JP7045662B2 - Photocatalyst manufacturing method and hydrogen generation method - Google Patents
Photocatalyst manufacturing method and hydrogen generation method Download PDFInfo
- Publication number
- JP7045662B2 JP7045662B2 JP2017160149A JP2017160149A JP7045662B2 JP 7045662 B2 JP7045662 B2 JP 7045662B2 JP 2017160149 A JP2017160149 A JP 2017160149A JP 2017160149 A JP2017160149 A JP 2017160149A JP 7045662 B2 JP7045662 B2 JP 7045662B2
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- ktao
- metal oxide
- hydrogen
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 69
- 239000001257 hydrogen Substances 0.000 title claims description 56
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 56
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 238000000034 method Methods 0.000 title description 37
- 150000004706 metal oxides Chemical class 0.000 claims description 56
- 229910044991 metal oxide Inorganic materials 0.000 claims description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 150000001875 compounds Chemical class 0.000 claims description 27
- 238000001556 precipitation Methods 0.000 claims description 27
- 150000004767 nitrides Chemical class 0.000 claims description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 21
- 229910000510 noble metal Inorganic materials 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 238000005121 nitriding Methods 0.000 description 32
- 230000000694 effects Effects 0.000 description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 20
- 239000003426 co-catalyst Substances 0.000 description 20
- 239000001301 oxygen Substances 0.000 description 20
- 229910052760 oxygen Inorganic materials 0.000 description 20
- 239000000843 powder Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000000354 decomposition reaction Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 229910052741 iridium Inorganic materials 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229910052715 tantalum Inorganic materials 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 229910052703 rhodium Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000013032 photocatalytic reaction Methods 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 101001102158 Homo sapiens Phosphatidylserine synthase 1 Proteins 0.000 description 2
- 102100039298 Phosphatidylserine synthase 1 Human genes 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000007716 flux method Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229910019891 RuCl3 Inorganic materials 0.000 description 1
- 229910003071 TaON Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- -1 oxynitrides Chemical class 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- FTIMWVSQXCWTAW-UHFFFAOYSA-N ruthenium Chemical compound [Ru].[Ru] FTIMWVSQXCWTAW-UHFFFAOYSA-N 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Description
本発明は、光触媒の製造方法、及び水素生成方法に関する。 The present invention relates to a method for producing a photocatalyst and a method for producing hydrogen.
1年間に地球上に降り注ぐ太陽エネルギー量は、現在の我々が1年間に消費するエネルギー量の約1万倍に相当するほどの膨大な量である。そこで、この太陽エネルギーを用いて豊富に存在する水を分解し、クリーンな資源である水素を得る技術の確立が望まれている。これを実現するためには、光エネルギーを吸収し水を分解する機能を持つ新光触媒の開発が重要である。 The amount of solar energy that falls on the earth in one year is enormous, which is equivalent to about 10,000 times the amount of energy that we currently consume in one year. Therefore, it is desired to establish a technology for decomposing abundant water using this solar energy to obtain hydrogen, which is a clean resource. In order to achieve this, it is important to develop a new photocatalyst that has the function of absorbing light energy and decomposing water.
水を水素と酸素に化学量論比で分解できる光触媒としては、Ti4+、Zr4+、Ta5+、Nb5+等のように、d軌道が空のd0電子状態の遷移金属酸化物、あるいはGa3+、In3+、Ge4+、Sn4+、Sb5+等のように、d軌道が満たされたd10電子状態の典型金属酸化物に、助触媒を担持した光触媒が提案されている(例えば、非特許文献1)。 Photocatalysts capable of decomposing water into hydrogen and oxygen in a chemical quantitative ratio include transition metal oxides with d-orbitals in the d- 0 electron state, such as Ti 4+ , Zr 4+ , Ta 5+ , and Nb 5+ , or Ga. Photocatalysts carrying a cocatalyst on a typical metal oxide in the d 10 electron state where the d orbital is filled, such as 3+ , In 3+ , Ge 4+ , Sn 4+ , Sb 5+ , etc., have been proposed (eg, non-). Patent Document 1).
ところで、太陽光利用の観点からは、可視光領域で作用する光触媒の開発が重要である。しかしながら、非特許文献1に開示されるような従来の光触媒は、光吸収波長が400nmより短い紫外光領域で専ら作用するものである。このことに対処するべく、光吸収に関連する価電子帯と伝導帯のバンド幅が狭い窒化物、酸窒化物、硫化物、酸硫化物等が注目されてきてはいるものの、長波長の可視光領域で好適に作用する光触媒は依然として得られ難いのが現状である。
By the way, from the viewpoint of using sunlight, it is important to develop a photocatalyst that works in the visible light region. However, conventional photocatalysts as disclosed in
そこで、本発明は、可視光領域での水の分解反応において水素生成活性を有する光触媒の製造方法、及び当該方法により得られる光触媒を用いた水素生成方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a photocatalyst having hydrogen generation activity in a water decomposition reaction in the visible light region, and a method for producing hydrogen using the photocatalyst obtained by the method.
これまで、可視光を吸収できる光触媒として、窒化物(ナイトライド)化合物であるTa3N5等や、酸窒化物(オキシナイトライド)化合物であるTaON、SrTaO2N、BaTaO2N、LaTiO2N、LaTaON2等が用いられている。これらの化合物は、アンモニア窒化により粉末微粒子として得られ、光触媒として用いられている。しかし、従来製造されたこれらの窒化物や酸窒化物は、メタノールからの水素生成や硝酸銀水溶液からの酸素生成のような、水分解の半反応には適応できるが、水から水素及び酸素を化学量比で分解する水の完全分解反応には適応できていない。 So far, as photocatalysts capable of absorbing visible light, Ta 3 N 5 which is a nitride (nitride) compound and TaON, SrTaO 2 N, BaTaO 2 N, LaTIO 2 which are oxynitride compounds have been used. N, LaTaON 2 and the like are used. These compounds are obtained as powder fine particles by ammonia nitriding and are used as photocatalysts. However, although these conventionally produced nitrides and oxynitrides can be adapted to semi-reactions of water splitting such as hydrogen generation from methanol and oxygen generation from an aqueous solution of silver nitrate, they chemically convert hydrogen and oxygen from water. It has not been adapted to the complete decomposition reaction of water that decomposes by quantity.
そこで本発明者らは、金属酸化物表面上に窒化物や酸窒化物を形成させる方法に着目した。すなわち、d0電子状態の金属イオンであるTi4+、Zr4+、Nb5+、Ta5+等の酸化物、及びd10電子状態の金属イオンであるGa3+、In3+、Ge4+、Sn4+、Sb5+等の酸化物の表面上に窒化物や酸窒化物を形成させることが有用であると考えた。そのためには、金属酸化物を、アンモニア気体やアンモニア混合気体等を窒素源として、短時間で窒化させることにより、金属酸化物から組成成分の一部を脱離させて、金属酸化物の表面にのみ窒化物や酸窒化物を析出させる方法が好適であると考えた。 Therefore, the present inventors have focused on a method for forming a nitride or an oxynitride on the surface of a metal oxide. That is, oxides such as Ti 4+ , Zr 4+ , Nb 5+ , Ta 5+ , which are metal ions in the d 0 electron state, and Ga 3+ , In 3+ , Ge 4+ , Sn 4+ , Sb, which are metal ions in the d 10 electron state. It was considered useful to form nitrides and oxynitrides on the surface of oxides such as 5+ . For that purpose, the metal oxide is nitrided in a short time by using an ammonia gas, an ammonia mixed gas, or the like as a nitrogen source, thereby desorbing a part of the composition component from the metal oxide and forming it on the surface of the metal oxide. It was considered that the method of precipitating only nitride or oxynitride is suitable.
すなわち、本発明は、下記一般式(1)~(3)のいずれかで表される金属酸化物の表面に、窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物を析出させる析出工程と、化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種を担持させる担持工程と、を備える、水からの水素生成に用いられる光触媒の製造方法を提供する。
AXO3・・・(1)
An+1XnO3n+1・・・(2)
AmXmO3m+2・・・(3)
式中、Aはアルカリ金属、アルカリ土類金属及び希土類金属からなる群より選択される少なくとも1種を示し、XはTi、V、Zr、Ta、Nb、W、Mo、Ga、In、Ge及びSnからなる群より選択される少なくとも1種を示し、nは1又は2を示し、mは2又は4を示す。
That is, in the present invention, at least one compound selected from the group consisting of nitrides and oxynitrides is deposited on the surface of the metal oxide represented by any of the following general formulas (1) to (3). Provided is a method for producing a photocatalyst used for hydrogen generation from water, comprising a precipitation step of causing the compound to be carried, and a carrying step of carrying at least one selected from the group consisting of a noble metal and a noble metal oxide on the surface of the compound. ..
AXO 3 ... (1)
A n + 1 X n O 3n + 1 ... (2)
A m X m O 3m + 2 ... (3)
In the formula, A represents at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and X indicates Ti, V, Zr, Ta, Nb, W, Mo, Ga, In, Ge and Indicates at least one selected from the group consisting of Sn, where n indicates 1 or 2 and m indicates 2 or 4.
本発明において、析出工程が、金属酸化物をアンモニア含有気体中で0.05~2時間熱処理する工程を備えることが好ましい。 In the present invention, it is preferable that the precipitation step includes a step of heat-treating the metal oxide in an ammonia-containing gas for 0.05 to 2 hours.
本発明において、担持工程が、化合物の表面に、さらにCr、Co、V、Mo及びWからなる群より選択される少なくとも1種の金属の酸化物を担持させる工程を備えることが好ましい。 In the present invention, it is preferable that the supporting step includes a step of further supporting an oxide of at least one metal selected from the group consisting of Cr, Co, V, Mo and W on the surface of the compound.
本発明において、光触媒が、350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となることが好ましい。 In the present invention, it is preferable that the photocatalyst is excited by irradiating with light having a wavelength selected from the range of 350 to 600 nm.
本発明はまた、上記の製造方法により得られる光触媒の存在下、可視光を用いた光反応により水からの水素生成を行う、水素生成方法を提供する。 The present invention also provides a hydrogen generation method for producing hydrogen from water by a photoreaction using visible light in the presence of a photocatalyst obtained by the above production method.
本発明によれば、可視光領域での水の分解反応において水素生成活性を有する光触媒の製造方法、及び当該方法により得られる光触媒を用いた水素生成方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a photocatalyst having hydrogen generation activity in a water decomposition reaction in a visible light region, and a method for producing hydrogen using the photocatalyst obtained by the method.
<光触媒の製造方法>
本実施形態の、水からの水素生成に用いられる光触媒の製造方法は、所定の金属酸化物の表面に、窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物を析出させる析出工程と、当該化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種を担持させる担持工程と、を備える。
<Manufacturing method of photocatalyst>
The method for producing a photocatalyst used for producing hydrogen from water according to the present embodiment is to precipitate at least one compound selected from the group consisting of nitrides and oxynitrides on the surface of a predetermined metal oxide. It comprises a step and a carrying step of supporting at least one selected from the group consisting of noble metals and noble metal oxides on the surface of the compound.
[析出工程]
金属酸化物としては下記一般式(1)~(3)のいずれかで表される金属酸化物が挙げられる。なお、一般式(2)及び(3)で表される層状ペロブスカイト構造酸化物は、一般式(1)で表されるペロブスカイト構造酸化物AXO3層が金属イオンAを挟み込むようにして積層されたものである。いずれの構造も発明者らの知見によれば、水からの水素生成に用いられる光触媒の基体として用いられる際に、同等の作用機序が得られることが分かっている。
ペロブスカイト構造酸化物AXO3・・・(1)
層状ペロブスカイト構造酸化物An+1XnO3n+1・・・(2)
層状ペロブスカイト構造酸化物AmXmO3m+2・・・(3)
式中、Aはアルカリ金属、アルカリ土類金属及び希土類金属からなる群より選択される少なくとも1種を示し、より良好な水素生成活性を得ることができるという観点からアルカリ金属が好ましく、NaやKであることがより好ましい。Xは遷移金属イオンであるTi、V、Zr、Ta、Nb、W、Mo、Ga、In、Ge及びSnからなる群より選択される少なくとも1種を示し、より良好な水素生成活性を得ることができるという観点からTi、Ta、Nb等であることが好ましい。また、nは1又は2を示し、mは2又は4を示す。
[Precipitation step]
Examples of the metal oxide include metal oxides represented by any of the following general formulas (1) to (3). The layered perovskite structural oxides represented by the general formulas (2) and (3) were laminated so that the three layers of the perovskite structural oxide AXO represented by the general formula (1) sandwiched the metal ion A. It is a thing. According to the findings of the inventors, both structures have the same mechanism of action when used as a substrate for a photocatalyst used for hydrogen production from water.
Perovskite structure oxide AXO 3 ... (1)
Layered perovskite structure Oxide An + 1 X n O 3n + 1 ... (2)
Layered perovskite structure oxide A m X m O 3 m + 2 ... (3)
In the formula, A represents at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and alkali metals are preferable from the viewpoint of obtaining better hydrogen generation activity, and Na and K are preferable. Is more preferable. X represents at least one selected from the group consisting of transition metal ions Ti, V, Zr, Ta, Nb, W, Mo, Ga, In, Ge and Sn to obtain better hydrogen production activity. Ti, Ta, Nb and the like are preferable from the viewpoint of being able to. Further, n indicates 1 or 2, and m indicates 2 or 4.
以下、ペロブスカイト構造を持つ金属酸化物として、KTaO3の調製方法を説明し、他の化合物の調製方法の代表例とする。なお、金属酸化物は、以下に示すように固相反応法又はフラックス法の2とおりの方法で作製することができる。 Hereinafter, a method for preparing KTaO3 as a metal oxide having a perovskite structure will be described, and a representative example of a method for preparing other compounds will be described. The metal oxide can be produced by two methods, a solid phase reaction method or a flux method, as shown below.
固相反応法:出発物質であるTa2O5及びK2CO3を含む原料粉末を、K/Ta比で0.9~1.2で混合した後、アルミナルツボに入れる。これを電気炉において大気下で1000~1200℃で10~20時間加熱することでKTaO3を得ることができる。
フラックス法:出発物質であるTa2O5及びK2CO3を含む原料粉末を、K/Ta比で0.9~1.2で混合し、さらにフラックスとしてK2CO3、KCl、NaCl等を原料粉末に対し重量比で3~20倍加える。これを電気炉において大気下で800~1100℃で10~15時間加熱することでKTaO3を得ることができる。
Solid phase reaction method: Raw material powder containing the starting materials Ta 2 O 5 and K 2 CO 3 is mixed at a K / Ta ratio of 0.9 to 1.2, and then placed in an alumina crucible. KTaO 3 can be obtained by heating this in an electric furnace at 1000 to 1200 ° C. for 10 to 20 hours in the atmosphere.
Flux method: Raw material powder containing the starting materials Ta 2 O 5 and K 2 CO 3 is mixed at a K / Ta ratio of 0.9 to 1.2, and K 2 CO 3 , KCl, NaCl, etc. are further mixed as a flux. Is added 3 to 20 times by weight to the raw material powder. KTaO 3 can be obtained by heating this in an electric furnace at 800 to 1100 ° C. for 10 to 15 hours in the atmosphere.
金属酸化物は、良質な窒化物及び酸窒化物を析出させる観点から、表面処理を行っても良い。表面処理には、無機酸(王水、フッ酸)や有機酸(ポリスチレンスルホン酸:PSSA)を用いることができる。例えば王水を用いる場合は、金属酸化物を80℃にて30分間処理すればよい。フッ酸を用いる場合は、20%フッ酸水溶液を調製し、これを用いて金属酸化物を室温にて10~30分間処理すればよい。PSSAを用いる場合は、金属酸化物を室温で2~20時間処理すればよい。いずれの酸を用いる場合でも、処理後に水洗、濾過、乾燥等を行い、窒化用の試料とする。 The metal oxide may be surface-treated from the viewpoint of precipitating high-quality nitrides and oxynitrides. For the surface treatment, an inorganic acid (aqua regia, hydrofluoric acid) or an organic acid (polystyrene sulfonic acid: PSSA) can be used. For example, when aqua regia is used, the metal oxide may be treated at 80 ° C. for 30 minutes. When hydrofluoric acid is used, a 20% hydrofluoric acid aqueous solution may be prepared and the metal oxide may be treated at room temperature for 10 to 30 minutes. When PSSA is used, the metal oxide may be treated at room temperature for 2 to 20 hours. Regardless of which acid is used, the sample is washed with water, filtered, dried, etc. after the treatment to prepare a sample for nitriding.
金属酸化物の平均粒子径は、特に限定されないが、懸濁液(後述)を調製して好適に光触媒反応を行う観点、内部まで窒化物/酸窒化物となることを抑制する観点等から、0.05~10μmであることが好ましく、0.1~1.0μmであることがより好ましい。 The average particle size of the metal oxide is not particularly limited, but from the viewpoint of preparing a suspension (described later) and appropriately performing a photocatalytic reaction, and from the viewpoint of suppressing the formation of nitride / oxynitride to the inside, etc. It is preferably 0.05 to 10 μm, and more preferably 0.1 to 1.0 μm.
窒化物及び酸窒化物の組成は、析出工程の手順及び用いる金属酸化物の組成に依存する。後述の析出方法1を実施する場合、窒化物としては、例えばTa、Nb、Ga、In、Ge、Sn等の窒化物(Ta3N5、(Ta,Nb)3N5、GaN、InN、Ge3N4等)が挙げられる。
The composition of nitrides and oxynitrides depends on the procedure of the precipitation process and the composition of the metal oxide used. When the
また、後述の析出方法2を実施する場合、無機塩等に含まれる金属元素も組み込まれる。当該金属元素は後述のとおりであり、したがって酸窒化物としてはBaTaO2N、CaTaO2N、BaNbO2N、SrTaO2N、LaTaON2等が挙げられる。
Further, when the
析出工程は、具体的には次の2とおりの方法で実施することができる。
析出方法1:金属酸化物をアンモニア含有気体中で熱処理する工程により実施する。
析出方法2:他の金属酸化物を表面に担持させた金属酸化物を、アンモニア含有気体中で熱処理する工程により実施する。
以下、KTaO3の窒化方法を代表例として説明する。
Specifically, the precipitation step can be carried out by the following two methods.
Precipitation method 1: The metal oxide is heat-treated in an ammonia-containing gas.
Precipitation method 2: The metal oxide having another metal oxide supported on the surface is heat-treated in an ammonia-containing gas.
Hereinafter, the nitriding method of KTaO 3 will be described as a representative example.
析出方法1:KTaO3に対して、フラックスとしてK2CO3やKClを重量比で0.5~2倍となるように加え、これらをアルミナ管に導入する。その後、反応気体として100%アンモニア気体、又は窒素及びアンモニアをNH3/(N2+NH3)の流量比0.05~0.50で混合した気体を、全流量速度10~500mlmin-1で流し、管状電気炉を用いて800~950℃で好ましくは0.05~2時間熱処理することにより、窒化物/金属酸化物構造をもつTa3N5/KTaO3を得ることができる。すなわち析出方法1によれば、金属酸化物表面に窒化物を析出させることができる。
Precipitation method 1: Add K2 CO 3 or KCl as a flux to KTaO 3 so that the weight ratio is 0.5 to 2 times, and introduce these into an alumina tube. Then, 100% ammonia gas as a reaction gas, or a gas in which nitrogen and ammonia are mixed at a flow rate ratio of NH 3 / (N 2 + NH 3 ) of 0.05 to 0.50 is flown at a total flow rate of 10 to 500 mlmin -1 . , Ta 3 N 5 / KTaO 3 having a nitride / metal oxide structure can be obtained by heat treatment at 800 to 950 ° C. for preferably 0.05 to 2 hours using a tubular electric furnace. That is, according to the
析出方法2:KTaO3を、無機塩、有機塩、錯塩等の金属塩を含む溶液に含浸させた後、乾燥させて揮発成分を除去する。金属塩を構成する金属としては、アルカリ土類金属、La等が挙げられる。金属塩としては、例えば、これらの金属の硝酸塩であるBa(NO3)2、Ca(NO3)2、Sr(NO3)2、La(NO3)3等が挙げられる。その後、必要に応じ大気中あるいは酸素雰囲気中で酸化処理することで、金属酸化物の表面にこれらの金属の酸化物(他の金属酸化物)を担持させる。このようにして他の金属酸化物を表面に担持させた金属酸化物を、さらに析出方法1と同様にして100%アンモニア気体等を用いて窒化処理をすることにより、例えばBaTaO2N/KTaO3、SrTaO2N/KTaO3、LaTaON2/KTaO3等の酸窒化物/金属酸化物構造をもつ化合物を得ることができる。すなわち析出方法2によれば、金属酸化物表面に酸窒化物を析出させることができる。
Precipitation method 2: KTaO 3 is impregnated into a solution containing a metal salt such as an inorganic salt, an organic salt or a complex salt, and then dried to remove volatile components. Examples of the metal constituting the metal salt include alkaline earth metals, La and the like. Examples of the metal salt include Ba (NO 3 ) 2 , Ca (NO 3 ) 2 , Sr (NO 3 ) 2 , La (NO 3 ) 3 , and the like, which are nitrates of these metals. Then, if necessary, the metal oxides are subjected to oxidation treatment in the air or oxygen atmosphere to support the oxides of these metals (other metal oxides) on the surface of the metal oxides. The metal oxide on which the other metal oxide is supported on the surface in this manner is further subjected to nitriding treatment using 100% ammonia gas or the like in the same manner as in the
なお、析出工程における熱処理時間は、好ましくは0.05~2時間であるが、0.05~1.5時間、0.05~1時間、あるいは0.1~0.5時間とすることができる。0.05より短時間では充分な触媒活性を得られ難い(充分な量の窒化物/酸窒化物が析出し難い)傾向があり、また、還元性気体であるアンモニアに曝される時間が長すぎると、窒化物/酸窒化物表面に欠陥や、上記X元素の還元種等が生成する傾向があり、これが触媒活性の低下を引き起こす虞がある。 The heat treatment time in the precipitation step is preferably 0.05 to 2 hours, but may be 0.05 to 1.5 hours, 0.05 to 1 hour, or 0.1 to 0.5 hours. can. In a shorter time than 0.05, it tends to be difficult to obtain sufficient catalytic activity (sufficient amount of nitride / oxynitride is difficult to precipitate), and the time of exposure to ammonia, which is a reducing gas, is long. If it is too much, defects on the surface of the nitride / oxynitride and the reduced species of the above-mentioned element X tend to be generated, which may cause a decrease in catalytic activity.
得られたKTaO3、Ta3N5/KTaO3等は、XRDにより得られる回折パターンと、ICDD-PDF(International Center for Diffraction Data-PDF)のデータベースとを比較することにより同定することができる。 The obtained KTaO 3 , Ta 3 N 5 / KTaO 3 , etc. can be identified by comparing the diffraction pattern obtained by XRD with the database of ICDD-PDF (International Center for Diffraction Data-PDF).
析出工程により得られる窒化物又は酸窒化物/金属酸化物構造を有する化合物の平均粒子径は特に限定されないが、懸濁液(後述)を調製して好適に光触媒反応を行う観点から、0.05~10μmであることが好ましく、0.1~1.0μmであることがより好ましい。 The average particle size of the nitride or the compound having an oxynitride / metal oxide structure obtained by the precipitation step is not particularly limited, but from the viewpoint of preparing a suspension (described later) and preferably performing a photocatalytic reaction, 0. It is preferably 05 to 10 μm, more preferably 0.1 to 1.0 μm.
[担持工程]
貴金属及び貴金属酸化物は助触媒として機能する。ここで、貴金属とは、Au、Ag、Pt、Pd、Rh、Ir、Ru及びOsからなる群に属する金属をいう。触媒活性をより向上させるという観点から、これら貴金属の中でも、Rh、Ir、Ru、Pt及びPdからなる群より選択される少なくとも1種であることが好ましい。これらは酸化物(貴金属酸化物)であってもよい。
[Supporting process]
Precious metals and noble metal oxides function as co-catalysts. Here, the noble metal refers to a metal belonging to the group consisting of Au, Ag, Pt, Pd, Rh, Ir, Ru and Os. From the viewpoint of further improving the catalytic activity, it is preferable that at least one of these precious metals is selected from the group consisting of Rh, Ir, Ru, Pt and Pd. These may be oxides (precious metal oxides).
これら貴金属及び貴金属酸化物は、Cr、Co、V、Mo、W等の酸化物と共に用いられてもよい(すなわち、助触媒は「共担持」の態様であってもよい)。このような酸化物としては、具体的には、Cr2O3、CoOx(0≦x≦2)、V2O5、MoO3、WO3等が挙げられる。 These noble metals and noble metal oxides may be used together with oxides such as Cr, Co, V, Mo, W (ie, the co-catalyst may be in a "co-supported" mode). Specific examples of such oxides include Cr 2 O 3 , CoO x (0 ≦ x ≦ 2), V 2 O 5 , MoO 3 , WO 3 , and the like.
可視光領域での水の分解反応においてより高い水素生成活性を発現するという観点から、金属酸化物及び窒化物と、助触媒との好ましい組み合わせとしては、Ta3N5/KTaO3と、Pt、Ir、Ru及びRhのいずれか1種及びCr2O3と、の組み合わせが挙げられ、これらの中でもTa3N5/KTaO3と、Rh及びCr2O3と、の組み合せが好ましい。 From the viewpoint of exhibiting higher hydrogen production activity in the decomposition reaction of water in the visible light region, preferred combinations of metal oxides and nitrides with co-catalysts include Ta 3N 5 / KTaO 3 and Pt. Examples thereof include any one of Ir, Ru and Rh and a combination of Cr 2 O 3 , and among these, a combination of Ta 3 N 5 / KTaO 3 and Rh and Cr 2 O 3 is preferable.
金属酸化物の全質量を基準として、助触媒としての貴金属等(貴金属及び貴金属酸化物)の担持量は、0.01~1.0質量%が好ましく、0.02~0.05質量%がより好ましい。また、貴金属等と共担持されてもよい上記金属の酸化物の担持量は、貴金属等の担持量の2~5倍が望ましい。このようにすることで、光触媒が、安定で高い水素生成活性を発現し易くなる傾向にある。 Based on the total mass of the metal oxide, the amount of the noble metal or the like (precious metal and noble metal oxide) supported as a co-catalyst is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.05% by mass. More preferred. Further, the amount of the oxide of the metal that may be supported together with the noble metal or the like is preferably 2 to 5 times the amount of the supported amount of the noble metal or the like. By doing so, the photocatalyst tends to easily develop stable and high hydrogen production activity.
担持工程は、含浸法、光電着法、及び水素還元法といった一般的な方法により実施することができる。以下、いくつかの助触媒を担持させる例を説明し、他の助触媒の担持方法の代表例とする。 The supporting step can be carried out by a general method such as an impregnation method, a photoelectric adhesion method, and a hydrogen reduction method. Hereinafter, examples of supporting some co-catalysts will be described, and examples of other methods of supporting co-catalysts will be described.
(含浸法による助触媒の担持例)
助触媒としてRuOx(0≦x≦2)を採用する場合は、塩化ルテニウムRuCl3・H2Oの水溶液に、析出工程を経た金属酸化物を含浸させる。これを真空乾固後、大気下で酸化処理し、RuCl3をRuOx(0≦x≦2)に変換することにより、析出工程を経た金属酸化物にRuOx(0≦x≦2)を担持させることができる。あるいは、Ruのカルボニル錯体であるRu3(CO)12のTHF(テトラヒドロフラン)溶液へ、析出工程を経た金属酸化物を含浸させたのち、真空乾固し、さらに大気雰囲気で酸化処理して、Ru3(CO)12をRuOx(0≦x≦2)に変換することにより、析出工程を経た金属酸化物にRuOx(0≦x≦2)を担持させることができる。
(Example of supporting a co-catalyst by the impregnation method)
When RuO x (0 ≦ x ≦ 2) is adopted as the co-catalyst, the aqueous solution of ruthenium ruthenium RuCl3・H2O is impregnated with the metal oxide that has undergone the precipitation step. This is vacuum-dried and then oxidized in the atmosphere to convert RuCl 3 into RuO x (0 ≦ x ≦ 2), whereby RuO x (0 ≦ x ≦ 2) is added to the metal oxide that has undergone the precipitation step. Can be carried. Alternatively, a THF (tetratetra) solution of Ru 3 (CO) 12 , which is a carbonyl complex of Ru, is impregnated with a metal oxide that has undergone a precipitation step, dried in vacuum, and further oxidized in an air atmosphere to be Ru. By converting 3 (CO) 12 to RuO x (0 ≦ x ≦ 2), RuO x (0 ≦ x ≦ 2) can be supported on the metal oxide that has undergone the precipitation step.
含浸法における酸化処理は、好ましくは300~450℃、より好ましくは350~400℃の温度条件にて、好ましくは2~7時間、より好ましくは3~5時間処理することで実施することができる。このような条件で酸化処理することにより、RuCl3やRu3(CO)12をより確実にRuOx(0≦x≦2)に変換することが可能である。 The oxidation treatment in the impregnation method can be carried out by treating at a temperature condition of preferably 300 to 450 ° C., more preferably 350 to 400 ° C., preferably for 2 to 7 hours, more preferably 3 to 5 hours. .. By performing the oxidation treatment under such conditions, it is possible to more reliably convert RuCl 3 and Ru 3 (CO) 12 to RuO x (0 ≦ x ≦ 2).
(光電着法による助触媒の担持例)
助触媒としてRhを、共助触媒としてCr2O3を採用する場合は、まず、RhCl3・H2Oのメタノール水溶液に、析出工程を経た金属酸化物を加える。これをガラス反応セルに移し、溶存酸素を脱気後、真空下でXeランプ光を3時間照射する。さらに、この溶液にCr(NO3)3をRhに対しモル比で3倍のCr量となるように加えて、さらに真空下でXeランプ光を12時間照射する。光電着終了後、溶液の濾過、洗浄及び乾燥により、析出工程を経た金属酸化物にCr2O3及びRhを担持させることができる。
(Example of supporting a co-catalyst by the photoelectric adhesion method)
When Rh is used as the co-catalyst and Cr 2 O 3 is used as the co-catalyst, first, the metal oxide that has undergone the precipitation step is added to the aqueous methanol solution of RhCl 3・ H 2 O. This is transferred to a glass reaction cell, the dissolved oxygen is degassed, and then the Xe lamp light is irradiated under vacuum for 3 hours. Further, Cr (NO 3 ) 3 is added to this solution so that the amount of Cr is 3 times the molar ratio of Rh, and the solution is further irradiated with Xe lamp light for 12 hours under vacuum. After the photoadhesion is completed, Cr2O3 and Rh can be supported on the metal oxide that has undergone the precipitation step by filtering, washing and drying the solution.
(水素還元法による助触媒の担持例)
助触媒としてIr又はPtを採用する場合は、まず、(NH4)2IrCl6水溶液あるいはH2PtCl6・6H2O水溶液に、析出工程を経た金属酸化物を加えて還流する。その後、これを真空乾固し、水素と窒素の混合気体を流通させ、例えば、300~400℃で3~5時間還元処理することで、析出工程を経た金属酸化物にIr又はPtを担持させることができる。なお、これをさらに、K2CrO4水溶液を入れた反応セルに移し、Xeランプ光で10~12時間照射してCr光電着させ、溶液の濾過、洗浄及び乾燥をすることで、析出工程を経た金属酸化物にCr2O3及びIr、又はCr2O3及びPtを担持させることができる。
(Example of supporting a co-catalyst by the hydrogen reduction method)
When Ir or Pt is adopted as the co-catalyst, first , the metal oxide that has undergone the precipitation step is added to the (NH 4 ) 2 IrCl 6 aqueous solution or the H 2 PtCl 6.6 H2 O aqueous solution and refluxed. Then, this is vacuum-dried, and a mixed gas of hydrogen and nitrogen is circulated, and for example, it is reduced at 300 to 400 ° C. for 3 to 5 hours to support Ir or Pt on the metal oxide that has undergone the precipitation step. be able to. Further, this is further transferred to a reaction cell containing an aqueous solution of K2 CrO 4 , irradiated with Xe lamp light for 10 to 12 hours to carry out Cr photoelectric adhesion, and the solution is filtered, washed and dried to carry out the precipitation step. Cr 2 O 3 and Ir, or Cr 2 O 3 and Pt can be supported on the aged metal oxide.
<光触媒>
以上の工程を実施することで、本実施形態の水からの水素生成に用いられる光触媒を得ることができる。すなわち、本実施形態の光触媒は、以下のものであるということができる。
下記一般式(1)~(3)のいずれかで表される金属酸化物と、該金属酸化物の表面に窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物と、該化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種と、を備える、水からの水素生成に用いられる光触媒。
AXO3・・・(1)
An+1XnO3n+1・・・(2)
AmXmO3m+2・・・(3)
式中、Aはアルカリ金属、アルカリ土類金属及び希土類金属からなる群より選択される少なくとも1種を示し、XはTi、V、Zr、Ta、Nb、W、Mo、Ga、In、Ge及びSnからなる群より選択される少なくとも1種を示し、nは1又は2を示し、mは2又は4を示す。
<Photocatalyst>
By carrying out the above steps, a photocatalyst used for hydrogen generation from water of the present embodiment can be obtained. That is, it can be said that the photocatalyst of the present embodiment is as follows.
A metal oxide represented by any of the following general formulas (1) to (3), at least one compound selected from the group consisting of nitrides and oxynitrides on the surface of the metal oxide, and the above-mentioned compound. A photocatalyst used for hydrogen production from water, comprising on the surface of a compound at least one selected from the group consisting of noble metals and noble metal oxides.
AXO 3 ... (1)
A n + 1 X n O 3n + 1 ... (2)
A m X m O 3m + 2 ... (3)
In the formula, A represents at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and X indicates Ti, V, Zr, Ta, Nb, W, Mo, Ga, In, Ge and Indicates at least one selected from the group consisting of Sn, where n indicates 1 or 2 and m indicates 2 or 4.
なお、本実施形態の光触媒は粒子状であることが好ましい。光触媒粒子の平均粒子径は、懸濁液(後述)を調製して好適に光触媒反応を行う観点から0.05~10μmであることが好ましく、0.1~1.0μmであることがより好ましい。 The photocatalyst of this embodiment is preferably in the form of particles. The average particle size of the photocatalytic particles is preferably 0.05 to 10 μm, more preferably 0.1 to 1.0 μm from the viewpoint of preparing a suspension (described later) and preferably performing a photocatalytic reaction. ..
<光触媒を用いた水素生成方法>
本実施形態の水素生成方法は、上記のとおり得られた光触媒の存在下、可視光を用いた光反応により水からの水素生成を行う。すなわち、水の分解反応により水素を得るものである。具体的には、光触媒及び純水を含む懸濁液を調製し、この懸濁液に対して特定領域の波長の光を外部より照射することにより、水素を得ることができる。本実施形態の光触媒は、好ましくは350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となる。したがって、本実施形態の水素生成方法によれば、太陽光の可視光領域(波長がおよそ350~600nm)での水の分解反応において好適に水素を得ることができる。
<Hydrogen generation method using photocatalyst>
In the hydrogen generation method of the present embodiment, hydrogen is generated from water by a photoreaction using visible light in the presence of the photocatalyst obtained as described above. That is, hydrogen is obtained by the decomposition reaction of water. Specifically, hydrogen can be obtained by preparing a suspension containing a photocatalyst and pure water and irradiating the suspension with light having a wavelength in a specific region from the outside. The photocatalyst of the present embodiment is excited by irradiating with light having a wavelength selected from the range of preferably 350 to 600 nm. Therefore, according to the hydrogen generation method of the present embodiment, hydrogen can be suitably obtained in the decomposition reaction of water in the visible light region (wavelength of about 350 to 600 nm) of sunlight.
光触媒活性の評価には、例えば、通常の閉鎖循環系反応装置を用いることができる。この装置は、真空排気系、光照射用反応ガラスセル、気体循環用ピストンポンプ、圧力計等により構成される。光触媒反応により生成する気体(H2、O2)は、反応系に直結したガスクロマトグラフにより随時分析することができる。この装置は循環反応系のため、反応時間の経過と共に発生する気体生成物は装置内に蓄積される。そのため、反応を繰り返す場合には、気相を排気した後、再度反応操作を繰り返せばよい。 For the evaluation of photocatalytic activity, for example, a normal closed circulatory system reactor can be used. This device includes a vacuum exhaust system, a reaction glass cell for light irradiation, a piston pump for gas circulation, a pressure gauge, and the like. The gas (H 2 , O 2 ) generated by the photocatalytic reaction can be analyzed at any time by a gas chromatograph directly connected to the reaction system. Since this device is a circulating reaction system, gas products generated over time of the reaction are accumulated in the device. Therefore, when the reaction is repeated, the reaction operation may be repeated again after the gas phase is exhausted.
光触媒の評価用サンプルとしては、上記のとおり得られた光触媒を光照射用反応ガラスセルに入れ、これに純水(例えば、蒸留水をさらにイオン交換した純水)を加えて懸濁させ、さらに懸濁液中の溶存酸素及び窒素を真空排気により除いたものを使用することができる。水に対する好ましい光触媒量は、光がほぼすべての光触媒粒子に当たる程度の量とすればよい。例えば光触媒としてTa3N5/KTaO3を用いる場合には、光触媒の含有量は、純水の全重量を基準として、0.03~0.3重量%が好ましく、0.1~0.2重量%がより好ましい。なお、測定にあたっては、評価用サンプルの温度は15~40℃であることが好ましい。また、評価サンプルのpHは5~10であることが好ましく、6~8であることがより好ましい。 As a sample for evaluation of the photocatalyst, the photocatalyst obtained as described above is placed in a reaction glass cell for light irradiation, pure water (for example, pure water obtained by further ion-exchanged distilled water) is added thereto, and the suspension is further carried out. Dissolved oxygen and nitrogen in the suspension can be removed by vacuum exhaust. The preferable amount of the photocatalyst for water may be such that the light hits almost all the photocatalyst particles. For example, when Ta 3 N 5 / KTaO 3 is used as the photocatalyst, the content of the photocatalyst is preferably 0.03 to 0.3% by weight, preferably 0.1 to 0.2% based on the total weight of pure water. % By weight is more preferred. In the measurement, the temperature of the evaluation sample is preferably 15 to 40 ° C. The pH of the evaluation sample is preferably 5 to 10, more preferably 6 to 8.
また、懸濁液の撹拌には、反応装置内に設けたマグネットスターラー等を用い、光照射には、Xeランプ(例えば、イーグルエンジニアリング株式会社製 300W Xe ランプ装置R300-3J)等を用いることができる。この際、照射される光の波長は、本実施形態の光触媒が可視光領域での水の分解反応において高い水素生成活性を示すという観点から、350~800nmとすることができ、420~800nmとすることができる。なお、本実施形態の光触媒は、上述のとおり350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となるため、照射される光の波長は、350~600nmとしてもよい。 Further, a magnet stirrer or the like provided in the reaction device may be used for stirring the suspension, and an Xe lamp (for example, 300W Xe lamp device R300-3J manufactured by Eagle Engineering Co., Ltd.) or the like may be used for light irradiation. can. At this time, the wavelength of the irradiated light can be 350 to 800 nm, and 420 to 800 nm, from the viewpoint that the photocatalyst of the present embodiment exhibits high hydrogen generation activity in the decomposition reaction of water in the visible light region. can do. Since the photocatalyst of the present embodiment is excited by irradiating light having a wavelength selected from the range of 350 to 600 nm as described above, the wavelength of the irradiated light may be 350 to 600 nm. ..
本光触媒粒子は水中に懸濁させて用いることができるが、その他、光触媒粒子をアルミナ、ガラス、プラスチック等の基板上に膜状に固着させることによって、光触媒パネルとして用いることができる。 The photocatalyst particles can be used by suspending them in water, but can also be used as a photocatalyst panel by fixing the photocatalyst particles on a substrate such as alumina, glass, or plastic in a film form.
以下、実施例により本発明を具体的に説明するが、これは本発明をより理解しやすくすることを目的とするものであり、これにより本発明が限定的に解釈されないことは当然である。 Hereinafter, the present invention will be specifically described with reference to Examples, but this is intended to make the present invention easier to understand, and it is natural that the present invention is not construed in a limited manner.
(実施例1:Ta3N5/KTaO3化合物)
1)光触媒の作製
1-1)KTaO3の作製
出発物質であるTa2O5及びK2CO3の原料粉末を、K:Taのモル比で1.05:1.0で混合したのち、アルミナルツボに入れ、電気炉において大気下で1150℃で10時間加熱し、白色のKTaO3粉末を得た。
(Example 1: Ta 3 N 5 / KTaO 3 compound)
1) Preparation of photocatalyst 1-1) Preparation of KTaO 3 Raw material powders of Ta 2 O 5 and K 2 CO 3 which are starting materials are mixed at a molar ratio of K: Ta at 1.05: 1.0, and then. It was placed in an alumina pentoxide pot and heated in an electric furnace at 1150 ° C. for 10 hours in an electric furnace to obtain a white KTaO 3 powder.
1-2)KTaO3の窒化
上記1-1)で作製したKTaO3試料をボート型のアルミナルツボに移し、それをアルミナ管に導入したのち、反応気体として100%アンモニア気体を、全流量速度100mlmin-1で流し、アルミナ管を管状電気炉で、900℃で0.05~10時間加熱して粉末を得た。
1-2) Nitride of KTaO 3 The KTaO 3 sample prepared in 1-1) above was transferred to a boat-type alumina talc, introduced into an alumina tube, and then 100% ammonia gas was used as the reaction gas at a total flow rate of 100 mlmin. The flow was carried out at -1 , and the alumina tube was heated in a tubular electric furnace at 900 ° C. for 0.05 to 10 hours to obtain a powder.
得られた粉末について、リガク社製の粉末X線回折装置(RINT2000HF)を用いてXRD(CuKα線)測定を行った。窒化前後の粉末のX線回折パターンを図1に示す。図1中、(A)はX線回折パターンの全領域を示し、(B)はX線回折パターンの一部を拡大したものを示す。また、(a)はKTaO3を窒化する前のパターンを、(b)~(g)はKTaO3をそれぞれ窒化時間0.25h、0.5h、1h、2h、4h、10hとして窒化した後のパターンを示す。得られたX線回折パターンと、これまでに報告されている粉末X線回折のためのデータベースICDD-PDFのデータとを対比したところ、上記1-1)で得られた粉末がKTaO3の構造を有することが分かり、目的とする出発物質がほぼ単一相で合成できたことを確認した。さらに、窒化温度を900℃とし、窒化時間を長くしていくと、KTaO3に基づく回折パターンに加えてTa3N5に帰属されるXRDピークが、2θ=36°付近に生じた。そのピーク強度は、窒化時間と共に増加することが示されており、KTaO3を窒化することによって、Ta3N5/KTaO3化合物(KTaO3の表面にTa3N5を有する化合物)が生成していることが確認された。なお、図1には示していないが、KTaO3をそれぞれ窒化時間0.05h、0.125hとして窒化したものについても、同様に、Ta3N5/KTaO3化合物が生成していた。 The obtained powder was subjected to XRD (CuKα ray) measurement using a powder X-ray diffractometer (RINT2000HF) manufactured by Rigaku Corporation. The X-ray diffraction pattern of the powder before and after nitriding is shown in FIG. In FIG. 1, (A) shows the entire region of the X-ray diffraction pattern, and (B) shows a part of the X-ray diffraction pattern enlarged. Further, (a) is a pattern before nitriding KTaO 3 , and (b) to (g) are after nitriding KTaO 3 with nitriding times of 0.25h, 0.5h, 1h, 2h, 4h, and 10h, respectively. Show the pattern. Comparing the obtained X-ray diffraction pattern with the data of the database ICDD-PDF for powder X-ray diffraction reported so far, the powder obtained in 1-1) above is the structure of KTaO3 . It was confirmed that the target starting material could be synthesized in almost a single phase. Further, when the nitriding temperature was set to 900 ° C. and the nitriding time was lengthened, an XRD peak attributed to Ta 3 N 5 was generated in the vicinity of 2θ = 36 ° in addition to the diffraction pattern based on KTaO 3 . Its peak intensity has been shown to increase with nitriding time, and nitriding KTaO 3 produces a Ta 3 N 5 / KTaO 3 compound (a compound having Ta 3 N 5 on the surface of KTaO 3 ). It was confirmed that Although not shown in FIG. 1, the Ta 3N 5 / KTaO 3 compound was also produced in the case of nitriding KTaO 3 with a nitriding time of 0.05 h and 0.125 h, respectively.
得られたKTaO3粉末、及び窒化後に得られたTa3N5/KTaO3粉末の、紫外可視拡散反射スペクトルを測定した。具体的には、得られた粉末を所定のガラス板に固着させ、JASCO社製の紫外可視近赤外分光光度計V-670(参照粉末:アルミナ)を用いて測定した。その結果を図2に示す。図中の(a)~(g)は、図1の(a)~(g)に対応している。同図によれば、KTaO3の光吸収波長は350nm程度であるが、窒化後のTa3N5/KTaO3の光吸収波長は、可視光領域の600nm程度までシフトした。 The ultraviolet-visible diffuse reflection spectra of the obtained KTaO 3 powder and the Ta 3 N 5 / KTaO 3 powder obtained after nitriding were measured. Specifically, the obtained powder was fixed to a predetermined glass plate and measured using an ultraviolet-visible near-infrared spectrophotometer V-670 (reference powder: alumina) manufactured by JASCO Corporation. The results are shown in FIG. (A) to (g) in the figure correspond to (a) to (g) in FIG. According to the figure, the light absorption wavelength of KTaO 3 is about 350 nm, but the light absorption wavelength of Ta 3 N 5 / KTaO 3 after nitriding is shifted to about 600 nm in the visible light region.
得られたKTaO3粉末、及び窒化後に得られたTa3N5/KTaO3粉末を、それぞれ高分解能電界放射型走査型電子顕微鏡(HITACHI、24TK004300)により観察した。その走査型電子顕微鏡像を図3に示す。図3中、(A)はKTaO3の、(B)及び(C)はそれぞれ窒化時間0.25h及び0.5hとして窒化した後のKTaO3の走査型電子顕微鏡像を示す。(A)に示すように、KTaO3は、稜線に面をもつ立方晶構造を示した。これらの粒子の粒子径は0.2~0.8μmであった。一方、(B)及び(C)に示すように、窒化後はこのKTaO3粒子の立方晶構造はほぼ維持されるものの、稜線上を中心として柱状結晶が析出した。柱状結晶の出現はX線回折ピークの出現と合致し、光吸収特性はTa3N5化合物のそれと良い一致を示した。このことから、柱状結晶はTa3N5に帰属されると考えられる。 The obtained KTaO 3 powder and the Ta 3 N 5 / KTaO 3 powder obtained after nitriding were observed with a high-resolution field emission scanning electron microscope (HITACHI, 24TK004300), respectively. The scanning electron microscope image is shown in FIG. In FIG. 3, (A) shows the scanning electron microscope images of KTaO 3 , and (B) and (C) show the scanning electron microscope images of KTaO 3 after nitriding with nitriding times of 0.25 h and 0.5 h, respectively. As shown in (A), KTaO 3 showed a cubic structure having a surface on the ridgeline. The particle size of these particles was 0.2 to 0.8 μm. On the other hand, as shown in (B) and (C), although the cubic structure of the KTaO3 particles was almost maintained after nitriding, columnar crystals were precipitated mainly on the ridgeline. The appearance of columnar crystals coincided with the appearance of X-ray diffraction peaks, and the light absorption characteristics showed good agreement with those of the Ta 3N 5 compound . From this, it is considered that the columnar crystals belong to Ta 3 N 5 .
1-3)Ta3N5/KTaO3への助触媒(Cr2O3/Rh)の担持
Ta3N5/KTaO3を、RhCl3・H2Oの10体積%メタノール水溶液に加えた。この時、Rhの担持量が、Ta3N5/KTaO3に対して、Rh換算で0.01~0.5重量%となるように調整した。これを光照射用のガラス反応セルに移し、液中の溶存酸素を脱気した後、真空下で300WのXeランプ光を3時間照射した。さらに、この溶液に、Rhに対しモル比で3倍のCr量となるようにK2CrO4を加えて、さらに真空下でXeランプ光を12時間照射した。RhとCr2O3の光電着終了後、溶液の濾過、洗浄及び乾燥を行い、Cr2O3/Rh担持Ta3N5/KTaO3光触媒を得た。
1-3) Support of co-catalyst (Cr 2 O 3 / Rh) on Ta 3 N 5 / KTaO 3 Ta 3 N 5 / KTaO 3 was added to a 10% by volume methanol aqueous solution of RhCl 3・ H 2 O. At this time, the amount of Rh supported was adjusted to be 0.01 to 0.5% by weight in terms of Rh with respect to Ta 3 N 5 / KTaO 3 . This was transferred to a glass reaction cell for light irradiation, and after degassing the dissolved oxygen in the liquid, it was irradiated with 300 W Xe lamp light for 3 hours under vacuum. Further, K2 CrO 4 was added to this solution so that the amount of Cr was 3 times the molar ratio of Rh, and the solution was further irradiated with Xe lamp light for 12 hours under vacuum. After the photoelectric adhesion of Rh and Cr 2 O 3 was completed, the solution was filtered, washed and dried to obtain a Cr 2 O 3 / Rh-supported Ta 3 N 5 / KTaO 3 photocatalyst.
2)水素生成活性の評価
得られた光触媒を含む測定用サンプルを作製し、上述の閉鎖循環系反応装置を用いて、水からの水素生成反応の活性の評価を行った。この際、光触媒は窒化時間0.25hとして窒化したKTaO3を含むものを用いた。また、光触媒の量は、純水の全重量を基準として0.1~0.3重量%とし、評価用サンプルの温度を15℃、pHを7として評価を行った。また、光照射にはXeランプ(イーグルエンジニアリング株式会社製 300W Xe ランプ装置R300-3J)を用いて、外部照射法により420~800nmの波長の光を照射した。
2) Evaluation of hydrogen production activity A measurement sample containing the obtained photocatalyst was prepared, and the activity of the hydrogen production reaction from water was evaluated using the above-mentioned closed circulatory system reactor. At this time, a photocatalyst containing KTaO 3 nitrided with a nitriding time of 0.25 h was used. The amount of the photocatalyst was 0.1 to 0.3% by weight based on the total weight of pure water, and the evaluation was performed with the temperature of the evaluation sample at 15 ° C. and the pH at 7. Further, a Xe lamp (300W Xe lamp device R300-3J manufactured by Eagle Engineering Co., Ltd.) was used for light irradiation, and light having a wavelength of 420 to 800 nm was irradiated by an external irradiation method.
図4は、照射時間と、生成水素量及び生成酸素量との関係を示すグラフである。まず、波長420~800nmの光照射により、水素と酸素がほぼ化学量論比を保ち、定常的に生成することを確認した。気相の水素と酸素を排気(Evac.)した後、同光照射条件において反応を繰り返した場合にも、水素と酸素がほぼ化学量論比を保ち、定常的に生成した。再度排気及び同条件での反応を行っても、再現良く水素と酸素が生成した。これらのことより、本光触媒が420nmより長波長の可視広域で水の完全分解に活性を示すことが実証された。なお、この光触媒は、波長420~800nmの可視光を照射した際に、水素生成活性が約10μmolh-1であり、酸素生成活性が約5μmolh-1であった。 FIG. 4 is a graph showing the relationship between the irradiation time and the amount of hydrogen produced and the amount of oxygen produced. First, it was confirmed that hydrogen and oxygen were constantly generated with a stoichiometric ratio maintained by irradiation with light having a wavelength of 420 to 800 nm. Even when the reaction was repeated under the same light irradiation conditions after exhausting hydrogen and oxygen in the gas phase (Evac.), Hydrogen and oxygen were constantly generated while maintaining a stoichiometric ratio. Even when the exhaust gas and the reaction under the same conditions were performed again, hydrogen and oxygen were generated with good reproducibility. From these facts, it was demonstrated that this photocatalyst is active in the complete decomposition of water in a visible wide range with a wavelength longer than 420 nm. The photocatalyst had a hydrogen production activity of about 10 μmolh -1 and an oxygen production activity of about 5 μmolh -1 when irradiated with visible light having a wavelength of 420 to 800 nm.
3)窒化時間による光触媒活性検討
図5は、窒化時間と、生成水素量及び生成酸素量との関係を示すグラフである。図5に示すように、窒化時間0.05hとして短時間で窒化した後のKTaO3についても、充分な水素及び酸素生成の活性が生じていた。本実施例では、窒化時間0.25hをピークとして、窒化時間10hまでは活性が漸減したものの、水素及び酸素の生成は確認された。
3) Examination of photocatalytic activity by nitriding time FIG. 5 is a graph showing the relationship between the nitriding time and the amount of hydrogen produced and the amount of oxygen produced. As shown in FIG. 5, sufficient hydrogen and oxygen generation activity was also produced in KTaO 3 after nitriding in a short time with a nitriding time of 0.05 h. In this example, the activity peaked at the nitriding time of 0.25 h and the activity gradually decreased until the nitriding time of 10 h, but the production of hydrogen and oxygen was confirmed.
4)助触媒の種類による光触媒活性検討
Rhに代えて、Pt、Ir、又はRuを用いたこと以外は、上記と同様にして助触媒担持Ta3N5/KTaO3光触媒を作製した。なお、Pt、Ir及びRuの光電着には、出発原料としてそれぞれ、H2PtCl6、K2IrCl6、及びRuCl3を用いた。また、光触媒は窒化時間0.25hとして窒化したKTaO3を含むものを用いた。そして、それぞれについて水の分解反応における水素及び酸素生成の活性を測定した。結果を図6に示す。いずれの助触媒も、顕著な水素及び酸素生成能を示したが、その活性序列は、Rh>Pt>Ir>Ruであった。
4) Examination of photocatalyst activity depending on the type of co-catalyst A co-catalyst-supported Ta 3 N 5 / KTaO 3 photocatalyst was prepared in the same manner as above except that Pt, Ir, or Ru was used instead of Rh. For photoelectric adhesion of Pt, Ir and Ru, H2 PtCl 6 , K2 IrCl 6 and RuCl 3 were used as starting materials, respectively. Further, a photocatalyst containing KTaO 3 nitrided with a nitriding time of 0.25 h was used. Then, the activity of hydrogen and oxygen production in the decomposition reaction of water was measured for each. The results are shown in FIG. Both co-catalysts showed remarkable hydrogen and oxygen producing ability, but their activity sequence was Rh>Pt>Ir> Ru.
上記に示すように、Ta3N5/KTaO3光触媒は極めて優れた水素生成活性を示す。この理由を発明者らは次のように推察する。すなわち、NH3雰囲気下でのKTaO3からのTa3N5結晶の成長においては、Kの脱離が起こる過程を含む。そのため、Ta3N5の生成が緩やかに進行することで、高い結晶性をもつ柱状結晶がKTaO3表面に析出するものと考えられる。このような高い結晶性のTa3N5は欠陥濃度が低く、光励起によって生じる励起電子や正孔が再結合無く移動できるため、水の分解に対し高い活性をもたらすものと考えられる。 As shown above, the Ta 3 N 5 / KTaO 3 photocatalyst exhibits extremely good hydrogen production activity. The inventors infer the reason for this as follows. That is, the growth of Ta 3 N 5 crystals from KT a O 3 in the NH 3 atmosphere involves the process of K desorption. Therefore, it is considered that the formation of Ta 3 N 5 proceeds slowly, so that columnar crystals having high crystallinity are deposited on the surface of KTaO 3 . Such high crystalline Ta 3 N 5 has a low defect concentration, and excited electrons and holes generated by photoexcitation can move without recombination, so that it is considered to bring high activity to the decomposition of water.
(実施例2:BaTaO2N/KTaO3化合物)
実施例1において作製したKTaO3を、Ba(NO3)2水溶液に含浸し、KTaO3表面にBa(NO3)2を1~16モル%で担持させた。これを大気中900℃で酸化処理した。その後、実施例1と同様にして窒化処理(0.5~4時間)してBaTaO2N/KTaO3粉末を得、さらに助触媒を担持させ、Cr2O3/Rh担持BaTaO2N/KTaO3光触媒を得た。得られた光触媒は、上記の可視光を照射した際に、水の分解反応における水素及び酸素生成活性を示した。
(Example 2: BaTaO 2 N / KTaO 3 compound)
The KTaO 3 prepared in Example 1 was impregnated into a Ba (NO 3 ) 2 aqueous solution, and Ba (NO 3 ) 2 was supported on the surface of KTaO 3 in an amount of 1 to 16 mol%. This was oxidized in the air at 900 ° C. Then, in the same manner as in Example 1, a nitriding treatment (0.5 to 4 hours) was performed to obtain BaTaO 2 N / KTaO 3 powder, and a co-catalyst was further supported to support Cr 2O 3 / Rh-supported BaTaO 2 N / KTaO. 3 Photocatalysts were obtained. The obtained photocatalyst showed hydrogen and oxygen production activity in the decomposition reaction of water when irradiated with the above visible light.
(比較例1)
G.Hitoki,A.Ishikawa,T.Takata,J.Kondo,M.Hara,K.Domen,Catal. Lett.,2002, 736-737.に記載の従来の方法に基づき、Ta2O5を1150℃で10時間焼成処理した後、アンモニア気体下で、900℃にてTa2O5が完全にTa3N5に変換されるまで窒化を行った。得られたTa3N5に対し、実施例1と同様にして助触媒を担持させ、Cr2O3/Rh担持Ta3N5光触媒を得た。得られた光触媒は、上記の可視光を照射した際に、水の分解反応に対してほとんど水素生成活性を示さなかった。
(Comparative Example 1)
G. Hitoki, A. Ishikawa, T.M. Takata, J. et al. Kondo, M.D. Hara, K.K. Domen, Catal. Let. , 2002, 736-737. After firing Ta 2 O 5 at 1150 ° C. for 10 hours at 900 ° C., nitriding until Ta 2 O 5 is completely converted to Ta 3 N 5 at 900 ° C. Was done. A co-catalyst was supported on the obtained Ta 3 N 5 in the same manner as in Example 1, and a Cr 2 O 3 / Rh-supported Ta 3 N 5 photocatalyst was obtained. The obtained photocatalyst showed almost no hydrogen production activity with respect to the decomposition reaction of water when irradiated with the above visible light.
(比較例2)
比較例1と同様に、従来の方法に基づき、Ba5Ta4O15酸化物を1150℃で15時間焼成処理した後、アンモニア気体下で、900℃にてBa5Ta4O15が完全にBaTaO2Nに変換されるまで窒化を行った。得られたBaTaO2Nに対し、実施例1と同様にして助触媒を担持させ、Cr2O3/Rh担持BaTaO2N光触媒を得た。得られた光触媒は、上記の可視光を照射した際に、水の分解反応に対してほとんど水素生成活性を示さなかった。
(Comparative Example 2)
Similar to Comparative Example 1, the Ba 5 Ta 4 O 15 oxide was calcined at 1150 ° C. for 15 hours based on the conventional method, and then Ba 5 Ta 4 O 15 was completely calcinated at 900 ° C. under ammonia gas. Nitriding was performed until it was converted to BaTaO 2N. A co-catalyst was supported on the obtained BaTaO 2 N in the same manner as in Example 1, and a Cr 2O 3 / Rh-supported BaTaO 2 N photocatalyst was obtained. The obtained photocatalyst showed almost no hydrogen production activity with respect to the decomposition reaction of water when irradiated with the above visible light.
以上説明したように、600nm程度までの長波長光を吸収できる、本発明により得られる光触媒において、水の完全分解により水素生成が可能であるという発見は、水からの水素生成に対する可視光領域の光触媒の開発に対して突破口を開くものであり、再生エネルギー技術確立に充分に貢献するものである。そして、可視光領域での水の分解反応において高い水素生成活性を示す、本発明により得られる光触媒は、無尽蔵に供給される太陽エネルギーを有効に活用できることから産業上の利用性が極めて高いものである。 As described above, the discovery that hydrogen can be produced by complete decomposition of water in the photocatalyst obtained by the present invention, which can absorb long wavelength light up to about 600 nm, is found in the visible light region for hydrogen generation from water. It opens a breakthrough in the development of photocatalysts and contributes sufficiently to the establishment of renewable energy technology. The photocatalyst obtained by the present invention, which exhibits high hydrogen generation activity in the decomposition reaction of water in the visible light region, has extremely high industrial utility because it can effectively utilize the inexhaustibly supplied solar energy. be.
Claims (5)
前記化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種を担持させる担持工程と、を備える、水からの水素生成に用いられる光触媒の製造方法。
AXO3・・・(1)
(式中、Aはアルカリ金属を示し、XはTaを示す。) In the step of precipitating at least one compound selected from the group consisting of nitrides and oxynitrides containing the X element of the metal oxide on the surface of the metal oxide represented by the following general formula (1 ) . A precipitation step comprising a step of heat-treating the metal oxide or the metal oxide having an oxide of an alkaline earth metal on the surface in an ammonia-containing gas .
A method for producing a photocatalyst used for hydrogen generation from water, comprising a supporting step of supporting at least one selected from the group consisting of a noble metal and a noble metal oxide on the surface of the compound.
AXO 3 ... (1 )
( In the formula, A represents an alkali metal and X represents Ta .)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017160149A JP7045662B2 (en) | 2017-08-23 | 2017-08-23 | Photocatalyst manufacturing method and hydrogen generation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017160149A JP7045662B2 (en) | 2017-08-23 | 2017-08-23 | Photocatalyst manufacturing method and hydrogen generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019037918A JP2019037918A (en) | 2019-03-14 |
JP7045662B2 true JP7045662B2 (en) | 2022-04-01 |
Family
ID=65724878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017160149A Active JP7045662B2 (en) | 2017-08-23 | 2017-08-23 | Photocatalyst manufacturing method and hydrogen generation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7045662B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112973665B (en) * | 2019-12-02 | 2023-08-15 | 南京工业大学 | Low-temperature preparation of high-performance monocrystal SrTaO 2 Method for N photo-anode |
CN112458492A (en) * | 2020-12-01 | 2021-03-09 | 国网新疆电力有限公司电力科学研究院 | Photo-anode with continuous solid-solid consolidation and solid-liquid consolidation and preparation method and application thereof |
CN113198515B (en) * | 2021-05-19 | 2023-07-28 | 上海城投原水有限公司 | A kind of ternary photocatalyst and its preparation method and application |
WO2024070179A1 (en) * | 2022-09-29 | 2024-04-04 | Jx金属株式会社 | Method for producing tantalum nitride material, and tantalum nitride material |
CN115518668B (en) * | 2022-10-14 | 2024-05-14 | 苏州西热节能环保技术有限公司 | Oxygen-nitrogen compound heterojunction and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003190809A (en) | 2001-10-15 | 2003-07-08 | Jfe Steel Kk | Method for manufacturing composite material formed with photocatalyst film |
JP2003236389A (en) | 2002-02-14 | 2003-08-26 | Japan Science & Technology Corp | Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light |
JP2007185605A (en) | 2006-01-13 | 2007-07-26 | Univ Of Tokyo | Cocatalyst for photocatalyst and photocatalyst material |
JP2011131170A (en) | 2009-12-24 | 2011-07-07 | Mitsubishi Chemicals Corp | Electrode for photolytic water decomposition reaction using photocatalyst |
US20130266809A1 (en) | 2012-04-10 | 2013-10-10 | Massachusetts Institute Of Technology | Biotemplated perovskite nanomaterials |
JP2016064949A (en) | 2014-09-24 | 2016-04-28 | 国立大学法人 東京大学 | Method for producing metal oxynitride |
JP2016183073A (en) | 2015-03-26 | 2016-10-20 | 富士フイルム株式会社 | Perovskite oxynitride particle production method, and perovskite oxynitride particles |
-
2017
- 2017-08-23 JP JP2017160149A patent/JP7045662B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003190809A (en) | 2001-10-15 | 2003-07-08 | Jfe Steel Kk | Method for manufacturing composite material formed with photocatalyst film |
JP2003236389A (en) | 2002-02-14 | 2003-08-26 | Japan Science & Technology Corp | Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light |
JP2007185605A (en) | 2006-01-13 | 2007-07-26 | Univ Of Tokyo | Cocatalyst for photocatalyst and photocatalyst material |
JP2011131170A (en) | 2009-12-24 | 2011-07-07 | Mitsubishi Chemicals Corp | Electrode for photolytic water decomposition reaction using photocatalyst |
US20130266809A1 (en) | 2012-04-10 | 2013-10-10 | Massachusetts Institute Of Technology | Biotemplated perovskite nanomaterials |
JP2016064949A (en) | 2014-09-24 | 2016-04-28 | 国立大学法人 東京大学 | Method for producing metal oxynitride |
JP2016183073A (en) | 2015-03-26 | 2016-10-20 | 富士フイルム株式会社 | Perovskite oxynitride particle production method, and perovskite oxynitride particles |
Also Published As
Publication number | Publication date |
---|---|
JP2019037918A (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7045662B2 (en) | Photocatalyst manufacturing method and hydrogen generation method | |
Sun et al. | Activating layered perovskite compound Sr2TiO4 via La/N codoping for visible light photocatalytic water splitting | |
JP6004528B2 (en) | Method for producing porous silica-encapsulated particles and porous silica | |
JP6875009B2 (en) | Catalyst and its use | |
Jana et al. | Photocatalytic hydrogen production in the water/methanol system using Pt/RE: NaTaO3 (RE= Y, La, Ce, Yb) catalysts | |
JP5999548B2 (en) | Photocatalyst and method for producing the same | |
JP2020501875A (en) | Method for producing catalyst containing intermetallic compound and catalyst produced by the method | |
WO2015151775A1 (en) | Photoelectrode for use in decomposition of water, and water decomposition device | |
JP3845720B2 (en) | Potassium niobate photocatalyst and method for producing the same | |
JP6077505B2 (en) | Water-splitting photocatalyst and method for producing the same, water-splitting photoelectrode | |
JP5219137B2 (en) | Dendritic substances and structures containing them | |
Pawar et al. | Boosting photocatalytic CO 2 conversion using strongly bonded Cu/reduced Nb 2 O 5 nanosheets | |
CN103933990B (en) | A kind of preparation method of 26 body structure CaCu 3 Ti 4 Os | |
JP6165937B2 (en) | Method for producing porous silica-encapsulated particles | |
JP4487362B2 (en) | Photocatalytic substance | |
JP6211499B2 (en) | Strontium titanate fine particles, photocatalyst and hydrogen / oxygen generation photocatalyst system | |
WO2003068393A1 (en) | Photocatalyst comprising titanium fluoride nitride for water decomposition with visible light irradiation | |
CN115569658B (en) | CABB/UCNT heterojunction composite photocatalyst, and preparation method and application thereof | |
JP2023160953A (en) | Photocatalyst and method of producing the same | |
JP2006089323A (en) | Visible light responsive photocatalyst and synthesis method thereof | |
JP2023142187A (en) | Method for producing photocatalyst and photocatalyst component | |
Tang et al. | Photocatalytic splitting of water under visible-light irradiation over the NiOx-loaded Sm2InTaO7 with 4f-d10-d0 configuration | |
WO2023286845A1 (en) | Photocatalyst for hydrogen generation, water splitting system, and hydrogen production method | |
JP2015196155A (en) | Photocatalyst and hydrogen generation method using the same | |
JP2015167882A (en) | Photocatalyst production method, photocatalyst, and hydrogen generation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7045662 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |