oxo acid group (acid type) / {1+ (W-1) × A / 1000}
A [mmol / g]: Total anion amount derived from the phosphoric acid group of the fibrous cellulose (total dissociated acid amount of the phosphoric acid group)
W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9)

なお、滴定法によるリンオキソ酸基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いリンオキソ酸基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。 In the measurement of the amount of phosphorus oxo acid groups by the titration method, if the amount of one drop of sodium hydroxide aqueous solution is too large, or if the titration interval is too short, the amount of phosphorus oxo acid groups will be lower than the original amount. It may not be obtained. As an appropriate dropping amount and titration interval, for example, it is desirable to titrate 10 to 50 μL of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds. Further, in order to eliminate the influence of carbon dioxide dissolved in the fibrous cellulose-containing slurry, for example, it is desirable to measure while blowing an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration.

また、亜リン酸基に加えて、リン酸基、縮合リン酸基のいずれかまたは両方を含む場合において検出されるリンオキソ酸が、亜リン酸、リン酸、縮合リン酸のどれに由来するのかを区別する方法としては、例えば、酸加水分解などの縮合構造を切断する処理を行ってから上述した滴定操作を行う方法や、酸化処理などの亜リン酸基をリン酸基へ変換する処理を行ってから上述した滴定操作を行う方法などが挙げられる。 In addition, which of phosphite, phosphoric acid, and condensed phosphoric acid is the phosphoric acid detected when the phosphoric acid group, the condensed phosphoric acid group, or both is contained in addition to the phosphite group? As a method for distinguishing between the above, for example, a method of performing a treatment for cutting the condensed structure such as acid hydrolysis and then performing the above-mentioned titration operation, or a treatment for converting a phobic acid group into a phosphate group such as an oxidation treatment. Examples thereof include a method of performing the above-mentioned titration operation after performing the above-mentioned titration operation.

亜リン酸基導入工程は、少なくとも1回行えば良いが、複数回繰り返すこともできる。この場合、より多くの亜リン酸基が導入されるので好ましい。 The phosphite group introduction step may be performed at least once, but may be repeated a plurality of times. In this case, more phosphite groups are introduced, which is preferable.

<アルカリ処理>
微細繊維状セルロースを製造する場合、亜リン酸基導入工程と、後述する解繊処理工程の間にアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えば、アルカリ溶液中に、亜リン酸導入繊維を浸漬する方法が挙げられる。
アルカリ溶液に含まれるアルカリ化合物は、特に限定されないが、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。アルカリ溶液における溶媒としては水または有機溶媒のいずれであってもよい。溶媒は、極性溶媒(水、またはアルコール等の極性有機溶媒)が好ましく、少なくとも水を含む水系溶媒がより好ましい。
また、アルカリ溶液のうちでは、汎用性が高いことから、水酸化ナトリウム水溶液、または水酸化カリウム水溶液が特に好ましい。
<Alkaline treatment>
When producing fine fibrous cellulose, an alkali treatment may be performed between the phosphorous acid group introduction step and the defibration treatment step described later. The alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the phosphorous acid-introduced fiber in an alkaline solution.
The alkaline compound contained in the alkaline solution is not particularly limited, but may be an inorganic alkaline compound or an organic alkaline compound. The solvent in the alkaline solution may be either water or an organic solvent. The solvent is preferably a polar solvent (water or a polar organic solvent such as alcohol), and more preferably an aqueous solvent containing at least water.
Further, among the alkaline solutions, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is particularly preferable because of its high versatility.

アルカリ処理工程におけるアルカリ溶液の温度は特に限定されないが、5℃以上80℃以下が好ましく、10℃以上60℃以下がより好ましい。
アルカリ処理工程におけるアルカリ溶液への浸漬時間は特に限定されないが、5分以上30分以下が好ましく、10分以上20分以下がより好ましい。
アルカリ処理におけるアルカリ溶液の使用量は特に限定されないが、亜リン酸基導入繊維の絶乾質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
The temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
The immersion time in the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less with respect to the absolute dry mass of the phosphorous acid group-introduced fiber. It is more preferable to have.

アルカリ処理工程におけるアルカリ溶液使用量を減らすために、アルカリ処理工程の前に、官能基導入繊維を水や有機溶媒により洗浄しても構わない。アルカリ処理後には、取り扱い性を向上させるために、解繊処理工程の前に、アルカリ処理済み官能基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkaline treatment step, the functional group-introduced fibers may be washed with water or an organic solvent before the alkaline treatment step. After the alkali treatment, it is preferable to wash the alkali-treated functional group-introduced fibers with water or an organic solvent before the defibration treatment step in order to improve the handleability.

<酸処理工程>
微細繊維状セルロースを製造する場合、亜リン酸基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、亜リン酸基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment process>
In the case of producing fine fibrous cellulose, an acid treatment may be performed on the fiber raw material between the step of introducing a phosphorous acid group and the defibration treatment step described later. For example, the phosphorous acid group introduction step, the acid treatment, the alkali treatment, and the defibration treatment may be performed in this order.

酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。 The method of the acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acidic liquid containing an acid. The concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less. The pH of the acidic solution used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic solution, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.

酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.

<解繊処理>
繊維状セルロースは、解繊処理工程で解繊処理される。解繊処理工程では、通常、解繊処理装置を用いて、繊維を解繊処理して、微細繊維状セルロース含有スラリーを得るが、処理装置、処理方法は、特に限定されない。
解繊処理装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミルなどを使用できる。あるいは、解繊処理装置としては、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなど、湿式粉砕する装置等を使用することもできる。解繊処理装置は、上記に限定されるものではない。好ましい解繊処理方法としては、粉砕メディアの影響が少なく、コンタミの心配が少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーが挙げられる。
<Defibration processing>
The fibrous cellulose is defibrated in the defibrating process. In the defibration treatment step, the fibers are usually defibrated using a defibration treatment device to obtain a fine fibrous cellulose-containing slurry, but the treatment device and the treatment method are not particularly limited.
As the defibration processing device, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill and the like can be used. Alternatively, as the defibration processing device, use a wet pulverizing device such as a disc type refiner, a conical refiner, a twin-screw kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, or a beater. You can also. The defibrating processing device is not limited to the above. Preferred defibration treatment methods include a high-speed defibrator, a high-pressure homogenizer, and an ultra-high-pressure homogenizer, which are less affected by pulverized media and less likely to cause contamination.

解繊処理の際には、繊維原料を水と有機溶媒を単独または組み合わせて希釈してスラリー状にすることが好ましいが、特に限定されない。分散媒としては、水の他に、極性有機溶剤を使用することができる。好ましい極性有機溶剤としては、アルコール類、ケトン類、エーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、またはジメチルアセトアミド(DMAc)等が挙げられるが、特に限定されない。アルコール類としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、またはt-ブチルアルコール等が挙げられる。ケトン類としては、アセトンまたはメチルエチルケトン(MEK)等が挙げられる。エーテル類としては、ジエチルエーテルまたはテトラヒドロフラン(THF)等が挙げられる。分散媒は1種であってもよいし、2種以上でもよい。また、分散媒中に繊維原料以外の固形分、例えば水素結合性のある尿素などを含んでも構わない。 At the time of the defibration treatment, it is preferable to dilute the fiber raw material with water and an organic solvent alone or in combination to form a slurry, but the fiber raw material is not particularly limited. As the dispersion medium, a polar organic solvent can be used in addition to water. Preferred polar organic solvents include, but are not limited to, alcohols, ketones, ethers, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc) and the like. Examples of alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butyl alcohol and the like. Examples of the ketone include acetone, methyl ethyl ketone (MEK) and the like. Examples of ethers include diethyl ether and tetrahydrofuran (THF). The dispersion medium may be one kind or two or more kinds. Further, the dispersion medium may contain a solid content other than the fiber raw material, for example, urea having a hydrogen bond property.

微細繊維状セルロースは、解繊処理により得られた微細繊維状セルロース含有スラリーを、一度濃縮及び/又は乾燥させた後に、再度解繊処理を行って得てもよい。この場合、濃縮、乾燥の方法は特に限定されないが、例えば、微細繊維状セルロースを含有するスラリーに濃縮剤を添加する方法、一般に用いられる脱水機、プレス、乾燥機を用いる方法等が挙げられる。また、公知の方法、例えばWO2014/024876、WO2012/107642、及びWO2013/121086に記載された方法を用いることができる。また、微細繊維状セルロース含有スラリーをシート化することで濃縮、乾燥し、上記シートに解繊処理を行い、再度微細繊維状セルロース含有スラリーを得ることもできる。 The fine fibrous cellulose may be obtained by once concentrating and / or drying the fine fibrous cellulose-containing slurry obtained by the defibration treatment, and then performing the defibration treatment again. In this case, the method of concentration and drying is not particularly limited, and examples thereof include a method of adding a concentrating agent to a slurry containing fine fibrous cellulose, a method of using a commonly used dehydrator, a press, and a dryer. In addition, known methods such as those described in WO2014 / 024876, WO2012 / 107642, and WO2013 / 121086 can be used. Further, it is also possible to concentrate and dry the fine fibrous cellulose-containing slurry by forming it into a sheet, perform a defibration treatment on the sheet, and obtain the fine fibrous cellulose-containing slurry again.

微細繊維状セルロース含有スラリーを濃縮及び/又は乾燥させた後に、再度解繊(粉砕)処理をする際に用いる装置としては、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザー、超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、ビーターなど、湿式粉砕する装置等を使用することもできるが特に限定されない。 Equipment used for re-grinding (crushing) after concentrating and / or drying the fine fibrous cellulose-containing slurry includes a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer, and an ultra-high pressure homogenizer. , High-pressure collision type crusher, ball mill, bead mill, disc type refiner, conical refiner, twin-screw kneader, vibration mill, homomixer under high-speed rotation, ultrasonic disperser, beater, etc. It can be done, but it is not particularly limited.

<酵素処理>
本発明のセルロース含有組成物は、タンパク質を含み、上記タンパク質は酵素を含む。
本発明で用いる酵素は、セルラーゼ系酵素であり、セルロースの加水分解反応機能を有する触媒ドメインの高次構造に基づく糖質加水分解酵素ファミリーに分類される。セルラーゼ系酵素はセルロース分解特性によってエンド型グルカナーゼ(endo-glucanase)とセロビオヒドロラーゼ(cellobiohydrolase)に分類される。エンド型グルカナーゼはセルロースの非晶部分や可溶性セロオリゴ糖、又はカルボキシメチルセルロースのようなセルロース誘導体に対する加水分解性が高く、それらの分子鎖を内側からランダムに切断し、重合度を低下させる。しかし、エンド型グルカナーゼは結晶性を有するセルロースミクロフィブリルへの加水分解反応性は低い。これに対して、セロビオヒドロラーゼはセルロースの結晶部分を分解し、セロビオースを与える。また、セロビオヒドロラーゼはセルロース分子の末端から加水分解し、エキソ型或いはプロセッシブ酵素とも呼ばれる。本発明においては、エンド型グルカナーゼを使用することが好ましい。
<Enzyme treatment>
The cellulose-containing composition of the present invention contains a protein, and the protein contains an enzyme.
The enzyme used in the present invention is a cellulase-based enzyme and is classified into a sugar hydrolase family based on the higher-order structure of a catalytic domain having a hydrolysis reaction function of cellulose. Cellulase-based enzymes are classified into endo-glucanase and cellobiohydrolase according to their cellulolytic properties. Endo-type glucanase is highly hydrolyzable to the amorphous portion of cellulose, soluble cellooligosaccharides, or cellulose derivatives such as carboxymethyl cellulose, and randomly cleaves their molecular chains from the inside to reduce the degree of polymerization. However, endo-type glucanase has low hydrolysis reactivity with crystalline cellulose microfibrils. In contrast, cellobiohydrolase decomposes the crystalline portion of cellulose to give cellobiose. In addition, cellobiohydrolase is hydrolyzed from the end of the cellulose molecule and is also called an exo-type or processive enzyme. In the present invention, it is preferable to use end-type glucanase.

本発明において使用する酵素としては、エンド型グルカナーゼ及びセロビオヒドロラーゼ以外に、ヘミセルラーゼ系酵素を使用してもよい。ヘミセルラーゼ系酵素の中でもキシランを分解する酵素であるキシラナーゼ(xylanase)、マンナンを分解する酵素であるマンナーゼ(mannase)、又はアラバンを分解する酵素であるアラバナーゼ(arabanase)が挙げられる。また、ペクチンを分解する酵素であるペクチナーゼもヘミセルラーゼ系酵素として使用することができる。ヘミセルラーゼ系酵素を産生する微生物はセルラーゼ系酵素も産生する場合が多い。 As the enzyme used in the present invention, hemicellulase-based enzymes may be used in addition to endo-type glucanase and cellobiohydrolase. Among the hemicellulase-based enzymes, xylanase, which is an enzyme that decomposes xylan, mannase, which is an enzyme that decomposes mannan, and arabanase, which is an enzyme that decomposes alabang, can be mentioned. In addition, pectinase, which is an enzyme that decomposes pectin, can also be used as a hemicellulase-based enzyme. Microorganisms that produce hemicellulase-based enzymes often also produce cellulase-based enzymes.

ヘミセルロースは植物細胞壁のセルロースミクロフィブリル間にあるペクチン類を除いた多糖類である。ヘミセルロースは多種多様で植物の種類や細胞壁の壁層間でも異なる。木材においては針葉樹の2次壁ではグルコマンナンが主成分であり、広葉樹の2次壁では4-O-メチルグルクロノキシランが主成分である。そのため、針葉樹から微細繊維を得るためにはマンナーゼを使用する方が好ましく、広葉樹の場合はキシラナーゼを使用する方が好ましい。 Hemicellulose is a polysaccharide excluding pectins between cellulose microfibrils in plant cell walls. Hemicellulose is diverse and varies between plant types and cell wall layers. In wood, glucomannan is the main component in the secondary walls of coniferous trees, and 4-O-methylglucuronoxylan is the main component in the secondary walls of hardwoods. Therefore, it is preferable to use mannase in order to obtain fine fibers from coniferous trees, and it is preferable to use xylanase in the case of hardwoods.

本発明によれば、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロース1質量部に対して、1×10-3質量部以下の酵素を添加する工程を含む、セルロース含有組成物の製造方法が提供される。微細繊維状セルロースに対して酵素を添加することにより、微細繊維状セルロースと酵素を反応させることができる。本発明においては、酵素処理後に、微細繊維状セルロースの洗浄工程を行わない形態を採用することができる。
本発明においては、酵素処理後に酵素を失活させてもよい。酵素を失活させるための方法としては、微細繊維状セルロースと酵素の混合物を加熱して100℃にし、温度を保ったまま30分~1時間静置したり、微細繊維状セルロースと酵素の混合物に対し、強塩基を加えてpHを10以上に調整することなどが挙げられるが、特に限定されない。
上記したセルロース含有組成物の製造方法により、本発明のセルロース含有組成物を製造することができる。
According to the present invention, an enzyme having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from a phosphite group is 1 × 10 -3 parts by mass or less with respect to 1 part by mass of fibrous cellulose. A method for producing a cellulose-containing composition, which comprises a step of adding the above-mentioned material is provided. By adding the enzyme to the fine fibrous cellulose, the fine fibrous cellulose can be reacted with the enzyme. In the present invention, it is possible to adopt a form in which the washing step of the fine fibrous cellulose is not performed after the enzyme treatment.
In the present invention, the enzyme may be inactivated after the enzyme treatment. As a method for inactivating the enzyme, a mixture of fine fibrous cellulose and enzyme is heated to 100 ° C. and allowed to stand for 30 minutes to 1 hour while maintaining the temperature, or a mixture of fine fibrous cellulose and enzyme. On the other hand, the pH may be adjusted to 10 or more by adding a strong base, but the pH is not particularly limited.
The cellulose-containing composition of the present invention can be produced by the above-mentioned method for producing a cellulose-containing composition.

繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロース1質量部に対して添加する酵素の量は、1×10-3質量部以下であればよく、1×10-4質量部以下が好ましく、1×10-5質量部以下がより好ましく、5.0×10-6質量部以下が特に好ましい。また、酵素の添加量は、繊維状セルロース1質量部に対して1×10-7質量部以上が好ましく、3×10-7質量部以上がより好ましく、1×10-6質量部以上がさらに好ましい。
酵素の添加量を上記の範囲内とすることにより、製造されるセルロース含有組成物の良好な塗工適性を達成することができる。
The amount of the enzyme to be added to 1 part by mass of fibrous cellulose having a fiber width of 1000 nm or less and a phosphite group or a substituent derived from the phosphite group is 1 × 10 -3 parts by mass or less. It is preferably 1 × 10 -4 parts by mass or less, more preferably 1 × 10 -5 parts by mass or less, and particularly preferably 5.0 × 10 -6 parts by mass or less. The amount of the enzyme added is preferably 1 × 10 -7 parts by mass or more, more preferably 3 × 10 -7 parts by mass or more, and further preferably 1 × 10 -6 parts by mass or more with respect to 1 part by mass of fibrous cellulose. preferable.
By setting the addition amount of the enzyme within the above range, good coatability of the produced cellulose-containing composition can be achieved.

微細繊維状セルロースと酵素との反応時間は、特に限定されないが、一般的には1分~24時間が好ましく、1分~1時間がより好ましい。
微細繊維状セルロースと酵素の反応温度及び反応pHは、使用する酵素の至適温度及び至適pHに保つことが好ましく、一般的には、20℃~80℃、pH4.5~9.5に保つことが好ましい。
反応条件を上記の範囲内とすることにより、製造されるセルロース含有組成物の良好な塗工適性を達成することができる。
The reaction time between the fine fibrous cellulose and the enzyme is not particularly limited, but is generally preferably 1 minute to 24 hours, more preferably 1 minute to 1 hour.
The reaction temperature and reaction pH of the fine fibrous cellulose and the enzyme are preferably kept at the optimum temperature and the optimum pH of the enzyme to be used, and are generally set to 20 ° C to 80 ° C and pH 4.5 to 9.5. It is preferable to keep it.
By setting the reaction conditions within the above range, good coatability of the produced cellulose-containing composition can be achieved.

<重合度>
本発明のセルロース含有組成物において、繊維状セルロースの重合度は特に限定されないが、200以上450以下であることが好ましく、250以上400以下であることがより好ましく、250以上350以下であることがよりさらに好ましく、270以上300以下であることが特に好ましい。
<Degree of polymerization>
In the cellulose-containing composition of the present invention, the degree of polymerization of the fibrous cellulose is not particularly limited, but is preferably 200 or more and 450 or less, more preferably 250 or more and 400 or less, and more preferably 250 or more and 350 or less. Even more preferably, it is particularly preferably 270 or more and 300 or less.

繊維状セルロースの重合度は、Tappi T230に従い測定する。すなわち、測定
対象の繊維状セルロースを分散媒に分散させて測定した粘度(η1とする)、および分散
媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固
有粘度([η])を下記式に従って測定する。
ηsp=(η1/η0)-1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時の微細繊維状セルロースの濃度を示す。
さらに、下記式から微細繊維状セルロースの重合度(DP)を算出する。
DP=1.75×[η]この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
The degree of polymerization of fibrous cellulose is measured according to Tappi T230. That is, after measuring the viscosity (referred to as η1) measured by dispersing the fibrous cellulose to be measured in a dispersion medium and the blank viscosity (referred to as η0) measured only with the dispersion medium, the specific viscosity (ηsp) is unique. The viscosity ([η]) is measured according to the following formula.
ηsp = (η1 / η0) -1
[Η] = ηsp / (c (1 + 0.28 × ηsp))
Here, c in the formula indicates the concentration of fine fibrous cellulose at the time of viscosity measurement.
Further, the degree of polymerization (DP) of the fine fibrous cellulose is calculated from the following formula.
DP = 1.75 × [η] Since this degree of polymerization is the average degree of polymerization measured by the viscosity method, it is sometimes referred to as “viscosity average degree of polymerization”.

(親水性高分子)
本発明のセルロース含有組成物は、親水性高分子をさらに含んでいてもよい。特に、繊維状セルロース含有組成物が塗膜形成用スラリーである場合は、親水性高分子を含むことが好ましい。塗膜形成用スラリーが親水性高分子を含むことにより、透明性が高くかつ機械的強度に優れた微細繊維状セルロース含有膜を得ることができる。
(Hydrophilic polymer)
The cellulose-containing composition of the present invention may further contain a hydrophilic polymer. In particular, when the fibrous cellulose-containing composition is a slurry for forming a coating film, it is preferable to contain a hydrophilic polymer. Since the slurry for forming a coating film contains a hydrophilic polymer, a fine fibrous cellulose-containing film having high transparency and excellent mechanical strength can be obtained.

親水性高分子としては、例えば、ポリエチレングリコール、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、ポリアクリルアミド、アクリル酸アルキルエステル共重合体、ウレタン系共重合体などを挙げることができる。中でも、親水性高分子は、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、変性ポリビニルアルコール(変性PVA)及びポリエチレンオキサイド(PEO)から選択される少なくとも1種であることが好ましく、ポリエチレンオキサイド(PEO)であることがより好ましい。 Examples of the hydrophilic polymer include polyethylene glycol, cellulose derivatives (hydroxyethyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, etc.), casein, dextrin, starch, modified starch, polyvinyl alcohol, modified polyvinyl alcohol (acetoacetylated polyvinyl alcohol, etc.), and the like. Examples thereof include polyethylene oxide, polyvinylpyrrolidone, polyvinylmethyl ether, polyacrylic acid salts, polyacrylamide, acrylic acid alkyl ester copolymer, and urethane-based copolymer. Among them, the hydrophilic polymer is preferably at least one selected from polyethylene glycol (PEG), polyvinyl alcohol (PVA), modified polyvinyl alcohol (modified PVA) and polyethylene oxide (PEO), and polyethylene oxide (PEO) is preferable. ) Is more preferable.

親水性高分子の含有量は、繊維状セルロース100質量部に対して、0.5質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましく、10質量部以上であることが特に好ましい。また、親水性高分子の含有量は、繊維状セルロース100質量部に対して、5000質量部以下であることが好ましく、1000質量部以下であることがより好ましく、500質量部以下であることがさらに好ましく、100質量部以下であることが特に好ましい。 The content of the hydrophilic polymer is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more, and 5 parts by mass or more with respect to 100 parts by mass of the fibrous cellulose. It is more preferably 10 parts by mass or more, and particularly preferably 10 parts by mass or more. The content of the hydrophilic polymer is preferably 5000 parts by mass or less, more preferably 1000 parts by mass or less, and 500 parts by mass or less with respect to 100 parts by mass of the fibrous cellulose. It is more preferably 100 parts by mass or less, and particularly preferably 100 parts by mass or less.

親水性高分子の粘度平均分子量は特に限定されないが、1.0×103以上1.0×107以下であることが好ましく、2.0×103以上1.0×107以下であることがより好ましく、5.0×103以上1.0×107以下であることがさらに好ましい。 The viscosity average molecular weight of the hydrophilic polymer is not particularly limited, but is preferably 1.0 × 10 3 or more and 1.0 × 10 7 or less, and 2.0 × 10 3 or more and 1.0 × 10 7 or less. It is more preferable, and it is further preferable that it is 5.0 × 10 3 or more and 1.0 × 10 7 or less.

(任意成分)
本発明の繊維状セルロース含有組成物には、上述した成分以外の任意成分が含まれていてもよい。任意成分としては、たとえば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、カップリング剤、無機層状化合物、無機化合物、レベリング剤、有機系粒子、帯電防止剤、磁性粉、配向促進剤、可塑剤、防腐剤、架橋剤等を挙げることができる。また、任意成分として、有機イオンを添加してもよい。
(Optional ingredient)
The fibrous cellulose-containing composition of the present invention may contain any component other than the above-mentioned components. Optional components include, for example, defoamers, lubricants, UV absorbers, dyes, pigments, stabilizers, surfactants, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, organic particles, antistatic agents. , Magnetic powder, orientation promoter, plasticizer, preservative, cross-linking agent and the like. Further, organic ions may be added as an optional component.

任意成分として、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等を添加してもよい。これらの樹脂はエマルジョンとして添加されてもよい。熱硬化性樹脂エマルジョン、光硬化性樹脂エマルジョンの具体例としては、特開2009-299043号公報に記載のものが挙げられる。 As an optional component, a thermoplastic resin, a thermosetting resin, a photocurable resin and the like may be added. These resins may be added as an emulsion. Specific examples of the thermosetting resin emulsion and the photocurable resin emulsion include those described in JP-A-2009-299043.

(セルロース含有膜)
本発明は、上述したセルロース含有組成物から形成されたセルロース含有膜に関するものでもある。本発明は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースとタンパク質とを含むセルロース含有膜であって、前記タンパク質は酵素を含み、前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-3質量部以下である、セルロース含有膜に関するものである。なお、本願明細書において、膜とは、他の基材上に積層された膜や、基材から剥離されたシートなどを含む。
(Cellulose-containing membrane)
The present invention also relates to a cellulose-containing membrane formed from the above-mentioned cellulose-containing composition. The present invention is a cellulose-containing membrane having a fiber width of 1000 nm or less and containing a fibrous cellulose having a phosphite group or a substituent derived from the phosphite group and a protein, wherein the protein contains an enzyme. It relates to a cellulose-containing membrane having a protein content of 1 × 10 -3 parts by mass or less with respect to 1 part by mass of the fibrous cellulose. In the specification of the present application, the film includes a film laminated on another substrate, a sheet peeled off from the substrate, and the like.

セルロース含有膜におけるタンパク質の含有量は、繊維状セルロース1質量部に対して1×10-3質量部以下であればよく、1×10-4質量部以下が好ましく、1×10-5質量部以下がより好ましく、5.0×10-6質量部以下が特に好ましい。セルロース含有膜におけるタンパク質の含有量は、繊維状セルロース1質量部に対して1×10-7質量部以上が好ましく、3×10-7質量部以上がより好ましく、1×10-6質量部以上がさらに好ましい。
セルロース含有膜におけるタンパク質の含有量は、酵素の添加量を調整すること、又は酵素処理を含む微細繊維状セルロースの製造プロセスを調整すること等により制御できる。本実施形態では、たとえば酵素処理を行うタイミングや、酵素処理後であって膜形成工程の前に洗浄工程を含まないこと等に起因して、セルロース含有膜におけるタンパク質量を調整することができる。セルロース含有膜におけるタンパク質の含有量を、繊維状セルロース1質量部に対して1×10-3質量部以下とすることにより、セルロース含有膜の光学物性を良好なものとすることができる。
The protein content in the cellulose-containing membrane may be 1 × 10 -3 parts by mass or less with respect to 1 part by mass of fibrous cellulose, preferably 1 × 10 -4 parts by mass or less, and 1 × 10 -5 parts by mass. The following is more preferable, and 5.0 × 10 -6 parts by mass or less is particularly preferable. The protein content in the cellulose-containing membrane is preferably 1 × 10 -7 parts by mass or more, more preferably 3 × 10 -7 parts by mass or more, and 1 × 10 -6 parts by mass or more with respect to 1 part by mass of fibrous cellulose. Is more preferable.
The protein content in the cellulose-containing membrane can be controlled by adjusting the addition amount of the enzyme, adjusting the production process of the fine fibrous cellulose including the enzyme treatment, and the like. In the present embodiment, the amount of protein in the cellulose-containing membrane can be adjusted, for example, due to the timing of performing the enzyme treatment, the fact that the washing step is not included after the enzyme treatment and before the membrane forming step, and the like. By setting the protein content in the cellulose-containing membrane to 1 × 10 -3 parts by mass or less with respect to 1 part by mass of fibrous cellulose, the optical properties of the cellulose-containing membrane can be improved.

本発明のセルロース含有膜のヘーズは、2.0%未満であることが好ましく、1.5%未満であることがより好ましく、1.0%未満であることがさらに好ましい。セルロース含有膜のヘーズは、JIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。 The haze of the cellulose-containing film of the present invention is preferably less than 2.0%, more preferably less than 1.5%, and even more preferably less than 1.0%. The haze of the cellulose-containing film is a value measured using a haze meter (HM-150, manufactured by Murakami Color Technology Research Institute) in accordance with JIS K 7136.

本発明のセルロース含有膜の引張弾性率は、1GPa以上であることが好ましく、2GPa以上であることがより好ましく、4GPa以上であることがさらに好ましい。また、セルロース含有膜の引張弾性率の上限値に特に制限はないが、例えば、50GPa以下とすることができる。セルロース含有膜の引張弾性率は、JIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて測定した値である。引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したものを測定用の試験片とし、23℃、相対湿度50%の条件下で測定を行う。 The tensile elastic modulus of the cellulose-containing film of the present invention is preferably 1 GPa or more, more preferably 2 GPa or more, and further preferably 4 GPa or more. The upper limit of the tensile elastic modulus of the cellulose-containing film is not particularly limited, but may be, for example, 50 GPa or less. The tensile elastic modulus of the cellulose-containing film is a value measured using a tensile tester Tensilon (manufactured by A & D Co., Ltd.) in accordance with JIS P 8113. When measuring the tensile elastic modulus, a test piece prepared at 23 ° C. and 50% relative humidity for 24 hours is used as a test piece for measurement, and the measurement is performed under the conditions of 23 ° C. and 50% relative humidity.

本発明のセルロース含有膜の厚みは特に限定されるものではないが、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。また、セルロース含有膜の厚みの上限値は、特に限定されないが、たとえば1000μm以下とすることができる。なお、セルロース含有膜の厚みは、触針式厚さ計(マール社製、ミリトロン1202D)で測定することができる。 The thickness of the cellulose-containing film of the present invention is not particularly limited, but is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. The upper limit of the thickness of the cellulose-containing film is not particularly limited, but may be, for example, 1000 μm or less. The thickness of the cellulose-containing film can be measured with a stylus type thickness gauge (Millitron 1202D manufactured by Marl Co., Ltd.).

本発明のセルロース含有膜の坪量は、10g/m2以上であることが好ましく、20g/m2以上であることがより好ましく、30g/m2以上であることがさらに好ましい。また、セルロース含有膜の坪量は、100g/m2以下であることが好ましく、80g/m2以下であることがより好ましい。ここで、セルロース含有膜の坪量は、JIS P 8124に準拠し、算出することができる。 The basis weight of the cellulose-containing film of the present invention is preferably 10 g / m 2 or more, more preferably 20 g / m 2 or more, and even more preferably 30 g / m 2 or more. The basis weight of the cellulose-containing film is preferably 100 g / m 2 or less, and more preferably 80 g / m 2 or less. Here, the basis weight of the cellulose-containing film can be calculated in accordance with JIS P 8124.

(膜の形成方法)
セルロース含有膜の形成工程は、繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、タンパク質とを含むスラリーを得る工程と、このスラリーを基材上に塗工する工程、又は、スラリーを抄紙する工程を含む。
(Membrane formation method)
The step of forming the cellulose-containing film is a step of obtaining a slurry containing a fibrous cellulose having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from the phosphite group and a protein, and a step of obtaining this slurry. It includes a step of coating on a base material or a step of making a slurry.

スラリーを得る工程では、スラリーに含まれる微細繊維状セルロース1質量部に対して、1×10-3質量部以下の酵素を添加すればよい。 In the step of obtaining the slurry, an enzyme of 1 × 10 -3 parts by mass or less may be added to 1 part by mass of the fine fibrous cellulose contained in the slurry.

スラリーを得る工程では、親水性高分子をさらに添加することが好ましい。また、親水性高分子の他に、ポリアミンポリアミドエピハロヒドリンや、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂などの熱可塑性樹脂を添加してもよい。このように親水性高分子等を添加することにより、透明性と機械的強度に優れたセルロース含有膜を形成することができる。なお、親水性高分子等を添加する場合、微細繊維状セルロースに酵素を添加する前に、親水性高分子等を添加してもよい。 In the step of obtaining the slurry, it is preferable to further add a hydrophilic polymer. Further, in addition to the hydrophilic polymer, a thermoplastic resin such as polyamine polyamide epihalohydrin, a polyester resin, an acrylic resin, or a urethane resin may be added. By adding a hydrophilic polymer or the like in this way, a cellulose-containing film having excellent transparency and mechanical strength can be formed. When a hydrophilic polymer or the like is added, the hydrophilic polymer or the like may be added before the enzyme is added to the fine fibrous cellulose.

<塗工工程>
塗工工程は、スラリーを得る工程で得られたスラリーを基材上に塗工し、これを乾燥して膜を形成する工程である。形成されたセルロース含有膜は、基材から剥離せずに用いてもよいが、基材から剥離することによりシート単体として用いてもよい。塗工装置と長尺の基材を用いることで、セルロース含有膜を連続的に生産することができる。
<Coating process>
The coating step is a step of coating the slurry obtained in the step of obtaining the slurry on the substrate and drying the slurry to form a film. The formed cellulose-containing film may be used without peeling from the base material, or may be used as a single sheet by peeling from the base material. By using a coating device and a long base material, a cellulose-containing film can be continuously produced.

塗工工程で用いる基材の材質は、特に限定されないが、組成物(スラリー)に対する濡れ性が高いものの方が乾燥時のセルロース含有膜の収縮等を抑制することができて良いが、セルロース含有膜を基材から剥離して使用する場合には、乾燥後に形成されたセルロース含有膜が容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、特に限定されない。例えばアクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。 The material of the base material used in the coating process is not particularly limited, but a material having high wettability to the composition (slurry) may suppress shrinkage of the cellulose-containing film during drying, but contains cellulose. When the film is peeled off from the substrate and used, it is preferable to select one in which the cellulose-containing film formed after drying can be easily peeled off. Of these, a resin film or plate or a metal film or plate is preferable, but is not particularly limited. For example, resin films and plates such as acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, and polyvinylidene chloride, metal films and plates of aluminum, zinc, copper, and iron plates, and those whose surfaces are oxidized, stainless films. And boards, brass films and boards can be used.

塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合、所定の厚み、坪量のセルロース含有膜を得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠の質は特に限定されないが、乾燥後に付着するセルロース含有膜の端部が容易に剥離できるものを選択することが好ましい。中でも樹脂板または金属板を成形したものが好ましいが、特に限定されない。例えばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板及び、それらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。 In the coating process, when the viscosity of the slurry is low and it develops on the substrate, a dammed frame is fixed on the substrate to obtain a cellulose-containing film of a predetermined thickness and basis weight. You may. The quality of the dammed frame is not particularly limited, but it is preferable to select one in which the end portion of the cellulose-containing film attached after drying can be easily peeled off. Of these, those obtained by molding a resin plate or a metal plate are preferable, but are not particularly limited. For example, resin plates such as acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates and polyvinylidene chloride plates, metal plates such as aluminum plates, zinc plates, copper plates and iron plates, and those whose surfaces are oxidized, stainless steel. A molded plate, brass plate, or the like can be used.

スラリーを塗工する塗工機としては、例えば、ロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターが好ましい。 As the coating machine for coating the slurry, for example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater and the like can be used. A die coater, a curtain coater, and a spray coater are preferable because the thickness can be made more uniform.

塗工温度は特に限定されないが、20℃以上45℃以下であることが好ましく、25℃以上40℃以下であることがより好ましく、27℃以上35℃以下であることがさらに好ましい。塗工温度が上記下限値以上であれば、スラリーを容易に塗工でき、上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。 The coating temperature is not particularly limited, but is preferably 20 ° C. or higher and 45 ° C. or lower, more preferably 25 ° C. or higher and 40 ° C. or lower, and further preferably 27 ° C. or higher and 35 ° C. or lower. When the coating temperature is at least the above lower limit value, the slurry can be easily coated, and when it is at least the above upper limit value, volatilization of the dispersion medium during coating can be suppressed.

塗工工程においては、セルロース含有膜の仕上がり坪量が10g/m2以上100g/m2以下、好ましくは20g/m2以上60g/m2以下になるようにスラリーを塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れたセルロース含有膜が得られる。 In the coating step, it is preferable to coat the slurry so that the finished basis weight of the cellulose-containing film is 10 g / m 2 or more and 100 g / m 2 or less, preferably 20 g / m 2 or more and 60 g / m 2 or less. By coating so that the basis weight is within the above range, a cellulose-containing film having excellent strength can be obtained.

塗工工程は、基材上に塗工したスラリーを乾燥させる工程を含むことが好ましい。乾燥方法としては、特に限定されないが、非接触の乾燥方法でも、セルロース含有膜を拘束しながら乾燥する方法の何れでもよく、これらを組み合わせてもよい。 The coating step preferably includes a step of drying the slurry coated on the substrate. The drying method is not particularly limited, and may be either a non-contact drying method or a method of drying while restraining the cellulose-containing membrane, and these may be combined.

非接触の乾燥方法としては、特に限定されないが、熱風、赤外線、遠赤外線または近赤外線により加熱して乾燥する方法(加熱乾燥法)、真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができるが、特に限定されない。加熱乾燥法における加熱温度は特に限定されないが、20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができ、上記上限値以下であれば、加熱に要するコストの抑制及び微細繊維状セルロースが熱によって変色することを抑制できる。 The non-contact drying method is not particularly limited, but a method of heating and drying with hot air, infrared rays, far infrared rays or near infrared rays (heat drying method) and a method of vacuum drying (vacuum drying method) are applied. Can be done. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Drying with infrared rays, far-infrared rays or near-infrared rays can be performed using an infrared device, a far-infrared device or a near-infrared device, but is not particularly limited. The heating temperature in the heat drying method is not particularly limited, but is preferably 20 ° C. or higher and 150 ° C. or lower, and more preferably 25 ° C. or higher and 105 ° C. or lower. When the heating temperature is at least the above lower limit value, the dispersion medium can be rapidly volatilized, and when it is at least the above upper limit value, the cost required for heating can be suppressed and the discoloration of fine fibrous cellulose can be suppressed due to heat. ..

<抄紙工程>
セルロース含有膜の製造工程は、スラリーを抄紙する工程を含んでもよい。抄紙工程で用いられる抄紙機としては、長網式、円網式、傾斜式等の連続抄紙機、これらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等公知の抄紙を行ってもよい。
<Papermaking process>
The step of producing the cellulose-containing film may include a step of making a slurry. Examples of the paper machine used in the paper making process include continuous paper machines such as a long net type, a circular net type, and an inclined type, and a multi-layer paper making machine combining these. In the papermaking process, known papermaking such as hand papermaking may be performed.

抄紙工程では、スラリーをワイヤー上で濾過、脱水して湿紙状態のセルロース含有膜を得た後、プレス、乾燥することでセルロース含有膜を得る。スラリーを濾過、脱水する場合、濾過時の濾布としては特に限定されないが、微細繊維状セルロースや防腐剤は通過せず、かつ濾過速度が遅くなりすぎないことが重要である。このような濾布としては特に限定されないが、有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、ポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。具体的には孔径0.1μm以上20μm以下、例えば1μmのポリテトラフルオロエチレンの多孔膜、孔径0.1μm以上20μm以下、例えば1μmのポリエチレンテレフタレートやポリエチレンの織物等が挙げられるが、特に限定されない。 In the papermaking process, the slurry is filtered on a wire and dehydrated to obtain a cellulose-containing film in a wet paper state, and then pressed and dried to obtain a cellulose-containing film. When the slurry is filtered and dehydrated, the filter cloth for filtration is not particularly limited, but it is important that fine fibrous cellulose and preservatives do not pass through and the filtration rate does not become too slow. The filter cloth is not particularly limited, but a sheet made of an organic polymer, a woven fabric, and a porous membrane are preferable. The organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferable. Specific examples thereof include a porous membrane of polytetrafluoroethylene having a pore size of 0.1 μm or more and 20 μm or less, for example, 1 μm, polyethylene terephthalate having a pore diameter of 0.1 μm or more and 20 μm or less, for example, 1 μm, or a polyethylene woven fabric, but the present invention is not particularly limited.

スラリーからセルロース含有膜を製造する方法としては、特に限定されないが、例えばWO2011/013567に記載の製造装置を用いる方法等が挙げられる。この製造装置は、微細繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させて繊維シートを生成する乾燥セクションとを備えている。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。 The method for producing the cellulose-containing film from the slurry is not particularly limited, and examples thereof include a method using the production apparatus described in WO2011 / 013567. This manufacturing device discharges a slurry containing fine fibrous cellulose onto the upper surface of an endless belt, and squeezes a dispersion medium from the discharged slurry to produce a web, and a water-squeezed section that dries the web to form a fiber sheet. It has a dry section to produce. An endless belt is arranged from the watering section to the drying section, and the web generated in the watering section is conveyed to the drying section while being placed on the endless belt.

採用できる脱水方法としては特に限定されないが、紙の製造で通常に使用している脱水方法が挙げられ、長網、円網、傾斜ワイヤーなどで脱水した後、ロールプレスで脱水する方法が好ましい。また、乾燥方法としては特に限定されないが、紙の製造で用いられている方法が挙げられ、例えば、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどの方法が好ましい。 The dehydration method that can be adopted is not particularly limited, and examples thereof include a dehydration method that is normally used in paper production, and a method of dehydrating with a long net, a circular net, an inclined wire, or the like and then dehydrating with a roll press is preferable. Further, the drying method is not particularly limited, and examples thereof include methods used in the production of paper, and for example, methods such as a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, and an infrared heater are preferable.

(積層体)
上述した工程で得られたセルロース含有膜に、さらに他の層を積層して積層体を形成してもよい。このような他の層は、セルロース含有膜の両表面上に設けられていてもよいが、セルロース含有膜の一方の面上にのみ設けられていてもよい。セルロース含有膜の少なくとも一方の面上に積層される他の層としては、例えば、樹脂層や無機層を挙げることができる。
(Laminated body)
Another layer may be further laminated on the cellulose-containing film obtained in the above-mentioned step to form a laminated body. Such other layers may be provided on both surfaces of the cellulose-containing film, but may be provided only on one surface of the cellulose-containing film. Examples of the other layer laminated on at least one surface of the cellulose-containing film include a resin layer and an inorganic layer.

積層体の具体例としては、例えば、
セルロース含有膜の少なくとも一方の面上に樹脂層が直接積層された積層体;
セルロース含有膜の少なくとも一方の面上に無機層が直接積層された積層体;
樹脂層、セルロース含有膜、無機層がこの順で積層された積層体;
セルロース含有膜、樹脂層、無機層がこの順で積層された積層体;及び
セルロース含有膜、無機層、樹脂層がこの順で積層された積層体:
を挙げることができる。
積層体の層構成は上記に限定されるものではなく、用途に応じて種々の態様とすることができる。
As a specific example of the laminated body, for example,
A laminate in which a resin layer is directly laminated on at least one surface of a cellulose-containing film;
A laminate in which an inorganic layer is directly laminated on at least one surface of a cellulose-containing membrane;
A laminate in which a resin layer, a cellulose-containing film, and an inorganic layer are laminated in this order;
A laminate in which a cellulose-containing film, a resin layer, and an inorganic layer are laminated in this order; and a laminate in which a cellulose-containing film, an inorganic layer, and a resin layer are laminated in this order:
Can be mentioned.
The layer structure of the laminated body is not limited to the above, and may be various modes depending on the application.

<樹脂層>
樹脂層は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、樹脂層の全質量に対して、50質量%以上含まれている成分を指す。樹脂の含有量は、樹脂層の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。なお、樹脂の含有量は、100質量%とすることもでき、95質量%以下であってもよい。
<Resin layer>
The resin layer is a layer containing a natural resin or a synthetic resin as a main component. Here, the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the resin layer. The content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass, based on the total mass of the resin layer. The above is particularly preferable. The content of the resin may be 100% by mass or 95% by mass or less.

天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。 Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.

合成樹脂としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリウレタン樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましい。中でも、合成樹脂はポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましく、ポリカーボネート樹脂であることがより好ましい。なお、アクリル樹脂は、ポリアクリロニトリル及びポリ(メタ)アクリレートから選択される少なくともいずれか1種であることが好ましい。 As the synthetic resin, for example, at least one selected from polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polyimide resin, polystyrene resin, polyurethane resin and acrylic resin is preferable. Among them, the synthetic resin is preferably at least one selected from the polycarbonate resin and the acrylic resin, and more preferably the polycarbonate resin. The acrylic resin is preferably at least one selected from polyacrylonitrile and poly (meth) acrylate.

樹脂層を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。 Examples of the polycarbonate resin constituting the resin layer include aromatic polycarbonate-based resins and aliphatic polycarbonate-based resins. These specific polycarbonate-based resins are known, and examples thereof include the polycarbonate-based resins described in JP-A-2010-023275.

樹脂層を構成する樹脂は1種を単独で用いてもよく、複数の樹脂成分が共重合または、グラフト重合してなる共重合体を用いてもよい。また、複数の樹脂成分を物理的なプロセスで混合したブレンド材料として用いてもよい。 As the resin constituting the resin layer, one kind may be used alone, or a copolymer obtained by copolymerizing or graft-polymerizing a plurality of resin components may be used. Further, a plurality of resin components may be used as a blend material mixed by a physical process.

セルロース含有膜と樹脂層の間には、接着層が設けられていてもよく、また接着層が設けられておらず、セルロース含有膜と樹脂層が直接密着をしていてもよい。セルロース含有膜と樹脂層の間に接着層が設けられる場合は、接着層を構成する接着剤として、例えば、アクリル系樹脂を挙げることができる。また、アクリル系樹脂以外の接着剤としては、例えば、塩化ビニル樹脂、(メタ)アクリル酸エステル樹脂、スチレン/アクリル酸エステル共重合体樹脂、酢酸ビニル樹脂、酢酸ビニル/(メタ)アクリル酸エステル共重合体樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、エチレン/酢酸ビニル共重合体樹脂、ポリエステル系樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合体樹脂や、SBR、NBR等のゴム系エマルジョンなどが挙げられる。 An adhesive layer may be provided between the cellulose-containing film and the resin layer, or the adhesive layer may not be provided and the cellulose-containing film and the resin layer may be in direct contact with each other. When an adhesive layer is provided between the cellulose-containing film and the resin layer, an acrylic resin can be mentioned as an adhesive constituting the adhesive layer, for example. Examples of the adhesive other than the acrylic resin include vinyl chloride resin, (meth) acrylic acid ester resin, styrene / acrylic acid ester copolymer resin, vinyl acetate resin, and vinyl acetate / (meth) acrylic acid ester. Examples include polymer resins, urethane resins, silicone resins, epoxy resins, ethylene / vinyl acetate copolymer resins, polyester resins, polyvinyl alcohol resins, ethylene vinyl alcohol copolymer resins, and rubber emulsions such as SBR and NBR. Be done.

セルロース含有膜と樹脂層の間に接着層が設けられていない場合は、樹脂層が密着助剤を有してもよく、また、樹脂層の表面に親水化処理等の表面処理を行ってもよい。
密着助剤としては、例えば、イソシアネート基、カルボジイミド基、エポキシ基、オキサゾリン基、アミノ基及びシラノール基から選択される少なくとも1種を含む化合物や、有機ケイ素化合物が挙げられる。中でも、密着助剤はイソシアネート基を含む化合物(イソシアネート化合物)及び有機ケイ素化合物から選択される少なくとも1種であることが好ましい。有機ケイ素化合物としては、例えば、シランカップリング剤縮合物や、シランカップリング剤を挙げることができる。
なお、親水化処理以外の表面処理の方法としては、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。
When the adhesive layer is not provided between the cellulose-containing film and the resin layer, the resin layer may have an adhesion aid, or the surface of the resin layer may be surface-treated such as a hydrophilization treatment. good.
Examples of the adhesion aid include a compound containing at least one selected from an isocyanate group, a carbodiimide group, an epoxy group, an oxazoline group, an amino group and a silanol group, and an organic silicon compound. Among them, the adhesion aid is preferably at least one selected from a compound containing an isocyanate group (isocyanate compound) and an organosilicon compound. Examples of the organosilicon compound include a silane coupling agent condensate and a silane coupling agent.
Examples of the surface treatment method other than the hydrophilization treatment include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, flame treatment and the like.

<無機層>
無機層を構成する物質としては、特に限定されないが、例えばアルミニウム、ケイ素、マグネシウム、亜鉛、錫、ニッケル、チタン;これらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、もしくは酸化炭化窒化物;またはこれらの混合物が挙げられる。高い防湿性が安定に維持できるとの観点からは、酸化ケイ素、窒化ケイ素、酸化炭化ケイ素、酸化窒化ケイ素、酸化炭化窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化炭化アルミニウム、酸化窒化アルミニウム、またはこれらの混合物が好ましい。
<Inorganic layer>
The substance constituting the inorganic layer is not particularly limited, and is, for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; these oxides, carbides, nitrides, oxide carbides, oxide nitrides, or oxide carbides. Objects; or mixtures thereof. From the viewpoint that high moisture resistance can be stably maintained, silicon oxide, silicon nitride, silicon oxide carbide, silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, aluminum oxide, aluminum nitride, or any of these. Mixtures are preferred.

無機層の形成方法は、特に限定されない。一般に、薄膜を形成する方法は大別して、化学的気相成長法(Chemical Vapor Deposition、CVD)と物理成膜法(Physical Vapor Deposition、PVD)とがあるが、いずれの方法を採用してもよい。CVD法としては、具体的には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。PVD法としては、具体的には、真空蒸着、イオンプレーティング、スパッタリング等が挙げられる。 The method for forming the inorganic layer is not particularly limited. Generally, the method for forming a thin film is roughly classified into a chemical vapor deposition (CVD) method and a physical vapor deposition method (PVD), and any method may be adopted. .. Specific examples of the CVD method include plasma CVD using plasma, catalytic chemical vapor deposition (Cat-CVD) for catalytically pyrolyzing a material gas using a heating catalyst, and the like. Specific examples of the PVD method include vacuum vapor deposition, ion plating, sputtering and the like.

また、無機層の形成方法としては、原子層堆積法(Atomic Layer Deposition、ALD)を採用することもできる。ALD法は、形成しようとする膜を構成する各元素の原料ガスを、層を形成する面に交互に供給することにより、原子層単位で薄膜を形成する方法である。成膜速度が遅いという欠点はあるが、プラズマCVD法以上に、複雑な形状の面でもきれいに覆うことができ、欠陥の少ない薄膜を成膜することが可能であるという利点がある。また、ALD法には、膜厚をナノオーダーで制御することができ、広い面を覆うことが比較的容易である等の利点がある。さらにALD法は、プラズマを用いることにより、反応速度の向上、低温プロセス化、未反応ガスの減少が期待できる。 Further, as a method for forming the inorganic layer, an atomic layer deposition method (ALD) can also be adopted. The ALD method is a method of forming a thin film in atomic layer units by alternately supplying the raw material gas of each element constituting the film to be formed to the surface on which the layer is formed. Although it has the disadvantage of a slow film formation rate, it has the advantage of being able to cleanly cover even a surface having a complicated shape and forming a thin film with few defects, as compared with the plasma CVD method. Further, the ALD method has an advantage that the film thickness can be controlled on the nano-order and it is relatively easy to cover a wide surface. Furthermore, the ALD method can be expected to improve the reaction rate, make it a low temperature process, and reduce the amount of unreacted gas by using plasma.

(用途)
本発明のセルロース含有組成物は、例えば、塗料、樹脂、エマルジョン、水硬性材料(セメント)、又はゴムと混合し補強材として用いることができる。本発明のセルロース含有組成物のスラリーを用いて製膜して、セルロース含有膜を作製してもよい。本発明のセルロース含有組成物は、増粘剤として各種用途に使用することもできる。
(Use)
The cellulose-containing composition of the present invention can be mixed with, for example, a paint, a resin, an emulsion, a hydraulic material (cement), or rubber and used as a reinforcing material. A cellulose-containing film may be produced by forming a film using the slurry of the cellulose-containing composition of the present invention. The cellulose-containing composition of the present invention can also be used for various purposes as a thickener.

セルロース含有膜は、各種のディスプレイ装置、各種の太陽電池、等の光透過性基板の用途に適している。また、電子機器の基板、家電の部材、各種の乗り物や建物の窓材、内装材、外装材、包装用資材等の用途にも適している。さらに、糸、フィルタ、織物、緩衝材、スポンジ、研磨材などの他、セルロース含有膜そのものを補強材として使う用途にも適している。 Cellulose-containing films are suitable for use in light-transmitting substrates such as various display devices, various solar cells, and the like. It is also suitable for applications such as substrates for electronic devices, materials for home appliances, window materials for various vehicles and buildings, interior materials, exterior materials, and packaging materials. Further, it is suitable for applications such as threads, filters, woven fabrics, cushioning materials, sponges, abrasives, etc., as well as applications in which the cellulose-containing film itself is used as a reinforcing material.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described in more detail with reference to Examples and Comparative Examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below.

[実施例1]
<亜リン酸基導入繊維状セルロースの作製>
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
この原料パルプに対して亜リン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、亜リン酸(ホスホン酸)と尿素の混合水溶液を添加して、亜リン酸(ホスホン酸)33質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースに亜リン酸基を導入し、亜リン酸化パルプを得た。
[Example 1]
<Preparation of phosphite-introduced fibrous cellulose>
As raw material pulp, Oji Paper's softwood kraft pulp (solid content 93% by mass, basis weight 208 g / m 2 sheet form, Canadian standard drainage degree (CSF) measured according to JIS P 8121 by separation is 700 ml) It was used.
Subphosphorylation treatment was carried out on this raw material pulp as follows. First, a mixed aqueous solution of phosphoric acid (phosphonic acid) and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp, and 33 parts by mass of phosphoric acid (phosphonic acid), 120 parts by mass of urea, and 150 parts of water. The amount was adjusted to be parts by mass, and a chemical-impregnated pulp was obtained. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphite group into the cellulose in the pulp to obtain a phosphite pulp.

次いで、得られた亜リン酸化パルプに対して洗浄処理を行った。洗浄処理は、亜リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Then, the obtained subphosphorylated pulp was washed. In the washing treatment, the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of subphosphorylated pulp is stirred so that the pulp is uniformly dispersed, and then the operation of filtering and dehydrating is repeated. Was done by. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.

次いで、洗浄後の亜リン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後の亜リン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下の亜リン酸化パルプスラリーを得た。次いで、当該亜リン酸化パルプスラリーを脱水して、中和処理が施された亜リン酸化パルプを得た。次いで、中和処理後の亜リン酸化パルプに対して、上記洗浄処理を行った。 Next, the dephosphorylated pulp after washing was neutralized as follows. First, the washed subphosphorylated pulp is diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution is added little by little with stirring to obtain a subphosphorylated pulp slurry having a pH of 12 or more and 13 or less. Obtained. Then, the subphosphorylated pulp slurry was dehydrated to obtain a neutralized subphosphorylated pulp. Next, the subphosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.

これにより得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られた亜リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。なお、得られた亜リン酸化パルプについて、後述する<亜リン酸基量の測定>に記載の測定方法で測定される亜リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。 The infrared absorption spectrum of the subphosphorylated pulp thus obtained was measured using FT-IR. As a result, absorption based on P = O of the phosphonic acid group, which is a metamorphic form of the phosphorous acid group, was observed around 1210 cm -1 , and the phosphorous acid group (phosphonic acid group) was added to the pulp. Was confirmed. In addition, when the obtained subphosphorylated pulp was tested and analyzed by an X-ray diffractometer, two positions were found: 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed in, and it was confirmed that it had cellulose type I crystals. The amount of phosphite group (first dissociated acid amount) measured by the measuring method described in <Measurement of phobic acid group amount> described later for the obtained subphosphorylated pulp was 1.51 mmol / g. rice field. The total amount of dissociated acid was 1.54 mmol / g.

<解繊処理>
得られた亜リン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。
このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液Aを得た。
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。
また、微細繊維状セルロースの繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。
<Defibration processing>
Ion-exchanged water was added to the obtained subphosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass.
This slurry was treated four times with a wet atomizer (Sugino Machine Limited, Starburst) at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion A containing fine fibrous cellulose.
By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal.
Moreover, when the fiber width of the fine fibrous cellulose was measured using a transmission electron microscope, it was 3 to 5 nm.

<亜リン酸基量の測定>
微細繊維状セルロースの亜リン酸基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作成した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を第1解離酸量(mmol/g)とした。また、滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を総解離酸量(mmol/g)とした。
<Measurement of phosphite group amount>
The amount of phosphite group in the fine fibrous cellulose is a fiber prepared by diluting the fine fibrous cellulose dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass. The cellulose-like cellulose-containing slurry was treated with an ion-exchange resin and then titrated with an alkali for measurement.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the above fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. This was done by pouring onto a mesh with an opening of 90 μm to separate the resin and the slurry.
For titration using alkali, change in pH value indicated by the slurry is measured while adding 10 μL of 0.1 N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry treated with an ion exchange resin every 5 seconds. I went by doing. Titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1). The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated was defined as the amount of first dissociating acid (mmol / g). The total amount of dissociated acid (mmol / g) was defined as the value obtained by dividing the amount of alkali (mmol) required from the start of titration to the second end point by the solid content (g) in the slurry to be titrated.

<繊維幅の測定>
微細繊維状セルロースの繊維幅を下記の方法で測定した。
湿式微粒化装置にて処理をして得られた上記微細繊維状セルロース分散液の上澄み液を、微細繊維状セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボングリッド膜に滴下した。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL-2000EX)により観察した。
<Measurement of fiber width>
The fiber width of the fine fibrous cellulose was measured by the following method.
The supernatant of the fine fibrous cellulose dispersion obtained by treatment with a wet atomizing device is mixed with water so that the concentration of the fine fibrous cellulose is 0.01% by mass or more and 0.1% by mass or less. It was diluted and added dropwise to the hydrophilized carbon grid film. This was dried, stained with uranyl acetate, and observed with a transmission electron microscope (JEOL-2000EX, manufactured by JEOL Ltd.).

<酵素処理>
微細繊維状セルロース分散液Aに、微細繊維状セルロース1質量部に対して、酵素含有液(AB Enzymes社製、 ECOPULP R、酵素含有量は約5質量%)を3.0×10-6質量部添加し、18,500回転で2分間撹拌した。これを回収し、評価用スラリーを得た。
<Enzyme treatment>
In the fine fibrous cellulose dispersion A, an enzyme-containing liquid (manufactured by AB Enzymes, ECOPULP R, enzyme content is about 5% by mass) was added to 1 part by mass of the fine fibrous cellulose by 3.0 × 10 -6 mass. Partially added, and the mixture was stirred at 18,500 rpm for 2 minutes. This was recovered to obtain a slurry for evaluation.

[実施例2]
実施例1の<酵素処理>において、微細繊維状セルロース1質量部数に対して、酵素含有液を1.0×10-2質量部添加した。その他の手順は実施例1と同様にし、評価用スラリーを得た。
[Example 2]
In the <enzyme treatment> of Example 1, 1.0 × 10 −2 parts by mass of the enzyme-containing liquid was added to 1 part by mass of the fine fibrous cellulose. Other procedures were the same as in Example 1 to obtain a slurry for evaluation.

[実施例3]
実施例1の<酵素処理>において、微細繊維状セルロース1質量部数に対して、酵素含有液を1.0×10-5質量部添加した。その他の手順は実施例1と同様にし、評価用スラリーを得た。
[Example 3]
In the <enzyme treatment> of Example 1, 1.0 × 10 -5 parts by mass of the enzyme-containing liquid was added to 1 part by mass of the fine fibrous cellulose. Other procedures were the same as in Example 1 to obtain a slurry for evaluation.

[実施例4]
実施例1の<酵素処理>において、微細繊維状セルロース1質量部数に対して、酵素含有液を4.76×10-5質量部添加した。その他の手順は実施例1と同様にし、評価用スラリーを得た。
[Example 4]
In the <enzyme treatment> of Example 1, 4.76 × 10 -5 parts by mass of the enzyme-containing liquid was added to 1 part by mass of the fine fibrous cellulose. Other procedures were the same as in Example 1 to obtain a slurry for evaluation.

[比較例1]
実施例1において、<酵素処理>を行わなかった。上記以外は実施例1と同様にし、評価用スラリーを得た。
[Comparative Example 1]
In Example 1, <enzyme treatment> was not performed. A slurry for evaluation was obtained in the same manner as in Example 1 except for the above.

[比較例2]
<酵素処理>
実施例1の、<亜リン酸基導入繊維状セルロースの作製>で得たアルカリ処理、洗浄処理後の亜リン酸化パルプをイオン交換水で2%に希釈した後、酵素含有液の添加を行った。酵素含有液の添加量は、固形分量1質量部数に対して、酵素含有液を4.76×10-5質量部数添加とした。次いで、この亜リン酸化パルプを25℃の環境下に24時間静置した後、脱水して脱水シートを得た後、5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水した。その後、再度5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水した。
[Comparative Example 2]
<Enzyme treatment>
The subphosphorylated pulp obtained in <Preparation of phobic acid group-introduced fibrous cellulose> in Example 1 after the alkali treatment and washing treatment was diluted to 2% with ion-exchanged water, and then the enzyme-containing liquid was added. rice field. The amount of the enzyme-containing liquid added was 4.76 × 10 -5 parts by mass with respect to 1 part by mass of the solid content. Next, the subphosphorylated pulp was allowed to stand in an environment of 25 ° C. for 24 hours, dehydrated to obtain a dehydrated sheet, and then 5000 parts by mass of ion-exchanged water was poured, and the mixture was stirred and uniformly dispersed. , Filtered and dehydrated. Then, 5000 parts by mass of ion-exchanged water was poured again, and the mixture was stirred and uniformly dispersed, and then filtered and dehydrated.

上記濾過脱水後の亜リン酸化パルプについて、上述の方法で測定した亜リン酸基量(強酸性基量)は、1.45mmol/gであった。また、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 The amount of phosphite groups (strong acid group amount) measured by the above method for the phosphorylated pulp after filtration and dehydration was 1.45 mmol / g. Further, when the analysis was performed by an X-ray diffractometer, typical peaks were confirmed at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less, and cellulose type I. It was confirmed that it had crystals.

<解繊処理>
得られた亜リン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。
このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む評価用スラリーを得た。
X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。
また、微細繊維状セルロースの繊維幅を上述の透過型電子顕微鏡を用いた方法で測定したところ、3~5nmであった。
<Defibration processing>
Ion-exchanged water was added to the obtained subphosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass.
This slurry was treated four times at a pressure of 200 MPa with a wet atomizer (Sugino Machine Limited, Starburst) to obtain an evaluation slurry containing fine fibrous cellulose.
By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal.
Moreover, when the fiber width of the fine fibrous cellulose was measured by the method using the above-mentioned transmission electron microscope, it was 3 to 5 nm.

[比較例3]
後述する<TEMPO酸化>を経て得たアルカリ処理、洗浄処理後のTEMPO酸化パルプをイオン交換水で2%に希釈した後、酵素含有液の添加を行った。酵素含有液の添加量は、固形分量1質量部数に対して、酵素含有液を4.76×10-5質量部数添加数とした。次いで、このTEMPO酸化パルプを25℃の環境下に24時間静置した後、脱水して脱水シートを得た後、5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水した。その後、再度5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水した。
[Comparative Example 3]
The TEMPO oxidized pulp obtained through <TEMPO oxidation> described later was diluted to 2% with ion-exchanged water after alkali treatment and washing treatment, and then an enzyme-containing liquid was added. The amount of the enzyme-containing liquid added was 4.76 × 10 -5 parts by mass with respect to 1 part by mass of the solid content. Next, the TEMPO oxide pulp was allowed to stand in an environment of 25 ° C. for 24 hours, dehydrated to obtain a dehydrated sheet, and then 5000 parts by mass of ion-exchanged water was poured, stirred and uniformly dispersed. It was filtered and dehydrated. Then, 5000 parts by mass of ion-exchanged water was poured again, and the mixture was stirred and uniformly dispersed, and then filtered and dehydrated.

<TEMPO酸化>
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(未乾燥)を使用した。
この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。
まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
<TEMPO oxidation>
As the raw material pulp, softwood kraft pulp (undried) made by Oji Paper was used.
The raw material pulp was subjected to alkaline TEMPO oxidation treatment as follows.
First, the above raw pulp equivalent to 100 parts by mass of dry mass, 1.6 parts by mass of TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), and 10 parts by mass of sodium bromide are added to 10,000 parts by mass of water. It was dispersed in the department. Then, a 13 mass% sodium hypochlorite aqueous solution was added to 1.0 g of pulp so as to be 3.8 mmol, and the reaction was started. During the reaction, a 0.5 M aqueous sodium hydroxide solution was added dropwise to keep the pH at 10 or more and 10.5 or less, and the reaction was considered to be completed when no change was observed in the pH.

<TEMPO酸化パルプの洗浄>
次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。
洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
この脱水シートに対して、残存するアルデヒド基の追酸化処理を次のようにして行った。
<Cleaning of TEMPO oxide pulp>
Then, the obtained TEMPO oxide pulp was washed.
The washing treatment is carried out by dehydrating the pulp slurry after TEMPO oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtering and dehydrating. rice field. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
The dehydrated sheet was subjected to additional oxidation treatment of the remaining aldehyde groups as follows.

乾燥質量100質量部相当の上記脱水シートを、0.1mol/L酢酸緩衝液(pH4.8)10000質量部に分散させた。次いで80%亜塩素酸ナトリウム113質量部を加え、直ちに密閉した後、マグネチックスターラーを用いて500rpmで撹拌しながら室温で48時間反応させ、パルプスラリーを得た。 The dehydration sheet corresponding to 100 parts by mass of dry mass was dispersed in 10000 parts by mass of 0.1 mol / L acetate buffer (pH 4.8). Then, 113 parts by mass of 80% sodium chlorite was added, and the mixture was immediately sealed and then reacted at room temperature for 48 hours while stirring at 500 rpm using a magnetic stirrer to obtain a pulp slurry.

次いで、得られた追酸化済みTEMPO酸化パルプに対して洗浄処理を行った。
洗浄処理は、追酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、攪拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。これにより得られたTEMPO酸化パルプについて、後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gであった。
また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
Then, the obtained top-oxidized TEMPO oxide pulp was washed.
The washing treatment is carried out by dehydrating the pulp slurry after additional oxidation to obtain a dehydrated sheet, pouring 5000 parts by mass of ion-exchanged water, stirring and uniformly dispersing the pulp slurry, and then repeating the operation of filtering and dehydrating. rice field. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set. With respect to the TEMPO oxide pulp thus obtained, the amount of carboxy group measured by the measuring method described later was 1.30 mmol / g.
Further, when the obtained TEMPO oxide pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals.

<解繊処理>
得られた脱水シートにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて4回処理し、微細繊維状セルロースを含む評価用スラリーを得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、微細繊維状セルロースの繊維幅を上述の透過型電子顕微鏡を用いた方法で測定したところ、3~5nmであった。
<Defibration processing>
Ion-exchanged water was added to the obtained dehydrated sheet to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated four times at a pressure of 200 MPa with a wet atomizer (Sugino Machine Limited, Starburst) to obtain an evaluation slurry containing fine fibrous cellulose. By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal. Moreover, when the fiber width of the fine fibrous cellulose was measured by the method using the above-mentioned transmission electron microscope, it was 3 to 5 nm.

<カルボキシ基量の測定>
微細繊維状セルロースのカルボキシ基量は、対象となる微細繊維状セルロースを含む微細繊維状セルロース含有スラリーにイオン交換水を添加して、含有量を0.2質量%とし、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、0.2質量%の微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社製、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を加えながら、スラリーが示すpHの値の変化を計測することにより行った。水酸化ナトリウム水溶液を加えながらpHの変化を観察すると、図2に示されるような滴定曲線が得られる。図2に示されるように、この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ観測される。この増分の極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用したスラリー中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出した。
なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。
<Measurement of carboxy group amount>
The carboxy group content of the fine fibrous cellulose is adjusted to 0.2% by mass by adding ion-exchanged water to the fine fibrous cellulose-containing slurry containing the target fine fibrous cellulose, and treated with an ion exchange resin. After that, it was measured by performing a titration using an alkali.
The treatment with an ion exchange resin is performed by adding a strongly acidic ion exchange resin (Amberjet 1024; manufactured by Organo Corporation, conditioned) with a volume of 1/10 to a slurry containing 0.2% by mass of fine fibrous cellulose for 1 hour. After the shaking treatment, the resin and the slurry were separated by pouring onto a mesh having an opening of 90 μm.
In addition, titration using alkali was performed by measuring the change in the pH value indicated by the slurry while adding 0.1 N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry treated with the ion exchange resin. .. By observing the change in pH while adding the aqueous sodium hydroxide solution, a titration curve as shown in FIG. 2 is obtained. As shown in FIG. 2, in this neutralization titration, there is one point in which the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Observed. The maximum point of this increment is called the first end point. Here, the region from the start of titration to the first end point in FIG. 2 is referred to as a first region. The amount of alkali required in the first region is equal to the amount of carboxy groups in the slurry used for titration. Then, by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the slurry containing fine fibrous cellulose to be titrated, the amount of carboxy group introduced (mmol / g). ) Was calculated.
The above-mentioned amount of carboxy group introduced (mmol / g) is the amount of substituents per 1 g of mass of fibrous cellulose when the counterion of the carboxy group is hydrogen ion (H + ) (hereinafter, the amount of carboxy group (acid). Type)) is shown.

[比較例4]
比較例3において、酵素含有液の添加量を、固形分量1質量部数に対して、1.0×10-1質量部数とした。上記以外は比較例3と同様にし、評価用スラリーを得た。
[Comparative Example 4]
In Comparative Example 3, the amount of the enzyme-containing liquid added was 1.0 × 10 -1 by mass with respect to 1 part by mass of the solid content. A slurry for evaluation was obtained in the same manner as in Comparative Example 3 except for the above.

[比較例5]
実施例1において、微細繊維状セルロース1質量部に対して、酵素含有液1質量部数添加した。上記以外は実施例1と同様にし、評価用スラリーを得た。
[Comparative Example 5]
In Example 1, 1 part by mass of the enzyme-containing liquid was added to 1 part by mass of the fine fibrous cellulose. A slurry for evaluation was obtained in the same manner as in Example 1 except for the above.

<測定>
実施例及び比較例で得られた評価用スラリーを用いて、以下の方法に従って測定を行った。
<Measurement>
Using the evaluation slurries obtained in Examples and Comparative Examples, measurements were carried out according to the following method.

[粘度]
評価用スラリーの製造から24時間後にイオン交換水を注ぎ、固形分濃度が0.4質量%となるよう調製した。その後、25℃の環境下にて24時間静置し、B型粘度計(No.3ローター)(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて25℃にて回転数3rpmで3分間回転させて粘度を測定した。
[viscosity]
Twenty-four hours after the production of the evaluation slurry, ion-exchanged water was poured to prepare the solid content concentration to 0.4% by mass. Then, the mixture was allowed to stand in an environment of 25 ° C. for 24 hours, and then using a B-type viscometer (No. 3 rotor) (analog viscometer T-LVT manufactured by BLOOKFIELD) at 25 ° C. at a rotation speed of 3 rpm for 3 minutes. The viscosity was measured by rotating.

[重合度]
微細繊維状セルロースの比粘度および重合度は、Tappi T230に従い測定した。すなわち、測定対象の微細繊維状セルロースを分散媒に分散させて測定した粘度(η1とする)、および分散媒体のみで測定したブランク粘度(η0とする)を測定したのち、比粘度(ηsp)、固有粘度([η])を下記式に従って測定した。
ηsp=(η1/η0)-1
[η]=ηsp/(c(1+0.28×ηsp))
ここで、式中のcは、粘度測定時の微細繊維状セルロースの濃度を示す。
さらに、下記式から微細繊維状セルロースの重合度(DP)を算出した。
DP=1.75×[η]
この重合度は粘度法によって測定された平均重合度であることから、「粘度平均重合度」と称されることもある。
[Degree of polymerization]
The specific viscosity and degree of polymerization of the fine fibrous cellulose were measured according to Tappi T230. That is, after measuring the viscosity (referred to as η1) measured by dispersing the fine fibrous cellulose to be measured in a dispersion medium and the blank viscosity (referred to as η0) measured only with the dispersion medium, the specific viscosity (ηsp). The intrinsic viscosity ([η]) was measured according to the following formula.
ηsp = (η1 / η0) -1
[Η] = ηsp / (c (1 + 0.28 × ηsp))
Here, c in the formula indicates the concentration of fine fibrous cellulose at the time of viscosity measurement.
Further, the degree of polymerization (DP) of the fine fibrous cellulose was calculated from the following formula.
DP = 1.75 × [η]
Since this degree of polymerization is the average degree of polymerization measured by the viscosity method, it is sometimes referred to as "viscosity average degree of polymerization".

[エンドグルカナーゼ(EG)活性]
評価用スラリーのEG活性は下記のように測定し、定義した。
濃度1%(W/V)のカルボキシメチルセルロース(CMCNa High viscosity:Cat No.150561,MP Biomedicals,Inc.)の基質溶液(濃度100mM、pH5.0の酢酸-酢酸ナトリウム緩衝液含有)を調製した。製造直後の評価用スラリーを予め緩衝液(前記同様)で希釈(希釈倍率は下記酵素溶液の吸光度が下記グルコース標準液から得られた検量線に入るようにした)した。90μlの前記基質溶液に前記希釈して得られた評価用スラリー溶液10μlを添加し、37℃、30分間反応させた。
[Endoglucanase (EG) activity]
The EG activity of the evaluation slurry was measured and defined as follows.
A substrate solution of carboxymethyl cellulose (CMCNa High Viscosity: Cat No. 150561, MP Biomedicals, Inc.) at a concentration of 1% (W / V) (concentration 100 mM, containing a sodium acetate-sodium acetate buffer at pH 5.0) was prepared. Immediately after production, the evaluation slurry was diluted with a buffer solution (similar to the above) in advance (the dilution ratio was such that the absorbance of the enzyme solution below was within the calibration curve obtained from the glucose standard solution below). To 90 μl of the substrate solution, 10 μl of the diluted evaluation slurry solution was added, and the mixture was reacted at 37 ° C. for 30 minutes.

検量線を作成するために、イオン交換水(ブランク)、グルコース標準液(濃度0.5~5.6mMからすくなくとも濃度が異なる標準液4点)を選択し、それぞれ100μlを用意し、37℃、30分間保温した。
前記反応後の酵素含有評価用スラリー溶液、検量線用ブランク及びグルコース標準液に、それぞれ300μlのDNS発色液(1.6質量%のNaOH、1質量%の3,5-ジニトロサリチル酸、30質量%の酒石酸カリウムナトリウム)を加えて、5分間煮沸し発色させた。発色後直ちに氷冷し、2mlのイオン交換水を加えてよく混合した。30分間静置した後、1時間以内に吸光度を測定した。
To prepare a calibration curve, select ion-exchanged water (blank) and glucose standard solution (4 points of standard solution with at least different concentrations from 0.5 to 5.6 mM), prepare 100 μl each, and prepare at 37 ° C. It was kept warm for 30 minutes.
300 μl of DNS color-developing solution (1.6% by mass NaOH, 1% by mass 3,5-dinitrosalicylic acid, 30% by mass, respectively, in the enzyme-containing evaluation slurry solution, calibration line blank, and glucose standard solution after the reaction. (Potassium tartrate sodium) was added and boiled for 5 minutes to develop color. Immediately after color development, the mixture was ice-cooled, 2 ml of ion-exchanged water was added, and the mixture was well mixed. After allowing to stand for 30 minutes, the absorbance was measured within 1 hour.

吸光度の測定は96穴マイクロウェルプレート(269620、NUNC社製)に200μlを分注し、マイクロプレートリーダー(infiniteM200、TECAN社製)を用い、540nmの吸光度を測定した。 For the measurement of the absorbance, 200 μl was dispensed into a 96-well microwell plate (269620, manufactured by NUNC), and the absorbance at 540 nm was measured using a microplate reader (infiniteM200, manufactured by TECAN).

ブランクの吸光度を差し引いた各グルコース標準液の吸光度とグルコース濃度を用い検量線を作成した。評価用スラリー溶液中のグルコース相当生成量は評価用スラリー溶液の吸光度からブランクの吸光度を引いてから検量線を用いて算出した(評価用スラリー溶液の吸光度が検量線に入らない場合は前記緩衝液で評価用スラリーを希釈する際の希釈倍率を変えて再測定を行う)。1分間に1μmolのグルコース等量の還元糖を生成する酵素量を1単位と定義し、下記式からEG活性を求めた。
EG活性=緩衝液で希釈して得られた評価用サンプル溶液1mlのグルコース相当生成量(μmol)/30分×希釈倍率 [福井作蔵, “生物化学実験法 (還元糖の定量法)第二版 ”, 学会出版センター、p23~24 (1990年)参照]
A calibration curve was prepared using the absorbance and glucose concentration of each glucose standard solution minus the absorbance of the blank. The amount of glucose equivalent produced in the evaluation slurry solution was calculated by subtracting the blank absorbance from the absorbance of the evaluation slurry solution and then using a calibration curve (if the absorbance of the evaluation slurry solution does not enter the calibration curve, the buffer solution is described above. Remeasure by changing the dilution ratio when diluting the evaluation slurry in.) The amount of enzyme that produces 1 μmol of glucose equal amount of reducing sugar per minute was defined as 1 unit, and the EG activity was calculated from the following formula.
EG activity = Glucose equivalent production amount (μmol) / 30 minutes x dilution ratio of 1 ml of evaluation sample solution obtained by diluting with buffer solution [Fukui Sakuzo, "Biochemical experimental method (quantification method of reduced sugar) 2nd edition"", Society Publishing Center, p23-24 (1990)]

なお、評価用スラリーを製造してから24時間経過後に同様の測定をした。
全ての実施例において、EG活性は、酵素の添加直後の評価用スラリーと、評価用スラリーを製造してから24時間経過後の評価用スラリーとで変化はなかった。
The same measurement was performed 24 hours after the evaluation slurry was produced.
In all the examples, the EG activity did not change between the evaluation slurry immediately after the addition of the enzyme and the evaluation slurry 24 hours after the evaluation slurry was produced.

[タンパク質の含有量]
評価用スラリーに含まれるタンパク質は、ビュレット法によって求めた。
牛血清アルブミンに対し純水を加え、タンパク質の質量%が5.0%以下となるように調製した。
上記にて調製した牛血清アルブミン溶液に対し、4倍量のビュレット薬を加えてよく混合し、20℃から25℃の環境下で30分放置した。その後、分光光度計を使用し540nmの吸光波長を測定した。測定値をもとに、検量線を引いた。
次に、評価用スラリーを分取し、4倍量のビュレット試薬を加えてよく混合し、20℃から25℃の環境下で30分放置した。その後、分光光度計を使用し540nmの吸光波長を測定した。測定値は検量線へ書き込み、評価用スラリーに含まれるタンパク質量を求めた。
[Protein content]
The protein contained in the evaluation slurry was determined by the burette method.
Pure water was added to bovine serum albumin to prepare the protein so that the mass% of the protein was 5.0% or less.
To the bovine serum albumin solution prepared above, 4 times the amount of the burette drug was added, mixed well, and left in an environment of 20 ° C to 25 ° C for 30 minutes. Then, the absorption wavelength of 540 nm was measured using a spectrophotometer. A calibration curve was drawn based on the measured values.
Next, the evaluation slurry was separated, 4 times the amount of the burette reagent was added, mixed well, and left in an environment of 20 ° C to 25 ° C for 30 minutes. Then, the absorption wavelength of 540 nm was measured using a spectrophotometer. The measured value was written on the calibration curve, and the amount of protein contained in the evaluation slurry was determined.

<評価>
実施例及び比較例で得られた評価用スラリーを以下の方法に従って評価した。
<Evaluation>
The evaluation slurries obtained in Examples and Comparative Examples were evaluated according to the following method.

[セルロース含有膜の光学物性]
実施例及び比較例で得られた評価用スラリーを使用してセルロース含有膜を形成し、ヘーズを測定した。なお、セルロース含有膜の形成方法は後述する。
JIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いてヘーズを測定した。実施例の評価結果において、ヘーズが1.0%未満であるなら◎、1.5%未満であるなら○、2.0%未満であるなら△、2.0%以上ならば×と表記した。
[Optical characteristics of cellulose-containing film]
The evaluation slurry obtained in Examples and Comparative Examples was used to form a cellulose-containing film, and haze was measured. The method for forming the cellulose-containing film will be described later.
The haze was measured using a haze meter (HM-150, manufactured by Murakami Color Technology Research Institute) in accordance with JIS K 7136. In the evaluation results of the examples, if the haze is less than 1.0%, it is indicated as ⊚, if it is less than 1.5%, it is indicated as ○, if it is less than 2.0%, it is indicated as Δ, and if it is 2.0% or more, it is indicated as ×. ..

セルロース含有膜の形成方法:
評価用スラリーを、固形分濃度が1.0質量%となるようイオン交換水を添加して濃度調整を行った。
次いで、この微細繊維状セルロース分散液100質量部に対して、水溶性ポリエステル樹脂(互応化学社製、プラスコートZ-221、固形分濃度は20質量%)を100質量部添加し、塗料組成物Aを得た。
次いで、得られる塗膜(上記塗料組成物Aの固形分から構成される)の仕上がり坪量が50g/m2になるように塗工液を計量して、市販のアクリル板に塗工し、50℃、相対湿度15%の恒温恒湿器にて乾燥した。なお、所定の坪量となるようアクリル板上には堰止用の金枠(内寸が180mm×180mmの金枠)を配置した。乾燥後に形成された塗膜をアクリル板から剥離し、微細繊維状セルロースを含む、厚さ37μmの塗膜(セルロース含有膜)を得た。
Method for forming a cellulose-containing film:
The concentration of the evaluation slurry was adjusted by adding ion-exchanged water so that the solid content concentration was 1.0% by mass.
Next, 100 parts by mass of a water-soluble polyester resin (manufactured by Reciprocal Chemical Co., Ltd., plus coat Z-221, solid content concentration is 20% by mass) was added to 100 parts by mass of this fine fibrous cellulose dispersion to prepare a coating composition. I got A.
Next, the coating liquid is weighed so that the finished coating film (composed of the solid content of the above coating composition A) has a finished basis weight of 50 g / m2, and the coating film is applied to a commercially available acrylic plate at 50 ° C. , Dryed in a constant temperature and humidity chamber with a relative humidity of 15%. A dammed metal frame (a gold frame having an inner size of 180 mm × 180 mm) was placed on the acrylic plate so as to have a predetermined basis weight. The coating film formed after drying was peeled off from the acrylic plate to obtain a coating film (cellulose-containing film) having a thickness of 37 μm containing fine fibrous cellulose.

[セルロース含有膜の機械物性]
上記の[セルロース含有膜の光学物性]にて得られたセルロース含有膜を使用し、引張弾性率を測定した。
試験片の長さを80mm、チャック間距離を50mmとした以外はJIS P 8113に準拠し、引張試験機テンシロン(エー・アンド・デイ社製)を用いて引張弾性率を測定した。なお、引張弾性率を測定する際には、23℃、相対湿度50%で24時間調湿したものを試験片として使用し、23℃、相対湿度50%の条件下で測定を行った。実施例の評価結果において、引張弾性率が4GPa以上であるなら◎、2GPa以上であるなら○、1GPa以上であるなら△、1GPa未満ならば×と表記した。
[Mechanical characteristics of cellulose-containing membrane]
The tensile elastic modulus was measured using the cellulose-containing film obtained in the above [Optical properties of the cellulose-containing film].
The tensile elastic modulus was measured using a tensile tester Tensilon (manufactured by A & D Co., Ltd.) in accordance with JIS P 8113 except that the length of the test piece was 80 mm and the distance between chucks was 50 mm. When measuring the tensile elastic modulus, a test piece prepared at 23 ° C. and 50% relative humidity for 24 hours was used as a test piece, and the measurement was performed under the conditions of 23 ° C. and 50% relative humidity. In the evaluation results of the examples, ⊚ if the tensile elastic modulus is 4 GPa or more, ◯ if it is 2 GPa or more, Δ if it is 1 GPa or more, and × if it is less than 1 GPa.

[セルロース含有膜形成時の塗工適性]
実施例及び比較例で得られた評価用スラリー100質量部に対して、水溶性ポリエステル樹脂(互応化学社製、プラスコートZ-221、固形分濃度は20質量%)を100質量部添加し、塗料組成物Bを得た。次いで、この塗料組成物Bを、フィルムアプリケーターを使用してポリカーボネートフィルム(帝人社製、パンライトPC-2151、厚み300μm)上に塗工してウェット膜を形成した。なお、フィルムアプリケーターの塗工幅は150mm、ギャップ(塗工厚)は3mmとした。評価用スラリーを塗工する際の塗工適性について、官能評価を行った。ウェット膜の目視確認時に、凹凸が見られない場合は◎、多少の凹凸が見られる場合は○、目立った凹凸が見られる場合は△、凹凸により連続したウェット膜が形成できない場合には×と表記した。
[Appropriateness for coating when forming a cellulose-containing film]
To 100 parts by mass of the evaluation slurry obtained in Examples and Comparative Examples, 100 parts by mass of a water-soluble polyester resin (manufactured by Mutual Chemical Co., Ltd., Pluscoat Z-221, solid content concentration is 20% by mass) was added. A coating composition B was obtained. Next, this coating composition B was applied onto a polycarbonate film (Teijin Co., Ltd., Panlite PC-2151, thickness 300 μm) using a film applicator to form a wet film. The coating width of the film applicator was 150 mm, and the gap (coating thickness) was 3 mm. A sensory evaluation was performed on the coating suitability when coating the evaluation slurry. When visually checking the wet film, ◎ if no unevenness is seen, ○ if some unevenness is seen, △ if noticeable unevenness is seen, × if continuous wet film cannot be formed due to unevenness. Notated.

Figure 0007065797000004
Figure 0007065797000004

Figure 0007065797000005
Figure 0007065797000005

表1から明らかなように、タンパク質の含有量、及びエンドグルカナーゼ活性が好適な範囲にある実施例1~4では、膜とした際の光学物性、機械物性が良好であり、塗工適性にも優れる評価用スラリーが得られた。
一方、表2から明らかなように、酵素を添加しない比較例1では、塗工適性が劣る結果となった。また、比較例2~4では、パルプに対して酵素処理をした後に、イオン交換水により酵素を洗浄しているが、このような場合においてもタンパク質の含有量とエンドグルカナーゼ活性は低く、かつ塗工適性が劣る結果となった。また、タンパク質の含有量、及びエンドグルカナーゼ活性が好適な範囲より高い比較例5においては、膜の光学物性が不良であった。
As is clear from Table 1, in Examples 1 to 4 in which the protein content and the endoglucanase activity are in a preferable range, the optical and mechanical properties of the film are good, and the coating suitability is also good. An excellent evaluation slurry was obtained.
On the other hand, as is clear from Table 2, in Comparative Example 1 to which no enzyme was added, the coating suitability was inferior. Further, in Comparative Examples 2 to 4, after the pulp was treated with the enzyme, the enzyme was washed with ion-exchanged water, but even in such a case, the protein content and the endoglucanase activity were low and the pulp was coated. The result was that the workability was inferior. Further, in Comparative Example 5 in which the protein content and the endoglucanase activity were higher than the preferable ranges, the optical properties of the membrane were poor.

Claims (7)

繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、タンパク質とを含むセルロース含有組成物であって、前記タンパク質は酵素を含み、前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-3質量部以下であり、前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が1000mPa・s以上11000mPa・s以下であり、前記繊維状セルロースの重合度が320以上460以下である、セルロース含有組成物。 A cellulose-containing composition having a fiber width of 1000 nm or less, a phosphite group or a fibrous cellulose having a substituent derived from the phosphite group, and a protein, wherein the protein contains an enzyme and the protein. Content is 1 × 10 -3 parts by mass or less with respect to 1 part by mass of the fibrous cellulose, and the solid content concentration of the fibrous cellulose is 0.4% by mass under the conditions of 25 ° C. and 3 rpm. A cellulose-containing composition having a measured viscosity of 1000 mPa · s or more and 11000 mPa · s or less, and a degree of polymerization of the fibrous cellulose of 320 or more and 460 or less . 前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-7質量部以上である、請求項1に記載のセルロース含有組成物。 The cellulose-containing composition according to claim 1, wherein the content of the protein is 1 × 10 -7 parts by mass or more with respect to 1 part by mass of the fibrous cellulose. 前記酵素のエンドグルカナーゼ活性が0.084U/L以上840U/L以下である、請求項1又は2に記載のセルロース含有組成物。 The cellulose-containing composition according to claim 1 or 2, wherein the endoglucanase activity of the enzyme is 0.084 U / L or more and 840 U / L or less. 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロースと、タンパク質とを含む膜であって、前記タンパク質は酵素を含み、前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-3質量部以下であり、前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が1000mPa・s以上11000mPa・s以下であり、前記繊維状セルロースの重合度が320以上460以下である、膜。 A membrane containing a protein and a fibrous cellulose having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from the phosphite group, wherein the protein contains an enzyme and the content of the protein. However, the amount was 1 × 10 -3 parts by mass or less with respect to 1 part by mass of the fibrous cellulose, and the solid content concentration of the fibrous cellulose was 0.4% by mass, and the measurement was performed under the conditions of 25 ° C. and 3 rpm. A film having a viscosity of 1000 mPa · s or more and 11000 mPa · s or less and a degree of polymerization of the fibrous cellulose of 320 or more and 460 or less . 前記タンパク質の含有量が、前記繊維状セルロース1質量部に対して1×10-7質量部以上である、請求項に記載の膜。 The membrane according to claim 4 , wherein the content of the protein is 1 × 10 -7 parts by mass or more with respect to 1 part by mass of the fibrous cellulose. 繊維幅が1000nm以下であり、亜リン酸基又は亜リン酸基に由来する置換基を有する繊維状セルロース1質量部に対して、1×10-3質量部以下の酵素を添加する工程を含む、セルロース含有組成物の製造方法であって、
前記繊維状セルロースの固形分濃度を0.4質量%として25℃及び回転数3rpmの条件で測定した粘度が1000mPa・s以上11000mPa・s以下であり、前記繊維状セルロースの重合度が320以上460以下である、セルロース含有組成物の製造方法。
It includes a step of adding an enzyme of 1 × 10 -3 parts by mass or less to 1 part by mass of fibrous cellulose having a fiber width of 1000 nm or less and having a phosphite group or a substituent derived from the phosphite group. , A method for producing a cellulose-containing composition.
The viscosity measured under the conditions of 25 ° C. and 3 rpm with the solid content concentration of the fibrous cellulose as 0.4% by mass is 1000 mPa · s or more and 11000 mPa · s or less, and the degree of polymerization of the fibrous cellulose is 320 or more and 460. The following is a method for producing a cellulose-containing composition.
繊維状セルロースの繊維幅を1000nm以下とする解繊処理工程をさらに含み、
前記酵素を添加する工程は、前記解繊処理工程の後に設けられる、請求項に記載のセルロース含有組成物の製造方法。

Further including a defibration treatment step of reducing the fiber width of the fibrous cellulose to 1000 nm or less,
The method for producing a cellulose-containing composition according to claim 6 , wherein the step of adding the enzyme is provided after the defibration treatment step.

JP2019019741A 2019-02-06 2019-02-06 Fibrous cellulose-containing composition, its production method, and membrane Active JP7065797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019019741A JP7065797B2 (en) 2019-02-06 2019-02-06 Fibrous cellulose-containing composition, its production method, and membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019741A JP7065797B2 (en) 2019-02-06 2019-02-06 Fibrous cellulose-containing composition, its production method, and membrane

Publications (2)

Publication Number Publication Date
JP2020125425A JP2020125425A (en) 2020-08-20
JP7065797B2 true JP7065797B2 (en) 2022-05-12

Family

ID=72084748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019741A Active JP7065797B2 (en) 2019-02-06 2019-02-06 Fibrous cellulose-containing composition, its production method, and membrane

Country Status (1)

Country Link
JP (1) JP7065797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7505748B2 (en) 2020-07-22 2024-06-25 中山エンジニヤリング株式会社 Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221844A (en) 2014-05-22 2015-12-10 凸版印刷株式会社 Method for producing composite, composite, and dispersion of fine cellulose fiber
WO2016060120A1 (en) 2014-10-15 2016-04-21 王子ホールディングス株式会社 Composition including fine cellulose fiber
JP2018140063A (en) 2017-02-28 2018-09-13 大王製紙株式会社 Hydrolyzable sheet and method for producing the hydrolyzable sheet
WO2019021619A1 (en) 2017-07-24 2019-01-31 大王製紙株式会社 Fine cellulose fiber-containing substance, method for manufacturing same, and fine cellulose fiber dispersion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601900B2 (en) * 2015-06-05 2019-11-06 日本製紙株式会社 Method for producing cellulose nanofiber dispersion and method for redispersing dried cellulose nanofiber solids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221844A (en) 2014-05-22 2015-12-10 凸版印刷株式会社 Method for producing composite, composite, and dispersion of fine cellulose fiber
WO2016060120A1 (en) 2014-10-15 2016-04-21 王子ホールディングス株式会社 Composition including fine cellulose fiber
JP2018140063A (en) 2017-02-28 2018-09-13 大王製紙株式会社 Hydrolyzable sheet and method for producing the hydrolyzable sheet
WO2019021619A1 (en) 2017-07-24 2019-01-31 大王製紙株式会社 Fine cellulose fiber-containing substance, method for manufacturing same, and fine cellulose fiber dispersion

Also Published As

Publication number Publication date
JP2020125425A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6911926B2 (en) Fibrous Cellulose-Containing Compositions and Paints
JP7006278B2 (en) Seat
JP6694856B2 (en) Fibrous cellulose-containing composition, method for producing the same, and membrane
JP6540925B1 (en) Fibrous cellulose-containing composition and paint
JP6733627B2 (en) Fibrous cellulose-containing composition and paint
JP6686989B2 (en) Fibrous cellulose-containing composition and paint
JP7334773B2 (en) Fibrous cellulose-containing composition and paint
JP7065797B2 (en) Fibrous cellulose-containing composition, its production method, and membrane
JP6954257B2 (en) Fibrous cellulose-containing composition, its production method, and membrane
JP6763423B2 (en) Method for producing fibrous cellulose and fibrous cellulose
JP7649223B2 (en) Fibrous cellulose-containing composition, its production method, and membrane
JP2020152926A (en) Method for producing fibrous cellulose and fibrous cellulose
JP6696600B1 (en) Fibrous cellulose-containing composition and paint
JP6540924B1 (en) Fibrous cellulose-containing composition and paint
JP6680371B1 (en) Fibrous cellulose-containing composition and paint
JP6828759B2 (en) Sheets and laminates
JP6680382B1 (en) Composition
JP7047369B2 (en) Composition
JP2020164726A (en) Sheet
WO2021002273A1 (en) Sheet and laminate
JP2022157194A (en) Fibrous cellulose, dispersion and sheet
JPWO2019203239A1 (en) Sheets and laminates
JP2021161353A (en) Fibrous cellulose, fibrous cellulose-containing material and molded article
JP2020204041A (en) Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190313

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200511

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200512

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200703

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200707

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210921

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220105

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220301

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220329

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7065797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250