[go: up one dir, main page]

JP7055173B2 - Substrate processing equipment, semiconductor device manufacturing method and substrate processing program - Google Patents

Substrate processing equipment, semiconductor device manufacturing method and substrate processing program Download PDF

Info

Publication number
JP7055173B2
JP7055173B2 JP2020117977A JP2020117977A JP7055173B2 JP 7055173 B2 JP7055173 B2 JP 7055173B2 JP 2020117977 A JP2020117977 A JP 2020117977A JP 2020117977 A JP2020117977 A JP 2020117977A JP 7055173 B2 JP7055173 B2 JP 7055173B2
Authority
JP
Japan
Prior art keywords
pressure
pipe
processing chamber
processing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020117977A
Other languages
Japanese (ja)
Other versions
JP2021027339A (en
Inventor
正導 谷内
高行 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to SG10202007254WA priority Critical patent/SG10202007254WA/en
Priority to KR1020200094132A priority patent/KR20210018075A/en
Priority to TW109126304A priority patent/TWI797469B/en
Priority to CN202010780129.4A priority patent/CN112349623B/en
Priority to US16/985,785 priority patent/US11846025B2/en
Publication of JP2021027339A publication Critical patent/JP2021027339A/en
Application granted granted Critical
Publication of JP7055173B2 publication Critical patent/JP7055173B2/en
Priority to KR1020230116999A priority patent/KR102745428B1/en
Priority to US18/504,420 priority patent/US20240076780A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

本開示の技術は、基板処理装置、半導体装置の製造方法及び基板処理プログラムに関する。 The art of the present disclosure relates to a substrate processing apparatus, a method for manufacturing a semiconductor apparatus, and a substrate processing program.

半導体装置(半導体デバイス)の製造工程では、半導体を含む被処理体である半導体基板(以下、単に基板ともいう)に対する処理を行う装置として、縦型の基板処理装置が用いられることがある。特に、特許文献1には、減圧状態下で基板処理を行う基板処理装置において、排気装置の前後を渡るバイパスラインを設置し、該バイパスラインに開閉バルブ、APC(Auto Pressure Control)バルブを設けると共に、この開閉バルブをバイパスして、開閉バルブを有するバイパスラインを設けた点、及び、メインラインとバイパスラインの両方に、APCバルブを備える点が記載されている。 In the manufacturing process of a semiconductor device (semiconductor device), a vertical substrate processing device may be used as a device for processing a semiconductor substrate (hereinafter, also simply referred to as a substrate) which is an object to be processed containing a semiconductor. In particular, in Patent Document 1, in a substrate processing apparatus that performs substrate processing under a reduced pressure state, a bypass line that crosses the front and rear of the exhaust device is provided, and an on-off valve and an APC (Auto Pressure Control) valve are provided in the bypass line. It is described that a bypass line having an on-off valve is provided by bypassing this on-off valve, and an APC valve is provided on both the main line and the bypass line.

特許文献1では、バイパスラインにAPCバルブを配置することで、反応室とターボ分子ポンプとの差圧によって反応室内のパーティクル(石英)を拡散させないように、反応室が所定圧力になるまで大気圧からゆっくり減圧していることが記載されている。 In Patent Document 1, by arranging an APC valve on the bypass line, atmospheric pressure is maintained until the reaction chamber reaches a predetermined pressure so as not to diffuse particles (quartz) in the reaction chamber due to the differential pressure between the reaction chamber and the turbo molecular pump. It is described that the pressure is slowly reduced from.

しかし、この場合、バイパスラインの配管の口径がメインラインの配管の口径よりかなり小さいため、大気圧から所定圧力に減圧するまでに時間を要することがある。一方、近年の基板処理では、従来に比べて処理室を高真空状態とした成膜処理が要求されることがある。 However, in this case, since the diameter of the bypass line pipe is considerably smaller than the diameter of the main line pipe, it may take time to reduce the pressure from the atmospheric pressure to a predetermined pressure. On the other hand, in recent substrate processing, a film forming process in which the processing chamber is in a high vacuum state as compared with the conventional case may be required.

特開平11-300193号公報Japanese Unexamined Patent Publication No. 11-300193

本開示は、処理室のパーティクルを拡散させず、短時間で処理室を高真空状態とすることを目的とする。 An object of the present disclosure is to put the processing chamber into a high vacuum state in a short time without diffusing the particles in the processing chamber.

本開示によれば、基板を処理する処理室と、前記処理室からガスを排出する第1配管と、前記第1配管に設けられた第1開度調整バルブと、前記第1配管に設けられた開閉バルブと、前記第1配管に設けられ、前記処理室の圧力を検出する圧力センサと、を備えたメイン排気ラインと、前記メイン排気ラインに接続された第2配管と、前記第2配管に設けられた第2開度調整バルブと、を備えたバイパス排気ラインと、前記圧力センサからの情報に基づき、前記第2開度調整バルブの開度を調整して前記処理室が第1圧力になるまで減圧し、前記第1圧力に至ると前記第2開度調整バルブを閉止させて前記開閉バルブ及び前記第1開度調整バルブを開放して、前記処理室が第2圧力になるまで減圧し、前記処理室が第2圧力に至ると前記開閉バルブ及び前記第1調整バルブを閉止させて前記第2開度調整バルブの開度を調整して前記処理室を処理圧力にすることが可能なよう構成される制御部と、を有する構成が提供される。 According to the present disclosure, a processing chamber for processing a substrate, a first pipe for discharging gas from the processing chamber, a first opening degree adjusting valve provided in the first pipe, and a first pipe are provided. A main exhaust line provided with an on-off valve and a pressure sensor provided in the first pipe to detect the pressure in the processing chamber, a second pipe connected to the main exhaust line, and the second pipe. The processing chamber is subjected to the first pressure by adjusting the opening degree of the second opening degree adjusting valve based on the information from the bypass exhaust line provided with the second opening degree adjusting valve and the pressure sensor. When the pressure reaches the first pressure, the second opening adjustment valve is closed and the on-off valve and the first opening adjustment valve are opened until the processing chamber reaches the second pressure. When the pressure is reduced and the processing chamber reaches the second pressure, the on-off valve and the first adjusting valve are closed to adjust the opening degree of the second opening degree adjusting valve to make the processing chamber the processing pressure. A configuration with a control unit configured to be possible is provided.

本開示に係る基板処理装置によれば、処理室のパーティクルを拡散させず、短い時間で処理室を高真空状態とすることができる。 According to the substrate processing apparatus according to the present disclosure, the processing chamber can be put into a high vacuum state in a short time without diffusing the particles in the processing chamber.

本開示の一実施形態に係る基板処理装置の全体構成を示す概略図である。It is a schematic diagram which shows the whole structure of the substrate processing apparatus which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る排気系を示す正面図である。It is a front view which shows the exhaust system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る排気系の、大気圧から第1圧力まで減圧する際の動作及び第2圧力から高真空域まで減圧する際の動作の一例を示す概略図である。It is a schematic diagram which shows an example of the operation at the time of decompressing from the atmospheric pressure to the first pressure, and the operation at the time of decompressing from the second pressure to the high vacuum region of the exhaust system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る排気系の、第1圧力から第2圧力まで減圧する際の動作の一例を示す概略図である。It is a schematic diagram which shows an example of the operation at the time of reducing the pressure from the 1st pressure to the 2nd pressure of the exhaust system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る排気系の動作における減圧状態を示すグラフである。It is a graph which shows the reduced pressure state in the operation of the exhaust system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る排気系の動作を示すフローチャートである。It is a flowchart which shows the operation of the exhaust system which concerns on one Embodiment of this disclosure.

以下、本実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、図面の上方向を上方又は上部、下方向を下方又は下部として説明する。また、本実施形態において記載する圧力は、すべて気圧を意味する。 Hereinafter, an example of this embodiment will be described with reference to the drawings. The same reference numerals are given to the same or equivalent components and parts in each drawing. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. Further, the upper direction of the drawing will be described as an upper or upper part, and the lower direction will be described as a lower part or a lower part. In addition, all the pressures described in this embodiment mean atmospheric pressure.

<基板処理装置の全体構成>
図1に示すように、基板処理装置100は、基板30を処理する処理室20を有する反応炉10と、基板30を処理室20に搬送するボート26を有する予備室22と、処理室20にガスを導入するガス導入ライン40と、処理室20のガスを排出する排気系50と、基板処理装置100の動作を制御する主制御部70と、を有する。
<Overall configuration of board processing equipment>
As shown in FIG. 1, the substrate processing apparatus 100 includes a reaction furnace 10 having a processing chamber 20 for processing the substrate 30, a spare chamber 22 having a boat 26 for transporting the substrate 30 to the processing chamber 20, and a processing chamber 20. It has a gas introduction line 40 for introducing gas, an exhaust system 50 for discharging gas in the processing chamber 20, and a main control unit 70 for controlling the operation of the substrate processing device 100.

〔反応炉〕
反応炉10内には、図1に示すように、上下方向に軸を有する筒状に形成された反応管12と、反応管12の下部に気密部材12Aを挟んで連結され、上下方向に軸を有する筒状に形成された炉口フランジ14と、を含む処理室20が形成されている。また、反応炉10は、反応管12の内部に、反応管12と同芯に内管16が支持されている。また、反応管12の外周には、反応管12の軸と同芯、かつ、反応管12の外面と間隔を有してヒータ18が設けられている。ヒータ18は、後述する主制御部70からの信号を得て発熱し、反応管12を加熱する機能を有する。このように、反応管12と、炉口フランジ14と、内管16と、ヒータ18と、処理室20により反応炉10が構成されている。また、処理室20には、基板30が配置される。
[Reactor]
In the reaction furnace 10, as shown in FIG. 1, a tubular reaction tube 12 having an axis in the vertical direction is connected to the lower portion of the reaction tube 12 with an airtight member 12A interposed therebetween, and the axis is connected in the vertical direction. A processing chamber 20 including a furnace opening flange 14 formed in a tubular shape and the above is formed. Further, in the reaction furnace 10, the inner tube 16 is supported inside the reaction tube 12 in the same core as the reaction tube 12. Further, a heater 18 is provided on the outer periphery of the reaction tube 12 so as to be concentric with the axis of the reaction tube 12 and at a distance from the outer surface of the reaction tube 12. The heater 18 has a function of receiving a signal from the main control unit 70, which will be described later, to generate heat and heating the reaction tube 12. As described above, the reaction furnace 10 is composed of the reaction tube 12, the furnace opening flange 14, the inner tube 16, the heater 18, and the processing chamber 20. Further, the substrate 30 is arranged in the processing chamber 20.

〔予備室〕
予備室22は、図1に示すように、炉口フランジ14の下部に気密に連通された搬送筐体24が設けられている。搬送筐体24の内部には、基板30を載置して、基板30を処理室20に搬送して挿入するボート26が上下方向に移動可能に設けられている。また、搬送筐体24の下部に、後述するガス導入ライン40と同様の構成を有する第2ガス導入ライン44が連通されており、処理室20に導入するガスを、この第2ガス導入ライン44から導入してもよい構成を有している。また、搬送筐体24の下部、かつ、ボート26の下方に、搬送筐体24を気密に閉塞する炉口蓋28が設けられている。
[Reserve room]
As shown in FIG. 1, the spare chamber 22 is provided with a transport housing 24 that is airtightly communicated with the lower portion of the furnace opening flange 14. Inside the transport housing 24, a boat 26 on which the substrate 30 is placed and the substrate 30 is transported to the processing chamber 20 and inserted is provided so as to be movable in the vertical direction. Further, a second gas introduction line 44 having the same configuration as the gas introduction line 40 described later is communicated with the lower part of the transport housing 24, and the gas to be introduced into the processing chamber 20 is transferred to the second gas introduction line 44. It has a configuration that may be introduced from. Further, a furnace palate 28 for airtightly closing the transport housing 24 is provided below the transport housing 24 and below the boat 26.

〔ガス導入ライン〕
ガス導入ライン40は、図1に示すように、図示しないガス供給部と、ガス供給部と炉口フランジ14とを連通するガス導入管40Aと、ガス導入管の、ガス供給部と炉口フランジ14との間に設けられた流量制御器42と、を有する。流量制御器42は、後述する主制御部70からの信号によって、内部に設けられた図示しない弁を開閉してガスの導入量を制御する機能を有する。また、第2ガス導入ライン44は、ガス供給部と搬送筐体24の下部とを連通する点を除いて、ガス導入ライン40と同様の構成を有し、ガス導入ライン40の予備として設けられている。なお、ここで用いられるガスは不活性ガスであり、具体的には窒素が用いられる。
[Gas introduction line]
As shown in FIG. 1, the gas introduction line 40 includes a gas supply unit (not shown), a gas introduction pipe 40A that communicates the gas supply unit and the furnace opening flange 14, and a gas supply unit and a furnace opening flange of the gas introduction pipe. It has a flow rate controller 42 provided between the 14 and 14. The flow rate controller 42 has a function of opening and closing a valve (not shown) provided inside to control the amount of gas introduced by a signal from the main control unit 70 described later. Further, the second gas introduction line 44 has the same configuration as the gas introduction line 40 except that the gas supply unit and the lower part of the transport housing 24 communicate with each other, and is provided as a spare for the gas introduction line 40. ing. The gas used here is an inert gas, and specifically, nitrogen is used.

〔主制御部〕
主制御部70は、基板処理装置100の全体の動作を制御する。主制御部70は、図示しないが、CPU、ROM、RAM、ストレージ、入力部、表示部、通信インターフェイス等を有し、それぞれがバスに接続されたコンピュータを内蔵している。主制御部70は、入力部からの入力情報に基づいて、基板処理装置100における各種処理を行うための基板処理プログラムが実行される。例えば、主制御部70は、基板処理プログラムの一つであるプロセスレシピを実行して、半導体装置を製造する一つの工程である基板処理工程の制御を行う。このとき、主制御部70は、排気系50のゲートバルブ56の開閉を制御するとともに、APCコントローラ72と協働して、第1APCバルブ58A、及び第2APCバルブ58Bの開度を調整し、処理室20の圧力を制御する。ここで、主制御部70は、後述するAPCコントローラ72とともに構成される制御部の一例である。また、以後、APCバルブを閉塞もしくは閉止するという記載は、APCバルブの開度は0%と同意義であり、APCバルブを開放するという記載は、APCバルブの開度は100%と同意義である。
[Main control unit]
The main control unit 70 controls the overall operation of the substrate processing device 100. Although not shown, the main control unit 70 has a CPU, ROM, RAM, storage, an input unit, a display unit, a communication interface, and the like, each of which has a built-in computer connected to a bus. The main control unit 70 executes a board processing program for performing various processes in the board processing device 100 based on the input information from the input unit. For example, the main control unit 70 executes a process recipe, which is one of the substrate processing programs, and controls a substrate processing process, which is one process of manufacturing a semiconductor device. At this time, the main control unit 70 controls the opening and closing of the gate valve 56 of the exhaust system 50, and in cooperation with the APC controller 72, adjusts and processes the opening degrees of the first APC valve 58A and the second APC valve 58B. The pressure in the chamber 20 is controlled. Here, the main control unit 70 is an example of a control unit configured together with the APC controller 72 described later. Further, thereafter, the description that the APC valve is closed or closed has the same meaning as the opening degree of the APC valve is 0%, and the description that the opening of the APC valve has the same meaning as the opening degree of the APC valve is 100%. be.

<要部の構成>
≪排気系≫
排気系50は、図1から図3に示すように、処理室20からガスを排出する第1配管としての大口径の配管52Aと、配管52Aに設けられた第1APCバルブ58A及びゲートバルブ56と、配管52Aに設けられ、処理室20の圧力を検出する圧力センサ群62と、を少なくとも備えたメイン排気ライン52と、配管52Aに接続され、配管52Aの口径をDとしたとき、口径がD×(0.5~0.9)の第2配管としての配管54Aと、配管54Aに設けられた第2APCバルブ58Bと、を少なくとも備えたバイパス排気ライン54と、を有する。ここで、ゲートバルブ56は開閉バルブの一例であり、第1APCバルブ58Aは第1開度調整バルブの一例であり、第2APCバルブ58Bは第2開度調整バルブの一例である。また、メイン排気ライン52の処理室20と反対側の端部となる流末部はポンプ60の吸引側に接続されており、ポンプ60は排気系50に含むようにしてもよい。
<Structure of main parts>
≪Exhaust system≫
As shown in FIGS. 1 to 3, the exhaust system 50 includes a large-diameter pipe 52A as a first pipe for discharging gas from the processing chamber 20, and a first APC valve 58A and a gate valve 56 provided in the pipe 52A. , A main exhaust line 52 provided in the pipe 52A and having at least a pressure sensor group 62 for detecting the pressure of the processing chamber 20, and connected to the pipe 52A, when the diameter of the pipe 52A is D, the diameter is D. It has a pipe 54A as a second pipe of × (0.5 to 0.9), and a bypass exhaust line 54 provided with at least a second APC valve 58B provided in the pipe 54A. Here, the gate valve 56 is an example of an on-off valve, the first APC valve 58A is an example of a first opening degree adjusting valve, and the second APC valve 58B is an example of a second opening degree adjusting valve. Further, the end of the main exhaust line 52, which is the end opposite to the processing chamber 20, is connected to the suction side of the pump 60, and the pump 60 may be included in the exhaust system 50.

更に、排気系50は、第1APCバルブ58A及び第2APCバルブ58Bを制御するAPCコントローラ72と主制御部70に制御されるよう構成されている。 Further, the exhaust system 50 is configured to be controlled by the APC controller 72 and the main control unit 70 that control the first APC valve 58A and the second APC valve 58B.

〔メイン排気ライン〕
メイン排気ライン52には、図1に示すように、処理室20からポンプ60までを連通する配管52Aと、処理室20とポンプ60との間に第1APCバルブ58A及びゲートバルブ56と、が設けられている。ゲートバルブ56は、主制御部70と電気的に接続され、後述する圧力センサ群62と電気的に接続された主制御部70からの信号に基づいて開閉動作が行われる。また、第1APCバルブ58Aは、APCコントローラ72と電気的に接続され、後述する圧力センサ群62と電気的に接続されたAPCコントローラ72からの信号に基づいて開閉動作及び開度調整が行われる。メイン排気ライン52は、第1APCバルブ58A及びゲートバルブ56が開状態のとき、ポンプ60の吸引動作により、処理室20のガスを排気するように構成されている。本実施形態では、配管52Aの口径は、一例として200mm(200φ)としている。
[Main exhaust line]
As shown in FIG. 1, the main exhaust line 52 is provided with a pipe 52A communicating from the processing chamber 20 to the pump 60, and a first APC valve 58A and a gate valve 56 between the processing chamber 20 and the pump 60. Has been done. The gate valve 56 is electrically connected to the main control unit 70, and an opening / closing operation is performed based on a signal from the main control unit 70 electrically connected to the pressure sensor group 62 described later. Further, the first APC valve 58A is electrically connected to the APC controller 72, and an opening / closing operation and an opening / closing operation are performed based on a signal from the APC controller 72 electrically connected to the pressure sensor group 62 described later. The main exhaust line 52 is configured to exhaust the gas in the processing chamber 20 by the suction operation of the pump 60 when the first APC valve 58A and the gate valve 56 are in the open state. In the present embodiment, the diameter of the pipe 52A is set to 200 mm (200φ) as an example.

〔バイパス排気ライン〕
バイパス排気ライン54は、図1に示すように、配管52Aにおいて、処理室20とゲートバルブ56との間で分岐する分岐部54Bと、ゲートバルブ56とポンプ60との間で合流する合流部54Cとの間を連通する配管54Aと、配管54Aの、分岐部54Bと合流部54Cとの間に第2APCバルブ58Bと、が設けられている。第2APCバルブ58Bは、APCコントローラ72と電気的に接続され、後述する圧力センサ群62と電気的に接続された主制御部70からの処理室20の圧力情報を受信したAPCコントローラ72の動作指令に基づいて第2APCバルブ58Bの開度を調整しながら開閉動作が行われる。バイパス排気ライン54は、ゲートバルブ56が閉状態のとき、ポンプ60の吸引動作により、処理室20のガスを排気するように構成されている。配管54Aの口径は、40mm以上180mm以下であり、好ましくは、80mm以上140mm以下であり、特に、80mm以上100mm以下(80φ以上100φ以下)が好ましく、本実施形態では、一例として100mm(100φ)としている。バイパス排気ライン54は、メイン排気ライン52より配管54Aの径が小さければ、180mmより大きくてもよいが、あまりに径が大きくなりすぎるとバイパス排気ライン54を設ける必要がなくなる。また、配管54Aの口径が140mmより大きくなると、後述する大気圧からの排気の際にAPCバルブの調整にも拘らずパーティクルの発生が懸念される。一方、配管54Aが小さすぎると排気ラインの排気能力の影響により、プロセスへの影響が生じる。例えば、配管54Aの口径が40mm以下になると、排気能力がプロセスへ影響する可能性が懸念される。
[Bypass exhaust line]
As shown in FIG. 1, the bypass exhaust line 54 has a branch portion 54B that branches between the processing chamber 20 and the gate valve 56 and a confluence portion 54C that joins between the gate valve 56 and the pump 60 in the pipe 52A. A second APC valve 58B is provided between the branch portion 54B and the merging portion 54C of the pipe 54A and the pipe 54A communicating with the pipe 54A. The second APC valve 58B is an operation command of the APC controller 72 that is electrically connected to the APC controller 72 and receives pressure information of the processing chamber 20 from the main control unit 70 that is electrically connected to the pressure sensor group 62 described later. The opening / closing operation is performed while adjusting the opening degree of the second APC valve 58B based on the above. The bypass exhaust line 54 is configured to exhaust the gas in the processing chamber 20 by the suction operation of the pump 60 when the gate valve 56 is in the closed state. The diameter of the pipe 54A is 40 mm or more and 180 mm or less, preferably 80 mm or more and 140 mm or less, particularly preferably 80 mm or more and 100 mm or less (80φ or more and 100φ or less), and in this embodiment, 100 mm (100φ) is used as an example. There is. The bypass exhaust line 54 may be larger than 180 mm if the diameter of the pipe 54A is smaller than that of the main exhaust line 52, but if the diameter is too large, it is not necessary to provide the bypass exhaust line 54. Further, when the diameter of the pipe 54A is larger than 140 mm, there is a concern that particles will be generated when exhausting from the atmospheric pressure, which will be described later, despite the adjustment of the APC valve. On the other hand, if the pipe 54A is too small, the process will be affected by the influence of the exhaust capacity of the exhaust line. For example, if the diameter of the pipe 54A is 40 mm or less, there is a concern that the exhaust capacity may affect the process.

〔圧力センサ群〕
圧力センサ群62は、図1に示すように、配管52Aの分岐部54Bに対応する位置より処理室20側に配置された複数本の配管62Aによって互いに連通されて設けられている。圧力センサ群62は、主制御部70と電気的に接続され、処理室20の圧力情報を送信する機能を有する。また、圧力センサ群62は、後述する大気圧センサ64と、第1真空センサ68と、第2真空センサ66とで構成されている。図2に示すように、第1真空センサ68、第2真空センサ66及び大気圧センサ64は、分岐部54Bに近い側から、分岐部54Bから遠い側(処理室20側)に向かって、この順に、配管52Aに接続されたそれぞれの配管62Aに設けられている。ここで、大気圧センサ64、第1真空センサ68、第2真空センサ66は、それぞれ圧力センサの一例である。
[Pressure sensor group]
As shown in FIG. 1, the pressure sensor group 62 is provided so as to communicate with each other by a plurality of pipes 62A arranged on the processing chamber 20 side from the position corresponding to the branch portion 54B of the pipe 52A. The pressure sensor group 62 is electrically connected to the main control unit 70 and has a function of transmitting pressure information of the processing chamber 20. Further, the pressure sensor group 62 includes an atmospheric pressure sensor 64, a first vacuum sensor 68, and a second vacuum sensor 66, which will be described later. As shown in FIG. 2, the first vacuum sensor 68, the second vacuum sensor 66, and the atmospheric pressure sensor 64 are arranged from the side closer to the branch portion 54B toward the side farther from the branch portion 54B (processing chamber 20 side). In order, they are provided in each of the pipes 62A connected to the pipes 52A. Here, the atmospheric pressure sensor 64, the first vacuum sensor 68, and the second vacuum sensor 66 are examples of pressure sensors, respectively.

(大気圧センサ)
大気圧センサ64は、図2に示すように、処理室20に最も近い位置の配管52Aに接続された配管62Aに設けられ、大気圧に近い領域の圧力を検知する機能を有する。
(Atmospheric pressure sensor)
As shown in FIG. 2, the atmospheric pressure sensor 64 is provided in the pipe 62A connected to the pipe 52A at the position closest to the processing chamber 20, and has a function of detecting the pressure in the region close to the atmospheric pressure.

(第1真空センサ)
第1真空センサ68は、図2に示すように、配管62Aに設けられ、大気圧に近い領域の圧力から所定の真空領域の圧力(10-1~10Pa)までを検知する広域圧力センサとしての機能を有する。ここでは、大気圧から第2圧力P2(例えば、10Torr)までを検知するよう構成されている。
(1st vacuum sensor)
As shown in FIG. 2, the first vacuum sensor 68 is provided in the pipe 62A and is a wide area pressure sensor that detects a pressure in a region close to atmospheric pressure to a pressure in a predetermined vacuum region ( 10 -1 to 105 Pa). Has the function as. Here, it is configured to detect from the atmospheric pressure to the second pressure P2 (for example, 10 Torr).

(第2真空センサ)
第2真空センサ66は、図2に示すように、配管62Aに設けられ、また、第2真空センサ66には、所定の圧力にまで減圧されると開となる弁66Aが設けられている。本実施の形態においては、第2圧力P2にあると弁66Aが開となるように構成される。第2真空センサ66は、高真空域(高真空状態)の圧力を検知する圧力センサとしての機能を有する。ここでは、第2圧力P2(例えば、10Torr)で弁66Aが開となり、圧力を検知するよう構成されている。
(2nd vacuum sensor)
As shown in FIG. 2, the second vacuum sensor 66 is provided in the pipe 62A, and the second vacuum sensor 66 is provided with a valve 66A that opens when the pressure is reduced to a predetermined pressure. In the present embodiment, the valve 66A is configured to open at the second pressure P2. The second vacuum sensor 66 has a function as a pressure sensor for detecting a pressure in a high vacuum region (high vacuum state). Here, the valve 66A is opened at the second pressure P2 (for example, 10 Torr) and is configured to detect the pressure.

これら、大気圧センサ64、第1真空センサ68、第2真空センサ66は、それぞれ主制御部70と電気的に接続されていることは上述のとおりである。 As described above, the atmospheric pressure sensor 64, the first vacuum sensor 68, and the second vacuum sensor 66 are each electrically connected to the main control unit 70.

〔APCコントローラ〕
APCコントローラ72は、図1及び図2に示すとおり、メイン排気ライン52の配管52Aにおいて、ゲートバルブ56と配管62A又は分岐部54Bとの間に設けられ、主制御部70及びAPCコントローラ72と電気的に接続されている。APCコントローラ72は、上述したとおり、主制御部70から処理室20の圧力情報を受信し、第1APCバルブ58A及び第2APCバルブ58Bの開度を調整する機能を有する。ここで、APCコントローラ72は、主制御部70とともに構成される制御部の一例である。
[APC controller]
As shown in FIGS. 1 and 2, the APC controller 72 is provided between the gate valve 56 and the pipe 62A or the branch portion 54B in the pipe 52A of the main exhaust line 52, and is electrically connected to the main control unit 70 and the APC controller 72. Is connected. As described above, the APC controller 72 has a function of receiving pressure information of the processing chamber 20 from the main control unit 70 and adjusting the opening degrees of the first APC valve 58A and the second APC valve 58B. Here, the APC controller 72 is an example of a control unit configured together with the main control unit 70.

<要部の作用>
ここで、本実施形態の要部である排気系50による基板処理方法、半導体装置の製造方法及び基板処理プログラムの動作並びに手順を図3から図6を参照しながら説明する。
<Action of the main part>
Here, the substrate processing method by the exhaust system 50, the manufacturing method of the semiconductor device, the operation and the procedure of the substrate processing program, which are the main parts of the present embodiment, will be described with reference to FIGS. 3 to 6.

本実施形態の排気系50は、主制御部70とAPCコントローラ72とが、圧力センサ群62からの情報に基づき、第2APCバルブ58Bの開度を調整して処理室20が第1圧力P1になるまで減圧し、第1圧力P1に至ると第2APCバルブ58Bを閉止させて第1APCバルブ58A及びゲートバルブ56を開放して、処理室20が第2圧力P2になるまで減圧し、処理室20が第2圧力P2に至ると第1APCバルブ58A及びゲートバルブ56を閉止させて第2APCバルブ58Bの開度を調整して処理室20が所定の高真空状態となるまで減圧する。ここで、第2圧力P2より低い圧力を高真空状態と呼ぶ。また、排気系50は、処理室20の圧力を高真空域における第2圧力P2よりも低い圧力まで減圧させ、基板30を処理する処理圧力に維持させる。 In the exhaust system 50 of the present embodiment, the main control unit 70 and the APC controller 72 adjust the opening degree of the second APC valve 58B based on the information from the pressure sensor group 62, and the processing chamber 20 becomes the first pressure P1. The pressure is reduced until the pressure reaches P1, the second APC valve 58B is closed, the first APC valve 58A and the gate valve 56 are opened, the pressure is reduced until the processing chamber 20 reaches the second pressure P2, and the processing chamber 20 is reduced. When the pressure reaches the second pressure P2, the first APC valve 58A and the gate valve 56 are closed, the opening degree of the second APC valve 58B is adjusted, and the pressure is reduced until the processing chamber 20 reaches a predetermined high vacuum state. Here, a pressure lower than the second pressure P2 is called a high vacuum state. Further, the exhaust system 50 reduces the pressure of the processing chamber 20 to a pressure lower than the second pressure P2 in the high vacuum region, and maintains the processing pressure at which the substrate 30 is processed.

図5では、縦軸が処理室20の圧力、横軸が減圧に要した時間であり、本実施形態における減圧ラインAを太線で示し、比較例における減圧ラインBを細線で示す。また、大気圧P0は約1.023×10Pa(約760Torr)であり、第1圧力P1は約9.066×10Pa(約680Torr)であり、第2圧力P2は約1.333×10Pa(約10Torr)である。なお、大気圧から減圧を開始する際は、スロー排気を行っている。但し、スロー排気は、実際に要する時間は数秒程度であり、大気圧P0から第2圧力P2まで5分~10分程度と比べると無視できる時間のため、本明細書において図5には反映されていない。以下スロー排気に関する説明は省略する。 In FIG. 5, the vertical axis represents the pressure of the processing chamber 20, the horizontal axis represents the time required for decompression, the decompression line A in the present embodiment is shown by a thick line, and the decompression line B in the comparative example is shown by a thin line. Further, the atmospheric pressure P0 is about 1.023 × 10 5 Pa (about 760 Torr), the first pressure P1 is about 9.066 × 10 4 Pa (about 680 Torr), and the second pressure P2 is about 1.333. × 10 3 Pa (about 10 Torr). When decompression is started from atmospheric pressure, slow exhaust is performed. However, the slow exhaust actually takes about several seconds, which is negligible compared to about 5 to 10 minutes from the atmospheric pressure P0 to the second pressure P2, and is therefore reflected in FIG. 5 in the present specification. Not. Hereinafter, the description of slow exhaust will be omitted.

〔大気圧から第1圧力までの減圧〕
先ず、処理室20の圧力を、大気圧P0から第1圧力P1まで所定の比率で減圧を行う工程である。
[Decompression from atmospheric pressure to first pressure]
First, it is a step of reducing the pressure of the processing chamber 20 from the atmospheric pressure P0 to the first pressure P1 at a predetermined ratio.

最初に、処理室20には、ボート26に載置された複数の基板30が、ボート26によって処理室20の内部に搬送され挿入される。このとき、処理室20の圧力は大気圧で準備されている(ステップS01)。また、第1APCバルブ58A、ゲートバルブ56(561)、及び第2APCバルブ58B(581)は、ともに閉鎖されている。 First, in the processing chamber 20, a plurality of substrates 30 mounted on the boat 26 are conveyed and inserted into the processing chamber 20 by the boat 26. At this time, the pressure in the processing chamber 20 is prepared at atmospheric pressure (step S01). Further, the first APC valve 58A, the gate valve 56 (561), and the second APC valve 58B (581) are all closed.

図3及び図6に示すように、先ずポンプ60が作動される。次に、メイン排気ライン52の配管52Aに設けられた第1APCバルブ58A及びゲートバルブ56は、主制御部70からの閉指令により閉鎖されている。図3では、理解を助けるために、バルブ561で表現し、バルブ561が閉鎖状態であることを示している。また、バイパス排気ライン54の配管54Aに設けられた第2APCバルブ58Bは、APCコントローラ72からの開指令により閉鎖状態から開放状態に向けて、開度を調整しながら開放される。図3では、理解を助けるために、バルブ581で表現し、バルブ581が開度を調整しながら開放状態に向けて開放されている状態を示している(ステップS02)。 As shown in FIGS. 3 and 6, the pump 60 is first operated. Next, the first APC valve 58A and the gate valve 56 provided in the pipe 52A of the main exhaust line 52 are closed by a closing command from the main control unit 70. In FIG. 3, for the sake of comprehension, the valve 561 is used to indicate that the valve 561 is in the closed state. Further, the second APC valve 58B provided in the pipe 54A of the bypass exhaust line 54 is opened while adjusting the opening degree from the closed state to the open state by the open command from the APC controller 72. In FIG. 3, in order to help understanding, it is represented by a valve 581, and shows a state in which the valve 581 is opened toward an open state while adjusting the opening degree (step S02).

そして、処理室20は、大気圧P0から第1圧力P1に向けて第2APCバルブ58Bの開度を調整しつつ減圧される(ステップS03)。本実施形態では、配管54Aの口径が、配管52Aの口径の0.5~0.9倍の口径を有しているから、0.5倍未満の細い配管を用いる場合と比較して、排気効率が良好である。換言すれば、大気圧P0から第1圧力P1までの減圧に要する時間が短縮される(図5の減圧ラインAとBを参照)。 Then, the processing chamber 20 is depressurized while adjusting the opening degree of the second APC valve 58B from the atmospheric pressure P0 to the first pressure P1 (step S03). In the present embodiment, since the diameter of the pipe 54A has a diameter of 0.5 to 0.9 times the diameter of the pipe 52A, the exhaust is compared with the case where a thin pipe of less than 0.5 times is used. The efficiency is good. In other words, the time required for depressurization from the atmospheric pressure P0 to the first pressure P1 is shortened (see decompression lines A and B in FIG. 5).

〔第1圧力から第2圧力までの減圧〕
次は、処理室20の圧力を、第1圧力P1から第2圧力P2まで減圧を行う工程である。
[Decompression from 1st pressure to 2nd pressure]
Next is a step of reducing the pressure in the processing chamber 20 from the first pressure P1 to the second pressure P2.

第1圧力から第2圧力までの減圧では、大気圧センサ64はオフとし、第2真空センサの弁66は閉のままで、第1真空センサ68が第1圧力P1まで減圧されたことを検知する(ステップS04)。この情報は、主制御部70に送信され、また、主制御部70からAPCコントローラ72に送信される。 In the depressurization from the first pressure to the second pressure, the atmospheric pressure sensor 64 is turned off, the valve 66 of the second vacuum sensor remains closed, and the first vacuum sensor 68 detects that the pressure has been reduced to the first pressure P1. (Step S04). This information is transmitted to the main control unit 70, and is also transmitted from the main control unit 70 to the APC controller 72.

この時点で、図4に示すように、第1APCバルブ58A及びゲートバルブ56(561)は、主制御部70からの開信号により開放される。また、同時に、第2APCバルブ58B(581)は、APCコントローラ72からの閉信号により閉鎖される(ステップS05)。 At this point, as shown in FIG. 4, the first APC valve 58A and the gate valve 56 (561) are opened by an open signal from the main control unit 70. At the same time, the second APC valve 58B (581) is closed by the closing signal from the APC controller 72 (step S05).

そして、処理室20は、第1圧力P1から第2圧力P2に向けて減圧される(ステップS06)。 Then, the processing chamber 20 is depressurized from the first pressure P1 to the second pressure P2 (step S06).

〔第2圧力から高真空域までの減圧〕
次は、処理室20の圧力を、第2圧力P2から更に高真空域に至る圧力まで減圧を行う工程である。
[Decompression from the second pressure to the high vacuum range]
Next is a step of reducing the pressure of the processing chamber 20 from the second pressure P2 to a pressure further reaching a high vacuum region.

第2圧力から高真空域までの減圧では、大気圧センサ64と第1真空センサ68はオフとし、弁66が第2圧力P2に到達すると開となり、第2真空センサ66がオンすることによって、処理室20の圧力が第2圧力P2まで減圧されたことを検知する(ステップS07)。この情報は、主制御部70に送信され、また、主制御部70からAPCコントローラ72に送信される。 In the depressurization from the second pressure to the high vacuum region, the atmospheric pressure sensor 64 and the first vacuum sensor 68 are turned off, the valve 66 is opened when the valve 66 reaches the second pressure P2, and the second vacuum sensor 66 is turned on. It is detected that the pressure in the processing chamber 20 has been reduced to the second pressure P2 (step S07). This information is transmitted to the main control unit 70, and is also transmitted from the main control unit 70 to the APC controller 72.

この時点で、図3に示すように、第1APCバルブ58A及びゲートバルブ56(561)は、主制御部70からの閉信号により閉鎖される。また、同時に、第2APCバルブ58B(581)は、APCコントローラ72からの開信号により開度を調整しながら開放される(ステップS08)。 At this point, as shown in FIG. 3, the first APC valve 58A and the gate valve 56 (561) are closed by the closing signal from the main control unit 70. At the same time, the second APC valve 58B (581) is opened while adjusting the opening degree by the open signal from the APC controller 72 (step S08).

そして、処理室20は、第2圧力P2から所定の処理圧力(例えば、後述する成膜工程において成膜温度が形成される際の圧力)に保持される(ステップS09)。ここで処理圧力は、高真空状態でなくてもよく、第2圧力P2よりも高い圧力であってもよいのは言うまでもない。例えば、第2圧力P2から更に高真空域に至るまで減圧した後に、処理室20を処理圧力にしてもよいし、真空到達圧力まで減圧した状態で処理室20のリークをチェック後、処理室20を処理圧力にしてもよい。この場合、真空到達圧力から処理圧力まで調圧する際、パージガス(不活性ガス)を供給するようにした方が好ましい。 Then, the processing chamber 20 is held from the second pressure P2 to a predetermined processing pressure (for example, the pressure at which the film forming temperature is formed in the film forming step described later) (step S09). Needless to say, the processing pressure does not have to be in a high vacuum state and may be higher than the second pressure P2. For example, the processing chamber 20 may be set to the processing pressure after the pressure is reduced from the second pressure P2 to a higher vacuum region, or the processing chamber 20 may be checked for leaks in the state where the pressure reaches the vacuum. May be the processing pressure. In this case, it is preferable to supply the purge gas (inert gas) when adjusting the pressure from the vacuum reaching pressure to the processing pressure.

その後、処理室20の圧力を所定の処理圧力に維持して、基板30の処理が行われる(ステップS10)。 After that, the substrate 30 is processed by maintaining the pressure in the processing chamber 20 at a predetermined processing pressure (step S10).

次に、基板30の処理が終了したことが検知される(ステップS10)。基板処理工程が終了後、その情報が主制御部70に送信されると、主制御部70は、不活性ガス(例えば、窒素ガス)を処理室に供給させ、処理室20を窒素雰囲気に置換させる(ステップS11)。続けて、主制御部70及びAPCコントローラ72からの閉信号により、第1APCバルブ58A、ゲートバルブ56、及び第2APCバルブ58Bが閉塞されて、処理室20の圧力が上昇する。このようにして、処理室20の圧力は大気圧に戻される。また、主制御部70が、ある圧力(例えば、大気圧以下の任意の圧力)に到達すると、APCコントローラ72に、任意の圧力(この場合、大気圧)指示を送信し、受信したAPCコントローラ72からの開信号により、第2APCバルブ58Bを開放させてもよい。この時、第2APCバルブ58B(581)は、図3に示す場合と同様に、開度を調整しつつ処理室20の圧力を大気圧にするように制御するのが好ましい(ステップS12)。 Next, it is detected that the processing of the substrate 30 is completed (step S10). When the information is transmitted to the main control unit 70 after the substrate processing step is completed, the main control unit 70 supplies an inert gas (for example, nitrogen gas) to the processing chamber and replaces the processing chamber 20 with a nitrogen atmosphere. (Step S11). Subsequently, the closing signals from the main control unit 70 and the APC controller 72 close the first APC valve 58A, the gate valve 56, and the second APC valve 58B, and the pressure in the processing chamber 20 rises. In this way, the pressure in the processing chamber 20 is returned to atmospheric pressure. Further, when the main control unit 70 reaches a certain pressure (for example, an arbitrary pressure below the atmospheric pressure), the APC controller 72 transmits and receives an arbitrary pressure (in this case, the atmospheric pressure) instruction to the APC controller 72. The second APC valve 58B may be opened by the open signal from. At this time, it is preferable that the second APC valve 58B (581) is controlled so that the pressure in the processing chamber 20 becomes atmospheric pressure while adjusting the opening degree, as in the case shown in FIG. 3 (step S12).

そして、処理後の基板30が処理室20から排出される。 Then, the processed substrate 30 is discharged from the processing chamber 20.

なお、図5では、時刻tとt’及び時刻5tと5t’との間の減圧されない時間は、第1APCバルブ58A、第2APCバルブ58B、及びゲートバルブ56の切り換えに要する時間として減圧されない時間として示したが、これは、実際に要する時間は微小であり、バルブ切り換え時間があることの理解を助けるためのものである。 In FIG. 5, the non-decompressed time between the times t and t'and the time 5t and 5t' is defined as the time required for switching between the first APC valve 58A, the second APC valve 58B, and the gate valve 56. As shown, this is to help understand that the actual time required is insignificant and there is valve switching time.

<比較例>
図5に、比較例における処理室の減圧に要する時間を減圧ラインBとして示す。比較例では、バイパス排気ラインの細い口径の配管及びAPCバルブの流量が、本実施形態における中径配管の口径及びAPCバルブの流量よりも小さい。具体的には、比較例におけるバイパス排気ラインの口径は、メイン排気ラインの口径の0.2倍とされている。このため、減圧ラインBでは、大気圧P0から第1圧力P1までの減圧に要する時間が約5tである。また、大気圧P0から第2圧力P2までの減圧に要する時間は約10tである。
<Comparison example>
FIG. 5 shows the time required for depressurization of the processing chamber in the comparative example as the decompression line B. In the comparative example, the flow rate of the narrow diameter pipe and the APC valve of the bypass exhaust line is smaller than the flow rate of the medium diameter pipe and the APC valve in the present embodiment. Specifically, the diameter of the bypass exhaust line in the comparative example is 0.2 times the diameter of the main exhaust line. Therefore, in the depressurization line B, the time required for depressurization from the atmospheric pressure P0 to the first pressure P1 is about 5 tons. Further, the time required for depressurizing from the atmospheric pressure P0 to the second pressure P2 is about 10 tons.

これに対し、本実施形態では、上述のとおり、バイパス排気ライン54の口径は、メイン排気ライン52の口径Dの0.5~0.9倍で構成されている。このため、処理室20の減圧に要する時間は、図5において減圧ラインAで示すように、大気圧P0から第1圧力P1までの減圧に要する時間が約tであり、また、大気圧P0から第2圧力P2までの減圧に要する時間は約5tである。そして、第2圧力P2未満の高真空領域を更に減圧する領域においては、比較例では、減圧ラインBの点線で示すように、減圧が極めて困難であるが、本実施形態では、比較例よりも減圧効率が高いバイパス排気ライン54を有していることにより、第2圧力P2未満の高真空領域までも減圧することができる。従い、高真空状態とした基板処理(例えば、成膜処理)が可能である。 On the other hand, in the present embodiment, as described above, the diameter of the bypass exhaust line 54 is 0.5 to 0.9 times the diameter D of the main exhaust line 52. Therefore, as shown by the decompression line A in FIG. 5, the time required for depressurizing the processing chamber 20 is about t, and the time required for depressurizing from the atmospheric pressure P0 to the first pressure P1 is about t, and from the atmospheric pressure P0. The time required for depressurization to the second pressure P2 is about 5 tons. In the region where the high vacuum region lower than the second pressure P2 is further depressurized, the depressurization is extremely difficult as shown by the dotted line of the depressurization line B in the comparative example, but in the present embodiment, the depressurization is more difficult than in the comparative example. By having the bypass exhaust line 54 having high depressurization efficiency, it is possible to depressurize even a high vacuum region of less than the second pressure P2. Therefore, it is possible to perform substrate processing (for example, film formation processing) in a high vacuum state.

このように、本実施形態では、処理室20を減圧して所定の真空状態とするとき、主制御部70が、バイパス排気ライン54の第2APCバルブ58Bの開度を調整して処理室20が第1圧力P1になるまで減圧する。 As described above, in the present embodiment, when the processing chamber 20 is depressurized to a predetermined vacuum state, the main control unit 70 adjusts the opening degree of the second APC valve 58B of the bypass exhaust line 54 to make the processing chamber 20. The pressure is reduced until the first pressure P1 is reached.

ここで、バイパス排気ライン54の配管54Aの口径は、メイン排気ライン52の配管52Aの口径の0.4~0.9倍であるので、排気量は比較例と比べて小さくなく、このため、処理室20が第1圧力P1に至るまでの時間を従来の基板処理装置に比べて短縮できる。また、第2APCバルブ58Bの開度を調整して減圧するため、メイン排気ライン52のゲートバルブ56及び第1APCバルブ58Aを開放して初期排気するより、処理室20のパーティクルの拡散を抑制できる。 Here, since the diameter of the pipe 54A of the bypass exhaust line 54 is 0.4 to 0.9 times the diameter of the pipe 52A of the main exhaust line 52, the displacement is not smaller than that of the comparative example. The time required for the processing chamber 20 to reach the first pressure P1 can be shortened as compared with the conventional substrate processing apparatus. Further, since the opening degree of the second APC valve 58B is adjusted to reduce the pressure, the diffusion of particles in the processing chamber 20 can be suppressed by opening the gate valve 56 and the first APC valve 58A of the main exhaust line 52 for initial exhaust gas.

また、処理室20が第1圧力P1に至ると第2APCバルブ58Bを閉止させてゲートバルブ56及び第1APCバルブ58Aを開放して、配管52Aを備えたメイン排気ライン52で排気する。このため、時間当たりの排気量が増加して処理室が第2圧力P2に減圧するまでの時間を短縮できる。つまり、高真空状態に減圧するまでの時間を短縮できるため、近年の高真空状態における基板処理に適用できる。 Further, when the processing chamber 20 reaches the first pressure P1, the second APC valve 58B is closed, the gate valve 56 and the first APC valve 58A are opened, and exhaust is performed by the main exhaust line 52 provided with the pipe 52A. Therefore, the time required for the processing chamber to reduce the pressure to the second pressure P2 can be shortened due to the increase in the displacement per hour. That is, since the time required to reduce the pressure to the high vacuum state can be shortened, it can be applied to the substrate processing in the high vacuum state in recent years.

さらに、処理室20が第2圧力P2に至るとゲートバルブ56及び第1APCバルブ58Aを閉止させ、第2APCバルブ58Bを開放して処理室20を更に真空度の高い高真空域になるまで減圧する。第2APCバルブ58Bはゲートバルブ56や第1APCバルブ58Aと比較して応答性がよいので、メイン排気ライン52で処理室20を真空状態とするよりも口径が小さいので、空気の漏れがなく高真空状態とすることができる。 Further, when the processing chamber 20 reaches the second pressure P2, the gate valve 56 and the first APC valve 58A are closed, the second APC valve 58B is opened, and the processing chamber 20 is depressurized until a high vacuum region with a higher degree of vacuum is reached. .. Since the second APC valve 58B has better responsiveness than the gate valve 56 and the first APC valve 58A, the diameter is smaller than that when the processing chamber 20 is evacuated in the main exhaust line 52, so that there is no air leakage and a high vacuum is applied. Can be in a state.

<基板処理工程>
次に、本実施形態に係る基板処理装置100を用いて実施する、所定の処理工程を有する基板処理方法について説明する。ここで、所定の処理工程は、半導体デバイスの製造工程の一工程である基板処理工程を実施する場合を例に挙げる。
<Substrate processing process>
Next, a substrate processing method having a predetermined processing step, which is carried out using the substrate processing apparatus 100 according to the present embodiment, will be described. Here, as an example, the predetermined processing step is a case where a substrate processing step, which is one step of a semiconductor device manufacturing process, is carried out.

基板処理工程の実施にあたって、プロセスレシピが、図示しないメモリ等に展開され、必要に応じて主制御部70からAPCコントローラ72へ制御指示が与えられると共に、図示しないプロセス系コントローラや搬送系コントローラへ動作指示が与えられる。このようにして実施される基板処理工程は、搬入工程と、成膜工程と、搬出工程と、を少なくとも有する。 In carrying out the board processing process, the process recipe is expanded in a memory or the like (not shown), a control instruction is given from the main control unit 70 to the APC controller 72 as needed, and the process recipe is operated to the process controller or the transport controller (not shown). Instructions are given. The substrate processing step carried out in this manner includes at least a carry-in step, a film forming step, and a carry-out step.

(移載工程)
主制御部70は、図示しない基板移載機構にボート26への基板30の移載処理を開始する。この移載処理は、予定された全ての基板30のボート26への装填(ウエハチャージ)が完了するまで行われる。
(Transfer process)
The main control unit 70 starts the transfer process of the substrate 30 to the boat 26 to the substrate transfer mechanism (not shown). This transfer process is performed until the loading (wafer charging) of all the scheduled substrates 30 into the boat 26 is completed.

(搬入工程)
所定枚数の基板30がボート26に装填されると、ボート26は、図示しないボートエレベータによって上昇されて、反応炉10内に形成される処理室20に装入(ボートロード)される。ボート26が完全に装入されると、炉口蓋28は、反応炉10の炉口フランジ14の下端を気密に閉塞する。
(Bring-in process)
When a predetermined number of substrates 30 are loaded into the boat 26, the boat 26 is lifted by a boat elevator (not shown) and charged (boat loaded) into a processing chamber 20 formed in the reactor 10. When the boat 26 is completely loaded, the furnace palate 28 airtightly closes the lower end of the furnace mouth flange 14 of the reactor 10.

(成膜工程)
次に、処理室20は、上述のようにAPCコントローラ72からの指示に従いつつ、所定の成膜圧力(処理圧力)となるように、真空ポンプなどの真空排気装置によって真空排気される。また処理室20は、図示しない温度制御部からの指示に従いつつ、所定の温度となるようにヒータ18によって加熱される。続いて、図示しない回転機構によるボート26および基板30の回転を開始する。そして、所定の圧力、所定の温度に維持された状態で、ボート26に保持された複数枚の基板30に所定のガス(処理ガス)を供給して、基板30に所定の処理(例えば成膜処理)がなされる。なお、次の搬出工程前に、処理温度(所定の温度)から温度を降下させる場合がある。
(Film formation process)
Next, the processing chamber 20 is evacuated by a vacuum exhaust device such as a vacuum pump so as to have a predetermined film formation pressure (processing pressure) while following the instructions from the APC controller 72 as described above. Further, the processing chamber 20 is heated by the heater 18 so as to reach a predetermined temperature while following an instruction from a temperature control unit (not shown). Subsequently, the boat 26 and the substrate 30 are started to rotate by a rotation mechanism (not shown). Then, a predetermined gas (processed gas) is supplied to the plurality of substrates 30 held in the boat 26 while being maintained at a predetermined pressure and a predetermined temperature, and a predetermined process (for example, film formation) is applied to the substrate 30. Processing) is done. Before the next carry-out process, the temperature may be lowered from the processing temperature (predetermined temperature).

(搬出工程)
ボート26に載置された基板30に対する成膜工程が完了すると、回転機構によるボート26および基板30の回転を停止させ、処理室20を窒素雰囲気に置換し(窒素置換工程)、大気圧復帰させる。そして、炉口蓋28を下降させて炉口フランジ14の下端を開口させるとともに、処理済の基板30を保持したボート26を反応炉10の外部に搬出(ボートアンロード)する。
(Carrying process)
When the film forming process on the substrate 30 placed on the boat 26 is completed, the rotation of the boat 26 and the substrate 30 by the rotation mechanism is stopped, the processing chamber 20 is replaced with a nitrogen atmosphere (nitrogen replacement step), and the atmospheric pressure is restored. .. Then, the furnace palate 28 is lowered to open the lower end of the furnace opening flange 14, and the boat 26 holding the treated substrate 30 is carried out (boat unloading) to the outside of the reactor 10.

(回収工程)
そして、処理済の基板30を保持したボート26は、クリーンユニットから吹出されるクリーンエアによって極めて効果的に冷却される。そして、例えば150℃以下に冷却されると、ボート26から処理済の基板30を脱装(ウエハディスチャージ)して図示しないポッドに移載される。連続してバッチ処理を行う場合、再度、新たな未処理基板30のボート26への移載が行われる。
(Recovery process)
Then, the boat 26 holding the treated substrate 30 is cooled extremely effectively by the clean air blown from the clean unit. Then, for example, when cooled to 150 ° C. or lower, the processed substrate 30 is removed (wafer discharged) from the boat 26 and transferred to a pod (not shown). When batch processing is continuously performed, the new unprocessed substrate 30 is transferred to the boat 26 again.

上述のように、本実施形態では、大気圧付近の圧力から第1圧力になるまで減圧する工程、第1圧力から第2圧力になるまで減圧する工程、第2圧力から処理圧力にする工程のうちいずれかの工程で、真空排気を行っているが、該いずれかの工程でパージガスを供給するようにしてもよい。 As described above, in the present embodiment, the step of reducing the pressure from the pressure near the atmospheric pressure to the first pressure, the step of reducing the pressure from the first pressure to the second pressure, and the step of changing from the second pressure to the processing pressure. Vacuum exhaust is performed in any of the steps, but purge gas may be supplied in any of the steps.

上述のように、本実施形態では、大気圧付近の圧力から第1圧力になるまで減圧する工程、第1圧力から第2圧力になるまで減圧する工程、第2圧力から処理圧力にする工程を第1真空センサと第2真空センサの2つで圧力検出を行っているが、例えば、大気圧付近の圧力から第1圧力になるまで減圧する工程を真空センサA、第1圧力から第2圧力になるまで減圧する工程を真空センサB、第2圧力から高真空状態の処理圧力にする工程を真空センサCで行うようにしてもよい。 As described above, in the present embodiment, the step of reducing the pressure from the pressure near the atmospheric pressure to the first pressure, the step of reducing the pressure from the first pressure to the second pressure, and the step of changing from the second pressure to the processing pressure are performed. Pressure is detected by both the first vacuum sensor and the second vacuum sensor. For example, the process of reducing the pressure from the pressure near the atmospheric pressure to the first pressure is performed by the vacuum sensor A and the first pressure to the second pressure. The step of reducing the pressure until the pressure becomes high may be performed by the vacuum sensor B, and the step of changing the processing pressure from the second pressure to the high vacuum state may be performed by the vacuum sensor C.

このように、本実施形態によれば、大気圧付近の圧力からある程度の負圧(例えば、第1圧力)になるまでAPCバルブにより開度を調整しながら減圧しているので、処理室にパーティクルを拡散させず、短時間で処理室を高真空状態とすることができる。 As described above, according to the present embodiment, the pressure is reduced while adjusting the opening degree by the APC valve from the pressure near the atmospheric pressure to a certain negative pressure (for example, the first pressure). The processing chamber can be put into a high vacuum state in a short time without diffusing.

<他の実施形態>
上述では処理圧力が第2圧力P2より低い圧力について記載していたが、ここでは、処理圧力が第2圧力P2より高い圧力について簡単に記載する。なお、大気圧から第1圧力P1まで減圧する過程は既に上述した内容と同じであるため省略する。この場合、処理室20が第1圧力P1に至ると第2APCバルブ58Bを閉止させてゲートバルブ56を開放し、第1APCバルブ58Aの開度を調整しつつ、配管52Aを備えたメイン排気ライン52で排気して、処理圧力になるまで減圧する。
<Other embodiments>
In the above, the pressure whose processing pressure is lower than the second pressure P2 has been described, but here, the pressure whose processing pressure is higher than the second pressure P2 will be briefly described. The process of reducing the pressure from the atmospheric pressure to the first pressure P1 is the same as that described above, and is therefore omitted. In this case, when the processing chamber 20 reaches the first pressure P1, the second APC valve 58B is closed to open the gate valve 56, the opening degree of the first APC valve 58A is adjusted, and the main exhaust line 52 provided with the pipe 52A is provided. Exhaust with, and reduce the pressure until the processing pressure is reached.

なお、処理圧力に応じて、第1APCバルブ58Aを開放しつつ、ある程度の圧力まで減圧されると、第1APCバルブ58Aの開度を調整して処理圧力にしてもよく、第1APCバルブ58Aの開放によって減圧される圧力は、処理圧力付近まで減圧すればよいので処理圧力より高くても低くても構わない。 When the pressure is reduced to a certain level while opening the first APC valve 58A according to the processing pressure, the opening degree of the first APC valve 58A may be adjusted to the processing pressure, and the first APC valve 58A may be opened. The pressure depressurized by the pressure may be higher or lower than the processing pressure because the pressure may be reduced to the vicinity of the processing pressure.

この実施形態であっても、大気圧付近の圧力からある程度の負圧(例えば、第1圧力)になるまでAPCバルブにより開度を調整しながら減圧しているので、処理室にパーティクルを拡散させず、短時間で処理圧力に調整することができる。 Even in this embodiment, since the pressure is reduced while adjusting the opening degree by the APC valve from the pressure near the atmospheric pressure to a certain negative pressure (for example, the first pressure), the particles are diffused in the processing chamber. The processing pressure can be adjusted in a short time.

100 基板処理装置
20 処理室
52 メイン排気ライン
54 バイパス排気ライン
56 ゲートバルブ(開閉バルブの一例)
58A 第1APCバルブ(第1開度調整バルブの一例)
58B 第2APCバルブ(第2開度調整バルブの一例)
62 圧力センサ群
70 主制御部(APCコントローラとともに構成される制御部の一例)
72 APCコントローラ(主制御部とともに構成される制御部の一例)
100 Board processing device 20 Processing chamber 52 Main exhaust line 54 Bypass exhaust line 56 Gate valve (example of open / close valve)
58A 1st APC valve (example of 1st opening adjustment valve)
58B 2nd APC valve (example of 2nd opening adjustment valve)
62 Pressure sensor group 70 Main control unit (an example of a control unit configured with an APC controller)
72 APC controller (an example of a control unit configured with the main control unit)

Claims (5)

基板を処理する処理室と、
前記処理室からガスを排出する第1配管と、前記第1配管に設けられた第1開度調整バルブと、前記第1配管に設けられた開閉バルブと、前記第1配管に設けられ、前記処理室の圧力を検出する圧力センサと、を備えたメイン排気ラインと、
前記メイン排気ラインに接続された第2配管と、前記第2配管に設けられた第2開度調整バルブと、を備えたバイパス排気ラインと、
前記圧力センサからの情報に基づき、前記第2開度調整バルブの開度を調整して前記処理室が第1圧力になるまで減圧し、前記第1圧力に至ると前記第2開度調整バルブを閉止させて前記開閉バルブ及び前記第1開度調整バルブを開放して、前記処理室が第2圧力になるまで減圧し、前記処理室が第2圧力に至ると前記開閉バルブ及び前記第1開度調整バルブを閉止させて前記第2開度調整バルブの開度を調整して前記処理室を処理圧力にすることが可能なよう構成される制御部と、
を有する基板処理装置。
A processing room for processing the substrate and
The first pipe for discharging gas from the processing chamber, the first opening degree adjusting valve provided in the first pipe, the on-off valve provided in the first pipe, and the opening / closing valve provided in the first pipe are provided in the first pipe. A main exhaust line equipped with a pressure sensor that detects the pressure in the processing chamber, and
A bypass exhaust line including a second pipe connected to the main exhaust line and a second opening degree adjusting valve provided in the second pipe.
Based on the information from the pressure sensor, the opening degree of the second opening degree adjusting valve is adjusted to reduce the pressure until the processing chamber reaches the first pressure, and when the first pressure is reached, the second opening degree adjusting valve is reached. The opening / closing valve and the first opening adjustment valve are opened to reduce the pressure until the processing chamber reaches the second pressure, and when the processing chamber reaches the second pressure, the opening / closing valve and the first opening / closing valve are opened. A control unit configured to close the opening degree adjusting valve to adjust the opening degree of the second opening degree adjusting valve to bring the processing chamber to the processing pressure.
Substrate processing equipment with.
前記第2配管は、前記第1配管より口径が小さい請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the second pipe has a smaller diameter than the first pipe. 前記圧力センサは、第1真空センサと第2真空センサを備え、
前記第1真空センサからの情報に基づいて、前記第2圧力になるまで減圧し、前記第2真空センサからの情報に基づいて、前記第2圧力から処理圧力にする請求項1に記載の基板処理装置。
The pressure sensor includes a first vacuum sensor and a second vacuum sensor.
The substrate according to claim 1, wherein the pressure is reduced to the second pressure based on the information from the first vacuum sensor, and the processing pressure is changed from the second pressure based on the information from the second vacuum sensor. Processing device.
基板を処理する処理室と、前記処理室からガスを排出する第1配管と、前記第1配管に設けられた第1開度調整バルブと、前記第1配管に設けられた開閉バルブと、前記第1配管に設けられ、前記処理室の圧力を検出する圧力センサと、を備えたメイン排気ラインと、前記メイン排気ラインに接続された第2配管と、前記第2配管に設けられた第2開度調整バルブと、を備えたバイパス排気ラインと、を備えた前記処理室を大気圧に準備する工程と、
前記圧力センサからの情報に基づき、前記第2開度調整バルブの開度を調整して前記処理室が第1圧力になるまで減圧する工程と、
前記第1圧力に至ると前記第2開度調整バルブを閉止させて前記開閉バルブ及び前記第1開度調整バルブを開放して、前記処理室が第2圧力になるまで減圧する工程と、
前記処理室が前記第2圧力に至ると前記開閉バルブ及び前記第1開度調整バルブを閉止させて前記第2開度調整バルブの開度を調整して前記処理室を処理圧力にする工程と、
前記基板を処理する基板処理工程と、
を有する半導体装置の製造方法。
The processing chamber for processing the substrate, the first pipe for discharging gas from the processing chamber, the first opening degree adjusting valve provided in the first pipe, the on-off valve provided in the first pipe, and the above. A main exhaust line provided in the first pipe and having a pressure sensor for detecting the pressure in the processing chamber, a second pipe connected to the main exhaust line, and a second pipe provided in the second pipe. The process of preparing the processing chamber with an opening adjustment valve and a bypass exhaust line at atmospheric pressure.
A step of adjusting the opening degree of the second opening degree adjusting valve based on the information from the pressure sensor to reduce the pressure until the processing chamber reaches the first pressure.
When the first pressure is reached, the second opening adjustment valve is closed, the on-off valve and the first opening adjustment valve are opened, and the pressure is reduced until the processing chamber reaches the second pressure.
When the processing chamber reaches the second pressure, the opening / closing valve and the first opening degree adjusting valve are closed to adjust the opening degree of the second opening degree adjusting valve to make the processing chamber the processing pressure. ,
The substrate processing process for processing the substrate and
A method for manufacturing a semiconductor device having.
基板を処理する処理室と、
前記処理室からガスを排出する第1配管と、前記第1配管に設けられた第1開度調整バルブと、前記第1配管に設けられた開閉バルブと、前記第1配管に設けられ、前記処理室の圧力を検出する圧力センサと、を備えたメイン排気ラインと、前記メイン排気ラインに接続された第2配管と、前記第2配管に設けられた第2開度調整バルブと、を備えたバイパス排気ラインと、を有する基板処理装置で実行される基板処理プログラムであって、
前記圧力センサからの情報に基づき、前記第2開度調整バルブの開度を調整して前記処理室が第1圧力になるまで減圧する手順と、
前記第1圧力に至ると前記第2開度調整バルブを閉止させて前記開閉バルブ及び第1開度調整バルブを開放して、前記処理室が第2圧力になるまで減圧する手順と、
前記処理室が第2圧力に至ると前記開閉バルブ及び第1開度調整バルブを閉止させて前記第2開度調整バルブの開度を調整して前記処理室を処理圧力にする手順と、
をコンピュータにより前記基板処理装置に実行させる基板処理プログラム。
A processing room for processing the substrate and
The first pipe for discharging gas from the processing chamber, the first opening degree adjusting valve provided in the first pipe, the on-off valve provided in the first pipe, and the opening / closing valve provided in the first pipe are provided in the first pipe. A main exhaust line including a pressure sensor for detecting the pressure in the processing chamber, a second pipe connected to the main exhaust line, and a second opening degree adjusting valve provided in the second pipe. A board processing program executed by a board processing device having a bypass exhaust line.
Based on the information from the pressure sensor, the procedure of adjusting the opening degree of the second opening degree adjusting valve to reduce the pressure until the processing chamber reaches the first pressure, and
When the first pressure is reached, the second opening adjustment valve is closed, the on-off valve and the first opening adjustment valve are opened, and the pressure is reduced until the processing chamber reaches the second pressure.
When the processing chamber reaches the second pressure, the opening / closing valve and the first opening degree adjusting valve are closed to adjust the opening degree of the second opening degree adjusting valve to make the processing chamber the processing pressure.
A board processing program that causes the board processing device to execute the above.
JP2020117977A 2019-08-06 2020-07-08 Substrate processing equipment, semiconductor device manufacturing method and substrate processing program Active JP7055173B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG10202007254WA SG10202007254WA (en) 2019-08-06 2020-07-29 Substrate processing apparatus, method of manufacturing semiconductor device and substrate processing program
KR1020200094132A KR20210018075A (en) 2019-08-06 2020-07-29 Substrate processing apparatus, method of manufacturing semiconductor device and substrate processing program
TW109126304A TWI797469B (en) 2019-08-06 2020-08-04 Substrate processing apparatus, manufacturing method of semiconductor device, and substrate processing program
US16/985,785 US11846025B2 (en) 2019-08-06 2020-08-05 Substrate processing apparatus capable of adjusting inner pressure of process chamber thereof and method therefor
CN202010780129.4A CN112349623B (en) 2019-08-06 2020-08-05 Substrate processing apparatus, method for manufacturing semiconductor device, and computer-readable recording medium
KR1020230116999A KR102745428B1 (en) 2019-08-06 2023-09-04 Substrate processing apparatus, method of manufacturing semiconductor device and program
US18/504,420 US20240076780A1 (en) 2019-08-06 2023-11-08 Substrate processing apparatus and exhaust system capable of adjusting inner pressure of process chamber thereof, and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019144877 2019-08-06
JP2019144877 2019-08-06

Publications (2)

Publication Number Publication Date
JP2021027339A JP2021027339A (en) 2021-02-22
JP7055173B2 true JP7055173B2 (en) 2022-04-15

Family

ID=74662512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117977A Active JP7055173B2 (en) 2019-08-06 2020-07-08 Substrate processing equipment, semiconductor device manufacturing method and substrate processing program

Country Status (4)

Country Link
JP (1) JP7055173B2 (en)
KR (1) KR20210018075A (en)
SG (1) SG10202007254WA (en)
TW (1) TWI797469B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357660B2 (en) * 2021-07-09 2023-10-06 株式会社Kokusai Electric Substrate processing equipment, semiconductor device manufacturing method and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257197A (en) 2000-03-10 2001-09-21 Hitachi Ltd Manufacturing method and manufacturing device for semiconductor device
JP2002134492A (en) 2000-10-27 2002-05-10 Tokyo Electron Ltd Heat treatment apparatus
JP2004206662A (en) 2002-11-08 2004-07-22 Tokyo Electron Ltd Apparatus and method for processing
JP2008153695A (en) 2008-03-06 2008-07-03 Tokyo Electron Ltd Processing apparatus of workpiece
JP2012054393A (en) 2010-09-01 2012-03-15 Hitachi Kokusai Electric Inc Substrate processing apparatus and semiconductor manufacturing method
WO2014157071A1 (en) 2013-03-25 2014-10-02 株式会社日立国際電気 Substrate processing device, method for manufacturing semiconductor device, and method for processing substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355238B2 (en) * 1993-11-16 2002-12-09 株式会社日立国際電気 Semiconductor film forming equipment
JP3567070B2 (en) * 1997-12-27 2004-09-15 東京エレクトロン株式会社 Heat treatment apparatus and heat treatment method
US5948169A (en) * 1998-03-11 1999-09-07 Vanguard International Semiconductor Corporation Apparatus for preventing particle deposition in a capacitance diaphragm gauge
JP4521889B2 (en) * 1998-04-23 2010-08-11 株式会社日立国際電気 Substrate processing equipment
JP5792390B2 (en) * 2012-07-30 2015-10-14 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and program
JP2015183985A (en) * 2014-03-26 2015-10-22 株式会社Screenホールディングス substrate processing apparatus and substrate processing method
JP6910798B2 (en) * 2016-03-15 2021-07-28 株式会社Screenホールディングス Vacuum drying method and vacuum drying device
JP2019036654A (en) * 2017-08-18 2019-03-07 株式会社Screenホールディングス Decompression drying device, substrate processing apparatus, and decompression drying method
JP6613276B2 (en) * 2017-09-22 2019-11-27 株式会社Kokusai Electric Semiconductor device manufacturing method, program, recording medium, and substrate processing apparatus
JP6808690B2 (en) * 2018-07-25 2021-01-06 株式会社Screenホールディングス Vacuum drying device, substrate processing device and vacuum drying method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257197A (en) 2000-03-10 2001-09-21 Hitachi Ltd Manufacturing method and manufacturing device for semiconductor device
JP2002134492A (en) 2000-10-27 2002-05-10 Tokyo Electron Ltd Heat treatment apparatus
JP2004206662A (en) 2002-11-08 2004-07-22 Tokyo Electron Ltd Apparatus and method for processing
JP2008153695A (en) 2008-03-06 2008-07-03 Tokyo Electron Ltd Processing apparatus of workpiece
JP2012054393A (en) 2010-09-01 2012-03-15 Hitachi Kokusai Electric Inc Substrate processing apparatus and semiconductor manufacturing method
WO2014157071A1 (en) 2013-03-25 2014-10-02 株式会社日立国際電気 Substrate processing device, method for manufacturing semiconductor device, and method for processing substrate

Also Published As

Publication number Publication date
KR20210018075A (en) 2021-02-17
SG10202007254WA (en) 2021-03-30
TWI797469B (en) 2023-04-01
JP2021027339A (en) 2021-02-22
TW202111251A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112349623B (en) Substrate processing apparatus, method for manufacturing semiconductor device, and computer-readable recording medium
JP7055173B2 (en) Substrate processing equipment, semiconductor device manufacturing method and substrate processing program
JP4927623B2 (en) Method of boosting load lock device
EP1235262B1 (en) Heat treatment device
US20220002870A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium storing program
JP2670515B2 (en) Vertical heat treatment equipment
KR102361934B1 (en) Method of manufacturing semiconductor device, substrate processsing apparatus, and recording medium
JP3320505B2 (en) Heat treatment apparatus and method
JP2012129232A (en) Substrate processing apparatus and manufacturing method of semiconductor device
JP5597433B2 (en) Vacuum processing equipment
KR102785585B1 (en) Substrate processing device, manufacturing method and program for semiconductor devices
JP3888430B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2006086186A (en) Substrate processing equipment
JP4425895B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP3908616B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2006040990A (en) Reduced pressure heat treatment apparatus and method of restoration to normal pressure of the apparatus
WO2024057590A1 (en) Exhaust structure, exhaust system, processing device, and method for manufacturing semiconductor device
JP2657254B2 (en) Processing apparatus and its exhaust method
KR20000011076A (en) Low-pressure processing device
JPH11186355A (en) Load locking mechanism, substrata processing device and substrate processing method
JP2000114186A (en) Semiconductor manufacturing apparatus and wafer- processing method
JPH11229141A (en) Substrate transfer method
JP2000164483A (en) Method and device of close adhesion strengthening treatment
JP2005217063A (en) Substrate processing method
JP2014130895A (en) Substrate processing apparatus, substrate transfer method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220405

R150 Certificate of patent or registration of utility model

Ref document number: 7055173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150