[go: up one dir, main page]

JP7059130B2 - Control method of air purifying greening device and air purifying greening device - Google Patents

Control method of air purifying greening device and air purifying greening device Download PDF

Info

Publication number
JP7059130B2
JP7059130B2 JP2018124159A JP2018124159A JP7059130B2 JP 7059130 B2 JP7059130 B2 JP 7059130B2 JP 2018124159 A JP2018124159 A JP 2018124159A JP 2018124159 A JP2018124159 A JP 2018124159A JP 7059130 B2 JP7059130 B2 JP 7059130B2
Authority
JP
Japan
Prior art keywords
time
irrigation
temperature
control
arbitrary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018124159A
Other languages
Japanese (ja)
Other versions
JP2020000136A (en
Inventor
裕介 河目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2018124159A priority Critical patent/JP7059130B2/en
Publication of JP2020000136A publication Critical patent/JP2020000136A/en
Application granted granted Critical
Publication of JP7059130B2 publication Critical patent/JP7059130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Description

本発明は、空気清浄緑化装置および空気清浄緑化装置の制御方法に関するものである。
詳しくは、空気清浄緑化装置の運転時における設置環境の温度と風量とから植栽基盤の乾燥状態(含水率)を推定し、係る推定結果に基づいて植栽基盤に灌水を行う空気清浄緑化装置および空気清浄緑化装置の制御方法に関するものである。
The present invention relates to an air purifying greening device and a control method for the air purifying greening device.
Specifically, the air purifying greening device that estimates the dry state (moisture content) of the planting base from the temperature and air volume of the installation environment during operation of the air purifying greening device, and irrigates the planting base based on the estimation result. And the control method of the air purifying greening device.

従前から、室内や屋外に設置されることによって、設置環境の緑化とともに空気清浄を行う空気清浄緑化装置が各種開発されている。 Previously, various air purifying and greening devices have been developed that purify the air as well as the installation environment by being installed indoors or outdoors.

ここで、このような空気清浄緑化装置には、植栽を維持するための灌水装置(設備)が設けられ定期的に植栽に灌水を行う構造となっているが、植栽を適切な状態で維持するためには、灌水の量が多すぎても少なすぎても良くなく、また灌水の時期も適切なものとする必要がある。 Here, such an air purifying and greening device is provided with a irrigation device (equipment) for maintaining the planting and has a structure in which the planting is regularly irrigated, but the planting is in an appropriate state. In order to maintain the water supply, the amount of irrigation may not be too large or too small, and the timing of irrigation must be appropriate.

特に、図1に示すような縦置きタイプの空気清浄緑化装置においては、植栽基盤の上下方向において水勾配が生じることによって植栽基盤の上部が乾燥し易くなる。従って、縦置きタイプの空気清浄緑化装置においては、植栽基盤上部への灌水を、他のタイプの空気清浄緑化装置に比べてより適切に行わなければならないことになる。具体的には、灌水の量が多すぎると、植栽基盤の上部へは十分な量の灌水が行われていても植栽基盤の中部や下部にとっては過剰な灌水となってしまい、その結果、植栽基盤の中部や下部の植栽の根腐れや、排水量が多くなることによる灌水の効率低下が発生しまうことになる。また、反対に灌水の量が少なすぎると、植栽基盤上部の植栽(場合によっては植栽基盤中部や下部の植栽も)が枯死してしまうことになる。 In particular, in the vertical type air purifying greening device as shown in FIG. 1, the upper part of the planting base is easily dried due to the water gradient generated in the vertical direction of the planting base. Therefore, in the vertical type air purifying greening device, irrigation to the upper part of the planting base must be performed more appropriately than in other types of air purifying greening device. Specifically, if the amount of irrigation is too large, even if a sufficient amount of irrigation is applied to the upper part of the planting base, it will be excessive irrigation to the middle and lower parts of the planting base, resulting in excessive irrigation. , The root rot of the plants in the middle and lower parts of the planting base and the decrease in irrigation efficiency due to the large amount of drainage will occur. On the other hand, if the amount of irrigation is too small, the plants in the upper part of the planting base (in some cases, the plants in the middle and lower parts of the planting base) will die.

そこで、空気清浄緑化装置の分野を始めとする植物栽培の分野において、灌水の量および時期を制御するための技術が各種開発されている(特許文献1~3)。 Therefore, in the field of plant cultivation including the field of air purifying and greening equipment, various techniques for controlling the amount and timing of irrigation have been developed (Patent Documents 1 to 3).

具体的には、特許文献1、2に記載されている発明は、湿度センサを用いて測定した湿度(飽差を含む)に着目して灌水制御を行う技術である(特許文献1の[請求項7]、[0015]、[0038]および特許文献2の[請求項1]、[請求項2]、[0049]、[0050]を参照)。特許文献3に記載されている発明は、赤外線センサを用いて測定した土壌の表面温度と気温との温度差に着目して灌水制御を行う技術である(特許文献3の[請求項1]、[0006]、[0024]、[0087]を参照)。 Specifically, the inventions described in Patent Documents 1 and 2 are techniques for controlling irrigation by focusing on the humidity (including saturation) measured by using a humidity sensor (Patent Document 1 [Claim 1]. 7], [0015], [0038] and [Claim 1], [Claim 2], [0049], and [0050] of Patent Document 2). The invention described in Patent Document 3 is a technique for controlling irrigation by focusing on the temperature difference between the surface temperature of the soil and the air temperature measured by using an infrared sensor (Patent Document 3 [Claim 1]. [0006], [0024], [0087]).

特開2014-180274号公報Japanese Unexamined Patent Publication No. 2014-180274 特開2015-173653号公報Japanese Unexamined Patent Publication No. 2015-173653 特開2006-275615号公報Japanese Unexamined Patent Publication No. 2006-275615

しかしながら、特許文献1~3に記載されている灌水技術は、全て、制御を行うためにセンサを用いて基礎とするデータを実測する必要があることから、センサの設置場所が不適切な場合には適切な制御が困難となってしまうという課題がある。また、測定されたデータはあくまでもセンサが設置された特定の場所(ポイント)における数値であることから、制御の精度を向上させるためには複数のセンサを設置する必要があり、設備が複雑化し、コストも高くなってしまうという課題もある。また、センサを設置するためには植栽ユニットなどに孔を開ける必要があることから、係る孔から灌水が漏れることによる水密性の低下や空気が漏れることによる気密性や清浄性の低下が発生してしまうという課題もある。なお、係る課題は複数のセンサを設置した際に特に顕著なものとなる。さらに、センサの寿命もあることから、メンテナンス作業が必要となってしまうという課題もある。 However, all of the irrigation techniques described in Patent Documents 1 to 3 require the measurement of the underlying data using a sensor in order to perform control, and therefore, when the installation location of the sensor is inappropriate. Has the problem that proper control becomes difficult. In addition, since the measured data is only a numerical value at a specific place (point) where the sensor is installed, it is necessary to install multiple sensors in order to improve the accuracy of control, which complicates the equipment and makes the equipment complicated. There is also the problem that the cost will be high. In addition, since it is necessary to make a hole in the planting unit in order to install the sensor, the watertightness deteriorates due to the leakage of irrigation from the hole, and the airtightness and cleanliness decrease due to the air leakage. There is also the problem of doing it. It should be noted that such a problem becomes particularly remarkable when a plurality of sensors are installed. Further, since the sensor has a long life, there is a problem that maintenance work is required.

今般、本願発明者らは鋭意検討を行った結果、空気清浄緑化装置の設置環境の温度から植栽基盤の乾燥状態を推定する手法を構築することができるという知見を得た。具体的には、運転時における風量と設置環境の温度から植栽基盤の乾燥状態(含水率)を推定することができ、係る推定結果に基づいて植栽基盤に灌水を行うことができるという知見を得るに至った。
そして係る手法を用いれば、特許文献1~3に記載されている灌水技術のように、センサを用いる必要がなく、特に、図1に示すような縦置きタイプの空気清浄緑化装置(水勾配が生じ易い空気清浄緑化装置)において問題となる、乾燥し易い植栽基盤の上部における枯死現象の発生を防止することができるという知見を得るに至った。
As a result of diligent studies, the inventors of the present application have found that it is possible to construct a method for estimating the dry state of the planting base from the temperature of the installation environment of the air purification and greening device. Specifically, it is found that the dry state (moisture content) of the planting base can be estimated from the air volume during operation and the temperature of the installation environment, and the planting base can be irrigated based on the estimation result. Came to get.
Then, if such a method is used, unlike the irrigation techniques described in Patent Documents 1 to 3, it is not necessary to use a sensor, and in particular, a vertical type air purifying greening device (water gradient) as shown in FIG. 1 is used. We have found that it is possible to prevent the occurrence of the withering phenomenon in the upper part of the planting base, which is easy to dry, which is a problem in the air purifying greening device that tends to occur.

また、係る手法は、植栽基盤の特定の部位(任意の深度の植栽)における乾燥状態(含水率)も推定することが可能となるというものであった。従って、係る手法を用いれば、植栽基盤の特定の部位(任意の深度の植栽)を目標(ターゲット)とした灌水制御を行うことができるという知見を得るに至った。 In addition, such a method makes it possible to estimate the dry state (moisture content) at a specific part (planting at an arbitrary depth) of the planting base. Therefore, it has been found that irrigation control can be performed with a specific part (planting at an arbitrary depth) of the planting base as a target by using such a method.

本発明は、上記した従来の問題点に鑑みてなされたものであって、空気清浄緑化装置の運転時における設置環境の温度と風量とから植栽基盤の乾燥状態(含水率)を推定し、係る推定結果に基づいて植栽基盤に灌水を行う空気清浄緑化装置および空気清浄緑化装置の制御方法の提供を目的とするものである。 The present invention has been made in view of the above-mentioned conventional problems, and estimates the dry state (moisture content) of the planting base from the temperature and air volume of the installation environment during the operation of the air purifying greening device. It is an object of the present invention to provide a control method of an air purifying greening device and an air purifying greening device that irrigate the planting base based on the estimation result.

上記目的を達成するために、本発明の請求項1に係る空気清浄緑化装置は、植栽を前面に上下方向に配置する植栽基盤を収納した植栽ユニットと、植栽ユニットに通風を行う通風装置と、植栽ユニットに灌水を行う灌水装置と、植栽ユニット上端から垂直方向の複数の深度の植栽基盤における含水率と時間との関係式を記憶しておく第一記憶手段と、植栽基盤における灌水量と浸透深度との関係式を記憶しておく第二記憶手段と、灌水装置を制御する制御手段を備える空気清浄緑化装置であって、制御手段は、定時灌水制御と臨時灌水制御を備え、定時灌水制御は、予め設定した時刻に所定量の灌水を行うとともに、任意の深度(Y)の植栽基盤における時刻から任意の含水率に達するまでの時間(T)を、第一記憶手段の関係式を用いて演算するものであり、臨時灌水制御は、任意の深度(Y)の植栽基盤にまで浸透する灌水の量を、第二記憶手段の関係式を用いて演算して、時刻から時間(T)が経過した時刻に灌水を行うものであることを特徴とする。 In order to achieve the above object, the air-cleaning and greening apparatus according to claim 1 of the present invention ventilates the planting unit and the planting unit containing the planting base in which the planting is arranged in the vertical direction in the front surface. A ventilation device, a irrigation device that irrigates the planting unit, and a first storage means for storing the relational expression between the water content and time in the planting base at multiple depths in the vertical direction from the upper end of the planting unit. It is an air purification and greening device equipped with a second storage means for storing the relational expression between the irrigation amount and the permeation depth in the planting base and a control means for controlling the irrigation device. It is equipped with irrigation control, and the scheduled irrigation control performs a predetermined amount of irrigation at a preset time, and also sets the time (T) from the time on the planting base at an arbitrary depth (Y) to reach an arbitrary water content. It is calculated using the relational expression of the first storage means, and the temporary irrigation control uses the relational expression of the second storage means to determine the amount of irrigation that penetrates to the planting base at an arbitrary depth (Y). It is characterized in that irrigation is performed at the time when the time (T) has elapsed from the time calculated.

本発明の請求項2に係る空気清浄緑化装置は、第一記憶手段の関係式が以下の式1であり、第二記憶手段の関係式が多項式近似式であることを特徴とする。
式1:任意の深度(Y)の植栽基盤における、定時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T)

Figure 0007059130000001
(K1:以下の手順によって算出した温度係数(K)の内、定時灌水制御作動時の設置環境の温度における温度係数。
(1)植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。) The air cleaning and greening apparatus according to claim 2 of the present invention is characterized in that the relational expression of the first storage means is the following formula 1 and the relational expression of the second storage means is a polynomial approximation formula.
Equation 1: Time (T) required to reach an arbitrary water content from the operation time of the scheduled irrigation control in a planting base of an arbitrary depth (Y).
Figure 0007059130000001
(K1: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the scheduled irrigation control is activated.
(1) Regarding the time course of the water content at any two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to the planting base at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )

本発明の請求項3に係る空気清浄緑化装置は、定時灌水制御が、さらに、次回の定時灌水制御が作動するまでの間に時間(T)が経過する回数(N、Nは整数)を算出するものであり、臨時灌水制御が、回数(N)が2以上である場合には、時間(T)が経過した時刻ごとに灌水装置の運転をN回行うものであることを特徴とする。 The air cleaning and greening apparatus according to claim 3 of the present invention calculates the number of times (N and N are integers) that the time (T) elapses before the scheduled irrigation control is further activated and the next scheduled irrigation control is activated. When the number of times (N) is 2 or more, the temporary irrigation control is characterized in that the irrigation device is operated N times at each time when the time (T) has elapsed.

本発明の請求項4に係る空気清浄緑化装置は、時間(T)が経過した時刻が次回の定時灌水制御の作動時刻まで所定の時間以下となる場合には、制御手段が、臨時灌水制御の作動を中止するものであることを特徴とする。 In the air cleaning and greening apparatus according to claim 4 of the present invention, when the time (T) has elapsed is a predetermined time or less until the next operation time of the scheduled irrigation control, the control means is the temporary irrigation control. It is characterized in that the operation is stopped.

本発明の請求項5に係る空気清浄緑化装置は、臨時灌水制御作動時における設置環境の温度と、定時灌水制御作動時における設置環境の温度との差が所定の値以上である場合には、制御手段が、任意の深度(Y)の植栽基盤における臨時灌水制御の作動時刻から任意の含水率に達するまでの時間(T1)を、式2を用いて演算して、時間(T1)が経過した時刻に再度臨時灌水制御の作動を行うものであることを特徴とする。
式2:任意の深度(Y)の植栽基盤における、臨時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T1)

Figure 0007059130000002
(K2:以下の手順によって算出した温度係数(K)の内、臨時灌水制御作動時の設置環境の温度における温度係数。
(1)前記植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。) In the air cleaning and greening apparatus according to claim 5 of the present invention, when the difference between the temperature of the installation environment when the temporary irrigation control is activated and the temperature of the installation environment when the regular irrigation control is activated is equal to or more than a predetermined value, The control means calculates the time (T1) from the operation time of the temporary irrigation control in the planting base at an arbitrary depth (Y) to the arrival of an arbitrary water content using Equation 2, and the time (T1) is calculated. It is characterized in that the temporary irrigation control is activated again at the elapsed time.
Equation 2: Time required to reach an arbitrary water content from the operation time of the temporary irrigation control in the planting base of an arbitrary depth (Y) (T1)
Figure 0007059130000002
(K2: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the temporary irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to a planting substrate at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. , Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )

本発明の請求項6に係る空気清浄緑化装置は、定時灌水制御が、設置環境の温度が一日の内で最も高い時間帯に作動するものであることを特徴とする。 The air purifying greening device according to claim 6 of the present invention is characterized in that the scheduled irrigation control is operated at the time when the temperature of the installation environment is the highest in the day.

本発明の請求項7に係る空気清浄緑化装置は、灌水装置が、植栽ユニットの上方から灌水を行うものであることを特徴とする。 The air purifying greening device according to claim 7 of the present invention is characterized in that the irrigation device irrigates from above the planting unit.

本発明の請求項8に係る空気清浄緑化装置の制御方法は、植栽を前面に上下方向に配置する植栽基盤を収納した植栽ユニットと、植栽ユニットに通風を行う通風装置と、植栽ユニットに灌水を行う灌水装置と、植栽ユニット上端から垂直方向の複数の深度の植栽基盤における含水率と時間との関係式を記憶しておく第一記憶手段と、植栽基盤における灌水量と浸透深度との関係式を記憶しておく第二記憶手段と、灌水装置を制御する制御手段を備える空気清浄緑化装置の制御方法であって、制御手段は、定時灌水制御と臨時灌水制御を備え、定時灌水制御は、予め設定した時刻に所定量の灌水を行うとともに、任意の深度(Y)の植栽基盤における時刻から任意の含水率に達するまでの時間(T)を、第一記憶手段の関係式を用いて演算するものであり、臨時灌水制御は、任意の深度(Y)の植栽基盤にまで浸透する灌水の量を、第二記憶手段の関係式を用いて演算して、時刻から時間(T)が経過した時刻に灌水を行うものであることを特徴とする。 The control method of the air cleaning and greening device according to claim 8 of the present invention includes a planting unit that houses a planting base in which plants are arranged in the vertical direction on the front surface, a ventilation device that ventilates the planting unit, and planting. An irrigation device that irrigates the planting unit, a first storage means for storing the relational expression between the water content and time in the planting base at multiple depths in the vertical direction from the upper end of the planting unit, and irrigation in the planting base. It is a control method of an air purification greening device provided with a second storage means for storing the relational expression between the amount and the permeation depth and a control means for controlling the irrigation device, and the control means are the regular irrigation control and the temporary irrigation control. In the scheduled irrigation control, a predetermined amount of irrigation is performed at a preset time, and the time (T) from the time on the planting base at an arbitrary depth (Y) to reach an arbitrary water content is set as the first. It is calculated using the relational expression of the storage means, and the temporary irrigation control calculates the amount of irrigation that penetrates to the planting base at an arbitrary depth (Y) by using the relational expression of the second storage means. Therefore, the water is irrigated at the time when the time (T) has elapsed from the time.

本発明の請求項9に係る空気清浄緑化装置の制御方法は、第一記憶手段の関係式が以下の式1であり、第二記憶手段の関係式が多項式近似式であることを特徴とする。
式1:任意の深度(Y)の植栽基盤における、定時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T)

Figure 0007059130000003
(K1:以下の手順によって算出した温度係数(K)の内、定時灌水制御作動時の設置環境の温度における温度係数。
(1)植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。) The control method for the air cleaning and greening apparatus according to claim 9 of the present invention is characterized in that the relational expression of the first storage means is the following formula 1 and the relational expression of the second storage means is a polynomial approximation formula. ..
Equation 1: Time (T) required to reach an arbitrary water content from the operation time of the scheduled irrigation control in a planting base of an arbitrary depth (Y).
Figure 0007059130000003
(K1: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the scheduled irrigation control is activated.
(1) Regarding the time course of the water content at any two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to the planting base at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )

本発明の請求項10に係る空気清浄緑化装置の制御方法は、定時灌水制御が、さらに、次回の定時灌水制御が作動するまでの間に時間(T)が経過する回数(N、Nは整数)を算出するものであり、臨時灌水制御が、回数(N)が2以上である場合には、時間(T)が経過した時刻ごとに灌水装置の運転をN回行うものであることを特徴とする。 The control method of the air cleaning and greening apparatus according to claim 10 of the present invention is the number of times (T) elapses between the scheduled irrigation control and the next scheduled irrigation control (N and N are integers). ) Is calculated, and the temporary irrigation control is characterized in that when the number of times (N) is 2 or more, the irrigation device is operated N times at each time when the time (T) has elapsed. And.

本発明の請求項11に係る空気清浄緑化装置の制御方法は、時間(T)が経過した時刻が次回の定時灌水制御の作動時刻まで所定の時間以下となる場合には、制御手段が、臨時灌水制御の作動を中止するものであることを特徴とする。 In the control method of the air cleaning and greening apparatus according to claim 11 of the present invention, when the time (T) has elapsed is less than or equal to a predetermined time until the next scheduled irrigation control operation time, the control means is temporary. It is characterized in that the operation of the irrigation control is stopped.

本発明の請求項12に係る空気清浄緑化装置の制御方法は、臨時灌水制御作動時における設置環境の温度と、定時灌水制御作動時における設置環境の温度との差が所定の値以上である場合には、制御手段が、任意の深度(Y)の植栽基盤における臨時灌水制御の作動時刻から任意の含水率に達するまでの時間(T1)を、式2を用いて演算して、時間(T1)が経過した時刻に再度臨時灌水制御の作動を行うものであることを特徴とする。
式2:任意の深度(Y)の植栽基盤における、臨時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T1)

Figure 0007059130000004
(K2:以下の手順によって算出した温度係数(K)の内、臨時灌水制御作動時の設置環境の温度における温度係数。
(1)前記植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。) The control method of the air cleaning and greening apparatus according to claim 12 of the present invention is when the difference between the temperature of the installation environment when the temporary irrigation control is activated and the temperature of the installation environment when the regular irrigation control is activated is a predetermined value or more. The time (T1) from the operation time of the temporary irrigation control in the planting base at an arbitrary depth (Y) to the arrival of an arbitrary water content is calculated by the control means using Equation 2, and the time (T1) is calculated. It is characterized in that the temporary irrigation control is activated again at the time when T1) has elapsed.
Equation 2: Time required to reach an arbitrary water content from the operation time of the temporary irrigation control in the planting base of an arbitrary depth (Y) (T1)
Figure 0007059130000004
(K2: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the temporary irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to a planting substrate at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. , Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )

本発明の請求項13に係る空気清浄緑化装置の制御方法は、定時灌水制御が、設置環境の温度が一日の内で最も高い時間帯に作動するものであることを特徴とする。 The control method of the air purifying greening device according to claim 13 of the present invention is characterized in that the scheduled irrigation control is operated at the time when the temperature of the installation environment is the highest in the day.

本発明に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、設置環境の温度から植栽基盤の乾燥状態を推定することができるので、従前の灌水制御のようなセンサを用いる必要がなく、設備を簡素化でき、メンテナンス作業も省力化することができる。また、センサを用いる際に発生する水密性や気密性や清浄性の低下という問題も考慮する必要がなくなることになる。
また、設置環境の温度を考慮して植栽基盤の乾燥状態を推定することができるので、従前の灌水技術に比べて、植栽の枯死を効果的に防止することができる。なお、係る効果は、図1に示すような縦置きタイプの空気清浄緑化装置(水勾配が生じ易い空気清浄緑化装置)において特に顕著なものとなる。
According to the control method of the air cleaning and greening device and the air cleaning and greening device according to the present invention, the dry state of the planting substrate can be estimated from the temperature of the installation environment, so that it is necessary to use a sensor such as the conventional irrigation control. It is possible to simplify the equipment and save labor for maintenance work. In addition, it is not necessary to consider the problems of watertightness, airtightness, and deterioration of cleanliness that occur when the sensor is used.
In addition, since the dry state of the planting base can be estimated in consideration of the temperature of the installation environment, it is possible to effectively prevent the planting from dying as compared with the conventional irrigation technique. It should be noted that such an effect is particularly remarkable in a vertical type air cleaning and greening device (air cleaning and greening device in which a water gradient is likely to occur) as shown in FIG.

さらに、本発明に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、植栽基盤の様々な部位における乾燥状態(含水率)を推定することも可能となる。従って、植栽基盤の特定の部位(任意の深度の植栽基盤)に対する灌水制御を行うことができることになる。また、植栽基盤の特定の部位(任意の深度の植栽基盤)に対して過不足なく灌水を行うことができると、排水する灌水の量を削減することができることから効率的な灌水制御を行うことができ、排水処理も省力化することができる。加えて、水道費や排水処理費などのコストも削減することができる。 Further, according to the control method of the air purifying greening device and the air purifying greening device according to the present invention, it is possible to estimate the dry state (moisture content) at various parts of the planting base. Therefore, irrigation control can be performed for a specific part of the planting base (planting base of arbitrary depth). In addition, if irrigation can be performed on a specific part of the planting base (planting base of arbitrary depth) without excess or deficiency, the amount of drained irrigation can be reduced, so efficient irrigation control can be performed. It can be done and wastewater treatment can be labor-saving. In addition, costs such as water costs and wastewater treatment costs can be reduced.

本発明の請求項2、9に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、特定の関係式を用いて植栽基盤の乾燥状態を推定するので、植栽基盤の乾燥状態をより正確に推定することができる。また、風量による補正も行うことから、運転時の状況に則した灌水制御を行うことができる。 According to the control method of the air purifying greening device and the air purifying greening device according to claims 2 and 9 of the present invention, the dry state of the planting base is estimated using a specific relational expression, so that the dry state of the planting base is estimated. Can be estimated more accurately. In addition, since correction is performed based on the air volume, irrigation control can be performed according to the operating conditions.

本発明の請求項3、10に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、定時灌水制御が、次回の定時灌水制御までの臨時灌水制御の回数を算出するものであることから、植栽の枯死をより効果的に防止することができる。 According to the control method of the air purifying greening device and the air purifying greening device according to claims 3 and 10 of the present invention, the scheduled irrigation control calculates the number of temporary irrigation controls until the next scheduled irrigation control. Therefore, it is possible to prevent the planting from dying more effectively.

本発明の請求項4、11に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、定時灌水制御によって決定される臨時灌水制御の作動時刻が次回の定時灌水制御の作動時刻の間際である場合には臨時灌水制御の作動を中止するものであることから、植栽の根腐れを防止することができる。また、無駄な排水を抑制し、効率的な灌水制御を行うことができる。 According to the control method of the air cleaning greening device and the air cleaning greening device according to claims 4 and 11 of the present invention, the operating time of the temporary irrigation control determined by the scheduled irrigation control is just before the operating time of the next scheduled irrigation control. In this case, the operation of the temporary irrigation control is stopped, so that the root rot of the planting can be prevented. In addition, wastewater can be suppressed and efficient irrigation control can be performed.

本発明の請求項5、12に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、定時灌水制御によって演算、決定された時刻に臨時灌水制御が作動する際、制御手段が、定時灌水制御作動時の設置環境の温度(演算時における設置環境の温度)と臨時灌水制御作動時における設置環境の温度との温度差を確認する。そして、係る温度差が所定の値以上である場合には、制御手段が、植栽基盤の乾燥が予想以上に進む状況、すなわち定時灌水制御によって演算した時間(T)よりも早く任意の含水率に達してしまう状況であったり、反対に植栽基盤の乾燥が予想以上に遅い状況、すなわち定時灌水制御によって演算した時間(T)よりも遅く任意の含水率に達する状況であったりすると判断し、臨時灌水制御の作動時刻から任意の含水率に達するまでの時間(T1)を、再演算することとなる。
従って、植栽基盤の乾燥状態(含水率)をより正確に推定することができ、植栽の枯死をより効果的に防止することができる。
According to the control method of the air cleaning and greening apparatus and the air cleaning and greening apparatus according to claims 5 and 12 of the present invention, when the temporary irrigation control is operated at a time calculated and determined by the scheduled irrigation control, the control means is set on a regular basis. Check the temperature difference between the temperature of the installation environment when the irrigation control is activated (the temperature of the installation environment at the time of calculation) and the temperature of the installation environment when the temporary irrigation control is activated. Then, when the temperature difference is equal to or more than a predetermined value, the control means causes the planting base to dry more than expected, that is, an arbitrary water content faster than the time (T) calculated by the scheduled irrigation control. On the contrary, it is judged that the drying of the planting base is slower than expected, that is, the time (T) calculated by the scheduled irrigation control is later than the time (T) and the arbitrary water content is reached. , The time (T1) from the operation time of the temporary irrigation control to the arrival of an arbitrary water content will be recalculated.
Therefore, the dry state (moisture content) of the planting base can be estimated more accurately, and the death of the planting can be prevented more effectively.

本発明の請求項6、13に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、制御手段が、設置環境の温度が一日の内で最も高い時間帯、すなわち一日の内で植栽基盤の乾燥が最も予想される時間帯に定時灌水制御の作動を行うものであることから、季節や設置環境の状況に影響されることなく植栽の枯死を効果的に防止することができる。
なお、係る制御については、毎日係る時間帯に行ってもよいし、2日間隔や3日間隔など間隔をおいて、制御を行う日の係る時間帯に行うものでも良い。
According to the control method of the air purifying greening device and the air purifying greening device according to claims 6 and 13 of the present invention, the control means is used during the time when the temperature of the installation environment is the highest in the day, that is, within the day. Since the regular irrigation control is activated during the time when the planting base is most expected to dry, it is necessary to effectively prevent the planting from dying without being affected by the season and the conditions of the installation environment. Can be done.
It should be noted that the control may be performed every day in the time zone, or may be performed in the time zone of the day to be controlled at intervals such as 2-day intervals or 3-day intervals.

本発明の請求項7に係る空気清浄緑化装置によれば、灌水装置を植栽ユニットの上方から灌水を行うように構成しているので、植栽基盤の特定の部位(任意の深度の植栽基盤)に対して効率よく灌水を行うことができる。なお、係る効果は、図1に示すような縦置きタイプの空気清浄緑化装置(水勾配が生じ易い空気清浄緑化装置)において特に顕著なものとなる。 According to the air purifying greening apparatus according to claim 7 of the present invention, since the irrigation apparatus is configured to irrigate from above the planting unit, a specific part of the planting base (planting at an arbitrary depth) is provided. The base) can be efficiently irrigated. It should be noted that such an effect is particularly remarkable in a vertical type air cleaning and greening device (air cleaning and greening device in which a water gradient is likely to occur) as shown in FIG.

本発明に係る空気清浄緑化装置の一の実施形態を示す断面模式図である。It is sectional drawing which shows one Embodiment of the air purifying greening apparatus which concerns on this invention. 図1の植栽ユニットにおける一の設置環境の温度(17℃)での含水率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the water content at the temperature (17 degreeC) of one installation environment in the planting unit of FIG. 図1の植栽ユニットにおける他の設置環境の温度(34℃)での含水率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the water content at the temperature (34 ° C.) of another installation environment in the planting unit of FIG. 図1の植栽ユニットにおける一の深度の植栽基盤(上ポット位置の植栽基盤)の温度係数を算出するためのグラフである。It is a graph for calculating the temperature coefficient of the planting base (planting base at the upper pot position) of one depth in the planting unit of FIG. 1. 図1の植栽ユニットにおける一の深度の植栽基盤(中ポット位置の植栽基盤)の温度係数を算出するためのグラフである。It is a graph for calculating the temperature coefficient of the planting base (planting base at the middle pot position) of one depth in the planting unit of FIG. 1. 図1の植栽ユニットにおける一の深度の植栽基盤(下ポット位置の植栽基盤)の温度係数を算出するためのグラフである。It is a graph for calculating the temperature coefficient of the planting base (planting base at the lower pot position) of one depth in the planting unit of FIG. 1. 図1の植栽ユニットの植栽基盤における灌水量と浸透深度との関係を示すグラフである。It is a graph which shows the relationship between the irrigation amount and the permeation depth in the planting base of the planting unit of FIG. 本発明に係る空気清浄緑化装置に用いる制御手段における基本制御を示すフロー図である。It is a flow diagram which shows the basic control in the control means used for the air purifying greening apparatus which concerns on this invention. 図8のフロー図に各種の追加制御が加わったフロー図である。It is a flow chart which added various additional controls to the flow chart of FIG. 図9のフロー図の後続する部分を示すフロー図である。It is a flow chart which shows the subsequent part of the flow chart of FIG.

本発明の実施形態を図面に基づいて説明する。なお、以下に述べる実施形態は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。図1は本発明に係る空気清浄緑化装置の一の実施形態を示す断面模式図である。 An embodiment of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below are merely examples that embody the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a schematic cross-sectional view showing an embodiment of an air purifying greening apparatus according to the present invention.

(基本構造)
まず、本発明に係る空気清浄緑化装置の構成を図1に基づいて説明する。
本発明に係る空気清浄緑化装置1は、植栽基盤2を収納した植栽ユニット3と、植栽ユニット3に通風を行う通風装置4と、植栽ユニット3に灌水を行う灌水装置5と、植栽基盤2の含水率と時間との関係式を記憶しておく第一記憶手段(図示せず)と、植栽ユニット3における灌水量と浸透深度との関係式を記憶しておく第二記憶手段(図示せず)と、灌水装置5を制御する制御手段6を主要部品として構成されている。
(Basic structure)
First, the configuration of the air purifying greening device according to the present invention will be described with reference to FIG.
The air cleaning and greening device 1 according to the present invention includes a planting unit 3 that houses a planting base 2, a ventilation device 4 that ventilates the planting unit 3, and an irrigation device 5 that irrigates the planting unit 3. The first storage means (not shown) for storing the relational expression between the water content and time of the planting base 2 and the second for storing the relational expression between the irrigation amount and the permeation depth in the planting unit 3 A storage means (not shown) and a control means 6 for controlling the irrigation device 5 are configured as main components.

ここで、図1に示す空気清浄緑化装置1においては、第一記憶手段と第二記憶手段を空気清浄緑化装置1の制御手段6内に格納する構造としているが、これに限定されるものではなく、制御手段6、第一記憶手段、第二記憶手段をそれぞれ別々にして空気清浄緑化装置1内に格納する構造とすることもできる。さらに、制御手段6、第一記憶手段、第二記憶手段を、空気清浄緑化装置1に格納することなく、インターネットなどの回線を用いて提供することによって空気清浄緑化装置1の制御を遠隔操作することもできる。 Here, in the air cleaning and greening device 1 shown in FIG. 1, the first storage means and the second storage means are stored in the control means 6 of the air cleaning and greening device 1, but the structure is not limited to this. Instead, the control means 6, the first storage means, and the second storage means may be separately stored in the air purifying greening device 1. Further, the control means 6, the first storage means, and the second storage means are remotely controlled by providing the control means 6, the first storage means, and the second storage means by using a line such as the Internet without storing them in the air cleaning and greening device 1. You can also do it.

次に、各構成要件について説明する。 Next, each configuration requirement will be described.

(植栽ユニット、植栽基盤)
本発明に用いられる植栽ユニット3は、植栽基盤2を収納するものためのものであり、後記するタンク7に接続した灌水を行うためのホース8が設置された構造となっている。なお、図1に示す空気清浄緑化装置1においては、植栽ユニット3が上下方向に3つ設置されている構造となっている。
本発明に用いられる植栽基盤2は、植物を植える土台となるものであり、また灌水を保持することによって植えられた植栽を育成する基盤となるものである。また、植栽とともに設置環境の空気清浄を行うためのものである。
(Planting unit, planting base)
The planting unit 3 used in the present invention is for accommodating the planting base 2, and has a structure in which a hose 8 for irrigation connected to a tank 7 described later is installed. The air purifying greening device 1 shown in FIG. 1 has a structure in which three planting units 3 are installed in the vertical direction.
The planting base 2 used in the present invention serves as a base for planting plants and also serves as a base for growing planted plants by retaining irrigation. It is also for planting and cleaning the air in the installation environment.

本発明に用いられる植栽基盤2の形状としては特に限定されるものではなく、各種の形状のものを採用することができる。そしてその中でも、図1に示すような、植栽を前面に上下方向に配置する形態の植栽基盤2を採用した場合には、後記するように本発明の効果をより顕著に発現させることができることになる。
植栽基盤2の材質としても特に限定されるものではなく、フェルトなどの各種の多孔質素材や各種の土壌などを使用することができる。
The shape of the planting substrate 2 used in the present invention is not particularly limited, and various shapes can be adopted. Among them, when the planting base 2 in which the plants are arranged in the vertical direction on the front surface as shown in FIG. 1 is adopted, the effect of the present invention can be more remarkably exhibited as described later. You will be able to do it.
The material of the planting base 2 is not particularly limited, and various porous materials such as felt and various soils can be used.

(通風装置)
本発明に用いられる通風装置4は、設置環境の空気を植栽ユニット3に供給して植栽基盤2を通過させるためのものである。具体的には、ファンの回転数などを変更することによって、設置環境の汚染状況に応じて植栽ユニット3に供給する空気の風量を多段階または自在に設定することが可能な構造となっているものである。
なお、図1に示す空気清浄緑化装置1においては、通風装置4が植栽ユニット3の背面と空気清浄緑化装置1内の下部に設置されている構造となっている。そして、通風装置4によって空気清浄緑化装置1内の空気を排出することによって、設置環境の空気を植栽ユニット3の正面から植栽ユニット3内に取り込んで植栽基盤2に通過させて空気の清浄を行った後、植栽ユニット3の背面から排出し、その後装置外に排出させることによって、設置環境の空気の清浄を行う構造となっている。
(Ventilation device)
The ventilation device 4 used in the present invention is for supplying the air of the installation environment to the planting unit 3 and passing it through the planting base 2. Specifically, by changing the rotation speed of the fan, etc., the air volume of the air supplied to the planting unit 3 can be set in multiple stages or freely according to the pollution status of the installation environment. It is something that is.
The air purifying greening device 1 shown in FIG. 1 has a structure in which the ventilation device 4 is installed on the back surface of the planting unit 3 and the lower part of the air purifying greening device 1. Then, by discharging the air in the air purifying greening device 1 by the ventilation device 4, the air in the installation environment is taken into the planting unit 3 from the front of the planting unit 3 and passed through the planting base 2 to pass the air. After cleaning, the air is discharged from the back surface of the planting unit 3 and then discharged to the outside of the device to clean the air in the installation environment.

なお、本発明に用いられる通風装置4の設置位置や植栽ユニット3への空気の供給方法などについては、設置環境の空気を植栽基盤2に通過させることができるものであれば特に限定されるものではなく、各種の形態を採用することができる。例えば、図1とは逆に、通風装置4によって設置環境の空気を空気清浄緑化装置1の下部から装置内に取り込んで植栽ユニット3の背面から植栽ユニット3内に供給し、植栽基盤2を通過させて空気の清浄を行った後、植栽ユニット3の正面から装置外に排出することによって、設置環境の空気の清浄を行う構造とすることもできる。 The installation position of the ventilation device 4 used in the present invention, the method of supplying air to the planting unit 3, and the like are particularly limited as long as the air in the installation environment can be passed through the planting base 2. It is not a thing, but various forms can be adopted. For example, contrary to FIG. 1, the air of the installation environment is taken into the device from the lower part of the air purifying greening device 1 by the ventilation device 4 and supplied into the planting unit 3 from the back surface of the planting unit 3 to supply the planting base. It is also possible to have a structure for purifying the air in the installation environment by passing through 2 to purify the air and then discharging the air from the front of the planting unit 3 to the outside of the device.

(灌水装置)
本発明に用いられる灌水装置5は、植栽基盤2に灌水を供給するものであり、水や養液を貯蔵するためのタンク7、タンク7と植栽ユニット3を繋ぐホース8、ポンプ9を主要部品として構成されている。
なお、図1に示す空気清浄緑化装置1においては、植栽を前面に上下方向に配置する形態の植栽基盤2を採用していることから、ホース8の出口を植栽ユニット3の上部に設置して、重力を利用して植栽ユニット3の上方から下方に向かって灌水を行う構造となっている。このような構造を採用すれば、植栽基盤2の中でも上部が中央部や下部よりも早く乾燥する、すなわち灌水の制御を行わなければならない対象が限定されることになることから好適である。そして、後記するように本発明の効果をより顕著に発現させることができることになることから好適である。
(Irrigation device)
The irrigation device 5 used in the present invention supplies irrigation to the planting base 2, and includes a tank 7 for storing water and nutrient solution, a hose 8 connecting the tank 7 and the planting unit 3, and a pump 9. It is configured as a main component.
Since the air purifying greening device 1 shown in FIG. 1 employs a planting base 2 in which the plants are arranged in the vertical direction on the front surface, the outlet of the hose 8 is located above the planting unit 3. It is installed and has a structure that uses gravity to irrigate the planting unit 3 from above to below. If such a structure is adopted, the upper part of the planting base 2 dries faster than the central part and the lower part, that is, the target for which irrigation control must be performed is limited, which is preferable. And, as will be described later, it is preferable because the effect of the present invention can be more remarkably exhibited.

(第一記憶手段)
本発明に用いられる第一記憶手段は、植栽ユニット3上端から垂直方向の複数の深度の植栽基盤2における含水率と時間との関係式を記憶しておくものである。
ここで本発明者らは、今般鋭意検討を行った結果、空気清浄緑化装置が通常の使い方で用いられる場合、すなわち植栽ユニット3に供給される空気の風量が、ある一定の風量で維持された状態で運転される場合においては、植栽基盤2の材質や植栽ユニット3における植栽基盤2の充填度合などが装置のバリエーションに応じて変化したとしても、植栽基盤2の含水率は植栽基盤2に供給される空気の温度すなわち設置環境の温度と比例関係にあるという知見を得た。
そして、使用する植栽基盤2について、任意の風量における任意の2点の温度での含水率の経時変化のみを事前に測定しておけば、係る測定結果から空気清浄緑化装置が通常使用される温度の範囲内であれば、使用時の設置環境の温度下における植栽基盤2の含水率の変化を推定することが可能であるという知見を得た。
(First memory means)
The first storage means used in the present invention stores the relational expression between the water content and time in the planting base 2 at a plurality of depths in the vertical direction from the upper end of the planting unit 3.
Here, as a result of diligent studies by the present inventors, when the air purifying greening device is used in normal usage, that is, the air volume of the air supplied to the planting unit 3 is maintained at a certain air volume. In the case of operation in the normal state, even if the material of the planting base 2 and the filling degree of the planting base 2 in the planting unit 3 change according to the variation of the device, the water content of the planting base 2 is high. We obtained the finding that it is proportional to the temperature of the air supplied to the planting base 2, that is, the temperature of the installation environment.
Then, if only the change with time of the water content at the temperature of any two points at an arbitrary air volume is measured in advance for the planting base 2 to be used, the air purifying greening device is usually used from the measurement result. It was found that it is possible to estimate the change in the water content of the planting base 2 under the temperature of the installation environment at the time of use if it is within the temperature range.

具体的には、以下の式1を用いれば、任意の深度(Y)の植栽基盤2における、定時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T)を推定することができる。
式1:任意の深度(Y)の植栽基盤2における、定時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T)

Figure 0007059130000005
(K1:以下の手順によって算出した温度係数(K)の内、定時灌水制御作動時の設置環境の温度における温度係数。
(1)植栽ユニット3上端から垂直方向の任意の深度(Y)の植栽基盤2に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。) Specifically, using the following equation 1, it is possible to estimate the time (T) required to reach an arbitrary water content from the operation time of the scheduled irrigation control in the planting base 2 at an arbitrary depth (Y). Can be done.
Equation 1: Time (T) required to reach an arbitrary water content from the operation time of the scheduled irrigation control in the planting base 2 at an arbitrary depth (Y).
Figure 0007059130000005
(K1: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the scheduled irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to the planting base 2 at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit 3. Is linearly approximated, and the absolute value (k1, k2) of the slope value of each calculated linear approximation formula is calculated.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )

次に、図1の空気清浄緑化装置1の形態を例にして、上記式1を説明する。
まず、使用する土壌(植栽基盤2)を、幅104mm×奥行70mm×高さ364mmの植栽ボックスに収納して植栽ユニット3とする。なお、図1の植栽ユニット3においては、植物を植えることができるように上下方向に3つのポットを設けている構造となっている。
Next, the above formula 1 will be described by taking the form of the air purifying greening device 1 of FIG. 1 as an example.
First, the soil to be used (planting base 2) is stored in a planting box having a width of 104 mm, a depth of 70 mm, and a height of 364 mm to form a planting unit 3. The planting unit 3 in FIG. 1 has a structure in which three pots are provided in the vertical direction so that plants can be planted.

次に、含水率の経時変化を測定したい部分、図1で言えば植物が植えられる各ポットの位置(上ポット10:植栽ユニット3上端から垂直方向に52mmの位置(A)、中ポット11:植栽ユニット3上端から垂直方向に182mmの位置(B)、下ポット12:植栽ユニット3上端から垂直方向に312mmの位置(C))に含水率センサを設置する。ここで、含水率センサを設置した位置が上記式1における任意の深度(Y)となる。なお、含水率センサについては、植物の根元付近に設置(挿入)することが好ましい。
また、含水率センサについては、任意の2点の温度での含水率の経時変化の測定が終了した後に回収してもよい。なお、このような含水率センサとしては、Delta-T Devices(英国)社製の土壌水分計SM150Tなどを挙げることができる。
Next, the part where the change in water content with time is to be measured, in the case of FIG. 1, the position of each pot in which the plant is planted (upper pot 10: position 52 mm vertically from the upper end of the planting unit 3 (A), middle pot 11). : A water content sensor is installed at a position (B) of 182 mm in the vertical direction from the upper end of the planting unit 3, and a lower pot 12: a position (C) of 312 mm in the vertical direction from the upper end of the planting unit 3. Here, the position where the water content sensor is installed is an arbitrary depth (Y) in the above equation 1. The water content sensor is preferably installed (inserted) near the root of the plant.
Further, the water content sensor may be recovered after the measurement of the change with time of the water content at any two temperature points is completed. Examples of such a water content sensor include a soil moisture meter SM150T manufactured by Delta-T Devices (UK).

次に、上方から十分な灌水を行った後、風量を強設定(66m/h)で運転を開始し、運転開始からの任意時間の含水率を測定してグラフにプロットする(図2)。なお、係る風量(66m/h)が上記式1における任意の風量(a)となり、運転時の設置環境の温度(17℃)が上記式1における任意の温度(t1)となる。 Next, after sufficient irrigation from above, the operation is started at a strong air volume setting (66 m 3 / h), the water content at any time from the start of operation is measured, and plotted on a graph (Fig. 2). .. The air volume (66 m 3 / h) is an arbitrary air volume (a) in the above formula 1, and the temperature (17 ° C.) of the installation environment during operation is an arbitrary temperature (t1) in the above formula 1.

次に、図2においてプロットした各点について、最小二乗法による線形近似を行い、算出した線形近似式の傾きの値を求める。そして、係る傾きの値の絶対値が上記任意の温度(t1)における傾きの値(k1)となる(上ポット10のk1:0.0191、中ポット11のk1:0.0104、下ポット12のk1:0.019)。 Next, linear approximation is performed by the least squares method for each point plotted in FIG. 2, and the value of the slope of the calculated linear approximation formula is obtained. Then, the absolute value of the value of the inclination becomes the value (k1) of the inclination at the above arbitrary temperature (t1) (k1: 0.0191 of the upper pot 10, k1: 0.0104 of the middle pot 11, and the lower pot 12). K1: 0.019).

次に、設置環境の温度を変更(ここでは34℃(=任意の温度(t2))に変更)して、段落[0047]と同様の操作を行ってグラフにプロットを行い(図3)、図3においてプロットした各点について、最小二乗法による線形近似を行い、算出した線形近似式の傾きの値を求める。そして、係る傾きの値の絶対値が上記任意の温度(t2)における傾きの値(k2)となる(上ポット10のk2:0.0578、中ポット11のk2:0.0258、下ポット12のk2:0.0357)。 Next, the temperature of the installation environment is changed (here, it is changed to 34 ° C. (= arbitrary temperature (t2))), and the same operation as in paragraph [0047] is performed to plot the graph (FIG. 3). For each point plotted in FIG. 3, linear approximation is performed by the least squares method, and the calculated slope value of the linear approximation formula is obtained. Then, the absolute value of the value of the slope becomes the value of the slope (k2) at the above arbitrary temperature (t2) (k2: 0.0578 of the upper pot 10, k2: 0.0258 of the middle pot 11, and the lower pot 12). K2: 0.0357).

次に、各ポットにおける、温度(t1)の時の傾きの値の絶対値(k1)と、温度(t2)の時の傾きの値の絶対値(k2)についてグラフにプロットする(図4~図6)。 Next, the absolute value (k1) of the slope value at the time of temperature (t1) and the absolute value (k2) of the slope value at the time of temperature (t2) in each pot are plotted on a graph (FIGS. 4 to 4). FIG. 6).

次に、図4~図6においてプロットした各点について、最小二乗法による線形近似を行い、線形近似式を導出する。 Next, each point plotted in FIGS. 4 to 6 is linearly approximated by the least squares method, and a linear approximation formula is derived.

そして、導出した線形近似式に基づいて、各ポットにおける使用時の温度における温度係数(K)を算出することになる。例えば、上ポット10の位置においては、図4に示すとおり、導出した線形近似式がY=0.00227647058823529X-0.0196であることから、使用時の温度(X)が25℃である場合(例えば、後記する定時灌水制御作動時の温度が25℃である場合)の温度係数(K1)は0.0373117647058823となる。
つまり、温度係数(K)は、使用時の温度における含水率の減衰度合(量)となるのである。
Then, based on the derived linear approximation formula, the temperature coefficient (K) at the temperature at the time of use in each pot is calculated. For example, at the position of the upper pot 10, as shown in FIG. 4, since the derived linear approximation formula is Y = 0.00227468758823559X-0.0196, the temperature (X) at the time of use is 25 ° C. ( For example, the temperature coefficient (K1) of (when the temperature at the time of the scheduled irrigation control operation described later is 25 ° C.) is 0.03731176477058823.
That is, the temperature coefficient (K) is the degree of attenuation (amount) of the water content at the temperature at the time of use.

次に、使用する植栽基盤2について、灌水が必要となる任意の含水率(例えば、植物が枯れ始める含水率(しおれ点となる含水率)など)を予め把握しておく。
そうすると、運転開始時などの初期含水率と任意の含水率との差を使用時の温度の温度係数(K)で割ることによって、使用時の温度下(定時灌水制御作動時の温度下)における任意の含水率に達するまでの時間(T)が演算できることになる。なお、空気清浄緑化装置においては、通常植栽基盤2に十分な灌水を行った上で運転を開始することが多いと思われることから、使用する植栽基盤2の飽和含水率を初期含水率としてもよい。
Next, for the planting base 2 to be used, an arbitrary water content that requires irrigation (for example, a water content at which the plant begins to die (a water content that becomes a wilting point), etc.) is grasped in advance.
Then, by dividing the difference between the initial moisture content at the start of operation and the arbitrary moisture content by the temperature coefficient (K) of the temperature at the time of use, the temperature under the temperature at the time of use (under the temperature at the time of the regular irrigation control operation) The time (T) until reaching an arbitrary water content can be calculated. In the air purifying greening device, it is considered that the operation is usually started after sufficiently irrigating the planting base 2, so the saturated water content of the planting base 2 to be used is the initial water content. May be.

次に、上記によって演算された時間(T)は、任意の風量(a)の下で導出した線形近似式で算出した温度係数(K)を用いていることから、あくまでも任意の風量(a)の下で成立するものとなる。
ここで、使用時の風量(定時灌水制御作動時の風量)は、線形近似式を導出した際の任意の風量(a)とは異なる風量となっている場合がある。例えば、線形近似式を導出した際の風量(a)が「強」設定時の風量(60m/h)であり、使用時の風量が「弱」設定時の風量(20m/h)であったとすると、風量は1/3になっていることになる。つまり、使用時の風量では植栽基盤2の乾燥が遅くなっているにも関わらず、初期含水率と任意の含水率との差を使用時の温度の温度係数(K)で割っただけの結果を、使用時の温度下(定時灌水制御作動時の温度下)における任意の含水率に達するまでの時間と判断してしまうと、実際の乾燥よりも大幅に早く灌水を行わなければならないという誤った結論を導き出してしまうことになるのである。
従って、初期含水率と任意の含水率との差を使用時の温度の温度係数(K)で割った結果について、風量に関する補正を行わなければならないことになる。
Next, since the time (T) calculated by the above uses the temperature coefficient (K) calculated by the linear approximation formula derived under the arbitrary air volume (a), the arbitrary air volume (a) is used. It will be established under.
Here, the air volume during use (air volume when the regular irrigation control is operated) may be different from the arbitrary air volume (a) when the linear approximation formula is derived. For example, the air volume (a) when the linear approximation formula is derived is the air volume (60 m 3 / h) when "strong" is set, and the air volume when used is the air volume (20 m 3 / h) when "weak" is set. If so, the air volume would be 1/3. That is, even though the air volume at the time of use slows the drying of the planting base 2, the difference between the initial water content and the arbitrary water content is simply divided by the temperature coefficient (K) of the temperature at the time of use. If the result is judged to be the time required to reach an arbitrary moisture content under the temperature during use (under the temperature when the regular irrigation control is activated), irrigation must be performed much faster than the actual drying. You will draw the wrong conclusion.
Therefore, it is necessary to correct the air volume for the result of dividing the difference between the initial water content and the arbitrary water content by the temperature coefficient (K) of the temperature at the time of use.

ここで本発明者らは、段落[0043]に記載したとおり、植栽基盤2の含水率が設置環境の温度と比例関係にあるという知見に加えて、植栽基盤2の含水率が風量との間においても比例関係が成立するという知見を得た。つまり、初期含水率と任意の含水率との差を使用時の温度の温度係数(K)で割った結果に、線形近似式を導出した際の風量(a)を使用時の風量(A)で割ったもの(補正係数)を掛ければ、使用時の風量に応じた任意の含水率に達するまでの時間が演算できるという知見を得た。上記の例で謂えば、初期含水率と任意の含水率との差を使用時の温度の温度係数(K)で割ったものに、線形近似式を導出した際の風量(a、60m/h)を使用時の風量(20m/h)で割った補正係数3を掛ければよいことになる。 Here, as described in paragraph [0043], the present inventors have found that the water content of the planting base 2 is proportional to the temperature of the installation environment, and the water content of the planting base 2 is the air volume. We obtained the finding that a proportional relationship is established between them. That is, the air volume (a) when a linear approximation formula is derived from the result of dividing the difference between the initial moisture content and an arbitrary moisture content by the temperature coefficient (K) of the temperature at the time of use is used as the air volume (A) at the time of use. It was found that the time required to reach an arbitrary water content according to the air volume during use can be calculated by multiplying by the value divided by (correction coefficient). In the above example, the air volume (a, 60m 3 /) when a linear approximation formula is derived by dividing the difference between the initial moisture content and the arbitrary moisture content by the temperature coefficient (K) of the temperature at the time of use. It is sufficient to divide h) by the air volume at the time of use (20 m 3 / h) and multiply by the correction coefficient 3.

なお、上記した式1を導くための一連の作業(特に、段落[0046]~[0052]に記載の線形近似式を導出する作業)については、人間が行って第一記憶手段(CPUなど)に記憶することもできるが、これらの一連の作業をコンピュータや人工知能に行わせることもできる。
具体的には、含水率の変化を把握したい任意の深度(Y)に含水率センサを設置(挿入)しておけば、その後はコンピュータや人工知能が自ら、任意の風量(a)を設定して任意の2点の温度での事前運転を行って含水率の経時変化に関する線形近似式を導出し、第一記憶手段に記憶することになる。従って、人間が行う作業は、含水率の変化を把握したい任意の深度(Y)に含水率センサを設置(挿入)する作業のみとなる。
また、任意の風量(a)についても、コンピュータや人工知能が設置環境の温度に応じて最適な風量を設定すれば、人間が行うよりも短時間の事前運転で精度の高い線形近似式を導出できることになる。
It should be noted that a series of operations for deriving the above equation 1 (particularly, operations for deriving the linear approximation equations described in paragraphs [0046] to [0052]) are performed by a human being and the first storage means (CPU or the like). It can be stored in, but it is also possible to let a computer or artificial intelligence perform these series of tasks.
Specifically, if the water content sensor is installed (inserted) at an arbitrary depth (Y) where you want to grasp the change in the water content, then the computer or artificial intelligence will set the arbitrary air volume (a) by itself. Therefore, a linear approximation formula for the change over time of the water content is derived by performing pre-operation at arbitrary two points of temperature, and is stored in the first storage means. Therefore, the work performed by humans is only the work of installing (inserting) the water content sensor at an arbitrary depth (Y) at which the change in the water content is desired to be grasped.
In addition, for any air volume (a), if a computer or artificial intelligence sets the optimum air volume according to the temperature of the installation environment, a highly accurate linear approximation formula can be derived in a shorter pre-operation than humans can do. You will be able to do it.

(第二記憶手段)
本発明に用いられる第二記憶手段は、任意の深度(Y)の植栽基盤2にまで浸透する灌水量に関する関係式(植栽基盤2における灌水量と浸透深度との関係式)を記憶しておくものである。
ここで本発明者らは、今般鋭意検討を行った結果、植栽基盤2の材質や植栽ユニット3における植栽基盤2の充填度合などが装置のバリエーションに応じて変化したとしても、灌水量と浸透深度との間には相関関係(関係式)が成立するという知見を得た。そして、使用する植栽基盤2について、灌水量と浸透する距離(深度)を事前に測定しておけば、任意の深度(Y)の植栽基盤2にまで浸透する灌水の量を演算することが可能であるという知見を得た。
(Second memory means)
The second storage means used in the present invention stores a relational expression regarding the amount of irrigation permeating to the planting base 2 at an arbitrary depth (Y) (relationship between the amount of irrigation and the permeation depth in the planting base 2). It is something to keep.
Here, as a result of diligent studies, the present inventors have conducted even if the material of the planting base 2 and the filling degree of the planting base 2 in the planting unit 3 change according to the variation of the apparatus, the amount of irrigation. We obtained the finding that a correlation (relational expression) is established between the depth of penetration and the depth of penetration. Then, if the amount of irrigation and the permeation distance (depth) are measured in advance for the planting base 2 to be used, the amount of irrigation that permeates to the planting base 2 at an arbitrary depth (Y) can be calculated. I got the finding that it is possible.

具体的に、図1の空気清浄緑化装置1の形態を例にして説明する。
まず、使用する植栽基盤2について植栽ユニット3の上方から灌水を行う。
次に、灌水が浸透した距離(深度)を測定する。なおこの際、予め決めておいた量の灌水を行って一定の時間が経過した際の距離(深度)を測定してもよいし、灌水装置5に水量計を設けておけば、灌水を供給しながら灌水が浸透した距離(深度)を測定することもできる。
次に、灌水量と浸透する距離(深度)との関係をグラフにプロットする(図7)。
Specifically, the form of the air purifying greening device 1 of FIG. 1 will be described as an example.
First, the planting base 2 to be used is irrigated from above the planting unit 3.
Next, the distance (depth) in which the irrigation has penetrated is measured. At this time, a predetermined amount of irrigation may be performed and the distance (depth) after a certain period of time may be measured, or if the irrigation device 5 is provided with a water meter, irrigation may be supplied. While doing so, it is also possible to measure the distance (depth) in which the irrigation has penetrated.
Next, the relationship between the amount of irrigation and the permeation distance (depth) is plotted on a graph (Fig. 7).

次に、図7においてプロットした各点について、最小二乗法による近似を行い、近似式を導出する。なお、図7の場合においては多項式近似式が最も相関係数が高くなったが、これに限定されるものではなく、線形近似や指数近似など相関係数の高い近似式を導出すればよいことになる。 Next, each point plotted in FIG. 7 is approximated by the least squares method, and an approximate expression is derived. In the case of FIG. 7, the polynomial approximation formula has the highest correlation coefficient, but it is not limited to this, and it is sufficient to derive an approximation formula having a high correlation coefficient such as linear approximation or exponential approximation. become.

そして、導出した近似式に基づいて、任意の深度(Y)の植栽基盤2にまで浸透する灌水の量を演算することになる。例えば、図1に示す植栽ユニット3においては、図7に示すとおり、導出した多項式近似式がY=0.000379869409566001X+0.0653123461357339Xであることから、上ポット10の位置においてはYが52mmとなり、係る距離(深度)まで浸透するのに必要な灌水の量(X)は294mlということになる。 Then, based on the derived approximate expression, the amount of irrigation that permeates the planting base 2 at an arbitrary depth (Y) is calculated. For example, in the planting unit 3 shown in FIG. 1, as shown in FIG. 7, since the derived polynomial approximation formula is Y = 0.000379869409566001X 2 + 0.0653124613573339X, Y is 52 mm at the position of the upper pot 10. The amount (X) of irrigation required to penetrate to such a distance (depth) is 294 ml.

なお、上記した近似式を導くための一連の作業についても、人間が行って第二記憶手段(CPUなど)に記憶することができるが、式1を導くときと同様にこれらの一連の作業をコンピュータや人工知能に行わせることもできる。
具体的には、灌水装置5に水量計を設置しておけば、その後はコンピュータや人工知能が最初に(式1を導くよりも作業よりも前に)、自ら、灌水装置5を作動させて灌水量と浸透する距離(深度)との近似式を導出し、第二記憶手段に記憶することになる。従って、人間が行う作業自体を省略できることになる。
It should be noted that the series of operations for deriving the above-mentioned approximate expression can also be performed by a human and stored in a second storage means (CPU or the like), but these series of operations can be performed in the same manner as when deriving the equation 1. It can also be done by a computer or artificial intelligence.
Specifically, if a water meter is installed in the irrigation device 5, then the computer or artificial intelligence first activates the irrigation device 5 (before the work to derive the equation 1). An approximate expression between the amount of irrigation and the permeation distance (depth) is derived and stored in the second storage means. Therefore, the work itself performed by humans can be omitted.

(制御手段、定時灌水制御、臨時灌水制御)
本発明に用いられる制御手段6は、定時灌水制御と臨時灌水制御を備えるものである。
定時灌水制御は、予め設定した時刻に灌水装置5を作動させて所定量の灌水を行う制御である。なお、設定する時刻および灌水の量については、設置環境に応じて適宜設定されるものであるが、設置環境の温度が一日の内で最も高い時間帯に行えば効率の良い灌水を行うことができるので好適である。例えば、設置環境の温度が一日の内で最も高い時間帯に行うのであれば13時~15時とすることなどが考えられる。
また、定時灌水制御においては、式1を用いて作動時に任意の含水率に達するまでの時間(T)を演算する。
(Control means, regular irrigation control, temporary irrigation control)
The control means 6 used in the present invention includes regular irrigation control and temporary irrigation control.
The scheduled irrigation control is a control in which the irrigation device 5 is operated at a preset time to perform a predetermined amount of irrigation. The time and amount of irrigation to be set are appropriately set according to the installation environment, but efficient irrigation should be performed if the temperature of the installation environment is the highest in the day. It is suitable because it can be used. For example, if the temperature of the installation environment is the highest in the day, it may be set to 13:00 to 15:00.
Further, in the scheduled irrigation control, the time (T) until an arbitrary water content is reached at the time of operation is calculated by using Equation 1.

臨時灌水制御は、定時灌水制御と定時灌水制御の間に行う制御であり、定時灌水制御だけでは灌水が不十分である場合(定時灌水制御だけでは植栽基盤2の乾燥が進んでしまう場合)に行う制御である。具体的には、定時灌水制御の作動時に演算した時間(T)が経過した時刻に行われる制御であり、任意の深度(Y)の植栽基盤2にまで浸透する量の灌水を行う制御である。 Temporary irrigation control is a control performed between regular irrigation control and regular irrigation control, and when irrigation is insufficient only by regular irrigation control (when the planting base 2 becomes dry only by regular irrigation control). It is a control to be performed. Specifically, it is a control performed at the time when the time (T) calculated at the time of the operation of the scheduled irrigation control has elapsed, and the control is performed to irrigate the planting base 2 at an arbitrary depth (Y) in an amount of permeation. be.

なお、臨時灌水制御は、定時灌水制御と定時灌水制御の間に原則として1回実施すればよいが、必要に応じて複数回行うものであってもよい。
また、このような制御をするために、定時灌水制御の作動時に臨時灌水制御が必要か否かの判断を行うようにしてもよい。そして、定時灌水制御の作動時において臨時灌水制御が必要であると判断した場合には、臨時灌水制御の回数(N、Nは整数)についても算出するものとすればよいことになる。
In principle, the temporary irrigation control may be performed once between the regular irrigation control and the regular irrigation control, but may be performed a plurality of times as necessary.
Further, in order to perform such control, it may be determined whether or not temporary irrigation control is necessary when the scheduled irrigation control is activated. Then, when it is determined that the temporary irrigation control is necessary when the regular irrigation control is activated, the number of temporary irrigation controls (N and N are integers) may be calculated.

さらに、臨時灌水制御の作動時の設置環境の温度が定時灌水制御の作動時から大きく変動している場合には、定時灌水制御の作動時に演算した時間(T)に灌水を行っても灌水が不足する可能性がある。
従って、定時灌水制御作動時における設置環境の温度との差が所定の値以上である場合には、一旦、臨時灌水制御を行った上で、さらに制御手段6が、任意の深度(Y)の植栽基盤2における灌水制御の作動時刻から任意の含水率に達するまでの時間(T1)を演算し、追加の臨時灌水制御を行うようにすることもできる。例えば、所定の温度差の値を10℃とすれば、植栽基盤の乾燥が予想以上に進む状況である場合には植栽基盤2の乾燥を有効に防止することができるし、反対に植栽基盤の乾燥が予想以上に遅い状況である場合には無駄な灌水を行うことを防止することができるので好適である。
Furthermore, if the temperature of the installation environment when the temporary irrigation control is activated fluctuates significantly from the time when the scheduled irrigation control is activated, irrigation will occur even if irrigation is performed at the time (T) calculated when the scheduled irrigation control is activated. There is a possibility of shortage.
Therefore, when the difference from the temperature of the installation environment at the time of the scheduled irrigation control operation is equal to or more than a predetermined value, the temporary irrigation control is once performed, and then the control means 6 is further controlled at an arbitrary depth (Y). It is also possible to calculate the time (T1) from the operation time of the irrigation control in the planting base 2 to reach an arbitrary water content, and perform additional temporary irrigation control. For example, if the value of the predetermined temperature difference is 10 ° C., it is possible to effectively prevent the planting base 2 from drying when the planting base is dried more than expected, and conversely, the planting base is planted. When the drying of the plant base is slower than expected, it is preferable because it can prevent unnecessary irrigation.

一方、臨時灌水制御は、定時灌水制御だけでは灌水が不十分である場合に行う制御であることから、定時灌水制御のみで十分である場合には行わなくてもよいことになる。具体的には、定時灌水制御の作動時に演算した時間(T)が経過した時刻と次回の定時灌水制御が作動する時刻との間が短い場合には、時間(T)が経過した時刻に臨時灌水制御を行ってしまうと、過剰な灌水となってしまい根腐れを起こしてしまう恐れがある。従って、時間(T)が経過した時刻が次回の定時灌水制御の作動時刻まで所定の時間以下となる場合には、臨時灌水制御を中止する制御を行うこともできる。例えば、所定の時間を2時間とすれば、根腐れの発生を有効に防止することができるので好適である。 On the other hand, since the temporary irrigation control is a control performed when the irrigation is insufficient only by the regular irrigation control, it is not necessary to perform the temporary irrigation control when only the regular irrigation control is sufficient. Specifically, if the time between the time when the time (T) calculated when the scheduled irrigation control is activated and the time when the next scheduled irrigation control is activated is short, it is temporary at the time when the time (T) has elapsed. If irrigation control is performed, excessive irrigation may occur and root rot may occur. Therefore, if the time (T) has elapsed is less than or equal to a predetermined time until the next operation time of the scheduled irrigation control, the temporary irrigation control can be stopped. For example, if the predetermined time is set to 2 hours, it is preferable because the occurrence of root rot can be effectively prevented.

次に、上記のように構成された空気清浄緑化装置1の動作および作用を、図8~10に基づいて説明する。 Next, the operation and operation of the air purifying greening device 1 configured as described above will be described with reference to FIGS. 8 to 10.

(基本制御)
まず、基本制御のフローについて図8に基づいて説明する。
まず、図8に示すとおり、空気清浄緑化装置1のスイッチをONにして通風装置4の運転を開始する。そして、設置環境の温度を入力し、強運転・中運転・弱運転などの中から通風装置4の風量を設定する。なお、必要に応じて、図8に示すように、「任意の深度(Y)」、「定時灌水制御を行う時刻」、「定時灌水制御作動時の灌水量(所定量)」を設定するようにしても良い。また、設置環境の温度については温度センサを設けておき、自動的に検知するようにしてもよい。
(Basic control)
First, the flow of basic control will be described with reference to FIG.
First, as shown in FIG. 8, the switch of the air cleaning and greening device 1 is turned on to start the operation of the ventilation device 4. Then, the temperature of the installation environment is input, and the air volume of the ventilation device 4 is set from the strong operation, the medium operation, the weak operation, and the like. In addition, as shown in FIG. 8, "arbitrary depth (Y)", "time for performing scheduled irrigation control", and "irrigation amount (predetermined amount) when scheduled irrigation control is activated" should be set as necessary. You can do it. Further, the temperature of the installation environment may be provided with a temperature sensor so as to automatically detect the temperature.

次に、ステップ1(S1)において、制御手段6に予め設定しておいた時刻が来たか否かを判断する。そして、予め設定した時刻が来た場合には、定時灌水制御を行うことになる。具体的には、灌水装置5を作動させるとともに、時間(T)の演算を行うことになる。
一方、予め設定した時刻が来ていない場合には、再度、Aのステップ1(S1)に戻り、予め設定しておいた時刻が来たか否かを判断することになる。
Next, in step 1 (S1), it is determined whether or not the time preset in the control means 6 has arrived. Then, when the preset time comes, the scheduled irrigation control is performed. Specifically, the irrigation device 5 is operated and the time (T) is calculated.
On the other hand, if the preset time has not arrived, the process returns to step 1 (S1) of A again to determine whether or not the preset time has arrived.

次に、灌水装置5を作動させた場合には、ステップ2(S2)において、所定量の灌水を行ったか否かを判断する。そして所定量の灌水を行った場合には、灌水装置5を停止することによって定時灌水制御を終了し、再度、Aのステップ1(S1)に戻ることになる。 Next, when the irrigation device 5 is operated, it is determined in step 2 (S2) whether or not a predetermined amount of irrigation has been performed. Then, when a predetermined amount of irrigation is performed, the scheduled irrigation control is terminated by stopping the irrigation device 5, and the process returns to step 1 (S1) of A again.

次に、ステップ3(S3)において、時間(T)が経過した時刻が来たか否かを判断する。そして、係る時刻が来た場合には、任意の深度(Y)の植栽基盤2にまで浸透する灌水の量を演算し、臨時灌水制御を行うことになる。具体的には、灌水装置5を作動させ、演算した量の灌水を行うことになる。
一方、予め設定した時刻が来ていない場合には、再度、ステップ3(S3)に戻り、時間(T)が経過した時刻が来たか否かを判断することになる。
Next, in step 3 (S3), it is determined whether or not the time when the time (T) has elapsed has arrived. Then, when the relevant time comes, the amount of irrigation that permeates the planting base 2 at an arbitrary depth (Y) is calculated, and temporary irrigation control is performed. Specifically, the irrigation device 5 is operated to perform the calculated amount of irrigation.
On the other hand, if the preset time has not arrived, the process returns to step 3 (S3) again, and it is determined whether or not the time when the time (T) has elapsed has arrived.

次に、灌水装置5を作動させた場合には、ステップ4(S4)において、演算した量の灌水を行ったか否かを判断する。そして演算した量の灌水を行った場合には、灌水装置5を停止することによって臨時灌水制御を終了し、再度、Aのステップ1(S1)に戻ることになる。 Next, when the irrigation device 5 is operated, it is determined in step 4 (S4) whether or not the calculated amount of irrigation has been performed. Then, when the calculated amount of irrigation is performed, the temporary irrigation control is terminated by stopping the irrigation device 5, and the process returns to step 1 (S1) of A again.

従って、本発明に係る空気清浄緑化装置および空気清浄緑化装置の制御方法によれば、設置環境の温度から植栽基盤の乾燥状態を推定することができ、従前の灌水制御のようなセンサを用いる必要がなく、設備を簡素化でき、メンテナンス作業も省力化することができる。
また、設置環境の温度を考慮して植栽基盤の乾燥状態を推定することができるので、従前の灌水技術に比べて、植栽の枯死を効果的に防止することができることになる。
さらに、植栽基盤の様々な部位における乾燥状態(含水率)を推定することも可能となることから、植栽基盤の特定の部位(任意の深度の植栽基盤)に対してピンポイントで灌水制御を行うことができることになる。また、植栽基盤の特定の部位(任意の深度の植栽基盤)に対して過不足なく灌水を行うことができると、排水する灌水量を削減することができることから効率的な灌水制御を行うことができることになる。加えて、水道費も削減することができることになる。
Therefore, according to the control method of the air cleaning and greening device and the air cleaning and greening device according to the present invention, the dry state of the planting base can be estimated from the temperature of the installation environment, and a sensor such as the conventional irrigation control is used. There is no need, equipment can be simplified, and maintenance work can be saved.
In addition, since the dry state of the planting base can be estimated in consideration of the temperature of the installation environment, it is possible to effectively prevent the planting from dying as compared with the conventional irrigation technique.
Furthermore, since it is possible to estimate the dry state (moisture content) of various parts of the planting base, pinpoint irrigation is applied to a specific part of the planting base (planting base of arbitrary depth). You will be able to control it. In addition, if irrigation can be performed on a specific part of the planting base (planting base of arbitrary depth) without excess or deficiency, the amount of drained irrigation can be reduced, so efficient irrigation control is performed. You will be able to do it. In addition, water costs can be reduced.

なお、図8においては、定時灌水制御の作動と並行して臨時灌水制御の作動を行うフローとなっているが、これに限定されるものではなく、定時灌水制御が終了した後に、臨時灌水制御の作動を開始する(図8においては定時灌水制御の「灌水装置の停止」の処理が終了した後に、「時間(T)の演算」の処理を行う)ようにしても良い。 In FIG. 8, the flow is such that the temporary irrigation control is operated in parallel with the operation of the regular irrigation control, but the flow is not limited to this, and the temporary irrigation control is performed after the regular irrigation control is completed. (In FIG. 8, the process of "calculation of time (T)" is performed after the process of "stopping the irrigation device" of the scheduled irrigation control is completed).

(追加制御)
次に、上記の基本制御に追加制御が加わったフローを図9、10に基づいて説明する。なお、定時灌水制御のフローは基本制御と同じである。
(Additional control)
Next, a flow in which additional control is added to the above basic control will be described with reference to FIGS. 9 and 10. The flow of regular irrigation control is the same as that of basic control.

まず、ステップ5(S5)において、時間(T)が経過した時刻が次回の定時灌水制御の作動時刻まで所定の時間以下となっているか否かを判断する。そして、所定の時間以下である場合には灌水装置5を作動させずにAのステップ1(S1)に戻ることになる。 First, in step 5 (S5), it is determined whether or not the time when the time (T) has elapsed is equal to or less than a predetermined time until the next operation time of the scheduled irrigation control. Then, if it is less than a predetermined time, the process returns to step 1 (S1) of A without operating the irrigation device 5.

一方、所定の時間以下でない場合には、臨時灌水制御の回数(N、Nは整数)の算出を行う。なお、回数(N)の算出については、例えば次回の定時灌水制御までの時間(定時灌水制御と定時灌水制御のインターバルの時間)を時間(T)で除することで算出することができる。
次に、ステップ6(S6)において、回数(N)が2以上であるか否かを判断する。そして、回数(N)が2以上である場合には後記するBのフローをN回行い、回数(N)が2以上でない場合(Nが1である場合)には後記するBのフローを1回行うことになる。
On the other hand, if it is not less than a predetermined time, the number of temporary irrigation controls (N and N are integers) is calculated. The number of times (N) can be calculated, for example, by dividing the time until the next scheduled irrigation control (time between the scheduled irrigation control and the scheduled irrigation control) by the time (T).
Next, in step 6 (S6), it is determined whether or not the number of times (N) is 2 or more. Then, when the number of times (N) is 2 or more, the flow of B described later is performed N times, and when the number of times (N) is not 2 or more (when N is 1), the flow of B described later is performed 1. It will be done once.

次に、ステップ6(S6)において、回数(N)が2以上であるか否かを判断した後、ステップ3(S3)において、時間(T)が経過した時刻が来たか否かを判断する。 Next, in step 6 (S6), it is determined whether or not the number of times (N) is 2 or more, and then in step 3 (S3), it is determined whether or not the time when the time (T) has elapsed has arrived. ..

次に、図10に示すとおり、係る時刻が来た場合には、ステップ7(S7)において、臨時灌水制御作動時における設置環境の温度と、定時灌水制御作動時における設置環境の温度との差が所定の値以上となっているか否かを判断する。そして、温度差が所定の値以上となっている場合には、段落[0071]、[0072]の動作を行うとともに、次回の臨時灌水制御までの時間(T1)の演算を行うことになる。 Next, as shown in FIG. 10, when the relevant time comes, in step 7 (S7), the difference between the temperature of the installation environment when the temporary irrigation control is activated and the temperature of the installation environment when the temporary irrigation control is activated. Judges whether or not is greater than or equal to a predetermined value. When the temperature difference is equal to or greater than a predetermined value, the operations of paragraphs [0071] and [0072] are performed, and the time (T1) until the next temporary irrigation control is calculated.

次に、ステップ9(S9)において、時間(T1)が経過した時刻が来たか否かを判断する。そして、係る時刻が来た場合には、任意の深度(Y)の植栽基盤2にまで浸透する灌水の量を演算し、臨時灌水制御を行うことになる。具体的には、灌水装置5を作動させ、演算した量の灌水を行うことになる。
一方、予め設定した時刻が来ていない場合には、再度、ステップ9(S9)に戻り、時間(T1)が経過した時刻が来たか否かを判断することになる。
Next, in step 9 (S9), it is determined whether or not the time when the time (T1) has elapsed has arrived. Then, when the relevant time comes, the amount of irrigation that permeates the planting base 2 at an arbitrary depth (Y) is calculated, and temporary irrigation control is performed. Specifically, the irrigation device 5 is operated to perform the calculated amount of irrigation.
On the other hand, if the preset time has not arrived, the process returns to step 9 (S9) again, and it is determined whether or not the time when the time (T1) has elapsed has arrived.

次に、灌水装置5を作動させた場合には、ステップ4(S4)において、演算した量の灌水を行ったか否かを判断する。そして演算した量の灌水を行った場合には、灌水装置5を停止することによって臨時灌水制御を終了し、再度、Aのステップ1(S1)に戻ることになる。 Next, when the irrigation device 5 is operated, it is determined in step 4 (S4) whether or not the calculated amount of irrigation has been performed. Then, when the calculated amount of irrigation is performed, the temporary irrigation control is terminated by stopping the irrigation device 5, and the process returns to step 1 (S1) of A again.

一方、ステップ7(S7)において、温度差が所定の値以上となっていない場合には、段落[0071]、[0072]の動作のみを行うことになる。 On the other hand, in step 7 (S7), when the temperature difference is not equal to or more than a predetermined value, only the operations of paragraphs [0071] and [0072] are performed.

従って、図9、10に示す追加の制御が加わった制御によれば、植栽の枯死や根腐れをより効果的に防止することができ、無駄な排水を抑制し、効率的な灌水制御を行うことができることになる。また、植栽基盤の乾燥状態(含水率)をより正確に推定することができることになる。 Therefore, according to the control with the additional control shown in FIGS. 9 and 10, it is possible to more effectively prevent the death and root rot of the planting, suppress unnecessary drainage, and efficiently control the irrigation. You will be able to do it. In addition, the dry state (moisture content) of the planting base can be estimated more accurately.

なお、図9、10においても、段落[0074]と同様に、定時灌水制御の動作が終了した後に、臨時灌水制御の作動を開始するようにしても良い。 In addition, also in FIGS. 9 and 10, the operation of the temporary irrigation control may be started after the operation of the regular irrigation control is completed, as in the paragraph [0074].

さらに、時間(T1)が経過した時刻が来た際に、臨時灌水制御作動時における設置環境の温度と、前回の臨時灌水制御作動時における設置環境の温度(時間(T)が経過した時刻の設置環境の温度)との差が所定の値以上となっているか否かを判断し、温度差が所定の値以上となっている場合には、段落[0071]、[0072]の動作を行うとともに、時間(T2)の演算を行うようにしても良い。また、係る制御を繰り返して、時間(T2)、時間(T3)、時間(T4)・・・時間(Tn)を演算するようにしても良い。 Further, when the time (T1) has elapsed, the temperature of the installation environment at the time of the temporary irrigation control operation and the temperature of the installation environment at the time of the previous temporary irrigation control operation (the time when the time (T) has elapsed) It is determined whether or not the difference from the temperature of the installation environment is equal to or greater than the predetermined value, and if the temperature difference is equal to or greater than the predetermined value, the operations of paragraphs [0071] and [0072] are performed. At the same time, the time (T2) may be calculated. Further, the time (T2), the time (T3), the time (T4) ... The time (Tn) may be calculated by repeating the control.

本発明の空気清浄緑化装置および空気清浄緑化装置の制御方法は、主に屋内の空気清浄および緑化に用いることができる。 The air purifying greening device and the control method of the air purifying greening device of the present invention can be mainly used for indoor air cleaning and greening.

1 空気清浄緑化装置
2 植栽基盤
3 植栽ユニット
4 通風装置
5 灌水装置
6 制御手段
7 タンク
8 ホース
9 ポンプ
10 上ポット
11 中ポット
12 下ポット
1 Air cleaning and greening device 2 Planting base 3 Planting unit 4 Ventilation device 5 Irrigation device 6 Control means 7 Tank 8 Hose 9 Pump 10 Upper pot 11 Medium pot 12 Lower pot

Claims (13)

植栽を前面に上下方向に配置する植栽基盤を収納した植栽ユニットと、
前記植栽ユニットに通風を行う通風装置と、
前記植栽ユニットに灌水を行う灌水装置と、
前記植栽ユニット上端から垂直方向の複数の深度の植栽基盤における含水率と時間との関係式を記憶しておく第一記憶手段と、
前記植栽基盤における灌水量と浸透深度との関係式を記憶しておく第二記憶手段と、
前記灌水装置を制御する制御手段を備える空気清浄緑化装置であって、
前記制御手段は、
定時灌水制御と臨時灌水制御を備え、
前記定時灌水制御は、予め設定した時刻に所定量の灌水を行うとともに、
任意の深度(Y)の植栽基盤における前記時刻から任意の含水率に達するまでの時間(T)を、前記第一記憶手段の関係式を用いて演算するものであり、
前記臨時灌水制御は、
前記任意の深度(Y)の植栽基盤にまで浸透する灌水の量を、前記第二記憶手段の関係式を用いて演算して、
前記時刻から前記時間(T)が経過した時刻に前記量の灌水を行うものであることを特徴とする空気清浄緑化装置。
A planting unit that houses a planting base that arranges plants vertically in the front, and
A ventilation device that ventilates the planting unit,
An irrigation device that irrigates the planting unit,
A first storage means for storing the relational expression between the water content and time in the planting base at a plurality of depths in the vertical direction from the upper end of the planting unit.
A second storage means for storing the relational expression between the amount of irrigation and the depth of permeation in the planting base,
An air purifying greening device provided with a control means for controlling the irrigation device.
The control means is
Equipped with regular irrigation control and temporary irrigation control,
In the scheduled irrigation control, a predetermined amount of irrigation is performed at a preset time, and at the same time, a predetermined amount of irrigation is performed.
The time (T) from the time to reach the arbitrary water content in the planting base at an arbitrary depth (Y) is calculated by using the relational expression of the first storage means.
The temporary irrigation control is
The amount of irrigation that permeates the planting base at an arbitrary depth (Y) is calculated by using the relational expression of the second storage means.
An air purifying greening apparatus characterized in that the amount of irrigation is performed at a time when the time (T) has elapsed from the time.
前記第一記憶手段の関係式が以下の式1であり、
前記第二記憶手段の関係式が多項式近似式であることを特徴とする請求項1に記載の空気清浄緑化装置。
式1:任意の深度(Y)の植栽基盤における、定時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T)
Figure 0007059130000006
(K1:以下の手順によって算出した温度係数(K)の内、定時灌水制御作動時の設置環境の温度における温度係数。
(1)前記植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。)
The relational expression of the first storage means is the following expression 1.
The air purifying greening apparatus according to claim 1, wherein the relational expression of the second storage means is a polynomial approximation expression.
Equation 1: Time (T) required to reach an arbitrary water content from the operation time of the scheduled irrigation control in a planting base of an arbitrary depth (Y).
Figure 0007059130000006
(K1: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the scheduled irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to a planting substrate at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. , Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )
前記定時灌水制御が、
さらに、次回の定時灌水制御が作動するまでの間に前記時間(T)が経過する回数(N、Nは整数)を算出するものであり、
前記臨時灌水制御が、
前記回数(N)が2以上である場合には、前記時間(T)が経過した時刻ごとに前記灌水装置の運転をN回行うものであることを特徴とする請求項1または請求項2に記載の空気清浄緑化装置。
The scheduled irrigation control
Further, the number of times the time (T) elapses (N and N are integers) until the next scheduled irrigation control is activated is calculated.
The temporary irrigation control
According to claim 1 or 2, when the number of times (N) is 2 or more, the irrigation apparatus is operated N times at each time when the time (T) has elapsed. The described air purifying greening device.
前記時間(T)が経過した時刻が次回の定時灌水制御の作動時刻まで所定の時間以下となる場合には、
前記制御手段が、
前記臨時灌水制御の作動を中止するものであることを特徴とする請求項1または請求項2に記載の空気清浄緑化装置。
When the time when the time (T) has elapsed is less than or equal to the predetermined time until the next operation time of the scheduled irrigation control,
The control means
The air purifying greening apparatus according to claim 1 or 2, wherein the operation of the temporary irrigation control is stopped.
前記臨時灌水制御作動時における設置環境の温度と、前記定時灌水制御作動時における設置環境の温度との差が所定の値以上である場合には、
前記制御手段が、
任意の深度(Y)の植栽基盤における前記臨時灌水制御の作動時刻から任意の含水率に達するまでの時間(T1)を、式2を用いて演算して、
前記時間(T1)が経過した時刻に再度臨時灌水制御の作動を行うものであることを特徴とする請求項1から請求項4のいずれか一項に記載の空気清浄緑化装置。
式2:任意の深度(Y)の植栽基盤における、臨時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T1)
Figure 0007059130000007
(K2:以下の手順によって算出した温度係数(K)の内、臨時灌水制御作動時の設置環境の温度における温度係数。
(1)前記植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。)
When the difference between the temperature of the installation environment when the temporary irrigation control is activated and the temperature of the installation environment when the regular irrigation control is activated is equal to or more than a predetermined value,
The control means
Using Equation 2, the time (T1) from the operation time of the temporary irrigation control to the arrival of the arbitrary water content in the planting base at an arbitrary depth (Y) is calculated.
The air purifying greening apparatus according to any one of claims 1 to 4, wherein the temporary irrigation control is operated again at the time when the time (T1) has elapsed.
Equation 2: Time required to reach an arbitrary water content from the operation time of the temporary irrigation control in the planting base of an arbitrary depth (Y) (T1)
Figure 0007059130000007
(K2: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the temporary irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to a planting substrate at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. , Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )
前記定時灌水制御が、
設置環境の温度が一日の内で最も高い時間帯に作動するものであることを特徴とする請求項1から請求項5のいずれか一項に記載の空気清浄緑化装置。
The scheduled irrigation control
The air purifying greening apparatus according to any one of claims 1 to 5, wherein the temperature of the installation environment operates at the highest time of the day.
前記灌水装置が、
前記植栽ユニットの上方から灌水を行うものであることを特徴とする請求項1から請求項6のいずれか一項に記載の空気清浄緑化装置。
The irrigation device
The air purifying greening apparatus according to any one of claims 1 to 6, wherein irrigation is performed from above the planting unit.
植栽を前面に上下方向に配置する植栽基盤を収納した植栽ユニットと、
前記植栽ユニットに通風を行う通風装置と、
前記植栽ユニットに灌水を行う灌水装置と、
前記植栽ユニット上端から垂直方向の複数の深度の植栽基盤における含水率と時間との関係式を記憶しておく第一記憶手段と、
前記植栽基盤における灌水量と浸透深度との関係式を記憶しておく第二記憶手段と、
前記灌水装置を制御する制御手段を備える空気清浄緑化装置の制御方法であって、
前記制御手段は、
定時灌水制御と臨時灌水制御を備え、
前記定時灌水制御は、予め設定した時刻に所定量の灌水を行うとともに、
任意の深度(Y)の植栽基盤における前記時刻から任意の含水率に達するまでの時間(T)を、前記第一記憶手段の関係式を用いて演算するものであり、
前記臨時灌水制御は、
前記任意の深度(Y)の植栽基盤にまで浸透する灌水の量を、前記第二記憶手段の関係式を用いて演算して、
前記時刻から前記時間(T)が経過した時刻に前記量の灌水を行うものであることを特徴とする空気清浄緑化装置の制御方法。
A planting unit that houses a planting base that arranges plants vertically in the front, and
A ventilation device that ventilates the planting unit,
An irrigation device that irrigates the planting unit,
A first storage means for storing the relational expression between the water content and time in the planting base at a plurality of depths in the vertical direction from the upper end of the planting unit.
A second storage means for storing the relational expression between the amount of irrigation and the depth of permeation in the planting base,
A control method for an air purifying greening device including a control means for controlling the irrigation device.
The control means is
Equipped with regular irrigation control and temporary irrigation control,
In the scheduled irrigation control, a predetermined amount of irrigation is performed at a preset time, and at the same time, a predetermined amount of irrigation is performed.
The time (T) from the time to reach the arbitrary water content in the planting base at an arbitrary depth (Y) is calculated by using the relational expression of the first storage means.
The temporary irrigation control is
The amount of irrigation that permeates the planting base at an arbitrary depth (Y) is calculated by using the relational expression of the second storage means.
A method for controlling an air purifying greening device, characterized in that the amount of irrigation is performed at a time when the time (T) has elapsed from the time.
前記第一記憶手段の関係式が以下の式1であり、
前記第二記憶手段の関係式が多項式近似式であることを特徴とする請求項8に記載の空気清浄緑化装置の制御方法。
式1:任意の深度(Y)の植栽基盤における、定時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T)
Figure 0007059130000008
(K1:以下の手順によって算出した温度係数(K)の内、定時灌水制御作動時の設置環境の温度における温度係数。
(1)前記植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。)
The relational expression of the first storage means is the following expression 1.
The control method for an air purifying greening device according to claim 8, wherein the relational expression of the second storage means is a polynomial approximation expression.
Equation 1: Time (T) required to reach an arbitrary water content from the operation time of the scheduled irrigation control in a planting base of an arbitrary depth (Y).
Figure 0007059130000008
(K1: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the scheduled irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to a planting substrate at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. , Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )
前記定時灌水制御が、
さらに、次回の定時灌水制御が作動するまでの間に前記時間(T)が経過する回数(N、Nは整数)を算出するものであり、
前記臨時灌水制御が、
前記回数(N)が2以上である場合には、前記時間(T)が経過した時刻ごとに前記灌水装置の運転をN回行うものであることを特徴とする請求項8または請求項9に記載の空気清浄緑化装置の制御方法。
The scheduled irrigation control
Further, the number of times the time (T) elapses (N and N are integers) until the next scheduled irrigation control is activated is calculated.
The temporary irrigation control
According to claim 8 or 9, when the number of times (N) is 2 or more, the irrigation apparatus is operated N times at each time when the time (T) has elapsed. The method for controlling an air purifying greening device according to the description.
前記時間(T)が経過した時刻が次回の定時灌水制御の作動時刻まで所定の時間以下となる場合には、
前記制御手段が、
前記臨時灌水制御の作動を中止するものであることを特徴とする請求項8または請求項9に記載の空気清浄緑化装置の制御方法。
When the time when the time (T) has elapsed is less than or equal to the predetermined time until the next operation time of the scheduled irrigation control,
The control means
The control method for an air purifying greening device according to claim 8 or 9, wherein the operation of the temporary irrigation control is stopped.
前記臨時灌水制御作動時における設置環境の温度と、前記定時灌水制御作動時における設置環境の温度との差が所定の値以上である場合には、
前記制御手段が、
任意の深度(Y)の植栽基盤における前記臨時灌水制御の作動時刻から任意の含水率に達するまでの時間(T1)を、式2を用いて演算して、
前記時間(T1)が経過した時刻に再度臨時灌水制御の作動を行うものであることを特徴とする請求項8から請求項11のいずれか一項に記載の空気清浄緑化装置の制御方法。
式2:任意の深度(Y)の植栽基盤における、臨時灌水制御の作動時刻から任意の含水率に達するまでに要する時間(T1)
Figure 0007059130000009
(K2:以下の手順によって算出した温度係数(K)の内、臨時灌水制御作動時の設置環境の温度における温度係数。
(1)前記植栽ユニット上端から垂直方向の任意の深度(Y)の植栽基盤に関する、任意の風量(a)における任意の2点の温度(t1、t2)での含水率の経時変化について、線形近似を行い、算出した各線形近似式の傾きの値の絶対値(k1、k2)を算出。
(2)温度(t1、t2)と傾きの値(k1、k2)との関係について、線形近似を行い、導出した線形近似式から算出される各温度における値を温度係数(K)とする。)
When the difference between the temperature of the installation environment when the temporary irrigation control is activated and the temperature of the installation environment when the regular irrigation control is activated is equal to or more than a predetermined value,
The control means
Using Equation 2, the time (T1) from the operation time of the temporary irrigation control to the arrival of the arbitrary water content in the planting base at an arbitrary depth (Y) is calculated.
The control method for an air purifying greening device according to any one of claims 8 to 11, wherein the temporary irrigation control is operated again at the time when the time (T1) has elapsed.
Equation 2: Time required to reach an arbitrary water content from the operation time of the temporary irrigation control in the planting base of an arbitrary depth (Y) (T1)
Figure 0007059130000009
(K2: Of the temperature coefficient (K) calculated by the following procedure, the temperature coefficient at the temperature of the installation environment when the temporary irrigation control is activated.
(1) Changes in water content over time at arbitrary two points of temperature (t1, t2) at an arbitrary air volume (a) with respect to a planting substrate at an arbitrary depth (Y) in the vertical direction from the upper end of the planting unit. , Perform linear approximation and calculate the absolute value (k1, k2) of the slope value of each calculated linear approximation formula.
(2) Linear approximation is performed for the relationship between the temperature (t1, t2) and the slope value (k1, k2), and the value at each temperature calculated from the derived linear approximation formula is defined as the temperature coefficient (K). )
前記定時灌水制御が、
設置環境の温度が一日の内で最も高い時間帯に作動するものであることを特徴とする請求項8から請求項12のいずれか一項に記載の空気清浄緑化装置の制御方法。
The scheduled irrigation control
The control method for an air purifying greening device according to any one of claims 8 to 12, wherein the temperature of the installation environment operates at the highest time of the day.
JP2018124159A 2018-06-29 2018-06-29 Control method of air purifying greening device and air purifying greening device Active JP7059130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124159A JP7059130B2 (en) 2018-06-29 2018-06-29 Control method of air purifying greening device and air purifying greening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124159A JP7059130B2 (en) 2018-06-29 2018-06-29 Control method of air purifying greening device and air purifying greening device

Publications (2)

Publication Number Publication Date
JP2020000136A JP2020000136A (en) 2020-01-09
JP7059130B2 true JP7059130B2 (en) 2022-04-25

Family

ID=69097319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124159A Active JP7059130B2 (en) 2018-06-29 2018-06-29 Control method of air purifying greening device and air purifying greening device

Country Status (1)

Country Link
JP (1) JP7059130B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124599A (en) 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd Irrigation control device and irrigation control method
JP2006275615A (en) 2005-03-28 2006-10-12 Toyohashi Univ Of Technology Moisture measuring device and soil irrigation control system equipped with the moisture measuring device
JP2011036145A (en) 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd Home-use cultivation unit
US20110154985A1 (en) 2008-09-19 2011-06-30 Martin Mittelmark Water, Light and Airflow Control System and Configuration for a Plant Air Purifier
JP2014054233A (en) 2012-09-14 2014-03-27 Casio Comput Co Ltd Plant growth support system, program and plant growth support method
JP2017176045A (en) 2016-03-30 2017-10-05 大和ハウス工業株式会社 Planting system and watering method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124599A (en) 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd Irrigation control device and irrigation control method
JP2006275615A (en) 2005-03-28 2006-10-12 Toyohashi Univ Of Technology Moisture measuring device and soil irrigation control system equipped with the moisture measuring device
US20110154985A1 (en) 2008-09-19 2011-06-30 Martin Mittelmark Water, Light and Airflow Control System and Configuration for a Plant Air Purifier
JP2011036145A (en) 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd Home-use cultivation unit
JP2014054233A (en) 2012-09-14 2014-03-27 Casio Comput Co Ltd Plant growth support system, program and plant growth support method
JP2017176045A (en) 2016-03-30 2017-10-05 大和ハウス工業株式会社 Planting system and watering method

Also Published As

Publication number Publication date
JP2020000136A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
EP3799715A2 (en) Pressurized growing air system for vertical and horizontal planting systems
US8720110B2 (en) Hydroponics equipment cleaning method
CN105934149A (en) A container for supplying culture fluid to plant roots in a soilless culture method
KR100594637B1 (en) Auto Watering Multistage Hydroponics
BR112016011026B1 (en) auto-irrigation system for multiple plant containers
KR20160057695A (en) The water supply apparatus for flowerpot
JP6715475B2 (en) Irrigation system, irrigation system controller, farm house
Lee et al. Design of energy model of greenhouse including plant and estimation of heating and cooling loads for a multi-span plastic-film greenhouse by building energy simulation
JP7059130B2 (en) Control method of air purifying greening device and air purifying greening device
JP2015130802A (en) Automatic irrigation system
KR101043699B1 (en) Waterless Plant Cultivator
EP3843536B1 (en) A plant growing cabinet with improved watering algorithm
JP2003265056A (en) Soil moisture detection method, water supply control method and water supply control system for potted planting
WO2018202405A1 (en) A plant growing cabinet in which turf humidity is controlled
CN108882684B (en) Planting system and irrigation method
JP2017221150A (en) Plant cultivation apparatus and irrigation control method
JP2011254722A (en) Watering system for greened ground laid on water-impermeable surface
US20200008374A1 (en) Portable hydroponic ebb and flow system
AU2019201327A1 (en) Method of indoor mushroom cultivation
KR100897795B1 (en) Buttercup Hydroponic Cultivation System
KR101770390B1 (en) House heating and cooling device using the geothermal
JPH10248416A (en) Method and apparatus for still water neutriculture
KR101247468B1 (en) Hydroponic bed
JP2736333B2 (en) Hydroponics equipment
Jayasundara et al. An automated soil and climatic conditions controlling greenhouse: A preliminary study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R150 Certificate of patent or registration of utility model

Ref document number: 7059130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250