[go: up one dir, main page]

JP7054139B2 - Viscoelasticity measuring device and viscoelasticity measuring method - Google Patents

Viscoelasticity measuring device and viscoelasticity measuring method Download PDF

Info

Publication number
JP7054139B2
JP7054139B2 JP2018062184A JP2018062184A JP7054139B2 JP 7054139 B2 JP7054139 B2 JP 7054139B2 JP 2018062184 A JP2018062184 A JP 2018062184A JP 2018062184 A JP2018062184 A JP 2018062184A JP 7054139 B2 JP7054139 B2 JP 7054139B2
Authority
JP
Japan
Prior art keywords
sine wave
displacement
measurement object
shaking table
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062184A
Other languages
Japanese (ja)
Other versions
JP2019174259A (en
Inventor
慎一 平井
孝博 松野
忠奎 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP2018062184A priority Critical patent/JP7054139B2/en
Publication of JP2019174259A publication Critical patent/JP2019174259A/en
Application granted granted Critical
Publication of JP7054139B2 publication Critical patent/JP7054139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、食品などの粘弾性を有する計測対象物の粘弾性を計測する粘弾性計測装置および粘弾性計測方法に関するものである。 The present invention relates to a viscoelasticity measuring device and a viscoelasticity measuring method for measuring the viscoelasticity of a measurement object having viscoelasticity such as food.

食品の適切な食感を実現するためには、食品の有する粘弾性特性を評価することが必要である。従来、食品の粘弾性を評価する装置および方法が種々提案されている。たとえば、下記特許文献1に開示されるような測定装置および測定方法が提案されている。この測定装置および測定方法は、測定対象部位に押圧して当接させながら粘弾性特性を測定する探測系と、探測系から得られた信号を処理して粘弾性特性を計測するための信号処理系とからなっている。 In order to realize an appropriate texture of food, it is necessary to evaluate the viscoelastic property of the food. Conventionally, various devices and methods for evaluating the viscoelasticity of foods have been proposed. For example, a measuring device and a measuring method as disclosed in Patent Document 1 below have been proposed. This measuring device and measuring method are an exploration system that measures viscoelastic properties while pressing and abutting against the measurement target site, and signal processing for processing signals obtained from the exploration system to measure viscoelastic properties. It consists of a system.

特開2007-24606号公報Japanese Unexamined Patent Publication No. 2007-24606

しかしながら、従来では、探測系が測定対象部位に押圧されるので、押圧後の測定対象部位の特性が変化するおそれがある。たとえば、押圧後の測定対象部位は、押圧前の測定対象部位と比較して、硬化してしまう。この場合、複数回測定を行うと、二回目以降の測定では、測定対象部位の本来の粘弾性を得ることができない。また、探測系が測定対象部位に押圧されるので、測定対象部位が損傷したり破壊されたりするおそれがある。測定対象部位が特に食品の場合、測定時に破壊されては、調理途中での測定を行うことができない。さらに、測定対象部位が特に食品の場合、測定対象部位が載せ置かれる皿以外に、探測系が測定対象部位に接触することになるので、衛生面での課題がある。 However, conventionally, since the exploration system is pressed against the measurement target portion, the characteristics of the measurement target portion after pressing may change. For example, the measurement target portion after pressing is hardened as compared with the measurement target portion before pressing. In this case, if the measurement is performed a plurality of times, the original viscoelasticity of the measurement target portion cannot be obtained in the second and subsequent measurements. Further, since the exploration system is pressed against the measurement target portion, the measurement target portion may be damaged or destroyed. Especially when the measurement target part is food, if it is destroyed at the time of measurement, the measurement cannot be performed during cooking. Further, when the measurement target part is particularly food, the exploration system comes into contact with the measurement target part in addition to the dish on which the measurement target part is placed, which poses a hygiene problem.

本発明は、このような事情に鑑みてなされたものであり、その主たる目的は、計測対象物を押圧することなく、計測対象物の粘弾性を正確に数値化することができる粘弾性計測装置および粘弾性計測方法を提供することにある。 The present invention has been made in view of such circumstances, and its main purpose is a viscoelasticity measuring device capable of accurately quantifying the viscoelasticity of a measurement object without pressing the measurement object. And to provide a viscoelasticity measuring method.

上記目的を達成するための本発明に係る粘弾性計測装置は、計測対象物が載置される振動台を有し、前記振動台を振動させる振動手段と、前記計測対象物が載置された前記振動台を振動させた状態で、前記計測対象物の所定の点の変位である第一変位、および前記振動台の所定の点の変位である第二変位を検出する変位検出手段と、前記変位検出手段により検出された前記第一変位の時間変化を示す正弦波である第一正弦波、および前記変位検出手段により検出された前記第二変位の時間変化を示す正弦波である第二正弦波を生成する正弦波生成手段と、前記正弦波生成手段により生成された前記第一正弦波および前記第二正弦波に基づき、前記第二正弦波の振幅に対する前記第一正弦波の振幅の比率を示す応答倍率、および前記第一正弦波と前記第二正弦波との位相差を求める算出手段と、基台に載置された物体が前記基台に立設される壁体に線形バネで接続されると共にダンパで接続された状態で前記基台を振動させて前記物体を振動させる振動モデルに前記計測対象物の振動を近似して求めた前記計測対象物のヤング率を示す式に、前記算出手段で求められた前記応答倍率および前記位相差を代入して、前記計測対象物のヤング率を求める演算手段とを備えることを特徴とする。 The viscoelasticity measuring device according to the present invention for achieving the above object has a vibrating table on which a measuring object is placed, and a vibrating means for vibrating the shaking table and the measuring object are placed on the shaking table. A displacement detecting means for detecting a first displacement, which is a displacement of a predetermined point of the object to be measured, and a second displacement, which is a displacement of a predetermined point of the shaking table, while the shaking table is vibrated. The first sine wave, which is a sine wave indicating the time change of the first displacement detected by the displacement detecting means, and the second sine wave, which is a sine wave indicating the time change of the second displacement detected by the displacement detecting means. The ratio of the amplitude of the first sine wave to the amplitude of the second sine wave based on the sine wave generating means for generating a wave and the first sine wave and the second sine wave generated by the sine wave generating means. A response magnification indicating the above, a calculation means for obtaining the phase difference between the first sine wave and the second sine wave, and a linear spring on the wall body on which the object placed on the base is erected on the base. In the formula showing the Young rate of the measurement object obtained by approximating the vibration of the measurement object to the vibration model that vibrates the base and vibrates the object while being connected and connected by the damper. It is characterized by comprising a calculation means for obtaining the Young's ratio of the measurement object by substituting the response magnification and the phase difference obtained by the calculation means.

また、本発明に係る粘弾性計測装置は、前記演算手段は、片持ち梁の先端部に力を加えて撓ませる可撓モデルに前記計測対象物を近似して求めた前記計測対象物の粘性係数を示す式に、前記算出手段で求められた前記応答倍率および前記位相差を代入して、前記計測対象物の粘性係数をさらに求めることを特徴とする。 Further, in the viscoelasticity measuring device according to the present invention, the calculation means obtains the viscosity of the measurement object by approximating the measurement object to a flexible model in which the tip of the cantilever is flexed by applying a force. It is characterized in that the viscosity coefficient of the measurement object is further obtained by substituting the response magnification and the phase difference obtained by the calculation means into the equation showing the coefficient.

さらに、本発明に係る粘弾性計測装置は、前記変位検出手段は、前記計測対象物および前記振動台を撮影するカメラを有し、前記カメラにより撮影された映像に基づき、前記第一変位および前記第二変位を検出することを特徴とする。 Further, in the viscoelasticity measuring device according to the present invention, the displacement detecting means has a camera for photographing the measurement object and the shaking table, and based on the image captured by the camera, the first displacement and the said. It is characterized by detecting a second displacement.

上記目的を達成するための本発明に係る粘弾性計測方法は、計測対象物が載置された振動台を振動させた状態で、前記計測対象物の所定の点の変位である第一変位、および前記振動台の所定の点の変位である第二変位を検出し、前記第一変位の時間変化を示す正弦波である第一正弦波、および前記第二変位の時間変化を示す正弦波である第二正弦波を生成し、前記第二正弦波の振幅に対する前記第一正弦波の振幅の比率を示す応答倍率、および前記第一正弦波と前記第二正弦波との位相差を求め、基台に載置された物体が前記基台に立設される壁体に線形バネで接続されると共にダンパで接続された状態で前記基台を振動させて前記物体を振動させる振動モデルに前記計測対象物の振動を近似して求めた前記計測対象物のヤング率を示す式に、前記応答倍率および前記位相差を代入して、前記計測対象物のヤング率を求めることを特徴とする。 The viscoelastic measurement method according to the present invention for achieving the above object is a first displacement, which is a displacement of a predetermined point of the measurement object in a state where the shaking table on which the measurement object is placed is vibrated. And the first sine wave which is a sine wave which detects the second displacement which is the displacement of the predetermined point of the shaking table and shows the time change of the first displacement, and the sine wave which shows the time change of the second displacement. A second sine wave is generated, and the response magnification indicating the ratio of the amplitude of the first sine wave to the amplitude of the second sine wave and the phase difference between the first sine wave and the second sine wave are obtained. The object placed on the base is connected to the wall body erected on the base by a linear spring and is connected by a damper, and the base is vibrated to vibrate the object. It is characterized in that the Young rate of the measurement object is obtained by substituting the response magnification and the phase difference into an equation showing the Young rate of the measurement object obtained by approximating the vibration of the measurement object.

本発明に係る粘弾性計測装置によれば、振動手段、変位検出手段、正弦波生成手段、算出手段および演算手段を用いて、計測対象物のヤング率を求めることができる。従って、計測対象物を押圧することなく、衛生的かつ正確に計測対象物の粘弾性を計測することができる。 According to the viscoelasticity measuring device according to the present invention, the Young's modulus of the object to be measured can be obtained by using the vibration means, the displacement detecting means, the sine wave generating means, the calculating means and the calculating means. Therefore, the viscoelasticity of the object to be measured can be measured hygienically and accurately without pressing the object to be measured.

また、本発明に係る粘弾性計測装置によれば、計測対象物のヤング率および粘性係数を求めることができるので、計測対象物の状態をより詳細に知ることができる。 Further, according to the viscoelasticity measuring device according to the present invention, the Young's modulus and the viscosity coefficient of the object to be measured can be obtained, so that the state of the object to be measured can be known in more detail.

さらに、本発明に係る粘弾性計測装置によれば、変位検出手段がカメラの映像に基づいて第一変位および第二変位を検出するので、装置を簡易な構成とすることができる。 Further, according to the viscoelasticity measuring device according to the present invention, since the displacement detecting means detects the first displacement and the second displacement based on the image of the camera, the device can be simply configured.

本発明に係る粘弾性計測方法によれば、計測対象物の第一変位の時間変化を示す第一正弦波、および振動台の第二変位の時間変化を示す第二正弦波から求められる応答倍率と位相差とを、振動モデルに計測対象物の振動を近似して求めたヤング率を示す式に代入する。従って、計測対象物のヤング率を求める際に、計測対象物を押圧する必要がない。 According to the viscoelasticity measuring method according to the present invention, the response magnification obtained from the first sine wave indicating the time change of the first displacement of the object to be measured and the second sine wave indicating the time change of the second displacement of the shaking table. And the phase difference are substituted into the equation showing the Young's ratio obtained by approximating the vibration of the object to be measured in the vibration model. Therefore, it is not necessary to press the measurement target when determining the Young's modulus of the measurement target.

本発明の粘弾性計測装置の一実施例の一部を断面にした概略構成図である。It is a schematic block diagram which made a part of one Example of the viscoelasticity measuring apparatus of this invention in the cross section. 振動モデルに計測対象物の振動を近似する説明図である。It is explanatory drawing which approximates the vibration of the measurement object to the vibration model. 可撓モデルに計測対象物を近似する説明図である。It is explanatory drawing which approximates the measurement object to a flexible model.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の粘弾性計測装置の一実施例を示す概略構成図であり、一部を切り欠いて示している。本実施例の粘弾性計測装置1は、計測対象物2を振動させることで、計測対象物2の粘弾性を計測する装置である。ここで、計測対象物2は、振動させることで弾性変形するものであればよく、たとえば食品のプリンとされる。図1に示されるように、本実施例の粘弾性計測装置1は、振動手段3、変位検出手段4、正弦波生成手段5、算出手段6および演算手段7を備える。 FIG. 1 is a schematic configuration diagram showing an embodiment of the viscoelasticity measuring device of the present invention, and is shown by cutting out a part. The viscoelasticity measuring device 1 of this embodiment is a device that measures the viscoelasticity of the measuring object 2 by vibrating the measuring object 2. Here, the object to be measured 2 may be elastically deformed by vibration, and may be, for example, a food pudding. As shown in FIG. 1, the viscoelasticity measuring device 1 of this embodiment includes a vibration means 3, a displacement detecting means 4, a sine wave generating means 5, a calculating means 6, and a calculation means 7.

振動手段3は、計測対象物2が載置される振動台8を有し、この振動台8を振動させる手段である。本実施例の振動手段3は、前記振動台8と、振動台8が支持される支持ベース9と、振動台8の駆動手段10とを備えて構成される。 The vibrating means 3 has a vibrating table 8 on which the measurement object 2 is placed, and is a means for vibrating the vibrating table 8. The vibrating means 3 of the present embodiment includes the shaking table 8, a support base 9 on which the shaking table 8 is supported, and a driving means 10 of the shaking table 8.

振動台8は、左右方向を長手方向とする略長方形の板状に形成されており、板面を上下に向けて配置される。振動台8の下面の前後両端部にはそれぞれ、左右に離隔して脚部11が形成されている。各脚部11は、縦断面略四角形の棒状に形成されており、振動台8の下面に左右方向へ沿って形成されている。振動台8の上面の右端部には、後述するように、駆動手段10との係合部が形成されている。 The shaking table 8 is formed in a substantially rectangular plate shape with the left-right direction as the longitudinal direction, and is arranged with the plate surface facing up and down. Legs 11 are formed on the front and rear ends of the lower surface of the shaking table 8 so as to be separated from each other to the left and right. Each leg 11 is formed in the shape of a rod having a substantially quadrangular vertical cross section, and is formed on the lower surface of the shaking table 8 along the left-right direction. As will be described later, an engaging portion with the driving means 10 is formed at the right end portion of the upper surface of the shaking table 8.

支持ベース9は、左右方向を長手方向とする略長方形の板状に形成されており、板面を上下に向けて配置される。支持ベース9の上面の前後両端部にはそれぞれ、左右に離隔してレール12が形成されている。各レール12は、縦断面略四角形の棒状とされ、上面に上方へ開口する溝部13が左右方向へ沿って形成されている。 The support base 9 is formed in a substantially rectangular plate shape with the left-right direction as the longitudinal direction, and is arranged with the plate surface facing up and down. Rails 12 are formed on the front and rear ends of the upper surface of the support base 9 so as to be separated from each other to the left and right. Each rail 12 has a rod shape having a substantially quadrangular vertical cross section, and a groove portion 13 that opens upward on the upper surface is formed along the left-right direction.

駆動手段10は、たとえばモータとされ、支持ベース9に支持されるテーブル14に設けられる。テーブル14は、前後方向を長手方向とする略長方形の板状に形成されており、板面を上下に向けて配置される。テーブル14の下面の前後両端部にはそれぞれ、左右方向に互いに離隔して複数(図示例では三本)の支持柱15が下方へ延出して形成されている。テーブル14は、その支持柱15が支持ベース9に立設されて、支持ベース9の上方に配置される。このテーブル14の上面に、モータ10が設けられる。 The drive means 10 is, for example, a motor and is provided on a table 14 supported by a support base 9. The table 14 is formed in a substantially rectangular plate shape with the front-rear direction as the longitudinal direction, and is arranged with the plate surface facing up and down. A plurality of (three in the illustrated example) support columns 15 are formed so as to extend downward at both front and rear ends of the lower surface of the table 14 so as to be separated from each other in the left-right direction. The support pillar 15 of the table 14 is erected on the support base 9 and is arranged above the support base 9. A motor 10 is provided on the upper surface of the table 14.

図1に示されるように、振動台8は、その各脚部11がレール12の溝部13に差し込まれて、支持ベース9に支持される。従って、振動台8は、支持ベース9に対して、レール12に沿って左右方向へ往復動可能とされる。支持ベース9に支持された振動台8の上方には、前述したようにテーブル14を介してモータ10が配置される。この際、モータ10は、その出力軸16を下方へ向けて配置される。モータ10の出力軸16の先端部には、平面視略円形状の偏心カム17が設けられる。偏心カム17は、振動台8に形成された前記係合部であるカムフォロア18に係合される。カムフォロア18は、平面視略四角形の枠状で、枠内の左右長さが偏心カム17の直径とほぼ同一長さに形成されており、振動台8の上面の後端部に上方へ開口するよう設けられる。カムフォロア18の枠内にモータ10の出力軸16に設けられた偏心カム17が収容されて、振動台8とモータ10とが接続される。 As shown in FIG. 1, the shaking table 8 is supported by the support base 9 by inserting each leg portion 11 into the groove portion 13 of the rail 12. Therefore, the shaking table 8 can reciprocate in the left-right direction along the rail 12 with respect to the support base 9. Above the shaking table 8 supported by the support base 9, the motor 10 is arranged via the table 14 as described above. At this time, the motor 10 is arranged with its output shaft 16 facing downward. An eccentric cam 17 having a substantially circular shape in a plan view is provided at the tip of the output shaft 16 of the motor 10. The eccentric cam 17 is engaged with the cam follower 18, which is the engaging portion formed on the shaking table 8. The cam follower 18 has a substantially quadrangular frame shape in a plan view, and the left and right lengths in the frame are formed to be substantially the same as the diameter of the eccentric cam 17, and the cam follower 18 opens upward at the rear end portion of the upper surface of the shaking table 8. Is provided. An eccentric cam 17 provided on the output shaft 16 of the motor 10 is housed in the frame of the cam follower 18, and the shaking table 8 and the motor 10 are connected to each other.

このような構成であるので、振動手段3は、モータ10を駆動することで、振動台8を左右方向へ沿って往復動させることができる。たとえば、モータ10を等速で駆動することで、振動台8を単弦振動させることができる。従って、振動台8上に皿19を介して計測対象物2であるプリンを載せ置いた状態で、振動台8を往復動することで、プリンをふるわせることができる。ここで、振動台8の上面には、振動時にプリンが載せ置かれる皿19が滑らないように、ゴム製のシートが設けられる。なお、本実施例では、ストロークが10mm(振幅が5mm)となるようにカムが設計されている。 With such a configuration, the vibrating means 3 can reciprocate the shaking table 8 in the left-right direction by driving the motor 10. For example, by driving the motor 10 at a constant speed, the shaking table 8 can be vibrated in a single string. Therefore, the pudding can be shaken by reciprocating the shaking table 8 with the pudding, which is the object to be measured 2, placed on the shaking table 8 via the plate 19. Here, a rubber sheet is provided on the upper surface of the shaking table 8 so that the dish 19 on which the pudding is placed does not slip during vibration. In this embodiment, the cam is designed so that the stroke is 10 mm (amplitude is 5 mm).

変位検出手段4は、計測対象物2が載置された振動台8を振動させた状態において、計測対象物2の変位および振動台8の変位を検出する手段である。具体的には、計測対象物2の所定の点の変位である第一変位、および振動台8の所定の点の変位である第二変位が検出される。本実施例の変位検出手段4は、計測対象物2および振動台8を撮影するカメラ20を有し、このカメラ20により撮影された映像に基づき、計測対象物2の第一変位および振動台8の第二変位を検出するものである。典型的には、変位検出手段4は、前述したカメラ20と、このカメラ20と接続される軌道作成部21とを備えて構成される。 The displacement detecting means 4 is a means for detecting the displacement of the measuring object 2 and the displacement of the shaking table 8 in a state where the shaking table 8 on which the measuring object 2 is placed is vibrated. Specifically, the first displacement, which is the displacement of the predetermined point of the measurement object 2, and the second displacement, which is the displacement of the predetermined point of the shaking table 8, are detected. The displacement detecting means 4 of the present embodiment has a camera 20 for photographing the measurement object 2 and the shaking table 8, and the first displacement of the measuring object 2 and the shaking table 8 are based on the image captured by the camera 20. It detects the second displacement of. Typically, the displacement detecting means 4 includes the above-mentioned camera 20 and a trajectory creating unit 21 connected to the camera 20.

カメラ20は、動画を撮影することができるものであり、本実施例では高速カメラとされる。カメラ20は、振動台8の往復動の方向に対して、交差するように設けられる。本実施例では、振動台8が左右方向へ往復動するので、振動手段3の前方にカメラ20が配置される。カメラ20で撮影された映像は、軌道作成部21で映像解析がなされる。具体的には、従来公知の映像解析がなされて、計測対象物2の所定の点の軌道データおよび振動台8の所定の点の軌道データが得られる。ここで得られる両軌道データは、映像上の距離であるので、実際の距離に変換される。ここでは、振動手段3の前方にカメラ20が配置されるので、計測対象物2であるプリンの所定の点は、計測対象物2の表面上において、正面視略台形状の上側左角部に設定される。一方、振動台8の所定の点は、振動台8の表面上において、前面の上側左角部に設定される。なお、本実施例では、計測対象物2の振動をカメラ20で撮影するので、プリン以外の計測対象物2としては、振動時の弾性変形をカメラ20で撮影することができる程度に弾性変形するものとされる。 The camera 20 can shoot a moving image, and is referred to as a high-speed camera in this embodiment. The camera 20 is provided so as to intersect the direction of the reciprocating motion of the shaking table 8. In this embodiment, since the shaking table 8 reciprocates in the left-right direction, the camera 20 is arranged in front of the vibrating means 3. The image taken by the camera 20 is image-analyzed by the trajectory creating unit 21. Specifically, conventionally known video analysis is performed to obtain orbital data of a predetermined point of the measurement object 2 and orbital data of a predetermined point of the shaking table 8. Since both orbital data obtained here are distances on the image, they are converted into actual distances. Here, since the camera 20 is arranged in front of the vibrating means 3, the predetermined point of the pudding which is the measurement object 2 is on the surface of the measurement object 2 at the upper left corner portion of the front view substantially trapezoidal shape. Set. On the other hand, a predetermined point of the shaking table 8 is set at the upper left corner portion of the front surface on the surface of the shaking table 8. In this embodiment, since the vibration of the measurement object 2 is photographed by the camera 20, the measurement object 2 other than the pudding is elastically deformed to such an extent that the elastic deformation during vibration can be photographed by the camera 20. It is supposed to be.

正弦波生成手段5は、変位検出手段4により検出された変位に基づき、正弦波を生成する手段である。具体的には、計測対象物2の第一変位の時間変化を示す正弦波である第一正弦波、および振動台8の第二変位の時間変化を示す正弦波である第二正弦波が作成される。ここでは、変位検出手段4により得られた軌道データの水平方向の変位を振動の変位として、計測した振動の変位の時間変化が正弦波に近似される。 The sine wave generating means 5 is a means for generating a sine wave based on the displacement detected by the displacement detecting means 4. Specifically, a first sine wave, which is a sine wave indicating the time change of the first displacement of the measurement object 2, and a second sine wave, which is a sine wave indicating the time change of the second displacement of the shaking table 8, are created. Will be done. Here, the horizontal displacement of the orbital data obtained by the displacement detecting means 4 is regarded as the vibration displacement, and the time change of the measured vibration displacement is approximated to a sine wave.

算出手段6は、正弦波生成手段5により生成された第一正弦波および第二正弦波に基づき、応答倍率および位相差を求める手段である。ここで、応答倍率は、第二正弦波の振幅に対する第一正弦波の振幅の比率、すなわち、第一正弦波の振幅/第二正弦波の振幅で示される。位相差は、第一正弦波と第二正弦波との位相差であり、第一正弦波の初期位相-第二正弦波の初期位相で示される。 The calculation means 6 is a means for obtaining the response magnification and the phase difference based on the first sine wave and the second sine wave generated by the sine wave generation means 5. Here, the response magnification is indicated by the ratio of the amplitude of the first sine wave to the amplitude of the second sine wave, that is, the amplitude of the first sine wave / the amplitude of the second sine wave. The phase difference is the phase difference between the first sine wave and the second sine wave, and is represented by the initial phase of the first sine wave-the initial phase of the second sine wave.

演算手段7は、計測対象物2の粘弾性を示すヤング率および粘性係数を求める手段である。計測対象物2のヤング率は、振動モデルに計測対象物2の振動を近似して求めた計測対象物2のヤング率を示す式に、算出手段6で求められた応答倍率および位相差を代入して求められる。また、計測対象物2の粘性係数は、可撓モデルに計測対象物2を近似して求めた計測対象物2の粘性係数を示す式に、算出手段6で求められた応答倍率および位相差を代入して求められる。求められたヤング率および粘性係数は、ディスプレイなどの表示手段に表示されたり、記憶手段に記憶されたり、また、所定の形式でプリントアウトされたりする。なお、振動モデルに近似してヤング率を求める手法、および可撓モデルに近似して粘性係数を求める手法の詳細については、後述する。 The calculation means 7 is a means for obtaining the Young's modulus and the viscosity coefficient indicating the viscoelasticity of the object to be measured 2. The Young's modulus of the measurement object 2 is obtained by substituting the response magnification and the phase difference obtained by the calculation means 6 into the equation showing the Young's modulus of the measurement object 2 obtained by approximating the vibration of the measurement object 2 to the vibration model. Is required. Further, the viscosity coefficient of the measurement object 2 is the response magnification and the phase difference obtained by the calculation means 6 in the formula showing the viscosity coefficient of the measurement object 2 obtained by approximating the measurement object 2 to the flexible model. Obtained by substituting. The obtained Young's modulus and viscosity coefficient are displayed on a display means such as a display, stored in a storage means, or printed out in a predetermined format. The details of the method of obtaining Young's modulus by approximating the vibration model and the method of obtaining the viscosity coefficient by approximating the flexible model will be described later.

次に、本実施例の粘弾性計測装置1を用いて、計測対象物2の粘弾性を計測する粘弾性計測方法について説明する。本実施例の粘弾性計測方法では、まず、振動手段3の振動台8上に計測対象物2であるプリンが盛り付けられた皿19が載置される。このようにして計測対象物2が載置された振動台8を振動させた状態において、第一変位および第二変位が変位検出手段4により検出される。この際、振動台8は、一定の周波数で振動される。そして、第一正弦波および第二正弦波が正弦波生成手段5により生成される。ここで、振動台8の変位および振幅がx(t)およびA、計測対象物2の変位および振幅がx’(t)およびA’とされたとき、各計測データが次式に近似される。なお、下記の各式において、ωは角速度、tは時間、φは初期位相とされる。 Next, a viscoelasticity measuring method for measuring the viscoelasticity of the object to be measured 2 will be described using the viscoelasticity measuring device 1 of the present embodiment. In the viscoelasticity measuring method of this embodiment, first, a dish 19 on which the pudding, which is the object to be measured 2, is placed is placed on the shaking table 8 of the vibrating means 3. In the state where the shaking table 8 on which the measurement object 2 is placed is vibrated in this way, the first displacement and the second displacement are detected by the displacement detecting means 4. At this time, the shaking table 8 is vibrated at a constant frequency. Then, the first sine wave and the second sine wave are generated by the sine wave generation means 5. Here, when the displacement and amplitude of the shaking table 8 are x (t) and A, and the displacement and amplitude of the measurement object 2 are x'(t) and A', each measurement data is approximated by the following equation. .. In each of the following equations, ω is the angular velocity, t is the time, and φ is the initial phase.

Figure 0007054139000001
Figure 0007054139000001

Figure 0007054139000002
Figure 0007054139000002

第一正弦波および第二正弦波の生成後、応答倍率および位相差が算出手段6により求められる。具体的には、計測データの正弦波への近似結果から、応答倍率および位相差を取得することができる。応答倍率Tおよび位相差θは、次式により得られる。 After the generation of the first sine wave and the second sine wave, the response magnification and the phase difference are obtained by the calculation means 6. Specifically, the response magnification and the phase difference can be obtained from the approximation result of the measurement data to the sine wave. The response magnification T and the phase difference θ are obtained by the following equations.

Figure 0007054139000003
Figure 0007054139000003

Figure 0007054139000004
Figure 0007054139000004

求められた応答倍率および位相差を用いて、演算手段7により計測対象物2のヤング率が求められる。これは、前述したように、振動モデルに計測対象物2の振動を近似して求めた計測対象物2のヤング率を示す式に、応答倍率および位相差を代入することでなされる。 Using the obtained response magnification and phase difference, the Young's modulus of the measurement object 2 is obtained by the arithmetic means 7. As described above, this is done by substituting the response magnification and the phase difference into the equation showing the Young's modulus of the measurement object 2 obtained by approximating the vibration of the measurement object 2 to the vibration model.

図2は、振動モデルに計測対象物の振動を近似する説明図である。この図に示されるように、物体22は、基台23に載置された状態で、基台23に立設される壁体24に、一次のバネである線形バネ25で接続されると共にダンパ26で接続される。この状態で基台23を振動台8に載せ置いて、振動台8を水平方向(図2の紙面における左右方向)に振動させるのが、前述した振動モデルであり、この振動モデルに計測対象物2の振動手段3による振動が近似される。振動時において、振動台8に対して基台23がずれないように、振動台8の上面にはゴム製のシートが設けられる。ここで、計測対象物2の質量がm、計測対象物2の水平方向の変位量がx、減衰係数がc、バネ定数がk、振動台8の変位量がxとされたとき、下記の運動方程式が得られる。 FIG. 2 is an explanatory diagram that approximates the vibration of the measurement object to the vibration model. As shown in this figure, the object 22 is mounted on the base 23 and is connected to the wall body 24 erected on the base 23 by a linear spring 25 which is a primary spring and is also a damper. Connected at 26. In this state, the base 23 is placed on the shaking table 8 and the shaking table 8 is vibrated in the horizontal direction (horizontal direction on the paper surface of FIG. 2), which is the above-mentioned vibration model. The vibration by the vibration means 3 of 2 is approximated. A rubber sheet is provided on the upper surface of the shaking table 8 so that the base 23 does not shift with respect to the shaking table 8 during vibration. Here, when the mass of the object 2 to be measured is m, the displacement amount in the horizontal direction of the object 2 to be measured is x , the damping coefficient is c, the spring constant is k, and the displacement amount of the shaking table 8 is x0, the following The equation of motion of is obtained.

Figure 0007054139000005
Figure 0007054139000005

計測対象物2には、計測のために、強制振動が加えられる。Xが振動台8の振動の振幅、ωが振動の周波数、tが時間とされたとき、振動台8の変位量xが次式で定義される。 Forced vibration is applied to the object to be measured 2 for measurement. When X 0 is the amplitude of the vibration of the shaking table 8, ω is the frequency of the vibration, and t is the time, the displacement amount x 0 of the shaking table 8 is defined by the following equation.

Figure 0007054139000006
Figure 0007054139000006

振動台8上で揺れる計測対象物2が線形バネ25とダンパ26で定義されたとき、出力される位相差θは、以下のとおりである。 When the measurement object 2 swinging on the shaking table 8 is defined by the linear spring 25 and the damper 26, the phase difference θ output is as follows.

Figure 0007054139000007
Figure 0007054139000007

計測対象物2の振動の振幅がXとされたとき、入力した強制振動に対する応答倍率Tは、次式により得られる。 When the amplitude of the vibration of the object to be measured 2 is X, the response magnification T to the input forced vibration is obtained by the following equation.

Figure 0007054139000008
Figure 0007054139000008

ここで、任意の強制振動に対して、位相差θおよび応答倍率Tが観測されたと仮定する。この際、観測された位相差θおよび応答倍率Tを満たすバネ定数kおよび減衰係数cは、次式により得られる。 Here, it is assumed that the phase difference θ and the response magnification T are observed for any forced vibration. At this time, the spring constant k and the damping coefficient c satisfying the observed phase difference θ and the response magnification T are obtained by the following equations.

Figure 0007054139000009
Figure 0007054139000009

Figure 0007054139000010
Figure 0007054139000010

但し、観測される位相差がゼロの場合、上述した方法では、結果を得ることができない。ここで、減衰係数がゼロの場合には位相差がゼロになることを用いて、次式によりバネ定数が求められる。 However, when the observed phase difference is zero, the result cannot be obtained by the above-mentioned method. Here, the spring constant is obtained by the following equation by using the fact that the phase difference becomes zero when the damping coefficient is zero.

Figure 0007054139000011
Figure 0007054139000011

以上のようにして得られたバネ定数および減衰係数により、計測対象物2のヤング率が導出される。計測対象物2を弾性体と仮定したとき、負荷により計測対象物2に蓄えられる弾性エネルギが求められる。計測対象物2に加えられる負荷がP、計測対象物2の高さがL、任意の高さがx、計測対象物2のヤング率がE、任意高さxにおけるせん断方向の断面二次モーメントがIとされたとき、弾性エネルギUが次式により得られる。 The Young's modulus of the object to be measured 2 is derived from the spring constant and the damping coefficient obtained as described above. Assuming that the object to be measured 2 is an elastic body, the elastic energy stored in the object 2 to be measured by the load is obtained. The load applied to the measurement object 2 is P, the height of the measurement object 2 is L, the arbitrary height is x L , the Young's modulus of the measurement object 2 is E, and the cross section in the shear direction at the arbitrary height x L is 2. When the next moment is I, the elastic energy U is obtained by the following equation.

Figure 0007054139000012
Figure 0007054139000012

本実施例では、計測対象物2がプリンとされるので、計測対象物2の形状が円錐台形状に近似される。この場合、計測対象物2の下面の直径dと任意高さxの断面直径dとの関係が直径の変化率aを用いて定義されたとき、任意高さxにおけるせん断方向の断面二次モーメントIが次式により得られる。 In this embodiment, since the measurement object 2 is a pudding, the shape of the measurement object 2 is approximated to a truncated cone shape. In this case, when the relationship between the diameter d 0 of the lower surface of the object to be measured 2 and the cross-sectional diameter d of the arbitrary height x L is defined using the rate of change a of the diameter, the cross section in the shear direction at the arbitrary height x L. The second moment I is obtained by the following equation.

Figure 0007054139000013
Figure 0007054139000013

Figure 0007054139000014
Figure 0007054139000014

なお、下面の直径dは、計測対象物2を直接計測して得るものとされる。また、直径の変化率aは、x=Lにおける直径の計測値より計算される。以上により、円錐台形状の計測対象物2の弾性エネルギは、次式により得られる。 The diameter d 0 of the lower surface is obtained by directly measuring the object 2 to be measured. Further, the rate of change a of the diameter is calculated from the measured value of the diameter at x L = L. From the above, the elastic energy of the truncated cone-shaped object 2 to be measured can be obtained by the following equation.

Figure 0007054139000015
Figure 0007054139000015

ここで、弾性エネルギUを負荷Pで偏微分することで、計測対象物2のたわみ量δが得られる。計測対象物2のたわみ量δは、次式のとおりである。 Here, by partially differentiating the elastic energy U with respect to the load P, the amount of deflection δ of the measurement object 2 can be obtained. The amount of deflection δ of the object to be measured 2 is as follows.

Figure 0007054139000016
Figure 0007054139000016

バネ定数がk=P/δとされたとき、前述のようにして得られたバネ定数kから、計測対象物2のヤング率Eが次式より導出される。 When the spring constant is k = P / δ, the Young's modulus E of the object to be measured 2 is derived from the following equation from the spring constant k obtained as described above.

Figure 0007054139000017
Figure 0007054139000017

従って、数式9および数式17に、算出手段6により求められた応答倍率Tおよび位相差θを代入することで、計測対象物2のヤング率を求めることができる。このようにして、振動モデルに計測対象物2の振動を近似して求めた計測対象物2のヤング率を示す式に、応答倍率および位相差を代入して、計測対象物2のヤング率が求められる。本実施例では、計測対象物2のヤング率に加えて、算出手段6により求められた応答倍率および位相差を用いて、演算手段7により計測対象物2の粘性係数が求められる。これは、前述したように、可撓モデルに計測対象物2を近似して求めた計測対象物2の粘性係数を示す式に、応答倍率および位相差を代入することでなされる。 Therefore, by substituting the response magnification T and the phase difference θ obtained by the calculation means 6 into the equations 9 and 17, the Young's modulus of the measurement object 2 can be obtained. In this way, the Young's modulus of the measurement object 2 is calculated by substituting the response magnification and the phase difference into the equation showing the Young's modulus of the measurement object 2 obtained by approximating the vibration of the measurement object 2 to the vibration model. Desired. In this embodiment, in addition to the Young's modulus of the measurement object 2, the viscosity coefficient of the measurement object 2 is obtained by the calculation means 7 by using the response magnification and the phase difference obtained by the calculation means 6. As described above, this is done by substituting the response magnification and the phase difference into the equation showing the viscosity coefficient of the measurement object 2 obtained by approximating the measurement object 2 to the flexible model.

図3は、可撓モデルに計測対象物を近似する説明図である。本実施例では、まず、計測対象物2がプリンであるので、計測対象物2の形状が円錐台形状に近似される。ここで、計測対象物2の底面の直径がd、直径の変化率がa、任意高さがx、円周率がπとされたとき、任意高さの断面二次モーメントは、次式により示される。 FIG. 3 is an explanatory diagram that approximates the measurement object to the flexible model. In this embodiment, first, since the measurement object 2 is a pudding, the shape of the measurement object 2 is approximated to a truncated cone shape. Here, when the diameter of the bottom surface of the object to be measured 2 is d 0 , the rate of change in diameter is a, the arbitrary height is x l , and the pi is π, the moment of inertia of area at the arbitrary height is as follows. Indicated by the formula.

Figure 0007054139000018
Figure 0007054139000018

このようにして計測対象物2の形状が円錐台形状に近似され、その底面が設置箇所に固定されて、円錐台形状の片持ち梁27とされる。任意の加重Fが加わる時の円錐台梁27先端の変位xは、円錐台梁27の高さをLとして、たわみ角の微分(F(L-x)/EI)を二回積分することで求められる。但し、ヤング率がE、積分定数がcおよびcとされる。 In this way, the shape of the object to be measured 2 is approximated to the shape of a truncated cone, and the bottom surface thereof is fixed to the installation location to form a truncated cone-shaped cantilever 27. For the displacement x of the tip of the truncated cone beam 27 when an arbitrary weighted F is applied, the derivative of the deflection angle (F (L-x l ) / EI) is integrated twice, where L is the height of the truncated cone beam 27. Is sought after. However, Young's modulus is E, and the constants of integration are c 1 and c 2 .

Figure 0007054139000019
Figure 0007054139000019

円錐台底面(x=0)のたわみ角およびたわみが0とされ、積分定数cおよびcが求められる。 The deflection angle and the deflection of the bottom surface of the truncated cone (x l = 0) are set to 0, and the constants c 1 and c 2 are obtained.

Figure 0007054139000020
Figure 0007054139000020

以上の式を整理することで、任意の加重Fが加わる時の円錐台梁27先端の変位xは、下記の式により得られる。 By arranging the above equations, the displacement x of the tip of the truncated cone beam 27 when an arbitrary weight F is applied can be obtained by the following equation.

Figure 0007054139000021
Figure 0007054139000021

次に、計測対象物2の粘性係数が存在しない状態を仮定し、梁27先端の力の時間変化(F-F)/Δtと任意位置のひずみ速度の関係を求める。図3のたわんだ円錐台梁27の拡大図に示されるように、拡大部の曲率半径がρ、曲率がdθ/ds、中立面からの任意距離がyとされる。この時、任意の高さxおよび中立面からの距離yの位置のひずみεxlyが次式により得られる。 Next, assuming a state in which the viscosity coefficient of the object 2 to be measured does not exist, the relationship between the time change (F1 −F2 ) / Δt of the force at the tip of the beam 27 and the strain rate at an arbitrary position is obtained. As shown in the enlarged view of the bent cone beam 27 in FIG. 3, the radius of curvature of the enlarged portion is ρ, the curvature is dθ / ds, and the arbitrary distance from the neutral plane is y. At this time, the strain ε xl at the position of an arbitrary height xl and the distance y from the neutral plane is obtained by the following equation.

Figure 0007054139000022
Figure 0007054139000022

任意の高さxおよび中立面からの距離yの位置の応力σxlyがフックの法則より得られる。 The stress σ xy at any height xl and at a distance y from the neutral plane is obtained from Hooke's law.

Figure 0007054139000023
Figure 0007054139000023

任意高さに加わるモーメントMは、ヤング率E、断面二次モーメントI、曲率半径ρより得られる。 The moment M applied to the arbitrary height is obtained from Young's modulus E, the moment of inertia of area I, and the radius of curvature ρ.

Figure 0007054139000024
Figure 0007054139000024

以上の数式22~数式24および定義した断面二次モーメントの数式18より、任意の高さxおよび中立面からの距離yの位置のひずみεxlyは、次式により得られる。 From the above equations 22 to 24 and the equation 18 of the defined moment of inertia of area, the strain ε xl at the position of an arbitrary height xl and the distance y from the neutral plane can be obtained by the following equation.

Figure 0007054139000025
Figure 0007054139000025

ここで、任意位置のひずみεxlyを時間変化させることを考える。任意位置のひずみがεxly1からεxly2へ、Δtの時間内に等速で変化することを任意位置のひずみ速度(εxly1-εxly2)/Δtと定義する。この時、任意のひずみ速度(εxly1-εxly2)/Δtを満たす力変化(F-F)は、次式のとおりである。 Here, consider changing the strain ε xly at an arbitrary position with time. The change of the strain at an arbitrary position from ε xly1 to ε xly2 at a constant velocity within the time of Δt is defined as the strain rate at an arbitrary position (ε xly1 −ε xly2 ) / Δt. At this time, the force change (F 1 − F 2 ) satisfying an arbitrary strain rate (ε xly1 −ε xly2 ) / Δt is as shown in the following equation.

Figure 0007054139000026
Figure 0007054139000026

また、計測対象物2の粘性係数が存在しない状態を仮定し、梁27先端の力の時間変化(F-F)/Δtと先端のたわみ速度の関係を求める。先端の変位がxからxへ、Δtの時間内に等速で変化することを先端のたわみ速度(x-x)/Δtと定義する。この時、任意のたわみ速度(x-x)/Δtを満たす力変化(F-F)は、次式のとおりである。 Further, assuming a state in which the viscosity coefficient of the object 2 to be measured does not exist, the relationship between the time change of the force at the tip of the beam 27 ( F1 −F2 ) / Δt and the deflection speed of the tip is obtained. The change of the displacement of the tip from x 1 to x 2 at a constant velocity within the time of Δt is defined as the deflection speed of the tip (x 1 − x 2 ) / Δt. At this time, the force change (F 1 − F 2 ) satisfying an arbitrary deflection velocity (x 1 − x 2 ) / Δt is as follows.

Figure 0007054139000027
Figure 0007054139000027

たわみ速度とひずみ速度との解析結果により、両者の関係が導出される。数式26および数式27において、力変化(F-F)の値は共有される。従って、数式26および数式27より下記の式が得られる。この時、円周率πおよびヤング率Eが下記の式から消去される。 The relationship between the flexure rate and the strain rate is derived from the analysis results. In Equation 26 and Equation 27, the values of force changes (F 1 -F 2 ) are shared. Therefore, the following formula can be obtained from the formulas 26 and 27. At this time, the pi and Young's modulus E are eliminated from the following equations.

Figure 0007054139000028
Figure 0007054139000028

任意のたわみ速度を満たすひずみ速度は、次式により得られる。この式には、ヤング率Eが含まれないため、いかなるヤング率においても下記の式の関係が成立する。 The strain rate satisfying any deflection speed is obtained by the following equation. Since this equation does not include Young's modulus E, the relationship of the following equation holds at any Young's modulus.

Figure 0007054139000029
Figure 0007054139000029

ここで、計測対象物2の弾性係数が存在せず、粘性係数のみが存在する状態を仮定する。この時、計測対象物2のたわみ曲線の傾向は、計測対象物2の弾性係数のみが存在するときと一致するものと仮定する。まず、粘性係数がμとされ、梁27の任意位置の粘性により生ずる応力σ’xlyがひずみ速度より計算される。 Here, it is assumed that the elastic modulus of the object to be measured 2 does not exist and only the viscosity coefficient exists. At this time, it is assumed that the tendency of the deflection curve of the object to be measured 2 coincides with the case where only the elastic modulus of the object to be measured 2 exists. First, the viscosity coefficient is μ, and the stress σ'xl caused by the viscosity at an arbitrary position of the beam 27 is calculated from the strain rate.

Figure 0007054139000030
Figure 0007054139000030

次に、粘性により生ずる梁27の任意位置のモーメントが求められる。これは、任意位置の断面に生ずる応力を面積で積分することで得られる。従って、粘性により生ずる梁27の任意位置のモーメントは、数式29および数式30により、次式のとおりである。 Next, the moment at an arbitrary position of the beam 27 generated by the viscosity is obtained. This is obtained by integrating the stress generated in the cross section at an arbitrary position by the area. Therefore, the moment at an arbitrary position of the beam 27 caused by the viscosity is as shown in the following equations according to the equations 29 and 30.

Figure 0007054139000031
Figure 0007054139000031

この時、数式31の式中に示される積分部位は、断面二次モーメントの定義と一致する。 At this time, the integration part shown in the equation of Equation 31 agrees with the definition of the moment of inertia of area.

Figure 0007054139000032
Figure 0007054139000032

これに加えて、粘性により先端に生ずる力F’と、任意位置のモーメントの関係を示す下記の式 In addition to this, the following equation showing the relationship between the force F'generated at the tip due to viscosity and the moment at an arbitrary position.

Figure 0007054139000033
Figure 0007054139000033

により、次式が得られる。この式において、任意高さを示すxは全て消去され、他のパラメータは全て固定の値である。そのため、下記の式では、粘性により先端に生ずる力F’と、先端の変位速度のみの関係を示すことが確認できる。 Therefore, the following equation is obtained. In this equation, all x l indicating an arbitrary height are eliminated, and all other parameters are fixed values. Therefore, in the following equation, it can be confirmed that the relationship between the force F'generated at the tip due to the viscosity and only the displacement speed of the tip is shown.

Figure 0007054139000034
Figure 0007054139000034

減衰係数cの定義を示す式 An equation showing the definition of the attenuation coefficient c

Figure 0007054139000035
Figure 0007054139000035

および数式34により、等価減衰係数と粘性係数の関係式が下記の式のとおりに得られる。 And the equation 34 gives the relational expression between the equivalent damping coefficient and the viscosity coefficient as follows.

Figure 0007054139000036
Figure 0007054139000036

従って、数式10および数式36に、算出手段6により求められた応答倍率Tおよび位相差θを代入することで、計測対象物2の粘性係数を求めることができる。このようにして、可撓モデルに計測対象物2を近似して求めた計測対象物2の粘性係数を示す式に、応答倍率および位相差を代入して、計測対象物2の粘性係数が求められる。 Therefore, the viscosity coefficient of the object to be measured 2 can be obtained by substituting the response magnification T and the phase difference θ obtained by the calculation means 6 into the equations 10 and 36. In this way, the viscosity coefficient of the measurement object 2 is obtained by substituting the response magnification and the phase difference into the equation showing the viscosity coefficient of the measurement object 2 obtained by approximating the measurement object 2 to the flexible model. Be done.

本実施例の場合、計測対象物2を振動させて、計測対象物2の第一変位の時間変化を示す第一正弦波、および振動台8の第二変位の時間変化を示す第二正弦波から、応答倍率と位相差が求められる。そして、振動モデルに計測対象物2の振動を近似して求めたヤング率を示す式に、応答倍率および位相差を代入することで、計測対象物2のヤング率が求められる。従って、計測対象物2を押圧することなく、計測対象物2の粘弾性を計測することができる。従来では、計測対象物2を押圧して計測するので、同一の計測対象物2に対して複数回計測した場合、計測対象物2が硬化して特性が変化してしまうおそれがあった。この場合、二回目以降の計測結果が一回目の計測結果と大きく異なってしまい、正確な値を計測することができない。これに対し、本実施例によれば、押圧することがないので、同一の計測対象物2を複数回計測しても、計測対象物2の特性が変化することがなく、正確に計測することができる。 In the case of this embodiment, the measurement object 2 is vibrated, and the first sine wave indicating the time change of the first displacement of the measurement object 2 and the second sine wave indicating the time change of the second displacement of the shaking table 8 are shown. Therefore, the response magnification and the phase difference can be obtained. Then, the Young's modulus of the measurement object 2 is obtained by substituting the response magnification and the phase difference into the equation showing the Young's modulus obtained by approximating the vibration of the measurement object 2 to the vibration model. Therefore, the viscoelasticity of the measurement object 2 can be measured without pressing the measurement object 2. Conventionally, since the measurement target 2 is pressed for measurement, when the same measurement target 2 is measured a plurality of times, the measurement target 2 may be hardened and its characteristics may change. In this case, the measurement results of the second and subsequent times are significantly different from the measurement results of the first time, and accurate values cannot be measured. On the other hand, according to this embodiment, since there is no pressing, the characteristics of the measurement object 2 do not change even if the same measurement object 2 is measured a plurality of times, and the measurement is accurate. Can be done.

また、本実施例の場合、計測対象物2のヤング率に加えて、計測対象物2の粘性係数が計測される。従って、計測対象物2の粘弾性をより詳細に知ることができる。なお、前述したように、計測対象物2を押圧することなく、計測対象物2の粘性係数を計測することができる。さらに、本実施例の場合、変位検出手段4がカメラ20を有するので、装置1を簡易な構成とすることができ、装置1にかかるコストを低減することができる。 Further, in the case of this embodiment, the viscosity coefficient of the measurement target 2 is measured in addition to the Young's modulus of the measurement target 2. Therefore, the viscoelasticity of the object to be measured 2 can be known in more detail. As described above, the viscosity coefficient of the object to be measured 2 can be measured without pressing the object 2 to be measured. Further, in the case of the present embodiment, since the displacement detecting means 4 has the camera 20, the device 1 can be simply configured and the cost of the device 1 can be reduced.

本発明は、前記の構成に限らず、適宜変更可能である。たとえば、振動手段3の構成は、前記実施例の構成に限定されるものではなく、従来公知のものが用いられる。 The present invention is not limited to the above configuration, and can be appropriately modified. For example, the configuration of the vibrating means 3 is not limited to the configuration of the above embodiment, and conventionally known ones are used.

本発明は、計測対象物を押圧することなく、計測対象物の粘弾性を計測する際に好適に用いることができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used when measuring the viscoelasticity of a measurement object without pressing the measurement object.

1 粘弾性計測装置
2 計測対象物
3 振動手段
4 変位検出手段
5 正弦波生成手段
6 算出手段
7 演算手段
8 振動台
20 カメラ
22 物体
23 基台
24 壁体
25 線形バネ
26 ダンパ
1 Viscoelasticity measuring device 2 Measurement object 3 Vibration means 4 Displacement detection means 5 Sine wave generation means 6 Calculation means 7 Calculation means 8 Vibration table 20 Camera 22 Object 23 Base 24 Wall 25 Linear spring 26 Damper

Claims (4)

計測対象物が載置される振動台を有し、前記振動台を振動させる振動手段と、
前記計測対象物が載置された前記振動台を振動させた状態で、前記計測対象物の所定の点の変位である第一変位、および前記振動台の所定の点の変位である第二変位を検出する変位検出手段と、
前記変位検出手段により検出された前記第一変位の時間変化を示す正弦波である第一正弦波、および前記変位検出手段により検出された前記第二変位の時間変化を示す正弦波である第二正弦波を生成する正弦波生成手段と、
前記正弦波生成手段により生成された前記第一正弦波および前記第二正弦波に基づき、前記第二正弦波の振幅に対する前記第一正弦波の振幅の比率を示す応答倍率、および前記第一正弦波と前記第二正弦波との位相差を求める算出手段と、
基台に載置された物体が前記基台に立設される壁体に線形バネで接続されると共にダンパで接続された状態で前記基台を振動させて前記物体を振動させる振動モデルに前記計測対象物の振動を近似して求めた前記計測対象物のヤング率を示す式に、前記算出手段で求められた前記応答倍率および前記位相差を代入して、前記計測対象物のヤング率を求める演算手段と
を備えることを特徴とする粘弾性計測装置。
A vibrating means that has a vibrating table on which an object to be measured is placed and vibrates the vibrating table,
With the shaking table on which the measurement object is placed vibrated, the first displacement, which is the displacement of a predetermined point of the measurement object, and the second displacement, which is the displacement of the predetermined point of the shaking table. Displacement detection means to detect
The first sine wave, which is a sine wave indicating the time change of the first displacement detected by the displacement detecting means, and the second sine wave, which is the sine wave indicating the time change of the second displacement detected by the displacement detecting means. A sine wave generation means that generates a sine wave,
Based on the first sine wave and the second sine wave generated by the sine wave generation means, a response magnification indicating the ratio of the amplitude of the first sine wave to the amplitude of the second sine wave, and the first sine wave. A calculation means for obtaining the phase difference between the wave and the second sine wave, and
The object placed on the base is connected to the wall body erected on the base by a linear spring and is connected by a damper, and the base is vibrated to vibrate the object. By substituting the response magnification and the phase difference obtained by the calculation means into the equation showing the Young's modulus of the measurement object obtained by approximating the vibration of the measurement object, the Young's modulus of the measurement object is obtained. A viscoelasticity measuring device characterized by being provided with a required calculation means.
前記演算手段は、片持ち梁の先端部に力を加えて撓ませる可撓モデルに前記計測対象物を近似して求めた前記計測対象物の粘性係数を示す式に、前記算出手段で求められた前記応答倍率および前記位相差を代入して、前記計測対象物の粘性係数をさらに求める
ことを特徴とする請求項1に記載の粘弾性計測装置。
The calculation means is obtained by the calculation means in an equation showing the viscosity coefficient of the measurement object obtained by approximating the measurement object to a flexible model in which a force is applied to the tip of the cantilever to bend the cantilever. The viscoelasticity measuring apparatus according to claim 1, wherein the response magnification and the phase difference are substituted to further obtain the viscosity coefficient of the measurement object.
前記変位検出手段は、前記計測対象物および前記振動台を撮影するカメラを有し、前記カメラにより撮影された映像に基づき、前記第一変位および前記第二変位を検出する
ことを特徴とする請求項1または請求項2に記載の粘弾性計測装置。
The displacement detecting means has a camera for photographing the measurement object and the shaking table, and detects the first displacement and the second displacement based on the image captured by the camera. Item 1 or the viscoelasticity measuring device according to claim 2.
計測対象物が載置された振動台を振動させた状態で、前記計測対象物の所定の点の変位である第一変位、および前記振動台の所定の点の変位である第二変位を検出し、前記第一変位の時間変化を示す正弦波である第一正弦波、および前記第二変位の時間変化を示す正弦波である第二正弦波を生成し、前記第二正弦波の振幅に対する前記第一正弦波の振幅の比率を示す応答倍率、および前記第一正弦波と前記第二正弦波との位相差を求め、基台に載置された物体が前記基台に立設される壁体に線形バネで接続されると共にダンパで接続された状態で前記基台を振動させて前記物体を振動させる振動モデルに前記計測対象物の振動を近似して求めた前記計測対象物のヤング率を示す式に、前記応答倍率および前記位相差を代入して、前記計測対象物のヤング率を求める
ことを特徴とする粘弾性計測方法。
With the shaking table on which the measurement object is placed vibrated, the first displacement, which is the displacement of the predetermined point of the measurement object, and the second displacement, which is the displacement of the predetermined point of the shaking table, are detected. Then, a first sine wave, which is a sine wave indicating the time change of the first displacement, and a second sine wave, which is a sine wave indicating the time change of the second displacement, are generated, with respect to the amplitude of the second sine wave. The response magnification indicating the ratio of the amplitude of the first sine wave and the phase difference between the first sine wave and the second sine wave are obtained, and the object placed on the base is erected on the base. Young of the measurement object obtained by approximating the vibration of the measurement object to a vibration model that vibrates the base and vibrates the object while being connected to the wall by a linear spring and connected by a damper. A viscous elasticity measuring method, characterized in that the Young rate of the measurement object is obtained by substituting the response magnification and the phase difference into an equation showing the rate.
JP2018062184A 2018-03-28 2018-03-28 Viscoelasticity measuring device and viscoelasticity measuring method Active JP7054139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018062184A JP7054139B2 (en) 2018-03-28 2018-03-28 Viscoelasticity measuring device and viscoelasticity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062184A JP7054139B2 (en) 2018-03-28 2018-03-28 Viscoelasticity measuring device and viscoelasticity measuring method

Publications (2)

Publication Number Publication Date
JP2019174259A JP2019174259A (en) 2019-10-10
JP7054139B2 true JP7054139B2 (en) 2022-04-13

Family

ID=68168613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062184A Active JP7054139B2 (en) 2018-03-28 2018-03-28 Viscoelasticity measuring device and viscoelasticity measuring method

Country Status (1)

Country Link
JP (1) JP7054139B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103094A1 (en) 2010-04-21 2012-05-03 Delta Design, Inc. System and method for accelerating a device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104255B2 (en) * 1989-07-30 1995-11-13 亀田製菓株式会社 Quality evaluation method for gelatinized starch gel
JP3062071B2 (en) * 1996-02-29 2000-07-10 広島大学長 Method and apparatus for measuring fruit ripeness and defects
JPH11183443A (en) * 1997-12-22 1999-07-09 Matsushita Electric Ind Co Ltd Measuring method for ripeness degree of fruit
JP2007024606A (en) * 2005-07-13 2007-02-01 Shiseido Co Ltd Measuring method and instrument for viscoelastic characteristics
JP2018077135A (en) * 2016-11-09 2018-05-17 Jfeテクノリサーチ株式会社 Vibration testing method and vibration testing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103094A1 (en) 2010-04-21 2012-05-03 Delta Design, Inc. System and method for accelerating a device

Also Published As

Publication number Publication date
JP2019174259A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7407108B2 (en) Apparatus and method for performing shock excitation techniques
CN103261884B (en) For checking the method and apparatus of egg
US20080187193A1 (en) Method and Apparatus for Forming a Guide Image for an Ultrasound Image Scanner
KR102219789B1 (en) Compensated Mechanical Test System
JP2020537155A5 (en)
WO2013185129A2 (en) Optical non-contacting apparatus for shape and deformation measurement of vibrating objects using image analysis methodology
JP3567255B2 (en) Apparatus and method for measuring complex viscosity coefficient and complex coefficient
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
KR20220024644A (en) Methods and systems for analyzing specimens using vibration response signals
JP2010019694A (en) Viscosity or/and elasticity measuring method of liquid
JP3090688B2 (en) Dynamic load measuring method and dynamic load measuring device
JP2017138115A (en) Preload inspection method applied to linear slide
JP6375178B2 (en) Balance type texture measuring device
Fujii Method for measuring transient friction coefficients for rubber wiper blades on glass surface
JP7054139B2 (en) Viscoelasticity measuring device and viscoelasticity measuring method
JP2005283440A (en) Vibration measuring device and measuring method thereof
JP6511892B2 (en) State determination apparatus for a structure, state determination system, and state determination method
JP6843344B2 (en) Surface roughness measurement system
CN107495986A (en) The viscoelastic measuring method of medium and device
KR100950274B1 (en) Vibration Measurement System and Method for Measuring Rheological Properties of Newtonian and Non-Newtonian Fluids
JP5831904B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
JP5831903B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
JP2018146572A (en) Viscoelasticity measuring apparatus
US8865989B1 (en) Kinetic measurement of piano key mechanisms for inertial properties and keystroke characteristics
JPWO2018016652A1 (en) Viscoelastic measurement method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7054139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150