[go: up one dir, main page]

JP7059558B2 - Tree growth method and tree growth system - Google Patents

Tree growth method and tree growth system Download PDF

Info

Publication number
JP7059558B2
JP7059558B2 JP2017196689A JP2017196689A JP7059558B2 JP 7059558 B2 JP7059558 B2 JP 7059558B2 JP 2017196689 A JP2017196689 A JP 2017196689A JP 2017196689 A JP2017196689 A JP 2017196689A JP 7059558 B2 JP7059558 B2 JP 7059558B2
Authority
JP
Japan
Prior art keywords
temperature
culture solution
plant cultivation
dormancy
cultivation facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017196689A
Other languages
Japanese (ja)
Other versions
JP2019068768A (en
Inventor
真人 下山
陽子 溝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2017196689A priority Critical patent/JP7059558B2/en
Publication of JP2019068768A publication Critical patent/JP2019068768A/en
Application granted granted Critical
Publication of JP7059558B2 publication Critical patent/JP7059558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Description

本発明は、発根した樹木の生育方法及び樹木生育システムに関する。 The present invention relates to a method for growing a rooted tree and a tree growth system.

樹木の生育を促進するための栽培方法が検討されている(特許文献1、2参照。)。特許文献1に記載のオリーブの栽培方法は、休眠期や休眠打破における気温を設定することにより、1ライフサイクル期間を短くして、果実生産性を高める。 Cultivation methods for promoting the growth of trees have been studied (see Patent Documents 1 and 2). The olive cultivation method described in Patent Document 1 shortens one life cycle period and enhances fruit productivity by setting a temperature during a dormant period or breaking the dormancy.

また、特許文献2に記載の苗木生産システムは、親木から採穂された穂木を挿し付けて発芽させる自動潅水設備を備えた屋内育苗施設と、苗木を屋内環境にて養生する屋内置場と、屋内置場にて養生された苗木を屋外環境にてさらに養生する屋外置場とを備える。 Further, the seedling production system described in Patent Document 2 includes an indoor seedling raising facility equipped with an automatic irrigation facility for inserting and germinating scion from a parent tree, and an indoor storage place for curing seedlings in an indoor environment. , It is equipped with an outdoor storage area where the seedlings cured in the indoor storage area are further cured in the outdoor environment.

特開2013-158270号公報Japanese Unexamined Patent Publication No. 2013-158270 特開平11-75534号公報Japanese Unexamined Patent Publication No. 11-75534

しかしながら、特許文献1,2等に記載された樹木の生育方法においては、培養土を用いている。このため、培養土に起因する病害や害虫害によって、樹木の歩留まりが低下し、生産性向上が難しい場合がある。 However, in the tree growing method described in Patent Documents 1, 2 and the like, potting soil is used. For this reason, the yield of trees may decrease due to diseases and pests caused by potting soil, and it may be difficult to improve productivity.

上記課題を解決する樹木の生育方法は、発根した樹木を生育する方法であって、前記樹木を植えた培地を温度調整可能な植物栽培施設内に配置し、前記樹木の根を、流液した培養液に浸漬し、前記植物栽培施設内の環境温度の制御により、休眠中の前記樹木について休眠打破を行なう。 The method for growing a tree that solves the above problems is a method for growing a rooted tree, in which the medium in which the tree is planted is placed in a temperature-adjustable plant cultivation facility, and the root of the tree is flushed. By immersing the tree in a culture medium and controlling the environmental temperature in the plant cultivation facility, the dormant tree is broken down.

本発明によれば、病害や虫害を回避して早期育成を行なって、樹木の生産性を向上することができる。 According to the present invention, it is possible to improve the productivity of trees by avoiding diseases and insect damages and carrying out early cultivation.

本実施形態の樹木を生育する植物栽培施設の概略構成図。The schematic block diagram of the plant cultivation facility which grows the tree of this embodiment. 本実施形態の栽培のタイムスケジュールを説明する説明図。Explanatory drawing explaining the time schedule of cultivation of this embodiment.

以下、図1~図2を用いて、樹木の生育方法及び樹木生育システムを具体化した一実施形態について説明する。本実施形態では、林地に植林されるカラマツの苗木を生育する場合を想定する。 Hereinafter, an embodiment in which a tree growth method and a tree growth system are embodied will be described with reference to FIGS. 1 and 2. In this embodiment, it is assumed that a larch sapling to be planted in a forest area is grown.

まず、図1を用いて、苗木を生育するための樹木生育システムとしての植物栽培施設10について説明する。植物栽培施設10は、通常、外界に開放されておらず、ドアを開放した場合にのみ人が出入りできる閉空間である。 First, the plant cultivation facility 10 as a tree growth system for growing seedlings will be described with reference to FIG. 1. The plant cultivation facility 10 is usually not open to the outside world, and is a closed space where people can enter and exit only when the door is opened.

植物栽培施設10には、栽培床11が配置されている。栽培床11は、循環される培養液を貯蔵する貯蔵部12を備える。この貯蔵部12には、培養液を循環させる循環路が接続されている。貯蔵部12には、空気層をおいて、複数の人工培地15が水平方向に離間して設けられている。人工培地15は、例えば、滅菌されたウレタン等の多孔質体で構成される。各人工培地15には、挿し木によって発根させた苗木P1が植えられている。この苗木P1の根は、貯蔵部12内において流液する培養液に浸漬している。 A cultivation floor 11 is arranged in the plant cultivation facility 10. The cultivation bed 11 includes a storage unit 12 for storing the circulated culture solution. A circulation path for circulating the culture solution is connected to the storage unit 12. A plurality of artificial media 15 are provided in the storage unit 12 with an air layer separated from each other in the horizontal direction. The artificial medium 15 is composed of, for example, a sterilized porous body such as urethane. Seedlings P1 rooted by cuttings are planted in each artificial medium 15. The roots of the seedling P1 are immersed in a culture solution that flows in the storage unit 12.

栽培床11の上方には、複数の光源16が配置されている。光源16は、苗木P1に、日照として人工光を照射する人工光照明装置である。この光源16は、光量子量(光合成光量子束密度)を調整可能な光源である。本実施形態では、光源16として、蛍光灯型LED(発光ダイオード)を用いる。 A plurality of light sources 16 are arranged above the cultivation floor 11. The light source 16 is an artificial light illuminating device that irradiates the seedling P1 with artificial light as sunshine. The light source 16 is a light source whose photon quantity (photosynthetic photon flux density) can be adjusted. In this embodiment, a fluorescent lamp type LED (light emitting diode) is used as the light source 16.

植物栽培施設10には、気温検出部21及び空調設備22が設けられている。気温検出部21は、植物栽培施設10内の気温を検出する。空調設備22は、気温検出部21からの検出温度に基づいて、植物栽培施設10内を設定温度に調整する。 The plant cultivation facility 10 is provided with a temperature detection unit 21 and an air conditioning facility 22. The air temperature detection unit 21 detects the air temperature in the plant cultivation facility 10. The air conditioner 22 adjusts the inside of the plant cultivation facility 10 to a set temperature based on the temperature detected from the air temperature detection unit 21.

また、植物栽培施設10の貯蔵部12に接続されている循環路には、培養液を圧送させる圧送ポンプ(図示せず)、培養液温度検出部25及び培養液冷却装置26が設けられている。本実施形態では、貯蔵部12、循環路及び圧送ポンプが培養液流動部として機能する。 Further, in the circulation path connected to the storage unit 12 of the plant cultivation facility 10, a pressure pump (not shown) for pumping the culture solution, a culture solution temperature detection unit 25, and a culture solution cooling device 26 are provided. .. In the present embodiment, the storage unit 12, the circulation passage, and the pressure pump function as the culture solution flow unit.

培養液温度検出部25は、培養液の温度を検出する。
培養液冷却装置26は、熱交換器によって、循環する培養液を冷却する。培養液冷却装置26は、培養液温度検出部25からの検出温度に基づいて、設定温度となるように、熱交換器を用いて、培養液を冷却する。
本実施形態では、気温検出部21、空調設備22、培養液温度検出部25及び培養液冷却装置26が温度調整部として機能する。
The culture solution temperature detection unit 25 detects the temperature of the culture solution.
The culture solution cooling device 26 cools the circulating culture solution by a heat exchanger. The culture solution cooling device 26 cools the culture solution by using a heat exchanger so as to reach a set temperature based on the temperature detected from the culture solution temperature detection unit 25.
In the present embodiment, the air temperature detection unit 21, the air conditioning equipment 22, the culture solution temperature detection unit 25, and the culture solution cooling device 26 function as temperature control units.

更に、植物栽培施設10には、CO2濃度検出部28が設けられている。このCO2濃度検出部28は、植物栽培施設10内の二酸化炭素(CO2)濃度を検出する。 Further, the plant cultivation facility 10 is provided with a CO2 concentration detection unit 28. The CO2 concentration detecting unit 28 detects the carbon dioxide (CO2) concentration in the plant cultivation facility 10.

植物栽培施設10には、炭酸ガス供給部30が接続されている。この炭酸ガス供給部30は、植物栽培施設10とオフィス31とを連通する気体供給管を備えている。気体供給管には、供給ポンプ32及びバルブ33が取り付けられている。供給ポンプ32は、オフィス31の排気(炭酸ガス)を植物栽培施設10の空間に圧送する。この排気には、比較的濃い濃度の二酸化炭素(CO2)が含まれている。バルブ33は、オフィス31からの排気の供給量を調整する。このため、供給ポンプ32が稼働されると、オフィス31からの排気が植物栽培施設10に供給される。 A carbon dioxide gas supply unit 30 is connected to the plant cultivation facility 10. The carbon dioxide gas supply unit 30 includes a gas supply pipe that connects the plant cultivation facility 10 and the office 31. A supply pump 32 and a valve 33 are attached to the gas supply pipe. The supply pump 32 pumps the exhaust gas (carbon dioxide gas) of the office 31 into the space of the plant cultivation facility 10. This exhaust contains a relatively high concentration of carbon dioxide (CO2). The valve 33 adjusts the supply amount of exhaust gas from the office 31. Therefore, when the supply pump 32 is operated, the exhaust gas from the office 31 is supplied to the plant cultivation facility 10.

植物栽培施設10内の環境条件は、制御ユニット50によって制御される。
制御ユニット50は、CPU、RAM及びROM等のメモリ等を備えた制御手段である。制御ユニット50は、日長時間制御部51、気温制御部52、液温制御部53及びCO2供給制御部54を備えている。制御ユニット50は、内蔵するシステムタイマのカレンダーを用いて現在の月日(現在日)を特定する。
The environmental conditions in the plant cultivation facility 10 are controlled by the control unit 50.
The control unit 50 is a control means including a CPU, RAM, a memory such as a ROM, and the like. The control unit 50 includes a daytime control unit 51, an air temperature control unit 52, a liquid temperature control unit 53, and a CO2 supply control unit 54. The control unit 50 identifies the current month and day (current day) using the calendar of the built-in system timer.

日長時間制御部51は、光源16の光量子量の可変制御やスイッチのオンオフ制御を行なう。日長時間制御部51には、植物に照射する光源16の制御を行なう日照制御データが記憶されている。この日照制御データには、1日の日長時間に応じた光量子量に関する日照制御パターンが含まれている。日長とは、その1日における明期の時間である。日照制御パターンには、パターン周期時間を24時間として、日中の太陽光の日射パターンと同様に光量子量を調整するパターンが設定されている。 The daytime control unit 51 performs variable control of the photon quantity of the light source 16 and on / off control of the switch. The daytime control unit 51 stores sunshine control data that controls the light source 16 that irradiates the plant. This sunshine control data includes a sunshine control pattern relating to the amount of photons corresponding to the long hours of the day. The day length is the time of the tomorrow in the day. In the sunshine control pattern, a pattern is set in which the pattern cycle time is 24 hours and the amount of photons is adjusted in the same manner as the illuminance pattern of sunlight in the daytime.

日長時間制御部51は、日長時間に応じた日照制御データを用いて、光源16の照明機構部に対してオンオフや光量子の可変制御の指示信号を出力する。本実施形態では、各日の日長時間は、年間のタイムスケジュール(月日)に応じて予め設定される。具体的には、日長時間制御部51は、生育期(2月21日~10月31日)には、16時間日長、休眠期(11月1日~翌年2月20日)には、8時間日長に設定する。 The daytime control unit 51 outputs an instruction signal for on / off and variable control of photons to the lighting mechanism unit of the light source 16 by using the sunshine control data according to the daytime time. In the present embodiment, the long day of each day is preset according to the annual time schedule (month and day). Specifically, the day-long control unit 51 has a 16-hour day length during the growing season (February 21st to October 31st) and a dormant period (November 1st to February 20th of the following year). , Set to 8 hours day length.

気温制御部52は、気温検出部21が検出した植物栽培施設10の気温に基づいて、植物栽培施設10内の気温が設定温度になるように空調設備22を制御する。本実施形態においては、気温制御部52の設定温度は、年間スケジュールに応じて予め設定される。ここで、休眠期では、設定温度を5℃~15℃とし、生育期では、設定温度を25℃とし、休眠期から生育期への移行期間、又は生育期から休眠期への移行期間は、段階的に温度を昇降させる。具体的には、生育期の最生育期(4月1日~10月31日)は25℃、移行期間の休眠導入期(11月1日~11月30日)及び冬芽生育期(2月5日~3月31日)は23℃、休眠打破期(12月1日~翌年2月4日)は7℃の設定温度に設定される。 The air temperature control unit 52 controls the air conditioning equipment 22 so that the temperature inside the plant cultivation facility 10 becomes a set temperature based on the temperature of the plant cultivation facility 10 detected by the air temperature detection unit 21. In the present embodiment, the set temperature of the air temperature control unit 52 is set in advance according to the annual schedule. Here, in the dormant period, the set temperature is set to 5 ° C to 15 ° C, and in the growing period, the set temperature is set to 25 ° C. Raise or lower the temperature step by step. Specifically, the maximum growing season (April 1st to October 31st) is 25 ° C, the dormant introduction period (November 1st to November 30th) and the winter bud growing season (February) during the transition period. The set temperature is set to 23 ° C for 5th to 31st March) and 7 ° C for the dormant breakthrough period (1st December to 4th February of the following year).

液温制御部53は、培養液温度検出部25が検出した培養液の温度に基づいて、植物栽培施設10に供給する培養液が設定温度になるように、培養液冷却装置26を制御する。本実施形態においては、液温制御部53の設定温度は、年間スケジュールに応じて予め設定される。具体的には、最生育期(4月1日~10月31日)には、培養液の温度として、15℃~20℃に設定し、この範囲において、外気温との差が少なくなる温度に設定する。また、休眠期においては、培養液の温度として、培養液が凍らない温度で、植物栽培施設10の気温よりも低く設定する。具体的には、休眠導入期(11月1日~11月30日)及び冬芽生育期(2月5日~3月31日)は10℃、休眠打破期(12月1日~翌年2月4日)は、設定温度として3℃を用いる。 The liquid temperature control unit 53 controls the culture liquid cooling device 26 so that the culture liquid supplied to the plant cultivation facility 10 reaches a set temperature based on the temperature of the culture liquid detected by the culture liquid temperature detection unit 25. In the present embodiment, the set temperature of the liquid temperature control unit 53 is preset according to the annual schedule. Specifically, during the maximum growing season (April 1st to October 31st), the temperature of the culture solution is set to 15 ° C. to 20 ° C., and in this range, the temperature at which the difference from the outside air temperature becomes small. Set to. Further, in the dormant period, the temperature of the culture solution is set to a temperature at which the culture solution does not freeze and is lower than the temperature of the plant cultivation facility 10. Specifically, the dormancy introduction period (November 1st to November 30th) and the winter bud growth period (February 5th to March 31st) are 10 ° C, and the dormancy breakthrough period (December 1st to February of the following year). On the 4th), 3 ° C. is used as the set temperature.

CO2供給制御部54は、生育期(2月21日~10月31日)において、植物栽培施設10内の二酸化炭素濃度が設定濃度となるように、炭酸ガス供給部30を制御する。この場合、CO2供給制御部54は、CO2濃度検出部28が検出した植物栽培施設10のCO2濃度に基づいて、オフィス31から供給される排気の供給量を制御する。 The CO2 supply control unit 54 controls the carbon dioxide gas supply unit 30 so that the carbon dioxide concentration in the plant cultivation facility 10 becomes a set concentration during the growing season (February 21st to October 31st). In this case, the CO2 supply control unit 54 controls the supply amount of the exhaust gas supplied from the office 31 based on the CO2 concentration of the plant cultivation facility 10 detected by the CO2 concentration detection unit 28.

<栽培スケジュール>
次に、図2を用いて、苗木P1を栽培する年間スケジュールについて説明する。本実施形態においては、2月21日から10月31日までを生育期とする。なお、通常の露地栽培では、4月から8月が生育期である。
<Cultivation schedule>
Next, the annual schedule for cultivating the seedling P1 will be described with reference to FIG. In this embodiment, the growing season is from February 21st to October 31st. In normal open-field cultivation, the growing season is from April to August.

生育期において苗木P1が最もよく生育する最生育期(4月1日~10月31日)においては、日長時間を16時間、気温の設定温度を25℃、培養液の設定温度を15℃~20℃、CO2濃度の設定濃度を1000ppmとして生育する。 In the most growing season (April 1st to October 31st) when the seedling P1 grows best in the growing season, the day time is 16 hours, the set temperature of the temperature is 25 ° C, and the set temperature of the culture solution is 15 ° C. It grows at ~ 20 ° C. with a set concentration of CO2 concentration of 1000 ppm.

そして、11月1日に休眠導入を開始する。苗木P1は、2週間~4週間で休眠するため、本実施形態では、休眠導入の環境条件を1か月間(11月30日まで)継続する。この休眠導入期においては、日長時間を8時間、設定気温を23℃、培養液の設定温度を10℃に設定変更する。この場合、制御ユニット50のCO2供給制御部54は、炭酸ガス供給部30のバルブ33を閉じて、オフィス31からの排気を停止する。なお、炭酸ガス供給部30からの供給を停止した場合、植物栽培施設10内の二酸化炭素濃度は、約200ppmとなる。 Then, the introduction of dormancy will start on November 1. Since the seedling P1 sleeps in 2 to 4 weeks, in the present embodiment, the environmental condition for introducing the sleep is continued for 1 month (until November 30). In this dormancy-introducing period, the set temperature is changed to 8 hours for a long day, the set temperature is set to 23 ° C, and the set temperature of the culture solution is set to 10 ° C. In this case, the CO2 supply control unit 54 of the control unit 50 closes the valve 33 of the carbon dioxide gas supply unit 30 to stop the exhaust from the office 31. When the supply from the carbon dioxide gas supply unit 30 is stopped, the carbon dioxide concentration in the plant cultivation facility 10 becomes about 200 ppm.

その後、12月1日に休眠打破を開始する。この休眠打破期においては、日長時間を8時間、二酸化炭素の供給を停止で、設定気温を7℃、培養液の設定温度を3℃に設定変更する。 After that, the dormancy break will start on December 1st. In this dormancy breaking period, the set temperature is changed to 7 ° C and the set temperature of the culture solution is changed to 3 ° C by stopping the supply of carbon dioxide for 8 hours a day for a long time.

休眠打破を開始した1500時間以上の期間が経過し、生育期の2週間程前の2月5日になった場合、冬芽生育期に移行する。この冬芽生育期においては、気温と培養液の温度を段階的に上昇させる。具体的には、冬芽生育期の開始日(2月5日)から冬芽が十分に生育する(3月31日)までの約40日間、植物栽培施設10内の気温を23℃、培養液の液温を10℃に設定する。なお、この冬芽生育期の途中において、休眠打破を開始してから2000時間が経過して生育期になった場合には、16時間日長に変更し、二酸化炭素を供給する。
そして、上述したタイムスケジュールで、苗木P1を2~3年育成して大苗にした後、林地に植林する。
When the period of 1500 hours or more from the start of dormancy break has passed and it is February 5th, which is about 2 weeks before the growing season, the winter bud growing season is started. In this winter bud growing season, the air temperature and the temperature of the culture solution are gradually increased. Specifically, for about 40 days from the start date of the winter bud growing season (February 5) to the full growth of winter buds (March 31), the temperature inside the plant cultivation facility 10 was 23 ° C. Set the liquid temperature to 10 ° C. In the middle of this winter bud growing season, if 2000 hours have passed since the start of dormancy breaking and the growing season is reached, the day length is changed to 16 hours and carbon dioxide is supplied.
Then, according to the time schedule described above, the seedling P1 is cultivated for 2 to 3 years to make a large seedling, and then planted in the forest area.

本実施形態によれば、以下のような効果を得ることができる。
(1)本実施形態では、植物栽培施設10内に配置された栽培床11の人工培地15に植えた苗木P1の根を、循環される培養液に浸漬し、植物栽培施設10内を低温にして休眠打破を行なう。これにより、培養液を苗木P1に流液するので、培養土に起因する病害や害虫害の影響を抑制できる。そして、樹木を早期育成させて、歩留まりを向上させることができる。また、苗木P1の根による人工培地15の抱き込みや絡みを抑制できる。従って、植林の際に苗木P1の持ち運びが容易であり、活着率を向上させることができる。
According to this embodiment, the following effects can be obtained.
(1) In the present embodiment, the roots of the seedlings P1 planted in the artificial medium 15 of the cultivation bed 11 arranged in the plant cultivation facility 10 are immersed in the circulating culture solution to lower the temperature in the plant cultivation facility 10. And break the dormancy. As a result, since the culture solution is flowed to the seedling P1, the influence of diseases and pests caused by the potting soil can be suppressed. Then, the trees can be grown at an early stage to improve the yield. In addition, it is possible to suppress the embracing and entanglement of the artificial medium 15 by the roots of the seedling P1. Therefore, the seedling P1 can be easily carried when planting trees, and the survival rate can be improved.

(2)本実施形態では、休眠打破期には、環境温度の制御とともに、植物栽培施設10に設けた光源16による日長時間を短くする。これにより、環境温度と日長時間とにより、苗木P1を休眠打破させることができる。 (2) In the present embodiment, during the dormancy breakthrough period, the environmental temperature is controlled and the day time by the light source 16 provided in the plant cultivation facility 10 is shortened. As a result, the sapling P1 can be broken from dormancy depending on the environmental temperature and the long day.

(3)本実施形態では、休眠打破期においては、苗木P1に供給する培養液の温度を低温にする。これにより、培養液の温度により、苗木P1の地下部の温度制御を行ない、苗木P1を休眠打破させることができる。 (3) In the present embodiment, the temperature of the culture solution supplied to the seedling P1 is lowered during the dormancy breaking period. Thereby, the temperature of the underground part of the seedling P1 can be controlled by the temperature of the culture solution, and the seedling P1 can be broken from dormancy.

(4)本実施形態では、休眠導入時期に、光源16を制御して日長時間を短くする。これにより、苗木P1を休眠させることができる。
(5)本実施形態では、休眠導入期に、培養液冷却装置26を制御して、培養液を低温にする。これにより、苗木P1を、より確実に、休眠させることができる。
(4) In the present embodiment, the light source 16 is controlled to shorten the daytime time at the time of introducing dormancy. As a result, the seedling P1 can be put to sleep.
(5) In the present embodiment, the culture solution cooling device 26 is controlled to lower the temperature of the culture solution during the dormancy introduction period. As a result, the seedling P1 can be more reliably put to sleep.

(6)本実施形態では、休眠導入完了後、強制的に休眠打破させる。これにより、休眠期間を短くし、生育期間を長くして、苗木の早期育成を行なうことができる。
(7)本実施形態では、生育期に、オフィス31からの排気(二酸化炭素)を植物栽培施設10に供給する。これにより、生育期の苗木P1の早期育成を促進することができる。そして、休眠期には不要な二酸化炭素の供給を停止するので、効率的な二酸化炭素の供給制御を行なうことができる。
(6) In the present embodiment, after the introduction of dormancy is completed, the dormancy is forcibly broken. As a result, the dormancy period can be shortened, the growth period can be lengthened, and the seedlings can be cultivated at an early stage.
(7) In the present embodiment, the exhaust gas (carbon dioxide) from the office 31 is supplied to the plant cultivation facility 10 during the growing season. This makes it possible to promote the early growth of the seedling P1 during the growing season. Then, since the supply of unnecessary carbon dioxide is stopped during the dormant period, it is possible to efficiently control the supply of carbon dioxide.

また、本実施形態は、以下のように変更してもよい。
・上記実施形態では、植物栽培施設10内の気温を、最生育期は25℃、休眠導入期及び冬芽生育期は23℃、休眠打破期は7℃に設定した。また、培養液の温度を、最生育期は15℃~20℃、休眠導入期及び冬芽生育期は10℃、休眠打破期は3℃に設定した。植物栽培施設10の気温や培養液の温度は、これに限定されない。休眠導入や休眠打破における気温及び培養液の温度は、生育対象の樹木が休眠導入、休眠打破を行なうために必要な低温であればよい。
Moreover, this embodiment may be changed as follows.
-In the above embodiment, the air temperature in the plant cultivation facility 10 was set to 25 ° C. in the maximum growing season, 23 ° C. in the dormancy introducing period and the winter bud growing period, and 7 ° C. in the dormancy breaking period. The temperature of the culture solution was set to 15 ° C to 20 ° C for the maximum growing period, 10 ° C for the dormancy introducing period and the winter bud growing period, and 3 ° C for the dormancy breaking period. The temperature of the plant cultivation facility 10 and the temperature of the culture solution are not limited to this. The temperature at the time of introducing dormancy and breaking the dormancy and the temperature of the culture solution may be as low as necessary for the tree to be grown to introduce dormancy and break the dormancy.

・上記実施形態においては、生育期においては16時間日長で、休眠期においては8時間日長で苗木P1を生育した。生育期及び休眠期における日長時間(明期)はこれに限られない。例えば、生育期においては、例えば24時間、連続、日照してもよい。カラマツについては、24時間連続日照した場合には、葉の枚数が3倍になるとの研究報告もあり、24時間日照により、更なる早期育成を行なうことができる。 -In the above embodiment, the seedling P1 was grown with a day length of 16 hours in the growing season and a day length of 8 hours in the dormant period. The long day (light period) in the growing period and the dormant period is not limited to this. For example, in the growing season, for example, 24 hours of continuous sunshine may be used. There is also a research report that the number of leaves of larch is tripled when it is lit for 24 hours continuously, and it is possible to grow it earlier by sunshine for 24 hours.

・上記実施形態においては、1日の日長時間に応じた光量子量に関する日照制御パターンに応じて光源16から人工光を苗木P1に照射した。この場合、光源16のLEDのスペクトルを最適制御した人工光を照射してもよい。 -In the above embodiment, the seedling P1 was irradiated with artificial light from the light source 16 according to the sunshine control pattern regarding the photon amount according to the long day of the day. In this case, artificial light whose spectrum of the LED of the light source 16 is optimally controlled may be irradiated.

・上記実施形態においては、制御ユニット50が、予め定めたタイムスケジュールに応じて、日長、気温及び培養液の温度を制御して、苗木P1の休眠導入及び休眠打破を行なった。これに代えて、カレンダーに応じて、日毎に、人が、日長、気温及び培養液の温度を制御してもよい。また、制御ユニット50が、栽培スケジュールに基づいて、温度調整、日長時間の調整等の指示を出力してもよい。この場合、制御ユニット50の指示に応じて、担当者が、光源16、空調設備22、培養液冷却装置26及び炭酸ガス供給部30を操作して、日長、気温、培養液の温度、二酸化炭素濃度の調整を行なう。 -In the above embodiment, the control unit 50 controls the day length, the air temperature, and the temperature of the culture solution according to a predetermined time schedule to introduce or break the dormancy of the seedling P1. Alternatively, a person may control the day length, air temperature, and temperature of the culture medium on a daily basis according to the calendar. Further, the control unit 50 may output instructions such as temperature adjustment and daytime adjustment based on the cultivation schedule. In this case, in response to the instruction of the control unit 50, the person in charge operates the light source 16, the air conditioning equipment 22, the culture solution cooling device 26, and the carbon dioxide gas supply unit 30, and the day length, the air temperature, the temperature of the culture solution, and the carbon dioxide dioxide. Adjust the carbon concentration.

・上記実施形態においては、水平方向に離間して配置した人工培地15に、苗木P1を配置して生育した。生育する苗木P1の配置方向は、これに限らず、垂直方向に配置して生育してもよい。 -In the above embodiment, the seedling P1 was arranged and grown on the artificial medium 15 arranged at a horizontal distance. The arrangement direction of the growing seedling P1 is not limited to this, and may be arranged and grown in the vertical direction.

・上記実施形態においては、植物栽培施設10において苗木P1を生育した後、林地に植林した。植物栽培施設10において苗木P1を育成した後、1回露地の圃場で順応させて林地に植林してもよい。 -In the above embodiment, the seedling P1 was grown in the plant cultivation facility 10 and then planted in the forest area. After growing the seedling P1 in the plant cultivation facility 10, it may be adapted once in the field of the open field and planted in the forest area.

・上記実施形態では、休眠導入期を1か月、休眠打破期を約1500時間とした。休眠導入期及び休眠打破期の時間は、これらに限定されず、生育する苗木P1の低温要求時間に応じて変更可能である。 -In the above embodiment, the dormancy introduction period is set to 1 month, and the dormancy breakthrough period is set to about 1500 hours. The dormancy introductory period and the dormancy breaking period are not limited to these, and can be changed according to the low temperature required time of the growing seedling P1.

・上記実施形態においては、植物栽培施設10において、休眠導入完了後、すぐに休眠打破を行なって、林地に植林されるカラマツの苗木を早期育成した。早期育成の代わりに、樹木の開花時期に合わせて、休眠打破を行なってもよい。この場合には、開花時期に応じて、休眠打破の開始時期を決定する。これにより、桃や桜等、鑑賞用の樹木の開花時期を制御することができる。 -In the above embodiment, in the plant cultivation facility 10, the dormancy was broken immediately after the introduction of dormancy was completed, and the larch saplings to be planted in the forest area were cultivated at an early stage. Instead of early growth, dormancy may be broken according to the flowering time of the tree. In this case, the start time of dormancy breakthrough is determined according to the flowering time. This makes it possible to control the flowering time of trees for appreciation such as peaches and cherry blossoms.

P1…樹木としての苗木、10…植物栽培施設、11…栽培床、12…貯蔵部、15…人工培地、16…人工光照明装置としての光源、21…気温検出部、22…空調設備、25…培養液温度検出部、26…培養液冷却装置、28…CO2濃度検出部、30…炭酸ガス供給部、31…オフィス、32…供給ポンプ、33…バルブ、50…制御ユニット、51…日長時間制御部、52…気温制御部、53…液温制御、54…CO2供給制御部。 P1 ... Sapling as a tree, 10 ... Plant cultivation facility, 11 ... Cultivation floor, 12 ... Storage section, 15 ... Artificial medium, 16 ... Light source as artificial light lighting device, 21 ... Temperature detector, 22 ... Air conditioning equipment, 25 ... Culture solution temperature detection unit, 26 ... Culture solution cooling device, 28 ... CO2 concentration detection unit, 30 ... Carbon dioxide gas supply unit, 31 ... Office, 32 ... Supply pump, 33 ... Valve, 50 ... Control unit, 51 ... Day length Time control unit, 52 ... Temperature control unit, 53 ... Liquid temperature control, 54 ... CO2 supply control unit.

Claims (5)

発根した樹木を水耕栽培により生育する方法であって、
前記樹木を植えた培地を温度調整可能な植物栽培施設内に配置し、
培養液を循環させる循環路が接続された貯蔵部の内部において流液した前記培養液に、前記樹木の根を浸漬し、
前記植物栽培施設内の気温を、生育期よりも低温に設定し、前記植物栽培施設内の前記培養液の温度を、前記培養液が凍らない温度で前記気温よりも低く設定することにより、前記樹木の休眠導入を行ない、
前記植物栽培施設内の環境温度の制御により、休眠中の前記樹木について休眠打破を行ない、
前記休眠打破においては、前記休眠導入期の前記植物栽培施設内の気温より低温に設定し、前記植物栽培施設内の前記培養液の温度を、前記培養液が凍らない温度で前記休眠導入期の温度及び気温よりも低くすることを特徴とする樹木の生育方法。
It is a method of growing rooted trees by hydroponics .
The medium in which the tree was planted was placed in a temperature-adjustable plant cultivation facility.
The roots of the tree are immersed in the culture solution that has flowed inside the storage unit to which the circulation path for circulating the culture solution is connected .
The temperature in the plant cultivation facility is set to be lower than the growing season, and the temperature of the culture solution in the plant cultivation facility is set to be lower than the temperature at a temperature at which the culture solution does not freeze. Introduced dormancy of trees,
By controlling the environmental temperature in the plant cultivation facility, the dormant trees are broken .
In the dormancy breakthrough, the temperature of the culture solution in the plant cultivation facility is set to a temperature lower than the temperature in the plant cultivation facility during the dormancy introduction period, and the temperature of the culture solution is set to a temperature at which the culture solution does not freeze. A method of growing trees characterized by temperature and lower than air temperature .
前記植物栽培施設内には、人工光を照射する人工光照明装置が設けられ、
前記休眠打破においては、前記人工光照明装置を用いて、前記樹木の明期の時間を制御することを特徴とする請求項1に記載の樹木の生育方法。
An artificial light lighting device that irradiates artificial light is installed in the plant cultivation facility.
The method for growing a tree according to claim 1, wherein the artificial light lighting device is used to control the time of the light period of the tree in breaking the dormancy.
前記人工光による明期の時間を短くすることにより、前記樹木の休眠導入を行なうことを特徴とする請求項2に記載の樹木の生育方法。 The method for growing a tree according to claim 2, wherein the dormancy of the tree is introduced by shortening the time of the light period by the artificial light. 前記環境温度の制御は、前記培養液の温度を制御することにより行なわれることを特徴とする請求項1~3の何れか1項に記載の樹木の生育方法。 The method for growing a tree according to any one of claims 1 to 3, wherein the control of the environmental temperature is performed by controlling the temperature of the culture solution. 発根した樹木を水耕栽培により生育する樹木生育システムであって、
培養液を循環させる循環路が接続された貯蔵部の内部において、培地に植えられた前記樹木の根を浸漬する前記培養液を流液させる培養液流動部と、
植物栽培施設内に配置された前記樹木の環境温度を調整する温度調整部と、
休眠中の前記樹木を、休眠打破させるための環境温度に前記温度調整部を制御する制御手段とを備え、
前記制御手段は、
前記植物栽培施設内の気温を、生育期よりも低温に設定し、前記植物栽培施設内の前記培養液の温度を、前記培養液が凍らない温度で前記気温よりも低く設定することにより、前記樹木の休眠導入を行ない、
前記休眠導入期の前記植物栽培施設内の気温より低温に設定し、前記植物栽培施設内の前記培養液の温度を、前記培養液が凍らない温度で前記休眠導入期の温度及び気温よりも低くすることにより、休眠中の前記樹木について休眠打破を行なうことを特徴とする樹木生育システム。
It is a tree growth system that grows rooted trees by hydroponics .
Inside the storage section to which the circulation path for circulating the culture solution is connected, a culture solution flow section for immersing the root of the tree planted in the medium and flowing the culture solution,
A temperature control unit that adjusts the environmental temperature of the trees placed in the plant cultivation facility ,
It is provided with a control means for controlling the temperature adjusting unit to the environmental temperature for breaking the dormant tree in the dormant state.
The control means is
The temperature in the plant cultivation facility is set to be lower than the growing season, and the temperature of the culture solution in the plant cultivation facility is set to be lower than the temperature at a temperature at which the culture solution does not freeze. Introduced dormancy of trees,
The temperature is set lower than the temperature in the plant cultivation facility during the dormancy introduction period, and the temperature of the culture solution in the plant cultivation facility is lower than the temperature and temperature in the dormancy introduction period at a temperature at which the culture solution does not freeze. A tree growth system characterized by breaking the dormancy of the dormant tree.
JP2017196689A 2017-10-10 2017-10-10 Tree growth method and tree growth system Active JP7059558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017196689A JP7059558B2 (en) 2017-10-10 2017-10-10 Tree growth method and tree growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196689A JP7059558B2 (en) 2017-10-10 2017-10-10 Tree growth method and tree growth system

Publications (2)

Publication Number Publication Date
JP2019068768A JP2019068768A (en) 2019-05-09
JP7059558B2 true JP7059558B2 (en) 2022-04-26

Family

ID=66440219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196689A Active JP7059558B2 (en) 2017-10-10 2017-10-10 Tree growth method and tree growth system

Country Status (1)

Country Link
JP (1) JP7059558B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7649528B2 (en) 2020-04-11 2025-03-21 株式会社プランテックス Plant cultivation device and plant cultivation method
JP7516928B2 (en) * 2020-07-06 2024-07-17 株式会社大林組 Tree cultivation method and tree cultivation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197830A (en) 2000-01-18 2001-07-24 Ishimoto Shokuhin Kogyo Kk Method of year-round culture shoot-bearing tree body of japanese pepper by grafting
JP2011120557A (en) 2009-12-14 2011-06-23 Tokyo Univ Of Agriculture & Technology Plant cultivation system
JP2013201983A (en) 2012-03-28 2013-10-07 Nihon Yamamura Glass Co Ltd Method of raising plant by nutriculture
JP2016165302A (en) 2016-05-17 2016-09-15 国立大学法人東京農工大学 Plant cultivation system, and plant cultivation method using plant cultivation system
JP2017012130A (en) 2015-07-06 2017-01-19 パナソニックIpマネジメント株式会社 Plant growing apparatus
JP2017077203A (en) 2015-10-20 2017-04-27 国立研究開発法人農業・食品産業技術総合研究機構 Plant cultivation method and plant cultivation device
US20170150686A1 (en) 2014-01-24 2017-06-01 Clemens Erbacher Container for supplying plant roots with nutrient solution without the use of soil
JP2017099353A (en) 2015-12-03 2017-06-08 住友電気工業株式会社 Cultivation method and chemical fertilizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638643A (en) * 1992-05-21 1994-02-15 Tokyu Green Syst Kk Plant cultivation system
JPH09308400A (en) * 1996-05-23 1997-12-02 Chisso Corp Prevention of tree lodging in tree nutriculture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197830A (en) 2000-01-18 2001-07-24 Ishimoto Shokuhin Kogyo Kk Method of year-round culture shoot-bearing tree body of japanese pepper by grafting
JP2011120557A (en) 2009-12-14 2011-06-23 Tokyo Univ Of Agriculture & Technology Plant cultivation system
JP2013201983A (en) 2012-03-28 2013-10-07 Nihon Yamamura Glass Co Ltd Method of raising plant by nutriculture
US20170150686A1 (en) 2014-01-24 2017-06-01 Clemens Erbacher Container for supplying plant roots with nutrient solution without the use of soil
JP2017012130A (en) 2015-07-06 2017-01-19 パナソニックIpマネジメント株式会社 Plant growing apparatus
JP2017077203A (en) 2015-10-20 2017-04-27 国立研究開発法人農業・食品産業技術総合研究機構 Plant cultivation method and plant cultivation device
JP2017099353A (en) 2015-12-03 2017-06-08 住友電気工業株式会社 Cultivation method and chemical fertilizer
JP2016165302A (en) 2016-05-17 2016-09-15 国立大学法人東京農工大学 Plant cultivation system, and plant cultivation method using plant cultivation system

Also Published As

Publication number Publication date
JP2019068768A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
RU2411715C2 (en) System with controlled medium and method for quick cultivation of seed potato
KR102045728B1 (en) Hydroponic growing device
JP2010279269A (en) Vegetable factory
Merrill et al. Next evolution of agriculture: A review of innovations in plant factories
KR20130041702A (en) The inside green house strawberry grawing method and system by variable artificial light source
CN111050541A (en) Plant cultivation method and plant cultivation device
KR101941891B1 (en) Aquaponics System for Ginseng Cultivation
Tagle et al. Development of an indoor hydroponic tower for urban farming
CN102524038A (en) Three-dimensional combined temperature control and light control breeding bed
JP7059558B2 (en) Tree growth method and tree growth system
KR20130041703A (en) The inside green house ginseng grawing method and system by variable artificial light source
CN105830685A (en) Technology for growing cucumber seedlings by using LED plant lamps
KR20120094792A (en) Producing equipment of grafted seedlings and rooted cuttings, and producing method thereof
CN206043036U (en) A kind of quick high-quality cultivates the device of Cut Flower Chrysanthemum Morifolium hybrid seed
CN202396257U (en) Stereoscopic combined temperature and light control breeding bed
CN102662372B (en) System and method for black rose rapid reproduction management based on B/S architecture and Internet of Things
NL2038336A (en) A method for solving the development of &#39;hanbao&#39; flowers in soilless culture of cut roses
CN108235934B (en) A method for changing tobacco external growth conditions to promote tobacco early flowering
JP7135341B2 (en) Plant growth system and plant growth method
KR101979258B1 (en) Growth environment control system of plant grower and Method thereof
CN108157041B (en) Seedling culture domestication method for dormant plants
KR20060129986A (en) Mass production method of seed potatoes
JP2003265057A (en) Hydroponic apparatus, hydroponic method and hydroponic plant
JP7367482B2 (en) Seedling growing method and seedling growing system
TWI417042B (en) Environmental automatic regulation system of wax apples cultivation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7059558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150