[go: up one dir, main page]

JP7053079B1 - Gas processing equipment - Google Patents

Gas processing equipment Download PDF

Info

Publication number
JP7053079B1
JP7053079B1 JP2021178469A JP2021178469A JP7053079B1 JP 7053079 B1 JP7053079 B1 JP 7053079B1 JP 2021178469 A JP2021178469 A JP 2021178469A JP 2021178469 A JP2021178469 A JP 2021178469A JP 7053079 B1 JP7053079 B1 JP 7053079B1
Authority
JP
Japan
Prior art keywords
gas
regeneration
zone
passed
voc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021178469A
Other languages
Japanese (ja)
Other versions
JP2023067337A (en
Inventor
隆寛 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81045968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7053079(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2021178469A priority Critical patent/JP7053079B1/en
Priority to CN202111428164.0A priority patent/CN114307539A/en
Priority to CN202122943912.0U priority patent/CN217449550U/en
Priority to KR1020210184827A priority patent/KR20230063281A/en
Application granted granted Critical
Publication of JP7053079B1 publication Critical patent/JP7053079B1/en
Publication of JP2023067337A publication Critical patent/JP2023067337A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

【課題】簡単な方法で、再生出口側における液状物の発生を防止することのできるガス処理装置を提供する。【解決手段】本発明のガス処理装置において、回転数の調整、加熱ガスのバイパス、再生出口側での加熱装置の埋設等により、再生出口温度60~120℃、より好ましくは70~120℃に上昇させた再生温度上昇運転を行うことで、再生出口における液状物の発生を防ぐことができる。【選択図】図1PROBLEM TO BE SOLVED: To provide a gas treatment apparatus capable of preventing the generation of a liquid substance on the regeneration outlet side by a simple method. SOLUTION: In the gas treatment apparatus of the present invention, the regeneration outlet temperature is set to 60 to 120 ° C, more preferably 70 to 120 ° C. by adjusting the rotation speed, bypassing the heating gas, burying the heating apparatus on the regeneration outlet side, and the like. By performing the increased regeneration temperature raising operation, it is possible to prevent the generation of liquid matter at the regeneration outlet. [Selection diagram] Fig. 1

Description

本発明は、ガス処理装置の再生出口側に液状物が発生することを防止する技術に関するものである。 The present invention relates to a technique for preventing the generation of a liquid substance on the regeneration outlet side of a gas treatment apparatus.

近年、地球規模で大気汚染が問題となっているが、トルエン等のVOC(揮発性有機化合物、Volatile Organic Compounds、以下 「VOC」という。)もその一つであり、塗装工程や印刷工場等から多く発生する。 In recent years, air pollution has become a problem on a global scale, and VOCs such as toluene (volatile organic compounds, hereinafter referred to as "VOCs") are one of them, and are used in painting processes and printing factories. It occurs a lot.

VOCを含有する排ガスの処理設備(燃焼設備や回収設備)は、処理風量が大きくなると設備が非常に大規模となるばかりでなく、膨大なランニングコストも必要になるという問題がある。これに対して排ガス処理設備の前段機器としてのVOC濃縮装置は、低濃度・大風量のVOC排出ガスを高濃度・小風量に濃縮回収できるので、処理設備全体の設備費およびランニングコストを大幅に削減でき、効率のよいVOC処理を実現することができる。 Exhaust gas treatment equipment (combustion equipment and recovery equipment) containing VOCs has a problem that not only the equipment becomes very large when the treatment air volume becomes large, but also a huge running cost is required. On the other hand, the VOC concentrator as the pre-stage equipment of the exhaust gas treatment equipment can concentrate and recover low concentration and large air volume VOC exhaust gas to high concentration and small air volume, so the equipment cost and running cost of the entire treatment equipment can be significantly reduced. It can be reduced and efficient VOC processing can be realized.

VOC濃縮装置の一つとして、排ガス中のVOCを選択的に吸着し、濃縮するハニカムロータ式VOC濃縮装置がある。通常、VOC吸着ハニカムロータは疎水性ゼオライトが担持されており、摂氏200℃(以下、温度は「摂氏」とする。)前後の加熱ガスにより再生するため、吸着と再生を繰り返して使用することが可能である。しかし、処理対象ガスからVOCを除去するVOC処理モード(低濃度・大風量の処理対象ガスをハニカムロータの処理ゾーンに通過させ、含有するVOCをハニカムに吸着させて清浄ガスとし、再生ゾーンでは、200℃前後の加熱ガスを通過させ、ハニカムからVOCを離脱させ、高濃度・小風量の濃縮ガスに変換する)において、加熱ガスの温度以上(例えば200℃以上)の高沸点のVOCは、再生ゾーンでハニカムロータから離脱されないため、VOC濃縮装置の稼働に伴い、ハニカムロータに蓄積され、ハニカムロータの能力を低下させる。そこで、特許文献1には、ハニカムロータに蓄積した沸点の高いVOCをハニカムロータから離脱させる高温再生モード(VOC処理モードでの再生温度よりも高い温度(例えば300℃)で加熱ガスを再生ゾーンに通過させ、ハニカムロータに蓄積した沸点の高いVOCをハニカムロータから離脱させる)での賦活処理を行うVOCの除去技術について開示されている。 As one of the VOC concentrators, there is a honeycomb rotor type VOC concentrator that selectively adsorbs and concentrates VOCs in exhaust gas. Normally, the VOC adsorption honeycomb rotor is supported by hydrophobic zeolite and is regenerated by a heating gas at around 200 ° C. (hereinafter, the temperature is referred to as "Celsius"), so that adsorption and regeneration can be repeated. It is possible. However, in the VOC treatment mode in which the VOC is removed from the gas to be treated (a gas to be treated with a low concentration and a large air volume is passed through the treatment zone of the honeycomb rotor, and the contained VOC is adsorbed on the honeycomb to be a clean gas, and in the regeneration zone, VOCs with a high boiling point above the temperature of the heating gas (for example, 200 ° C or higher) are regenerated in the passage of a heating gas at around 200 ° C to separate the VOC from the honeycomb and convert it into a concentrated gas with high concentration and small air volume. Since it is not separated from the honeycomb rotor in the zone, it is accumulated in the honeycomb rotor with the operation of the VOC concentrator, and the capacity of the honeycomb rotor is reduced. Therefore, in Patent Document 1, a heated gas is placed in the regeneration zone at a high temperature regeneration mode (for example, 300 ° C.) at which the VOC having a high boiling point accumulated in the honeycomb rotor is separated from the honeycomb rotor at a temperature higher than the regeneration temperature in the VOC processing mode. Disclosed is a VOC removal technique for performing activation treatment by passing VOCs having a high boiling point accumulated in the honeycomb rotor and separating them from the honeycomb rotor).

実用新案登録第3219762号公報Utility Model Registration No. 32197662

ところで、処理対象ガスが高湿度である場合や再生循環により再生ガスが高湿度となる場合等、再生出口ガスが高湿度となる条件では、再生出口温度が低いと再生出口側のケーシング内で高湿度の水分が結露して凝縮することがある。これは、VOC濃縮装置に限らず、デシカント除湿機やその他のガス処理装置においても生じ得ることである。VOC濃縮装置の場合、水溶性の高沸点のVOCが処理対象ガスに含まれると、再生出口側で生じた凝縮水に、再生出口側で濃縮脱着された水溶性の高沸点のVOCが溶解し、再生出口ガスの温度変化に応じて乾燥と凝縮を繰り返し、高沸点のVOCが濃縮され、茶褐色から黒色のタール状の液状物が生じることがある。また、水分によらずとも、凝縮しやすいVOCが処理対象ガスに含まれている場合には、再生出口側で濃縮脱着された凝縮しやすいVOCが凝縮し、タール状の液状物になることも考えられる。 By the way, under conditions where the regeneration outlet gas has high humidity, such as when the gas to be treated has high humidity or when the regeneration gas has high humidity due to regeneration circulation, if the regeneration outlet temperature is low, it will be high in the casing on the regeneration outlet side. Moisture in humidity may condense and condense. This can occur not only in VOC concentrators but also in desiccant dehumidifiers and other gas treatment devices. In the case of the VOC concentrator, when the water-soluble high boiling point VOC is contained in the gas to be treated, the water-soluble high boiling point VOC concentrated and desorbed on the regeneration outlet side is dissolved in the condensed water generated on the regeneration outlet side. , Drying and condensation are repeated according to the temperature change of the regeneration outlet gas, and the high boiling point VOC is concentrated, and a brown to black tar-like liquid substance may be produced. In addition, if the gas to be treated contains VOCs that are easily condensed regardless of the water content, the concentrated and desorbed VOCs that are easily condensed on the regeneration outlet side may be condensed into a tar-like liquid. Conceivable.

タール状の液状物の発生によって、再生出口側のケーシングが汚染され、液状物が流れ出すことにより、ハニカムロータや周辺部材も汚染されると、見た目が悪く、装置を清掃する手間やコストがかかり、装置の腐食にもつながり、ハニカムロータや部材の交換が必要となる。また、タール状の液状物がハニカムロータに流れ込むと、性能の低下、圧力損失の上昇につながる。さらに、タール状の液状物の蓄積が進行すれば、VOC濃縮装置からの発火・焼損にもつながる虞がある。 If the casing on the regeneration outlet side is contaminated by the generation of tar-like liquid matter, and the honeycomb rotor and peripheral members are also contaminated by the liquid matter flowing out, it looks bad and it takes time and cost to clean the equipment. It also leads to corrosion of the equipment, and it is necessary to replace the honeycomb rotor and members. Further, when the tar-like liquid material flows into the honeycomb rotor, the performance is deteriorated and the pressure loss is increased. Further, if the accumulation of tar-like liquid matter progresses, it may lead to ignition and burning from the VOC concentrator.

特許文献1に記載の高温再生モードによる賦活処理でハニカムロータに蓄積された高沸点のVOCを除去できるのであるが、通常のVOC濃縮装置の運転形態は処理対象ガスからVOCを吸着除去するVOC処理モードである。つまり、定期的に高温再生モードによって蓄積した高沸点のVOCをハニカムロータから離脱させていたとしても、液状物が発生する条件が揃えば、再生出口側に液状物が発生することは免れない。なお、VOC処理モードの再生温度が200℃前後であるのに対し、高温再生モードでは通常300℃程度で再生するため、この高温に耐え得る耐熱性のシールやケーシング等ハニカムロータ周辺部材のコストが高くなる。 The high boiling point VOC accumulated in the honeycomb rotor can be removed by the activation treatment in the high temperature regeneration mode described in Patent Document 1, but the normal operation mode of the VOC concentrator is the VOC treatment for adsorbing and removing VOCs from the gas to be treated. The mode. That is, even if the high boiling point VOCs accumulated in the high temperature regeneration mode are periodically separated from the honeycomb rotor, it is inevitable that the liquid matter will be generated on the regeneration outlet side if the conditions for generating the liquid matter are met. In addition, while the regeneration temperature in the VOC processing mode is around 200 ° C., in the high temperature regeneration mode, the regeneration is usually performed at about 300 ° C., so that the cost of heat-resistant seals, casings and other honeycomb rotor peripheral members that can withstand this high temperature is high. It gets higher.

デシカント除湿機やその他のガス処理装置においても、再生出口側で高湿度の水分が凝縮し、この凝縮水に酸やアルカリ成分が溶解することにより、VOC濃縮装置と同様に、装置の腐食やハニカムロータの性能低下が生じる可能性がある。 In desiccant dehumidifiers and other gas treatment equipment, high-humidity moisture is condensed on the regeneration outlet side, and acid and alkaline components are dissolved in this condensed water, causing corrosion and honeycombs of the equipment, similar to VOC concentrators. Rotor performance degradation may occur.

上記の実情に鑑み、発明者はVOC濃縮装置やデシカント除湿機等のガス処理装置において、再生出口側に発生した液状物の分析を行い、その根本的な発生原因を追究し、鋭意検討を行った。その結果、液状物の発生の原因となる凝縮水の発生を抑制すれば、液状物の発生もなくなるということを突き止め、本発明に至った。本発明は簡単な方法で、再生出口側における液状物の発生を防止することのできるガス処理装置を提供することを目的とする。 In view of the above situation, the inventor analyzed the liquid matter generated on the regeneration outlet side in gas treatment equipment such as VOC concentrators and desiccant dehumidifiers, investigated the root cause of the liquid matter, and conducted a diligent study. rice field. As a result, it was found that if the generation of condensed water that causes the generation of liquid matter is suppressed, the generation of liquid matter is also eliminated, and the present invention has been reached. An object of the present invention is to provide a gas treatment apparatus capable of preventing the generation of a liquid substance on the regeneration outlet side by a simple method.

本発明のガス処理装置は、ハニカムロータを備え、このハニカムロータを少なくとも処理ゾーンと再生ゾーンに分割し、処理対象ガスを処理ゾーンに通し、処理ゾーンを通過したガスを供給先へ送り、或いは大気放出し、処理対象ガスの一部及び/又は外気を加熱手段へ通し、加熱手段を通過したガスを再生ゾーンに通し、再生ゾーンを通過したガスを後段の装置、或いは大気放出するようにしたガス処理装置において、再生ゾーンを通過したガスの温度が60~120℃であることを特徴とする。 The gas treatment apparatus of the present invention includes a honeycomb rotor, the honeycomb rotor is divided into at least a treatment zone and a regeneration zone, a gas to be treated is passed through the treatment zone, and the gas that has passed through the treatment zone is sent to a supply destination or the atmosphere. A gas that is released, a part of the gas to be treated and / or the outside air is passed through the heating means, the gas that has passed through the heating means is passed through the regeneration zone, and the gas that has passed through the regeneration zone is released to the subsequent device or the atmosphere. In the processing apparatus, the temperature of the gas that has passed through the regeneration zone is 60 to 120 ° C.

本発明のガス処理装置は上記の如く構成したので、液状物の発生を簡単な方法で、かつコストをかけずに防ぐことができる。これにより、ハニカムロータの性能を長期に渡り安定的に維持することができ、ガス処理装置の部材やハニカムロータの交換頻度が減り、コスト低減につながる。 Since the gas treatment apparatus of the present invention is configured as described above, it is possible to prevent the generation of liquid matter by a simple method and at no cost. As a result, the performance of the honeycomb rotor can be stably maintained for a long period of time, the frequency of replacing the members of the gas processing device and the honeycomb rotor is reduced, which leads to cost reduction.

図1はVOC濃縮回収フローの一例である。FIG. 1 is an example of a VOC concentrated recovery flow. 図2は再生出口温度50℃で運転していたVOC濃縮装置において発生したタール状の液状物を示す図である。FIG. 2 is a diagram showing a tar-like liquid material generated in a VOC concentrator that was operated at a regeneration outlet temperature of 50 ° C. 図3は図2のVOC濃縮装置と同じ現場、同じ排気処理を別のVOC濃縮装置で実施し、再生出口温度100℃で運転していた再生出口側の状態を示す図である。FIG. 3 is a diagram showing a state on the regeneration outlet side, which was operated at the regeneration outlet temperature of 100 ° C. by performing the same exhaust gas treatment at the same site as the VOC concentrator of FIG. 2 in another VOC concentrator. 図4はVOC濃縮装置において、4種のVOC(キシレン、エチルベンゼン、トルエン、ブチルベンゼン)で通常再生運転、再生出口温度上昇運転を行い、VOC除去率を比較したグラフである。FIG. 4 is a graph comparing the VOC removal rates by performing a normal regeneration operation and a regeneration outlet temperature rise operation with four types of VOCs (xylene, ethylbenzene, toluene, butylbenzene) in a VOC concentrator.

図1はVOC濃縮回収フローの一例である。ハニカムロータ1はセパレータ9によって少なくとも処理ゾーン2、再生ゾーン3に区分される。セパレータ9は一対のV字状をなす直状セパレータと弧状セパレータにより再生ゾーン3が囲まれている(以下、「Vゾーン」という。)。さらに各ゾーンのガスが各送気管を通して送られるようケーシング(図示せず)で覆われている。ハニカムロータ1は、無機繊維紙をハニカム状に成形し、これに疎水性ゼオライト等の吸着剤を担持したものであり、ハニカムロータ1がギヤドモータ等(図示せず)で回転することで、VOCを連続的に吸着除去・濃縮脱着できる。 FIG. 1 is an example of a VOC concentrated recovery flow. The honeycomb rotor 1 is divided into at least a processing zone 2 and a regeneration zone 3 by a separator 9. In the separator 9, the reproduction zone 3 is surrounded by a pair of V-shaped straight separators and arc-shaped separators (hereinafter referred to as "V zone"). In addition, the gas in each zone is covered with a casing (not shown) so that it can be sent through each air supply pipe. The honeycomb rotor 1 is made by molding inorganic fiber paper into a honeycomb shape and supporting an adsorbent such as hydrophobic zeolite. The honeycomb rotor 1 is rotated by a geared motor or the like (not shown) to generate a VOC. Can be continuously adsorbed and removed and concentrated and desorbed.

プレフィルター5を通過した処理対象ガス中のVOCはハニカムロータ1の処理ゾーン2を通過する際に、吸着除去される。処理ゾーンを通過したガスは、処理ファン6によって供給先に送られるか、又は大気放出される。VOCを吸着したハニカムが再生ゾーン3へ回転移行すると、吸着されたVOCは、処理風量の1/5~1/15の風量の200℃前後の加熱手段7により加熱された再生ガスで5~15倍に濃縮脱着され、再生ファン8によって燃焼処理装置等の後段の装置(図示せず)に送られるか、又は大気放出される。再生ゾーン3を通過したハニカムは冷却ゾーン4に移動し、冷却され、再び処理ゾーン2へ移行する。処理対象ガスの一部、外気、処理ゾーン2を通過したガスのうち少なくとも一つから成るガスを冷却ゾーン4に送る。冷却ゾーン4を通過したガスは、加熱手段7(再生ヒータ等)で加熱されて再生ガスとして再生ゾーン3に送られる。 The VOCs in the gas to be processed that have passed through the prefilter 5 are adsorbed and removed when they pass through the processing zone 2 of the honeycomb rotor 1. The gas that has passed through the treatment zone is sent to the supply destination by the treatment fan 6 or is released to the atmosphere. When the honeycomb on which the VOC is adsorbed rotates and shifts to the regeneration zone 3, the adsorbed VOC is 5 to 15 with the regenerated gas heated by the heating means 7 having an air volume of 1/5 to 1/15 of the treated air volume at around 200 ° C. It is double-enriched and desorbed, and is sent to a subsequent device (not shown) such as a combustion processing device by the regeneration fan 8 or released to the atmosphere. The honeycomb that has passed through the regeneration zone 3 moves to the cooling zone 4, is cooled, and moves to the processing zone 2 again. A gas composed of a part of the gas to be treated, the outside air, and the gas that has passed through the treatment zone 2 is sent to the cooling zone 4. The gas that has passed through the cooling zone 4 is heated by the heating means 7 (regeneration heater or the like) and sent to the regeneration zone 3 as the regeneration gas.

なお、処理ゾーン2と再生ゾーン3と冷却ゾーン4を備えるVOC濃縮装置としたが、冷却ゾーンを設けず、処理ゾーンと再生ゾーンのみを設けるようにしてもよく、さらに他のゾーンを設けるようにしてもよい。また、再生ガスとして再生ゾーン3に送られるガスは、処理対象ガスの一部及び/又は外気としてもよい。 Although the VOC concentrator is provided with the processing zone 2, the regeneration zone 3, and the cooling zone 4, it is possible to provide only the processing zone and the regeneration zone without providing the cooling zone, and to provide other zones. You may. Further, the gas sent to the regeneration zone 3 as the regeneration gas may be a part of the gas to be treated and / or the outside air.

ここで、処理入口温度は例えば20~30℃であり、再生出口温度は通常処理入口温度に対して+20~30℃(一般的には40~60℃)となるように運転する(以下、「通常再生運転」という。)。しかし、この再生出口温度では、前述のように再生出口側に水分が凝縮し液状物が発生してしまうことがある。そこで、本発明では液状物の発生を防ぐために、再生出口温度をさらに上昇させて、60~120℃、より好ましくは70~120℃となるように運転する(以下、「再生出口温度上昇運転」という。)。なお、再生入口温度や風量、処理対象ガスの成分等の条件に関わらず、この再生出口温度域(60~120℃)となるように運転する。 Here, the processing inlet temperature is, for example, 20 to 30 ° C., and the regeneration outlet temperature is usually operated so as to be + 20 to 30 ° C. (generally 40 to 60 ° C.) with respect to the processing inlet temperature (hereinafter, "" "Normal regeneration operation"). However, at this regeneration outlet temperature, as described above, water may condense on the regeneration outlet side and a liquid substance may be generated. Therefore, in the present invention, in order to prevent the generation of liquid matter, the regeneration outlet temperature is further increased to 60 to 120 ° C., more preferably 70 to 120 ° C. (hereinafter, “regeneration outlet temperature increase operation””. That.). It should be noted that the operation is performed so as to be in this regeneration outlet temperature range (60 to 120 ° C.) regardless of conditions such as the regeneration inlet temperature, the air volume, and the components of the gas to be treated.

特許文献1では、「高温再生モード」運転において、再生入口温度に対し、再生出口温度が50~150℃低くなるように運転するが、本発明では通常のVOC処理モードで再生出口温度を高くするように運転する点で異なる。当業者であれば、本発明のように再生出口温度が60~120℃、より好ましくは70~120℃と高くなるように運転すると、ハニカムロータの性能が悪くなるため、通常処理入口温度に対して+20~30℃の範囲で運転し、本発明のように敢えて再生出口温度を高くしようとする発想には至らない。また、回転数を調整することにより、再生出口温度を高くする方法があるが、除去性能が最も高い回転数である最適回転数から外れると、ハニカムロータの性能が悪くなる方向に働くため、わざわざずらすようなことを当業者は行わない。 In Patent Document 1, in the "high temperature regeneration mode" operation, the regeneration outlet temperature is operated so as to be 50 to 150 ° C. lower than the regeneration inlet temperature, but in the present invention, the regeneration outlet temperature is increased in the normal VOC processing mode. It differs in that it operates like this. If a person skilled in the art operates the honeycomb rotor so that the regeneration outlet temperature is as high as 60 to 120 ° C., more preferably 70 to 120 ° C. as in the present invention, the performance of the honeycomb rotor deteriorates. It does not lead to the idea of operating in the range of +20 to 30 ° C. and intentionally raising the regeneration outlet temperature as in the present invention. There is also a method to raise the regeneration outlet temperature by adjusting the rotation speed, but if it deviates from the optimum rotation speed, which is the rotation speed with the highest removal performance, the performance of the honeycomb rotor will deteriorate, so it is purposely done. Those skilled in the art do not do anything that shifts.

本発明は、発明者が再生出口側にて生じるタール状の液状物の発生原因を追究・鋭意検討した結果、再生出口温度が40~60℃と低い場合に、水分の凝縮が生じ、これがタール状の液状物の発生の原因となることを突き止め、凝縮水の発生しない温度域である60~120℃、より好ましくは70~120℃まで敢えて再生温度を上げると液状物の発生が低減するという実証に基づき、発明に至ったものである。 As a result of the inventor's investigation and diligent study on the cause of the generation of tar-like liquid matter generated on the regeneration outlet side, the present invention causes condensation of water when the regeneration outlet temperature is as low as 40 to 60 ° C., which is tar. It is said that the generation of liquid matter will be reduced if the regeneration temperature is intentionally raised to 60 to 120 ° C, more preferably 70 to 120 ° C, which is a temperature range in which condensed water does not occur, after finding out that it causes the generation of liquid matter. Based on the proof, the invention was reached.

相対湿度100%RHでの空気中の絶対湿度は、温度上昇とともに指数関数的に上昇する。例えば、40℃では49g/kg(DA)であるが、60℃では152g/kg(DA)と40℃のおよそ3倍に、70℃では277g/kg(DA)と40℃のおよそ6倍に上昇する。大風量を処理するガス処理装置においては、再生出口側のVゾーンのハニカムロータ内周部に近い部分やケーシングの外周部壁部分では偏流が生じたり、装置周囲の外気条件の影響を受け、温度が低下し、液状物が発生・付着しやすい。そこで、本発明の再生出口温度上昇運転では、少なくとも再生出口温度を60℃以上、より好ましくは70℃以上に上昇させる。一方、再生出口温度が高くなりすぎるとハニカムロータの性能が悪化するので、120℃を限度とする。 Absolute humidity in air at 100% RH relative humidity increases exponentially with increasing temperature. For example, at 40 ° C, it is 49 g / kg (DA), but at 60 ° C it is 152 g / kg (DA), which is about three times that of 40 ° C, and at 70 ° C, it is 277 g / kg (DA), which is about six times that of 40 ° C. Rise. In a gas treatment device that processes a large amount of air, a drift may occur in the part near the inner peripheral part of the honeycomb rotor in the V zone on the regeneration outlet side or in the outer peripheral wall part of the casing, or the temperature may be affected by the outside air conditions around the device. Is reduced, and liquid matter is easily generated and adhered. Therefore, in the regeneration outlet temperature raising operation of the present invention, the regeneration outlet temperature is raised to at least 60 ° C. or higher, more preferably 70 ° C. or higher. On the other hand, if the regeneration outlet temperature becomes too high, the performance of the honeycomb rotor deteriorates, so the temperature is limited to 120 ° C.

図2は、再生出口温度50℃で運転(通常再生運転)していたVOC濃縮装置の再生出口側のケーシング内に発生したタール状の液状物である。楕円で囲んだ部分は、再生ゾーンから冷却ゾーンへ移行する直前の最も再生出口温度の高いガスが吹き付けられる部分であったため、タール状の液状物は付着していない。このことからも、再生出口温度を上昇させることにより、タール状の液状物の発生を防止できる効果が見て取れる。 FIG. 2 is a tar-like liquid material generated in the casing on the regeneration outlet side of the VOC concentrator that was operated at the regeneration outlet temperature of 50 ° C. (normal regeneration operation). The part surrounded by the ellipse was the part where the gas having the highest regeneration outlet temperature was sprayed immediately before the transition from the regeneration zone to the cooling zone, so no tar-like liquid matter was attached. From this, it can be seen that the effect of preventing the generation of tar-like liquid matter can be seen by raising the regeneration outlet temperature.

一方、図3は図2に示した、VOC濃縮装置と同じ現場、同じ排気処理を別のVOC濃縮装置で実施し、再生出口温度100℃で運転(再生出口温度上昇運転)していた再生出口側のケーシング内の状態である。同じ現場で同じ排気処理をしていたにも関わらず、再生出口温度を上昇させたことによって、タール状の液状物の発生が全くなかったことが分かる。なお、図3でケーシングに若干付着しているように見えるものは錆や塵埃等であり、タール状の液状物ではない。 On the other hand, FIG. 3 shows the regeneration outlet, which was operated at the regeneration outlet temperature of 100 ° C. (regeneration outlet temperature rise operation) by performing the same exhaust treatment at the same site as the VOC concentrator and another VOC concentrator shown in FIG. It is the state inside the casing on the side. It can be seen that no tar-like liquid matter was generated by raising the regeneration outlet temperature even though the same exhaust treatment was performed at the same site. It should be noted that what appears to be slightly attached to the casing in FIG. 3 is rust, dust, etc., and is not a tar-like liquid substance.

本発明の再生出口温度上昇運転を行う方法として以下の方法が挙げられる。最も簡単な方法として、回転数による調整が挙げられる。回転数を通常再生運転における最適回転数より落としてゆっくり回転させると、再生熱がロータ全体に伝わり、再生出口温度が上昇する。 The following methods can be mentioned as a method for performing the regeneration outlet temperature raising operation of the present invention. The simplest method is to adjust the number of revolutions. When the rotation speed is lowered from the optimum rotation speed in the normal regeneration operation and the rotation speed is slowly rotated, the regeneration heat is transferred to the entire rotor and the regeneration outlet temperature rises.

次に、加熱手段7を通過した再生入口ガスの一部を再生出口側へバイパスすることで、温度の高い加熱ガスを再生出口ガスと混合させ、再生出口温度を上昇させることができる。当業者であれば、このようにすると、濃縮されたVOC濃度が低下して除去性能の低下につながり、バイパスするコストもかかるので、このような発想には至らない。 Next, by bypassing a part of the regeneration inlet gas that has passed through the heating means 7 to the regeneration outlet side, the heating gas having a high temperature can be mixed with the regeneration outlet gas to raise the regeneration outlet temperature. Those skilled in the art cannot come up with such an idea because the concentration of the concentrated VOC is lowered, the removal performance is lowered, and the cost of bypassing is increased.

さらに、再生出口側を区画するVゾーン(ケーシングを含む)の壁面等に板状ヒータ等の加熱装置を埋設することによって、再生出口ガスを間接的に加熱し、再生出口温度を上昇させることもできる。当業者であれば、コストのかかる板状ヒータ等を設置し、性能を悪化させる再生出口温度の上昇を行うという発想には至らない。他にも、再生出口ガスを燃焼後の排ガスを熱源として熱交換するようにしてもよい。 Furthermore, by burying a heating device such as a plate-shaped heater on the wall surface of the V zone (including the casing) that divides the regeneration outlet side, the regeneration outlet gas can be indirectly heated and the regeneration outlet temperature can be raised. can. Those skilled in the art cannot come up with the idea of installing a costly plate-shaped heater or the like to raise the regeneration outlet temperature, which deteriorates the performance. Alternatively, the regenerated outlet gas may be used for heat exchange using the exhaust gas after combustion as a heat source.

いずれにしても前述のように、再生出口温度を上昇させることは、冷却ゾーンでのハニカム冷却効果が低減し、ハニカムロータの性能が低下することを意味するので、当業者であれば通常そのような運転は行わない。 In any case, as described above, raising the regeneration outlet temperature means that the honeycomb cooling effect in the cooling zone is reduced and the performance of the honeycomb rotor is lowered. Do not drive.

図4はVOC濃縮装置において、4種のVOC(キシレン、エチルベンゼン、トルエン、ブチルベンゼン)で通常再生運転、再生出口温度上昇運転を行い、VOC除去率を比較したグラフである。横軸は処理入口VOC濃度、縦軸はVOC除去率である。通常再生運転に比べ、再生出口温度上昇運転では、全体的に除去率が0.5~1ポイント低下した。通常、タール状の液状物に含まれる高沸点のVOCはこれら4種のVOCよりも極性も分子構造も大きいVOCが含まれることが多いので、実際の性能の下がり幅はこれら4種のVOCに比べると小さいと予想される。 FIG. 4 is a graph comparing the VOC removal rates by performing a normal regeneration operation and a regeneration outlet temperature rise operation with four types of VOCs (xylene, ethylbenzene, toluene, butylbenzene) in a VOC concentrator. The horizontal axis is the processing inlet VOC concentration, and the vertical axis is the VOC removal rate. Compared with the normal regeneration operation, in the regeneration outlet temperature rise operation, the removal rate was reduced by 0.5 to 1 point as a whole. Normally, VOCs with a high boiling point contained in tar-like liquids often contain VOCs having a larger polarity and molecular structure than these four types of VOCs, so the actual decrease in performance depends on these four types of VOCs. It is expected to be small in comparison.

ここで、再生出口温度が120℃となるように再生出口温度上昇運転を行うと、VOC除去率はVOCの種類にもよるが、2~5ポイントも低下するので、再生出口温度上昇運転の上限を120℃とする。また、再生出口温度が高すぎると、再生ファン8の耐熱温度を超えることがあることからも、上限を120℃とすることが望ましい。 Here, if the regeneration outlet temperature rise operation is performed so that the regeneration outlet temperature becomes 120 ° C., the VOC removal rate decreases by 2 to 5 points depending on the type of VOC, so that the upper limit of the regeneration outlet temperature rise operation is performed. Is 120 ° C. Further, if the regeneration outlet temperature is too high, the heat resistant temperature of the regeneration fan 8 may be exceeded, so it is desirable to set the upper limit to 120 ° C.

再生出口温度を上昇させると性能は若干低下するが、大きく性能が損なわれることはない。長期的に見れば、VOC濃縮装置であれば、ハニカムロータに高沸点のVOCが蓄積していき、やがて徐々に性能が低下していく。これに加えて、通常再生運転ではタール状の液状物が発生し、装置やハニカムロータが汚染され、性能が低下し、ひいては装置の腐食、清掃や交換等のコストが高くなるし、発火・焼損の虞もある。一方、再生出口温度上昇運転を行うことにより、初期の性能は若干悪くなるが、タール状の液状物が発生することなく、清掃・交換の頻度も低減し、通常再生運転に比べてコストは安くなる。よって、長期的には再生出口温度上昇運転の方が性能を安定的に維持することができ、コストメリットもある。 If the regeneration outlet temperature is raised, the performance will be slightly reduced, but the performance will not be significantly impaired. In the long term, in the case of a VOC concentrator, VOCs having a high boiling point accumulate in the honeycomb rotor, and the performance gradually deteriorates. In addition to this, in normal regeneration operation, tar-like liquid matter is generated, the equipment and honeycomb rotor are contaminated, the performance deteriorates, and the cost of corrosion, cleaning and replacement of the equipment increases, and ignition and burning occur. There is also a risk of. On the other hand, by performing the regeneration outlet temperature rise operation, the initial performance is slightly deteriorated, but tar-like liquid matter is not generated, the frequency of cleaning and replacement is reduced, and the cost is lower than that of the normal regeneration operation. Become. Therefore, in the long term, the operation of increasing the temperature of the regeneration outlet can maintain the performance more stably, and has a cost merit.

特に回転数を調整することにより再生出口温度を上昇させる方法では、新たに機器を設置する必要もなく、既存の装置のみで簡単に調整することができる。他の方法においても、大幅なコストアップとはならない。なお、上記の再生出口温度を上昇させる方法(回転数の調整、加熱ガスのバイパス、再生出口側での加熱装置の埋設)を単独で用いてもよいし、組み合わせてもよい。 In particular, in the method of raising the regeneration outlet temperature by adjusting the rotation speed, it is not necessary to install a new device, and the adjustment can be easily performed only with the existing device. The other methods do not result in a significant cost increase. The above-mentioned method of raising the regeneration outlet temperature (adjustment of the rotation speed, bypass of the heating gas, burying of the heating device on the regeneration outlet side) may be used alone or in combination.

通常再生運転で液状物が発生した場合に備えて、液状物がハニカムロータ内に流出するのを防ぐ防止手段(堰等)を設けたり、再生出口側にドレン抜きを設けたり、ハニカムロータを格納するケーシングに傾斜をつけて、再生入口側が再生出口側より高くなるようにしてもよい。さらに、再生出口ガスが高湿度とならないように、処理対象ガス及び/又は再生ガスを除湿する等、湿度を低くするような処理を行ってもよい。 In case liquid matter is generated during normal regeneration operation, preventive measures (weirs, etc.) are provided to prevent the liquid matter from flowing out into the honeycomb rotor, drainage is provided on the regeneration outlet side, and the honeycomb rotor is stored. The casing may be inclined so that the regeneration inlet side is higher than the regeneration outlet side. Further, a treatment for lowering the humidity may be performed, such as dehumidifying the treatment target gas and / or the reclaimed gas so that the regeneration outlet gas does not become high humidity.

本発明のガス処理装置によれば、簡単な方法で再生出口の液状物の発生を防ぐことができるので、VOC、除湿等ガスの種類を問わず、再生出口ガスが凝縮して液状物の発生する虞のある全ての物件に適用することができる。 According to the gas treatment apparatus of the present invention, the generation of liquid matter at the regeneration outlet can be prevented by a simple method, so that the regeneration outlet gas is condensed and the generation of liquid matter is generated regardless of the type of gas such as VOC and dehumidification. It can be applied to all properties that may be affected.

1 ハニカムロータ
2 処理ゾーン
3 再生ゾーン
4 冷却ゾーン
5 プレフィルター
6 処理ファン
7 加熱手段
8 再生ファン
9 セパレータ
1 Honeycomb rotor 2 Processing zone 3 Regeneration zone 4 Cooling zone 5 Pre-filter 6 Processing fan 7 Heating means 8 Regeneration fan 9 Separator

Claims (7)

ハニカムロータを備え、前記ハニカムロータを少なくとも処理ゾーンと再生ゾーンに分割し、処理対象ガスを前記処理ゾーンに通し、前記処理ゾーンを通過したガスを供給先へ送り、或いは大気放出し、前記処理対象ガスの一部及び/又は外気を加熱手段へ通し、前記加熱手段を通過したガスを前記再生ゾーンに通し、前記再生ゾーンを通過したガスを後段の装置、或いは大気放出するようにしたガス処理装置において、前記再生ゾーンを通過したガスの温度が60~120℃であることを特徴とするVOC濃縮装置。 A honeycomb rotor is provided, and the honeycomb rotor is divided into at least a treatment zone and a regeneration zone, a gas to be treated is passed through the treatment zone, and the gas passing through the treatment zone is sent to a supply destination or released to the atmosphere to be treated. A part of the gas and / or the outside air is passed through the heating means, the gas that has passed through the heating means is passed through the regeneration zone, and the gas that has passed through the regeneration zone is released to the subsequent device or the atmosphere. A VOC concentrator , wherein the temperature of the gas that has passed through the regeneration zone is 60 to 120 ° C. 前記処理ゾーンと前記再生ゾーンの間に、さらに冷却ゾーンを設けたことを特徴とする請求項1に記載のVOC濃縮装置。 The VOC concentrator according to claim 1, wherein a cooling zone is further provided between the processing zone and the regeneration zone. 前記処理対象ガスの一部、外気、前記処理ゾーンを通過したガスのうち少なくとも一つから成るガスを前記冷却ゾーンに通し、前記冷却ゾーンを通過したガスを前記加熱手段に通すようにしたことを特徴とする請求項1又は請求項2に記載のVOC濃縮装置。 A gas consisting of a part of the gas to be treated, the outside air, and at least one of the gases that have passed through the treatment zone is passed through the cooling zone, and the gas that has passed through the cooling zone is passed through the heating means. The VOC concentrator according to claim 1 or 2, wherein the VOC concentrator is characterized. 前記ハニカムロータの回転数を調整することにより、前記再生ゾーンを通過したガスの温度を調整するようにしたことを特徴とする請求項1から請求項3のいずれか一項に記載のVOC濃縮装置。 The VOC concentrator according to any one of claims 1 to 3, wherein the temperature of the gas passing through the regeneration zone is adjusted by adjusting the rotation speed of the honeycomb rotor. .. 前記加熱手段を通過したガスの一部をバイパスし、前記再生ゾーンの出口側に通すことにより、前記再生ゾーンを通過したガスの温度を調整するようにしたことを特徴とする請求項1から請求項4のいずれか一項に記載のVOC濃縮装置。 The first aspect of the present invention is characterized in that the temperature of the gas that has passed through the regeneration zone is adjusted by bypassing a part of the gas that has passed through the heating means and passing the gas through the outlet side of the regeneration zone. Item 6. The VOC concentrator according to any one of Item 4. 前記再生ゾーンの出口側を区画するVゾーンに加熱装置を埋設することにより、前記再生ゾーンを通過したガスの温度を調整するようにしたことを特徴とする請求項1から請求項5のいずれか一項に記載のVOC濃縮装置。 Any of claims 1 to 5, wherein a heating device is embedded in the V zone that partitions the outlet side of the regeneration zone to adjust the temperature of the gas that has passed through the regeneration zone. The VOC concentrator according to one item. 前記再生ゾーンの出口側において発生した液状物が前記ハニカムロータへ流出するのを防ぐ防止手段を設けたことを特徴とする請求項1から請求項6のいずれか一項に記載のVOC濃縮装置。 The VOC concentrator according to any one of claims 1 to 6, wherein a preventive means for preventing the liquid material generated on the outlet side of the regeneration zone from flowing out to the honeycomb rotor is provided.
JP2021178469A 2021-11-01 2021-11-01 Gas processing equipment Active JP7053079B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021178469A JP7053079B1 (en) 2021-11-01 2021-11-01 Gas processing equipment
CN202111428164.0A CN114307539A (en) 2021-11-01 2021-11-26 Gas treatment device
CN202122943912.0U CN217449550U (en) 2021-11-01 2021-11-26 Gas treatment device
KR1020210184827A KR20230063281A (en) 2021-11-01 2021-12-22 Gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021178469A JP7053079B1 (en) 2021-11-01 2021-11-01 Gas processing equipment

Publications (2)

Publication Number Publication Date
JP7053079B1 true JP7053079B1 (en) 2022-04-12
JP2023067337A JP2023067337A (en) 2023-05-16

Family

ID=81045968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021178469A Active JP7053079B1 (en) 2021-11-01 2021-11-01 Gas processing equipment

Country Status (3)

Country Link
JP (1) JP7053079B1 (en)
KR (1) KR20230063281A (en)
CN (2) CN114307539A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010626A (en) 2001-06-29 2003-01-14 Seibu Giken Co Ltd Gas adsorption concentration device
JP2021169097A (en) 2021-07-29 2021-10-28 株式会社西部技研 Organic solvent gas concentration device
JP2021169091A (en) 2021-07-19 2021-10-28 株式会社西部技研 Organic solvent gas removal device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005411A1 (en) 1989-10-06 1991-04-18 Telefunken Fernseh Und Rundfunk Gmbh Process for transmitting a signal
JP2681403B2 (en) * 1989-12-19 1997-11-26 株式会社西部技研 Gas sorption method and gas sorption device
JP3538725B2 (en) * 1996-11-20 2004-06-14 バブコック日立株式会社 Exhaust gas treatment equipment
JP2001070732A (en) * 1999-09-03 2001-03-21 Daikin Ind Ltd Air cleaning apparatus, air cleaner and air conditioner
CN1226071C (en) * 2001-02-28 2005-11-09 郑石治 Method for Improving the Efficiency of Removing High Boiling Point Organic Waste Gas by Rotor or Adsorption System
US7060236B2 (en) * 2002-10-21 2006-06-13 Yan Tsoung Y Process for removing volatile organic compounds
JP5490394B2 (en) * 2008-10-03 2014-05-14 株式会社クレハ環境 Gas purification apparatus and method
CN107362652A (en) * 2016-05-11 2017-11-21 中微惠创科技(上海)有限公司 Can on-line measurement VOC concentration VOC adsorption plants and its method
CN212645287U (en) * 2020-07-02 2021-03-02 东莞信易电热机械有限公司 Mould dehumidifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010626A (en) 2001-06-29 2003-01-14 Seibu Giken Co Ltd Gas adsorption concentration device
JP2021169091A (en) 2021-07-19 2021-10-28 株式会社西部技研 Organic solvent gas removal device
JP2021169097A (en) 2021-07-29 2021-10-28 株式会社西部技研 Organic solvent gas concentration device

Also Published As

Publication number Publication date
CN114307539A (en) 2022-04-12
JP2023067337A (en) 2023-05-16
KR20230063281A (en) 2023-05-09
CN217449550U (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP4304534B2 (en) Gas purification device
CN101469897A (en) Air purification system
JP6621810B2 (en) Method and regenerative separator for separating impurities from process exhaust
TW201238653A (en) Improved on-line regeneration device and method for zeolite rotor concentrator
CN111372670A (en) Energy-saving dehumidification rotor reaches dehumidifier including it
KR20110074335A (en) Concentration controlled activated carbon adsorption and desorption device
JP7053079B1 (en) Gas processing equipment
JP6360800B2 (en) VOC solvent recovery apparatus and method
JP7481859B2 (en) Gas Separation and Recovery Equipment
CN211864457U (en) gas concentrator
JP2001029736A (en) Apparatus and method for deodorizing treatment of exhaust gas
JP2009273975A (en) System for treatment of gas containing organic solvent
JP2013132582A (en) Organic solvent-containing gas treatment system
JP2009082797A (en) Organic solvent-containing gas treatment system
KR20090075056A (en) Regeneration method of exhaust treatment rotary concentrator loaded with volatile organic compounds through online high temperature operation and apparatus therefor
JP7455566B2 (en) Gas removal concentrator
KR101362705B1 (en) Recovery method and apparatus of volatile organic compounds(voc) by concentration and condensation
JP2021169097A (en) Organic solvent gas concentration device
CN208193974U (en) A kind of purifying processing device of coating machine drying gas
JP6545403B2 (en) Deodorizer
KR101331192B1 (en) Recovery method and apparatus of volatile organic compounds(voc) by concentration and condensation
JP5823334B2 (en) Adsorption system
US20230059807A1 (en) Plant and method for treating an aeriform effluent
US20240350963A1 (en) Gas sorption system
TW201842958A (en) Deodorizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211101

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7053079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157