JP7064717B2 - Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents
Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP7064717B2 JP7064717B2 JP2018093532A JP2018093532A JP7064717B2 JP 7064717 B2 JP7064717 B2 JP 7064717B2 JP 2018093532 A JP2018093532 A JP 2018093532A JP 2018093532 A JP2018093532 A JP 2018093532A JP 7064717 B2 JP7064717 B2 JP 7064717B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- secondary battery
- aqueous electrolyte
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 26
- 239000002131 composite material Substances 0.000 claims description 75
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 74
- 239000000203 mixture Substances 0.000 claims description 43
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 claims description 40
- 238000010304 firing Methods 0.000 claims description 36
- 229910052759 nickel Inorganic materials 0.000 claims description 36
- 238000005469 granulation Methods 0.000 claims description 21
- 230000003179 granulation Effects 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 18
- 150000002642 lithium compounds Chemical class 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 15
- 150000002816 nickel compounds Chemical class 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910014211 My O Inorganic materials 0.000 claims description 3
- 229910017698 Ni 1-x-y Co Inorganic materials 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 19
- 239000002245 particle Substances 0.000 description 15
- 238000002425 crystallisation Methods 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 241000709691 Enterovirus E Species 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007908 dry granulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910016222 LiNi0.9Co0.1O2 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は非水系電解質二次電池用正極活物質の製造方法に関する。 The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
携帯電話やノート型パソコン等の携帯機器の普及にともない、高いエネルギー密度を有する小型かつ軽量な二次電池の開発が強く望まれている。
また、xEVと呼ばれる環境対応自動車においてもハイブリッド車(HEV)から高容量の二次電池を必要とするプラグインハイブリッド車(PHEV)や電気自動車(BEV)への移行が進んでいる。このBEVは、1回の充電での走行距離がガソリン車に比べ短く、これを改善するため二次電池の高容量化が求められている。
With the widespread use of mobile devices such as mobile phones and laptop computers, the development of compact and lightweight secondary batteries with high energy density is strongly desired.
Also, in the environment-friendly automobiles called xEVs, the shift from hybrid electric vehicles (HEVs) to plug-in hybrid electric vehicles (PHEVs) and electric vehicles (BEVs) that require high-capacity secondary batteries is progressing. This BEV has a shorter mileage per charge than a gasoline-powered vehicle, and in order to improve this, it is required to increase the capacity of the secondary battery.
このような要求を満たす二次電池として、非水系電解質二次電池用正極活物質があり、代表的な二次電池としてリチウムイオン二次電池が挙げられる。
このリチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質は、リチウムを脱離および挿入することの可能な材料が用いられている。
リチウムイオン二次電池は、現在、研究開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
As a secondary battery satisfying such a requirement, there is a positive electrode active material for a non-aqueous electrolyte secondary battery, and a typical secondary battery is a lithium ion secondary battery.
This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and the active material of the negative electrode and the positive electrode is a material capable of desorbing and inserting lithium.
Lithium-ion secondary batteries are currently being actively researched and developed. Among them, lithium-ion secondary batteries using a layered or spinel-type lithium metal composite oxide as a positive electrode material are 4V class. Since a high voltage can be obtained, it is being put into practical use as a battery having a high energy density.
これまで主に提案されている材料としては、合成が比較的容易なリチウム・コバルト複合酸化物(LiCoO2)や、リチウム・ニッケル複合酸化物(LiNiO2)、リチウム・ニッケル・コバルト・マンガン複合酸化物(LiNi1/3Co1/3Mn1/3O2)、マンガンを用いたリチウム・マンガン複合酸化物(LiMn2O4)などを挙げることができる。 The materials that have been mainly proposed so far are lithium-cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium-nickel composite oxide (LiNiO 2 ), and lithium-nickel-cobalt-manganese composite oxidation. Examples thereof include a substance (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and a lithium-manganese composite oxide using manganese (LiMn 2 O 4 ).
近年、電気自動車が急速に普及し始めたことにより、駆動用電源として高エネルギー密度を有するリチウムイオン二次電池の需要が高まっており、中でも高エネルギー密度とするためにCoと熱的安定性を高めるためにAlを添加したLiNiO2(LiNi1-x-yCoxAlyO2、NCA)が注目されている。 In recent years, with the rapid spread of electric vehicles, the demand for lithium-ion secondary batteries with high energy density as a driving power source is increasing, and in particular, Co and thermal stability are required for high energy density. LiNiO 2 (LiNi 1-xy Co x Aly O 2 , NCA) to which Al has been added for enhancing has been attracting attention.
またLiNiO2の焼成合成は、リチウム化合物と酸化物や水酸化物等のニッケル化合物を混合した混合粉を、こう鉢等に充填して酸素雰囲気で焼成するもので、このLiNiO2の効率的な製造方法として、リチウム化合物とニッケル化合物の混合粉を、水をバインダーとして造粒する技術(特許文献1)が報告されている。
しかし、バインダーとして水を用いるため、焼成時の酸素分圧を下げてしまい、リチウム化合物とニッケル化合物の反応を阻害してしまうという課題があった。また、バインダーの水を添加する際に通常はノズル等を使用するが、ノズルの劣化等によるコンタミネーションを引き起こす懸念があった。
Further, in the calcining synthesis of LiNiO 2 , a mixed powder obtained by mixing a lithium compound and a nickel compound such as an oxide or a hydroxide is filled in a funnel or the like and calcined in an oxygen atmosphere, and the LiNiO 2 is efficient. As a production method, a technique for granulating a mixed powder of a lithium compound and a nickel compound using water as a binder (Patent Document 1) has been reported.
However, since water is used as the binder, there is a problem that the oxygen partial pressure at the time of firing is lowered and the reaction between the lithium compound and the nickel compound is hindered. Further, although a nozzle or the like is normally used when adding water to the binder, there is a concern that contamination may occur due to deterioration of the nozzle or the like.
NCA等のLiNiO2(以降、まとめて「リチウム・ニッケル複合酸化物」とすることもある。)を効率的に大量生産するためには、こう鉢により多くの混合粉を充填し、焼成する方法が考えられるが、リチウム・ニッケル複合酸化物の合成には酸素が関わるため、こう鉢内の混合粉の層厚を厚くすると、こう鉢内部の混合粉と酸素が接触する機会が減少して反応が完全に完了する前に焼成が終了し、製品品質を低下させてしまうことがあった。 In order to efficiently mass-produce LiNiO 2 such as NCA (hereinafter, may be collectively referred to as "lithium-nickel composite oxide"), a method of filling a large amount of mixed powder in a funnel and baking it. However, since oxygen is involved in the synthesis of the lithium-nickel composite oxide, increasing the layer thickness of the mixed powder in the pot reduces the chance that oxygen comes into contact with the mixed powder inside the pot and reacts. In some cases, the firing was completed before the product was completely completed, which deteriorated the product quality.
本発明は、上記従来の問題点を鑑みなされたもので、その目的は焼成にて所望の結晶構造を有する化合物を生産性よく製造することができ、且つ化学量論組成近くで純度の高いリチウム・ニッケル複合酸化物系層状岩塩構造の物質を容易に製造することができる非水系電解質二次電池用正極活物質の製造に好適なリチウム・ニッケル複合酸化物の製造方法を提供することである。 The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to be able to produce a compound having a desired crystal structure by firing with high productivity, and to produce lithium having a high purity near a chemical substance composition. -It is an object of the present invention to provide a method for producing a lithium-nickel composite oxide suitable for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which can easily produce a substance having a nickel composite oxide-based layered rock salt structure.
本発明の第1の発明は、リチウム・ニッケル複合酸化物を含む非水系電解質二次電池用正極活物質の製造方法であって、ニッケル化合物とリチウム化合物とを混合して混合物を得る混合工程と、前記混合物を乾式造粒して前記混合物からなる造粒物を得る造粒工程と、前記造粒物を焼成してリチウム・ニッケル複合酸化物を得る焼成工程とを含み、前記造粒工程が、ロールを用いてシート状の造粒物を形成し、前記シート状の造粒物を粗解砕もしくは切断してプレート状の造粒物を形成することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 The first invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium-nickel composite oxide, which comprises a mixing step of mixing a nickel compound and a lithium compound to obtain a mixture. The granulation step comprises a granulation step of dry-granulating the mixture to obtain a granulated product composed of the mixture, and a firing step of calcining the granulated product to obtain a lithium-nickel composite oxide. , A non-aqueous electrolyte secondary battery characterized in that a sheet-shaped granulated product is formed using a roll, and the sheet-shaped granulated product is roughly crushed or cut to form a plate-shaped granulated product. This is a method for producing a positive electrode active material for use.
本発明の第2の発明は、第1の発明における造粒工程が、前記混合物を4.9kN/cm~10kN/cmのロール線圧でロール間を通過させることにより、前記シート状の造粒物を得ることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 In the second invention of the present invention, the granulation step in the first invention causes the mixture to pass between rolls at a roll linear pressure of 4.9 kN / cm to 10 kN / cm, whereby the sheet-like granulation is performed. It is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is characterized by obtaining a product.
本発明の第3の発明は、第1及び第2の発明におけるリチウム化合物が、水酸化リチウムであることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A third aspect of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the lithium compound in the first and second inventions is lithium hydroxide.
本発明の第4の発明は、第1から第3の発明におけるプレート状の造粒物の嵩密度が、前記混合物の嵩密度の1.1倍~1.5倍であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A fourth aspect of the present invention is characterized in that the bulk density of the plate-shaped granules in the first to third inventions is 1.1 to 1.5 times the bulk density of the mixture. This is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
本発明の第5の発明は、第1から第4の発明における焼成工程において、前記プレート状の造粒物を、こう鉢内に層厚1mm以上に積載して焼成することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A fifth aspect of the present invention is characterized in that, in the firing steps of the first to fourth inventions, the plate-shaped granules are loaded in a funnel having a layer thickness of 1 mm or more and fired. This is a method for manufacturing a positive electrode active material for an aqueous electrolyte secondary battery.
本発明の第6の発明は、第1から第5の発明における焼成工程の後、さらに得られたリチウム・ニッケル複合酸化物を粉砕する粉砕工程を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 A sixth aspect of the present invention is a non-aqueous electrolyte secondary battery, which comprises a pulverization step of pulverizing the obtained lithium-nickel composite oxide after the firing step of the first to fifth inventions. This is a method for producing a positive electrode active material for use.
本発明の第7の発明は、第1から第5の発明のいずれかの発明における焼成工程の後、又は第6の発明における粉砕工程後、得られたリチウム・ニッケル複合酸化物を水洗する水洗工程と、該水洗したリチウム・ニッケル複合酸化物を乾燥する乾燥工程とを有することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 According to the seventh aspect of the present invention, the obtained lithium-nickel composite oxide is washed with water after the firing step in any one of the first to fifth inventions or after the pulverization step in the sixth invention. It is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises a step and a drying step of drying the washed lithium-nickel composite oxide.
本発明の第8の発明は、第1から第7の発明におけるリチウム・ニッケル複合酸化物が、一般式:LizNi1-x-yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.35、0.90≦z≦1.20、MはAl、Mn、Mo、W、Mg、Si、B、Nb、V、Tiから選ばれる一種以上の元素)であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。 In the eighth invention of the present invention, the lithium-nickel composite oxide in the first to seventh inventions has a general formula: Liz Ni 1-xy Co x My O 2 (where 0 ≦ x ≦ 0). .35, 0 ≦ y ≦ 0.35, 0.90 ≦ z ≦ 1.20, M is one or more elements selected from Al, Mn, Mo, W, Mg, Si, B, Nb, V, Ti) It is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is characterized by the above.
本発明により、非水系電解質二次電池用正極活物質を生産性よく容易に製造することができる。特に、非水系電解質二次電池用正極活物質として好適に用いられる化学量論組成に近いリチウム・ニッケル複合酸化物を、高い純度で、工業的規模において容易に製造することが可能であり、その工業的価値が極めて高い。 INDUSTRIAL APPLICABILITY According to the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery can be easily produced with high productivity. In particular, it is possible to easily produce a lithium-nickel composite oxide having a chemical quantitative composition that is suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery with high purity on an industrial scale. Extremely high industrial value.
[非水系電解質二次電池用正極活物質の製造方法]
本発明は、リチウム・ニッケル複合酸化物を含む非水系電解質二次電池用正極活物質の製造方法であり、少なくともニッケルを含むニッケル化合物とリチウム化合物とを所定量で混合して混合物を得る混合工程と、前記混合物を乾式造粒して造粒物を得る造粒工程と、前記造粒物を焼成してリチウム・ニッケル複合酸化物を得る焼成工程とを含むことを特徴とする。また必要に応じて、焼成後のリチウム・ニッケル複合酸化物を解砕する解砕工程と、解砕後のリチウム・ニッケル複合酸化物を洗浄してろ過する水洗工程と、水洗されたリチウム・ニッケル複合酸化物を乾燥する乾燥工程を備えていてもよい。
[Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery]
The present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium-nickel composite oxide, and is a mixing step of mixing at least a nickel compound containing nickel and a lithium compound in a predetermined amount to obtain a mixture. It is characterized by including a granulation step of drying the mixture to obtain a granulated product and a firing step of calcining the granulated product to obtain a lithium-nickel composite oxide. In addition, if necessary, a crushing step of crushing the lithium-nickel composite oxide after firing, a water washing step of washing and filtering the crushed lithium-nickel composite oxide, and a water-washed lithium-nickel composite oxide. It may be provided with a drying step of drying the composite oxide.
上記の工程を経ることで得られたリチウム・ニッケル複合酸化物は、層状構造の結晶構造を有し、通常は一次粒子が凝集した二次粒子の形態である。リチウム・ニッケル複合酸化物は、少なくともLi(リチウム)とNi(ニッケル)を含み、Co(コバルト)、及びAl(アルミニウム)、Mn(マンガン)、Mo(モリブデン)、W(タングステン)、Mg(マグネシウム)、Si(ケイ素)、B(ホウ素)、Nb(ニオブ)、V(バナジウム)、Ti(チタン)から選ばれる一種以上の元素を含んでいてもよい。
さらに、リチウム・ニッケル複合酸化物は、一般式:LizNi1-x-yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.35、0.90≦z≦1.20、MはAl、Mn、Mo、W、Mg、Si、B、Nb、V、Tiから選ばれる一種以上の元素)とするのが好ましく、より好ましくは一般式:LizNi1-x-yCoxAlyO2(ただし、0.03≦x≦0.10、0.03≦y≦0.10、0.93<z<1.03)とする。このようなリチウム・ニッケル複合酸化物は非水系電解質二次電池用正極活物質に好適に用いられる。
以下、各工程を詳細に説明する。
The lithium-nickel composite oxide obtained through the above steps has a crystal structure having a layered structure, and is usually in the form of secondary particles in which primary particles are aggregated. The lithium-nickel composite oxide contains at least Li (lithium) and Ni (nickel), and contains Co (cobalt), Al (aluminum), Mn (manganese), Mo (molybdenum), W (tungsten), and Mg (magnesium). ), Si (silicon), B (boron), Nb (niob), V (vanadium), Ti (tungsten) may contain one or more elements.
Further, the lithium-nickel composite oxide has a general formula: Liz Ni 1-x-y Co x My O 2 (however, 0 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.90 ≦. z ≦ 1.20, M is preferably one or more elements selected from Al, Mn, Mo, W, Mg, Si, B, Nb, V, and Ti), and more preferably the general formula: Li z Ni. 1-xy Co x Ally O 2 (where 0.03 ≦ x ≦ 0.10, 0.03 ≦ y ≦ 0.10, 0.93 <z <1.03). Such a lithium-nickel composite oxide is suitably used as a positive electrode active material for a non-aqueous electrolyte secondary battery.
Hereinafter, each step will be described in detail.
(混合工程)
混合工程は、少なくともニッケルを含み、必要に応じてコバルトやアルミニウム等を含むニッケル化合物と、水酸化リチウム、炭酸リチウムなどのリチウム化合物を所定量計量後混合し、混合粉とする工程である。
混合には一般的な混合機を使用することができ、例えば、シェイカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができる。またこの混合は、ニッケル化合物及びリチウム化合物の形骸が破壊されない程度で、十分に混合されればよい。
(Mixing process)
The mixing step is a step in which a nickel compound containing at least nickel and, if necessary, cobalt, aluminum and the like and a lithium compound such as lithium hydroxide and lithium carbonate are weighed in a predetermined amount and then mixed to form a mixed powder.
A general mixer can be used for mixing, and for example, a shaker mixer, a Lady Gemixer, a Julia mixer, a V blender, or the like can be used. Further, this mixing may be sufficiently mixed to the extent that the skeletons of the nickel compound and the lithium compound are not destroyed.
ニッケル化合物とリチウム化合物の配合比は、ニッケル化合物中の金属元素(Me)に対するリチウム化合物中のLi元素の比(Li/Me比)が0.90~1.20の範囲となるように配合して混合するのが好ましい。混合が十分でない場合には個々の粒子間でLi/Me比がばらつき、十分な電池特性が得られない等の問題が生じる可能性がある。 The blending ratio of the nickel compound and the lithium compound is such that the ratio (Li / Me ratio) of the Li element in the lithium compound to the metal element (Me) in the nickel compound is in the range of 0.90 to 1.20. It is preferable to mix them. If the mixing is not sufficient, the Li / Me ratio may vary among the individual particles, and problems such as insufficient battery characteristics may occur.
リチウム化合物は、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム又はこれらの混合物を用いることができるが、後述する乾式造粒の観点から結着性が強い水酸化リチウムを用いることが好ましい。 As the lithium compound, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate or a mixture thereof can be used, but it is preferable to use lithium hydroxide having a strong binding property from the viewpoint of dry granulation described later.
ニッケル化合物は、酸化物や水酸化物等を用いることができるが、リチウムとの反応性の観点から、酸化物を用いることが好ましい。以下に少なくともニッケルを含み、必要に応じてコバルトやアルミニウム等を含むニッケル複合酸化物やニッケル複合水酸化物について、さらに詳しく説明する。 As the nickel compound, an oxide, a hydroxide or the like can be used, but it is preferable to use an oxide from the viewpoint of reactivity with lithium. Hereinafter, nickel composite oxides and nickel composite hydroxides containing at least nickel and, if necessary, cobalt, aluminum and the like will be described in more detail.
ニッケル複合酸化物は、後述するニッケル複合水酸化物を酸化することで得られる。酸化物にすることで、焼成工程時に発生する水蒸気の量が減少し、格段に反応が進みやすくなり、焼成時間が大幅に短縮される。
ニッケル複合水酸化物の酸化は、酸化焙焼(熱処理)により行うことができる。酸化焙焼は、例えば、600℃以上800℃以下、0.5時間以上3.0時間以下で行うことが好ましい。酸化焙焼の温度が600℃未満の場合、水分が残留して酸化が十分に進まない場合がある。
The nickel composite oxide is obtained by oxidizing the nickel composite hydroxide described later. By using an oxide, the amount of water vapor generated during the firing process is reduced, the reaction becomes much easier to proceed, and the firing time is significantly shortened.
Oxidation of the nickel composite hydroxide can be performed by oxidative roasting (heat treatment). Oxidative roasting is preferably carried out, for example, at 600 ° C. or higher and 800 ° C. or lower, 0.5 hours or longer and 3.0 hours or lower. If the temperature of oxidative roasting is less than 600 ° C., moisture may remain and oxidation may not proceed sufficiently.
一方、酸化焙焼の温度が、800℃を超える場合、複合酸化物同士が結着して粗大粒子が形成される場合がある。また、多くのエネルギーを使用するため、コストの観点から、工業的に適当ではない。酸化焙焼の時間が、0.5時間未満の場合は、ニッケル複合水酸化物の酸化が十分に進まず、3.0時間を超えると、エネルギーコストが大きくなり、工業的に適当ではない。 On the other hand, when the temperature of oxidative roasting exceeds 800 ° C., the composite oxides may be bonded to each other to form coarse particles. In addition, since it uses a lot of energy, it is not industrially suitable from the viewpoint of cost. If the oxidative roasting time is less than 0.5 hours, the oxidation of the nickel composite hydroxide does not proceed sufficiently, and if it exceeds 3.0 hours, the energy cost increases, which is not industrially suitable.
ニッケル複合水酸化物は、少なくともニッケルを含み、必要に応じてコバルトやアルミニウム等を含んでいる。さらにマンガン、モリブデン、タングステン、マグネシウム、ケイ素、ホウ素、ニオブ、バナジウム、チタン等を含んでもよい。このニッケル複合水酸化物の製造方法は特に限定されないが、例えば、晶析法を用いることができる。
この晶析法によって得られるニッケル複合水酸化物は、粒子全体で組成が均一となり、最終的に得られるリチウム・ニッケル複合酸化物の組成も均一になる。ニッケル複合水酸化物に含まれる各金属元素の比率は、ニッケル複合酸化物、リチウム・ニッケル複合酸化物まで継承されるので、ニッケル複合水酸化物の組成は、最終的に得ようとするリチウム・ニッケル複合酸化物のリチウム以外の金属の組成と同様にすることができる。
The nickel composite hydroxide contains at least nickel and, if necessary, cobalt, aluminum and the like. Further, manganese, molybdenum, tungsten, magnesium, silicon, boron, niobium, vanadium, titanium and the like may be contained. The method for producing this nickel composite hydroxide is not particularly limited, but for example, a crystallization method can be used.
The composition of the nickel composite hydroxide obtained by this crystallization method becomes uniform in the entire particles, and the composition of the finally obtained lithium-nickel composite oxide also becomes uniform. Since the ratio of each metal element contained in the nickel composite hydroxide is inherited to the nickel composite oxide and the lithium-nickel composite oxide, the composition of the nickel composite hydroxide is finally obtained. The composition of the nickel composite oxide can be similar to that of a metal other than lithium.
ニッケル複合水酸化物は、例えば、ニッケル、コバルト、アルミニウム等を含む水溶液を攪拌しながら、アルカリ水溶液を用いて中和する、晶析反応を行うことで製造することができる。
ニッケル等の水溶液を調整する際に用いられる金属塩としては、硫酸塩、塩化物、硝酸塩等とすることができる。また、必要に応じて、アンモニウムイオン供給体など錯化剤の存在下で晶析反応を行ってもよい。
晶析法により得られたニッケル複合水酸化物は、一次粒子が凝集した二次粒子で構成され、このニッケル複合水酸化物粒子から得られるリチウム・ニッケル複合酸化物も一次粒子が凝集した二次粒子で構成されたものとなる。
The nickel composite hydroxide can be produced, for example, by performing a crystallization reaction in which an aqueous solution containing nickel, cobalt, aluminum and the like is stirred and neutralized with an alkaline aqueous solution.
As the metal salt used when preparing an aqueous solution of nickel or the like, sulfate, chloride, nitrate or the like can be used. Further, if necessary, the crystallization reaction may be carried out in the presence of a complexing agent such as an ammonium ion feeder.
The nickel composite hydroxide obtained by the crystallization method is composed of secondary particles in which the primary particles are aggregated, and the lithium-nickel composite oxide obtained from the nickel composite hydroxide particles is also the secondary particles in which the primary particles are aggregated. It is composed of particles.
なお、晶析法としては、特に限定されず、例えば、連続晶析法、バッチ法などを用いることができる。
連続晶析法は、例えば、反応容器からオーバーフローしたニッケル複合水酸化物を連続的に回収する方法であり、組成が等しいニッケル複合水酸化物を大量にかつ簡便に作製できる。また、連続晶析法で得られたニッケル複合酸化物は、広い粒度分布を有するため、これを用いて得られるリチウム・ニッケル複合酸化物の充填密度を向上させることができる。
The crystallization method is not particularly limited, and for example, a continuous crystallization method, a batch method, or the like can be used.
The continuous crystallization method is, for example, a method of continuously recovering the nickel composite hydroxide overflowing from the reaction vessel, and can easily produce a large amount of nickel composite hydroxides having the same composition. Further, since the nickel composite oxide obtained by the continuous crystallization method has a wide particle size distribution, the packing density of the lithium-nickel composite oxide obtained by using the nickel composite oxide can be improved.
さらに、ニッケル複合水酸物の粒径は、例えば、1μm以上、50μm以下である。
バッチ法は、より均一な粒径を有し、粒度分布の狭いニッケル複合水酸物を得ることができる。バッチ法で得られたニッケル複合水酸化物を用いて得られるリチウム・ニッケル複合酸化物は、焼成の際、より均一にリチウム化合物と反応することができる。また、バッチ法で得られたニッケル複合水酸化物は、二次電池に用いられた際にサイクル特性や出力特性を低下させる原因の一つとなる微粉の混入を減少させることができる。
Further, the particle size of the nickel composite hydroxide is, for example, 1 μm or more and 50 μm or less.
The batch method can obtain a nickel composite hydroxide having a more uniform particle size and a narrow particle size distribution. The lithium-nickel composite oxide obtained by using the nickel composite hydroxide obtained by the batch method can react more uniformly with the lithium compound at the time of firing. Further, the nickel composite hydroxide obtained by the batch method can reduce the mixing of fine powder, which is one of the causes of deterioration of cycle characteristics and output characteristics when used in a secondary battery.
(造粒工程)
造粒工程は、前記混合物を、バインダーを用いず乾式で造粒する工程であり、例えば、圧力を印加した2つのロール間に、上記混合粉を通し、圧密することにより混合物を乾式造粒することで混合物からなる造粒物とすることが好ましい。
この工程においては、水や樹脂などのバインダーを用いた場合と比較し、焼成時に反応効率を下げずに造粒可能である。すなわち、バインダーを用いると、従来の焼成よりもガス発生が多くなり、混合物表面の酸素分圧が上昇し反応性が低下してしまう。
一方、本発明では、リチウム化合物の結着性を利用するロールを用いるので、バインダーを一切用いない乾式造粒であっても圧密することができ、コンタミネーションや反応性の低下を引き起こさない。
(Granulation process)
The granulation step is a step of dry-granulating the mixture without using a binder. For example, the mixed powder is passed between two rolls to which pressure is applied and compacted to dry-granulate the mixture. Therefore, it is preferable to obtain a granulated product composed of a mixture.
In this step, granulation is possible without lowering the reaction efficiency at the time of firing, as compared with the case of using a binder such as water or resin. That is, when a binder is used, more gas is generated than in conventional firing, the oxygen partial pressure on the surface of the mixture increases, and the reactivity decreases.
On the other hand, in the present invention, since a roll utilizing the binding property of the lithium compound is used, it can be consolidated even in dry granulation without using any binder, and does not cause contamination or deterioration of reactivity.
また、造粒することにより、混合物の嵩密度を増大させた状態でも、造粒物間の通気性の維持が保たれ、焼成時の合成反応を、こう鉢全体で良好なものとすることができ、反応性を確保することができる。
さらに、混合物が接触していた、こう鉢との接触面積を小さくできるため、割れなどの容器の破損問題の頻度を低減することができ、製品へのコンタミネーションを低減する。
In addition, by granulating, the air permeability between the granulated products is maintained even when the bulk density of the mixture is increased, and the synthetic reaction at the time of firing can be improved in the entire funnel. It can be done and reactivity can be ensured.
Further, since the contact area with the filter bowl, which the mixture was in contact with, can be reduced, the frequency of container breakage problems such as cracking can be reduced, and contamination with the product can be reduced.
また、リチウム塩とニッケル塩は、比重や粒子形状が異なるため、混合しても振動等を加えると分離してしまい、局所的に化学量論組成がずれてしまう可能性があるが、本発明では造粒することで原料粒子の流動性を著しく制限するため、ハンドリングや搬送時に局所的な組成のずれが起きることはなく、製品品質を向上させることができる。 Further, since the specific gravity and the particle shape of the lithium salt and the nickel salt are different, even if they are mixed, they are separated when vibration or the like is applied, and the chemical quantitative composition may be locally deviated. Since granulation significantly limits the fluidity of the raw material particles, local compositional deviation does not occur during handling and transportation, and product quality can be improved.
その造粒に際しては、この混合物を、ロール線圧を4.9kN/cm~10kN/cmとしたロール間に通過させることにより造粒物を得ることが好ましい。
ロール間に4.9kN/cm以上のロール線圧を印加することで、焼成時にも造粒状態を維持させることができる。しかし、ロール線圧が10kN/cmを超えると、混合物中のニッケル化合物の粒子にクラックが入り、二次電池に用いられた際にサイクル特性や出力特性が低下してしまうことがある。
At the time of granulation, it is preferable to pass this mixture between rolls having a roll linear pressure of 4.9 kN / cm to 10 kN / cm to obtain granulated products.
By applying a roll linear pressure of 4.9 kN / cm or more between the rolls, the granulated state can be maintained even during firing. However, if the roll linear pressure exceeds 10 kN / cm, the particles of the nickel compound in the mixture may be cracked and the cycle characteristics and output characteristics may be deteriorated when used in a secondary battery.
得られた造粒物はシート状であり、その厚さは1mm以上とするのが好ましい。上限については特に限定されないが、ハンドリング時に造粒物が崩れないようにするのが好ましく、100mm以下とするのが好ましい。また造粒物はシート状であるので、ハンドリングを容易にし、後述する焼成工程でこう鉢に充填しやすくするために、粗解砕もしくは切断してプレート状とし、取扱いしやすい大きさとするのが好ましい。
プレート状とした造粒物の平面(ロールにより平となった面)の幅は、少なくとも5mm以上とするのが好ましい。プレート状の造粒物の平面の幅を少なくとも1mm以上とすることで、焼成工程でのこう鉢への充填量を高めることができる。この平面の幅の上限については、使用するこう鉢の形状、大きさに応じて適宜調整すればよい。
The obtained granulated product is in the form of a sheet, and the thickness thereof is preferably 1 mm or more. The upper limit is not particularly limited, but it is preferable that the granulated product does not collapse during handling, and it is preferably 100 mm or less. In addition, since the granulated product is in the form of a sheet, it should be roughly crushed or cut into a plate shape to make it easy to handle and to make it easy to fill in the furnace in the firing process described later. preferable.
The width of the flat surface (the surface flattened by the roll) of the plate-shaped granulated product is preferably at least 5 mm or more. By setting the width of the flat surface of the plate-shaped granulated product to at least 1 mm or more, it is possible to increase the filling amount in the filter pot in the firing step. The upper limit of the width of this plane may be appropriately adjusted according to the shape and size of the filter pot to be used.
このように本発明では、ロールを用いてシート状の造粒物をまず形成し、それを粗解砕もしくは切断でプレート状とするため、成形機を用いてプレート状の造粒物を形成するよりも生産性が高く造粒物を作製することができる。 As described above, in the present invention, in order to first form a sheet-shaped granule using a roll and then coarsely crush or cut it into a plate-like product, a plate-shaped granule is formed using a molding machine. It is possible to produce granulated products with higher productivity than that.
また、プレート状の造粒物の嵩密度は造粒前の混合物の嵩密度の1.1倍~1.5倍とするのが好ましい。造粒物の嵩密度が、造粒前の混合物の嵩密度の1.1倍未満では、圧密が不十分でハンドリング時に造粒物が崩れてしまうことがある。造粒物の嵩密度が、造粒前の混合物の嵩密度の1.5倍を超えると、ロールで圧密した時に、混合物中のニッケル化合物の粒子にクラックが入ることがある。 Further, the bulk density of the plate-shaped granulated product is preferably 1.1 to 1.5 times the bulk density of the mixture before granulation. If the bulk density of the granulated product is less than 1.1 times the bulk density of the mixture before granulation, the consolidation may be insufficient and the granulated product may collapse during handling. If the bulk density of the granulated product exceeds 1.5 times the bulk density of the mixture before granulation, the particles of the nickel compound in the mixture may be cracked when compacted with a roll.
(焼成工程)
焼成工程は、前記造粒物を焼成してリチウム・ニッケル複合酸化物を得る工程である。
焼成工程では、前記プレート状の造粒物(混合物)を、こう鉢内に層厚1mm以上に積載して焼成することが好ましい。これにより、従来の焼成よりもこう鉢あたりに充填できる混合物量を増やすことができるため、生産性を向上させることができる。
(Baking process)
The firing step is a step of firing the granulated product to obtain a lithium-nickel composite oxide.
In the firing step, it is preferable that the plate-shaped granulated product (mixture) is loaded in a filter pot with a layer thickness of 1 mm or more and fired. As a result, the amount of the mixture that can be filled per pot can be increased as compared with the conventional firing, so that the productivity can be improved.
焼成温度は所望のリチウム・ニッケル複合酸化物の組成等に応じて公知の条件とすればよく、例えばニッケルとコバルトとアルミニウムを含むNCAでは650℃以上、850℃以下とすることができる。また、酸化性雰囲気中において焼成することが好ましい。これにより、ニッケル化合物とリチウム化合物の反応性を向上させ、短い焼成時間とすることができ、生産性をより高いものとすることができる。 The firing temperature may be a known condition depending on the composition of the desired lithium-nickel composite oxide and the like. For example, in NCA containing nickel, cobalt and aluminum, the firing temperature can be 650 ° C. or higher and 850 ° C. or lower. Further, it is preferable to bake in an oxidizing atmosphere. As a result, the reactivity between the nickel compound and the lithium compound can be improved, the firing time can be shortened, and the productivity can be further improved.
なお、ニッケル化合物は特定化学物質でありまたリチウム化合物はアルカリ性塩であることから取扱いに注意が必要であり、粉体で使用するとこう鉢への充填時などの際に粉塵が発生し、作業環境を悪化させてしまうことになるが、本発明では上記混合物を造粒するために、それ以降のハンドリング、作業環境を著しく向上させることができる。さらに、焼成時に導入する雰囲気ガスにより粉体で使用すると焼成炉内で飛散し炉内の壁面等に付着することもあるが、造粒物とすることで焼成時の飛散も抑えることができる。 Since the nickel compound is a specific chemical substance and the lithium compound is an alkaline salt, care must be taken when handling it. When used as a powder, dust is generated when filling the pot, and the working environment However, in the present invention, since the above-mentioned mixture is granulated, the handling and working environment after that can be remarkably improved. Further, when the powder is used as a powder due to the atmospheric gas introduced at the time of firing, it may be scattered in the firing furnace and adhere to the wall surface or the like in the furnace, but by making it a granulated product, the scattering at the time of firing can be suppressed.
(粉砕工程)
焼成工程後、得られたリチウム・ニッケル複合酸化物は凝集や軽度の焼結ネッキングが生じていることもあるため、凝集や軽度の焼結ネッキングをほぐす操作として粉砕する粉砕工程を、さらに備えることが好ましい。粉砕工程は、公知の技術を用いることができる。
(Crushing process)
After the firing step, the obtained lithium-nickel composite oxide may have agglomeration or light sintering necking. Therefore, a crushing step of crushing the obtained lithium-nickel composite oxide as an operation to loosen the agglomeration or light sintering necking should be further provided. Is preferable. A known technique can be used in the crushing step.
(水洗工程、及び乾燥工程)
焼成後、もしくは粉砕したリチウム・ニッケル複合酸化物には不純物等が残留し、この不純物が電池特性に影響を与える場合には、リチウム・ニッケル複合酸化物を水洗する水洗工程を、さらに備えることが好ましい。水洗工程は、公知の技術を用いることができ、例えば純水で洗浄することができる。さらに水洗後は水分を除去するための乾燥処理を行う乾燥工程を備える。乾燥工程も、公知の技術を用いることができる。
(Washing process and drying process)
If impurities or the like remain in the lithium-nickel composite oxide after firing or crushed, and these impurities affect the battery characteristics, a water washing step of washing the lithium-nickel composite oxide with water may be further provided. preferable. In the water washing step, a known technique can be used, for example, washing with pure water can be used. Further, after washing with water, a drying step of performing a drying process for removing water is provided. Known techniques can also be used in the drying step.
以下、本発明での実施例を比較例と共に説明する。 Hereinafter, examples of the present invention will be described together with comparative examples.
組成のモル比がNi:Co:Al=88:9:3のニッケル複合水酸化物を酸化焙焼して得られた平均粒子径11μmの酸化ニッケル粉と、平均粒子径300μm以下の水酸化リチウムを容器に入れ混合した(混合工程)。
混合物のみを乾式造粒するために、乾式造粒機(ローラーコンパクター)に投入し、装置内の2本のロールでバインダーを用いず圧密後、粗解砕し、約10mm角で、厚さ約1mmのプレート状造粒物を得た。
なお、2本のロール間のロール線圧は4.9kN/cmに設定した(造粒工程)。圧密、振動を加えないように容積90000mLの容器に造粒物を入れて嵩密度を測定したところ、造粒前の混合物の嵩密度の1.2倍だった。
Nickel oxide powder with an average particle size of 11 μm and lithium hydroxide with an average particle size of 300 μm or less obtained by oxidatively roasting a nickel composite hydroxide having a composition molar ratio of Ni: Co: Al = 88: 9: 3. Was placed in a container and mixed (mixing step).
In order to dry-granulate only the mixture, it is put into a dry granulator (roller compactor), compacted with two rolls in the device without using a binder, and then roughly crushed to a thickness of about 10 mm square. A 1 mm plate-shaped granule was obtained.
The roll linear pressure between the two rolls was set to 4.9 kN / cm (granulation step). When the granulated product was placed in a container having a volume of 90000 mL and the bulk density was measured so as not to apply compaction and vibration, the bulk density was 1.2 times the bulk density of the mixture before granulation.
得られたプレート状造粒物を、セラミック製こう鉢に入れ、酸化性雰囲気の焼成炉で温度765℃の条件で焼成して焼成合成物を得た。なお、こう鉢への盛り量は、嵩密度見合いで後述する比較例1(造粒工程なし)の1.2倍とした(焼成工程)。 The obtained plate-shaped granules were placed in a ceramic furnace and calcined in a calcining furnace having an oxidizing atmosphere at a temperature of 765 ° C. to obtain a calcined composite. In addition, the amount to be filled in the filter pot was 1.2 times as large as that of Comparative Example 1 (without granulation step) described later in terms of bulk density (baking step).
得られた焼成合成物を解砕処理後、該焼成合成物のXRD(X線回折)プロファイルをCuのKα線を用いて測定したところ、図1に示す通り、層状岩塩構造を有するリチウム・ニッケル複合酸化物が得られていることが確認できた。
図1、2の下部にある棒線グラフは、同定対象物である「LiNi0.9Co0.1O2」のプロフィールである。
After the obtained calcined compound was crushed, the XRD (X-ray diffraction) profile of the calcined compound was measured using Cu K α rays. As shown in FIG. 1, lithium having a layered rock salt structure was measured. It was confirmed that the nickel composite oxide was obtained.
The bar graph at the bottom of FIGS. 1 and 2 is a profile of the identification object "LiNi 0.9 Co 0.1 O 2 ".
このリチウム・ニッケル複合酸化物を用い、図3に示す2032型のコイン型電池1を作製し電池特性を測定した。
コイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。
電極3は、正極3a、セパレータ3cおよび負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
Using this lithium-nickel composite oxide, a 2032 type coin-type battery 1 shown in FIG. 3 was manufactured and the battery characteristics were measured.
The coin-type battery 1 is composed of a
The
The
なお、ケース2はガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が非接触の状態を維持するように相対的な移動が固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封してケース2内と外部との間を気密液密に遮断する機能も有している。
The
上記のようなコイン型電池1は、以下のようにして製作した。
まず、非水系電解質二次電池用正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。作製した正極3aを真空乾燥機中120℃で12時間乾燥した。
この正極3aと、負極3b、セパレータ3cおよび電解液とを用いて、上述したコイン型電池1を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。また、セパレータ3cには膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClO4を支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
The coin-type battery 1 as described above was manufactured as follows.
First, 52.5 mg of the positive electrode active material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed and press-molded to a diameter of 11 mm and a thickness of 100 μm at a pressure of 100 MPa. , A
Using the
For the
その製造したコイン型電池1の性能を示す初期放電容量、正極抵抗は、以下のように評価した。
得られたコイン型電池1を作製してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cm2としてカットオフ電圧4.3Vまで充電して、その時の容量を充電容量とした。1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。
測定した結果、充電容量は229mAh/g、放電容量は210mAh/gであった。
The initial discharge capacity and positive electrode resistance indicating the performance of the manufactured coin-type battery 1 were evaluated as follows.
After the obtained coin-type battery 1 is manufactured and left to stand for about 24 hours to stabilize the open circuit voltage OCV (Open Circuit Voltage), the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cutoff voltage is 4.3 V. The battery was charged up to, and the capacity at that time was taken as the charging capacity. The capacity when discharged to a cutoff voltage of 3.0 V after a one-hour rest was defined as the initial discharge capacity.
As a result of the measurement, the charge capacity was 229 mAh / g and the discharge capacity was 210 mAh / g.
(比較例1)
造粒工程を実施しなかった以外は実施例1と同様の条件で焼成合成物を得た。
実施例1と同様にXRDプロファイルを測定すると図2に示す通り、層状岩塩構造を有するリチウム・ニッケル複合酸化物が得られていることが確認できた。またこのリチウム・ニッケル複合酸化物を用いて実施例1と同様にコイン型電池1を作製し電池特性を測定したところ、充電容量は229mAh/g、放電容量は208mAh/gとなった。
(Comparative Example 1)
A calcined composite was obtained under the same conditions as in Example 1 except that the granulation step was not carried out.
When the XRD profile was measured in the same manner as in Example 1, it was confirmed that a lithium-nickel composite oxide having a layered rock salt structure was obtained as shown in FIG. Further, when a coin-type battery 1 was produced using this lithium-nickel composite oxide in the same manner as in Example 1 and the battery characteristics were measured, the charge capacity was 229 mAh / g and the discharge capacity was 208 mAh / g.
実施例1と比較例1を対比すると、実施例1は従来の製造方法で作製した比較例1と同様に目的とする層状岩塩構造を有するリチウム・ニッケル複合酸化物が得られ、これを用いて作製した電池の電池特性も同等であることを示した。一方、焼成工程では、実施例1で造粒工程を備えたことで、こう鉢への盛り量が1.2倍となり、造粒物とすることで焼成工程の生産性が1.2倍となることが示された。 Comparing Example 1 and Comparative Example 1, in Example 1, a lithium-nickel composite oxide having a target layered rock salt structure was obtained in the same manner as in Comparative Example 1 produced by the conventional production method, and this was used. It was shown that the battery characteristics of the manufactured batteries were also the same. On the other hand, in the firing step, since the granulation step was provided in Example 1, the filling amount in the funnel was 1.2 times, and the productivity of the firing step was 1.2 times as much as the granulated product. It was shown to be.
1 コイン型電池
2 ケース
2a 正極缶
2b 負極缶
2c ガスケット
3 電極
3a 正極
3b 負極
3c セパレータ
1 Coin-
Claims (8)
ニッケル化合物とリチウム化合物とを混合して混合物を得る混合工程と、
前記混合物を乾式造粒して前記混合物からなる造粒物を得る造粒工程と、
前記造粒物を焼成してリチウム・ニッケル複合酸化物を得る焼成工程とを含み、
前記造粒工程が、ロールを用いてシート状の造粒物を形成し、前記シート状の造粒物を粗解砕もしくは切断してプレート状の造粒物を形成することを特徴とする非水系電解質二次電池用正極活物質の製造方法。 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium-nickel composite oxide.
A mixing step of mixing a nickel compound and a lithium compound to obtain a mixture,
A granulation step of dry-granulating the mixture to obtain a granulated product composed of the mixture.
Including a firing step of calcining the granulated product to obtain a lithium-nickel composite oxide.
The non-granulation step is characterized in that a sheet-shaped granulated product is formed by using a roll, and the sheet-shaped granulated product is roughly crushed or cut to form a plate-shaped granulated product. A method for manufacturing a positive electrode active material for an aqueous electrolyte secondary battery.
The lithium-nickel composite oxide has a general formula: Liz Ni 1-x-y Co x My O 2 (where 0 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0.90 ≦ z). ≤ 1.20, M is one or more elements selected from Al, Mn, Mo, W, Mg, Si, B, Nb, V, Ti), any one of claims 1 to 7. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the above item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018093532A JP7064717B2 (en) | 2018-05-15 | 2018-05-15 | Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018093532A JP7064717B2 (en) | 2018-05-15 | 2018-05-15 | Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019200875A JP2019200875A (en) | 2019-11-21 |
JP7064717B2 true JP7064717B2 (en) | 2022-05-11 |
Family
ID=68612228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018093532A Active JP7064717B2 (en) | 2018-05-15 | 2018-05-15 | Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7064717B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108359442B (en) | 2018-04-16 | 2020-09-22 | 华南理工大学 | A class of carbonyl-containing organic electroluminescent materials and their applications in OLEDs |
GB202116895D0 (en) * | 2021-11-24 | 2022-01-05 | Johnson Matthey Plc | Process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011044364A (en) | 2009-08-21 | 2011-03-03 | Nisshin Engineering Co Ltd | Method of manufacturing positive electrode material for secondary battery |
JP2013056801A (en) | 2011-09-08 | 2013-03-28 | Sumitomo Chemical Co Ltd | Lithium composite metal oxide, and method for producing the same |
JP2017100894A (en) | 2015-11-30 | 2017-06-08 | Csエナジーマテリアルズ株式会社 | Manufacturing method of nickel lithium metal composite oxide |
JP2017188292A (en) | 2016-04-05 | 2017-10-12 | ユミコア | Lithium-nickel-cobalt-aluminum composite oxide powder |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2558774B2 (en) * | 1988-01-21 | 1996-11-27 | キャタラー工業株式会社 | Method for recovering platinum group metals from automobile exhaust gas catalysts |
JPH1179751A (en) * | 1997-09-02 | 1999-03-23 | Toda Kogyo Corp | Production of lithium-nickel oxide particulate powder |
-
2018
- 2018-05-15 JP JP2018093532A patent/JP7064717B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011044364A (en) | 2009-08-21 | 2011-03-03 | Nisshin Engineering Co Ltd | Method of manufacturing positive electrode material for secondary battery |
JP2013056801A (en) | 2011-09-08 | 2013-03-28 | Sumitomo Chemical Co Ltd | Lithium composite metal oxide, and method for producing the same |
JP2017100894A (en) | 2015-11-30 | 2017-06-08 | Csエナジーマテリアルズ株式会社 | Manufacturing method of nickel lithium metal composite oxide |
JP2017188292A (en) | 2016-04-05 | 2017-10-12 | ユミコア | Lithium-nickel-cobalt-aluminum composite oxide powder |
Also Published As
Publication number | Publication date |
---|---|
JP2019200875A (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7160075B2 (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
JP6485232B2 (en) | Method for producing positive electrode active material | |
KR101206128B1 (en) | Solid State Synthesis of Lithium-Nickel-Cobalt-Manganese Mixed Metal Oxides for Use in Lithium Ion Battery Cathode Material | |
US12113204B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery, and molded body | |
JP7586152B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded body | |
JP7586153B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded body | |
JP7271848B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
JP7110647B2 (en) | Lithium-nickel-containing composite oxide, method for producing the same, lithium-ion secondary battery, and evaluation method for lithium-nickel-containing composite oxide | |
JP2022179554A (en) | lithium compound | |
JP7069666B2 (en) | Method for manufacturing lithium nickel composite oxide and method for manufacturing non-aqueous electrolyte secondary battery | |
JP7064717B2 (en) | Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery | |
JPH10162830A (en) | Positive electrode active material for lithium secondary battery, and secondary battery using same | |
JP7143611B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery | |
JP7159589B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery | |
JP7509513B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
JP7159588B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact | |
JP7194891B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery | |
JP7594850B2 (en) | Hopper and firing device for secondary battery positive electrode active material using same | |
JP7332124B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery | |
JP7143610B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery | |
JP2020158188A (en) | Hopper and firing device of positive electrode active material for secondary battery using the same | |
JP2020158187A (en) | Hopper and firing device of positive electrode active material for secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210512 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7064717 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |