[go: up one dir, main page]

JP7045662B2 - Photocatalyst manufacturing method and hydrogen generation method - Google Patents

Photocatalyst manufacturing method and hydrogen generation method Download PDF

Info

Publication number
JP7045662B2
JP7045662B2 JP2017160149A JP2017160149A JP7045662B2 JP 7045662 B2 JP7045662 B2 JP 7045662B2 JP 2017160149 A JP2017160149 A JP 2017160149A JP 2017160149 A JP2017160149 A JP 2017160149A JP 7045662 B2 JP7045662 B2 JP 7045662B2
Authority
JP
Japan
Prior art keywords
photocatalyst
ktao
metal oxide
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017160149A
Other languages
Japanese (ja)
Other versions
JP2019037918A (en
Inventor
泰宣 井上
真治 西前
孝夫 巽
隆史 久富
一成 堂免
剛 高田
征 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Original Assignee
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical University of Tokyo NUC
Priority to JP2017160149A priority Critical patent/JP7045662B2/en
Publication of JP2019037918A publication Critical patent/JP2019037918A/en
Application granted granted Critical
Publication of JP7045662B2 publication Critical patent/JP7045662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、光触媒の製造方法、及び水素生成方法に関する。 The present invention relates to a method for producing a photocatalyst and a method for producing hydrogen.

1年間に地球上に降り注ぐ太陽エネルギー量は、現在の我々が1年間に消費するエネルギー量の約1万倍に相当するほどの膨大な量である。そこで、この太陽エネルギーを用いて豊富に存在する水を分解し、クリーンな資源である水素を得る技術の確立が望まれている。これを実現するためには、光エネルギーを吸収し水を分解する機能を持つ新光触媒の開発が重要である。 The amount of solar energy that falls on the earth in one year is enormous, which is equivalent to about 10,000 times the amount of energy that we currently consume in one year. Therefore, it is desired to establish a technology for decomposing abundant water using this solar energy to obtain hydrogen, which is a clean resource. In order to achieve this, it is important to develop a new photocatalyst that has the function of absorbing light energy and decomposing water.

水を水素と酸素に化学量論比で分解できる光触媒としては、Ti4+、Zr4+、Ta5+、Nb5+等のように、d軌道が空のd電子状態の遷移金属酸化物、あるいはGa3+、In3+、Ge4+、Sn4+、Sb5+等のように、d軌道が満たされたd10電子状態の典型金属酸化物に、助触媒を担持した光触媒が提案されている(例えば、非特許文献1)。 Photocatalysts capable of decomposing water into hydrogen and oxygen in a chemical quantitative ratio include transition metal oxides with d-orbitals in the d- 0 electron state, such as Ti 4+ , Zr 4+ , Ta 5+ , and Nb 5+ , or Ga. Photocatalysts carrying a cocatalyst on a typical metal oxide in the d 10 electron state where the d orbital is filled, such as 3+ , In 3+ , Ge 4+ , Sn 4+ , Sb 5+ , etc., have been proposed (eg, non-). Patent Document 1).

Yasunobu Inoue,Energy Environ.Sci.,2009,2,364-386.Yasunobu Inoue, Energy Energy. Sci. , 2009, 2,364-386.

ところで、太陽光利用の観点からは、可視光領域で作用する光触媒の開発が重要である。しかしながら、非特許文献1に開示されるような従来の光触媒は、光吸収波長が400nmより短い紫外光領域で専ら作用するものである。このことに対処するべく、光吸収に関連する価電子帯と伝導帯のバンド幅が狭い窒化物、酸窒化物、硫化物、酸硫化物等が注目されてきてはいるものの、長波長の可視光領域で好適に作用する光触媒は依然として得られ難いのが現状である。 By the way, from the viewpoint of using sunlight, it is important to develop a photocatalyst that works in the visible light region. However, conventional photocatalysts as disclosed in Non-Patent Document 1 act exclusively in the ultraviolet light region where the light absorption wavelength is shorter than 400 nm. In order to deal with this, nitrides, oxynitrides, sulfides, acid sulfides, etc., which have narrow bandwidths of valence bands and conduction bands related to light absorption, have been attracting attention, but long-wavelength visibility has been attracted. At present, it is still difficult to obtain a photocatalyst that works well in the optical region.

そこで、本発明は、可視光領域での水の分解反応において水素生成活性を有する光触媒の製造方法、及び当該方法により得られる光触媒を用いた水素生成方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a photocatalyst having hydrogen generation activity in a water decomposition reaction in the visible light region, and a method for producing hydrogen using the photocatalyst obtained by the method.

これまで、可視光を吸収できる光触媒として、窒化物(ナイトライド)化合物であるTa等や、酸窒化物(オキシナイトライド)化合物であるTaON、SrTaON、BaTaON、LaTiON、LaTaON等が用いられている。これらの化合物は、アンモニア窒化により粉末微粒子として得られ、光触媒として用いられている。しかし、従来製造されたこれらの窒化物や酸窒化物は、メタノールからの水素生成や硝酸銀水溶液からの酸素生成のような、水分解の半反応には適応できるが、水から水素及び酸素を化学量比で分解する水の完全分解反応には適応できていない。 So far, as photocatalysts capable of absorbing visible light, Ta 3 N 5 which is a nitride (nitride) compound and TaON, SrTaO 2 N, BaTaO 2 N, LaTIO 2 which are oxynitride compounds have been used. N, LaTaON 2 and the like are used. These compounds are obtained as powder fine particles by ammonia nitriding and are used as photocatalysts. However, although these conventionally produced nitrides and oxynitrides can be adapted to semi-reactions of water splitting such as hydrogen generation from methanol and oxygen generation from an aqueous solution of silver nitrate, they chemically convert hydrogen and oxygen from water. It has not been adapted to the complete decomposition reaction of water that decomposes by quantity.

そこで本発明者らは、金属酸化物表面上に窒化物や酸窒化物を形成させる方法に着目した。すなわち、d電子状態の金属イオンであるTi4+、Zr4+、Nb5+、Ta5+等の酸化物、及びd10電子状態の金属イオンであるGa3+、In3+、Ge4+、Sn4+、Sb5+等の酸化物の表面上に窒化物や酸窒化物を形成させることが有用であると考えた。そのためには、金属酸化物を、アンモニア気体やアンモニア混合気体等を窒素源として、短時間で窒化させることにより、金属酸化物から組成成分の一部を脱離させて、金属酸化物の表面にのみ窒化物や酸窒化物を析出させる方法が好適であると考えた。 Therefore, the present inventors have focused on a method for forming a nitride or an oxynitride on the surface of a metal oxide. That is, oxides such as Ti 4+ , Zr 4+ , Nb 5+ , Ta 5+ , which are metal ions in the d 0 electron state, and Ga 3+ , In 3+ , Ge 4+ , Sn 4+ , Sb, which are metal ions in the d 10 electron state. It was considered useful to form nitrides and oxynitrides on the surface of oxides such as 5+ . For that purpose, the metal oxide is nitrided in a short time by using an ammonia gas, an ammonia mixed gas, or the like as a nitrogen source, thereby desorbing a part of the composition component from the metal oxide and forming it on the surface of the metal oxide. It was considered that the method of precipitating only nitride or oxynitride is suitable.

すなわち、本発明は、下記一般式(1)~(3)のいずれかで表される金属酸化物の表面に、窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物を析出させる析出工程と、化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種を担持させる担持工程と、を備える、水からの水素生成に用いられる光触媒の製造方法を提供する。
AXO・・・(1)
n+13n+1・・・(2)
3m+2・・・(3)
式中、Aはアルカリ金属、アルカリ土類金属及び希土類金属からなる群より選択される少なくとも1種を示し、XはTi、V、Zr、Ta、Nb、W、Mo、Ga、In、Ge及びSnからなる群より選択される少なくとも1種を示し、nは1又は2を示し、mは2又は4を示す。
That is, in the present invention, at least one compound selected from the group consisting of nitrides and oxynitrides is deposited on the surface of the metal oxide represented by any of the following general formulas (1) to (3). Provided is a method for producing a photocatalyst used for hydrogen generation from water, comprising a precipitation step of causing the compound to be carried, and a carrying step of carrying at least one selected from the group consisting of a noble metal and a noble metal oxide on the surface of the compound. ..
AXO 3 ... (1)
A n + 1 X n O 3n + 1 ... (2)
A m X m O 3m + 2 ... (3)
In the formula, A represents at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and X indicates Ti, V, Zr, Ta, Nb, W, Mo, Ga, In, Ge and Indicates at least one selected from the group consisting of Sn, where n indicates 1 or 2 and m indicates 2 or 4.

本発明において、析出工程が、金属酸化物をアンモニア含有気体中で0.05~2時間熱処理する工程を備えることが好ましい。 In the present invention, it is preferable that the precipitation step includes a step of heat-treating the metal oxide in an ammonia-containing gas for 0.05 to 2 hours.

本発明において、担持工程が、化合物の表面に、さらにCr、Co、V、Mo及びWからなる群より選択される少なくとも1種の金属の酸化物を担持させる工程を備えることが好ましい。 In the present invention, it is preferable that the supporting step includes a step of further supporting an oxide of at least one metal selected from the group consisting of Cr, Co, V, Mo and W on the surface of the compound.

本発明において、光触媒が、350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となることが好ましい。 In the present invention, it is preferable that the photocatalyst is excited by irradiating with light having a wavelength selected from the range of 350 to 600 nm.

本発明はまた、上記の製造方法により得られる光触媒の存在下、可視光を用いた光反応により水からの水素生成を行う、水素生成方法を提供する。 The present invention also provides a hydrogen generation method for producing hydrogen from water by a photoreaction using visible light in the presence of a photocatalyst obtained by the above production method.

本発明によれば、可視光領域での水の分解反応において水素生成活性を有する光触媒の製造方法、及び当該方法により得られる光触媒を用いた水素生成方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a photocatalyst having hydrogen generation activity in a water decomposition reaction in a visible light region, and a method for producing hydrogen using the photocatalyst obtained by the method.

KTaO及びTa/KTaO化合物のXRDパターンを示す図である。It is a figure which shows the XRD pattern of KTaO 3 and Ta 3 N 5 / KTaO 3 compound. KTaO及びTa/KTaO化合物の紫外可視拡散反射スペクトルを示す図である。It is a figure which shows the ultraviolet-visible diffuse reflection spectrum of KTaO 3 and Ta 3 N 5 / KTaO 3 compound. KTaO及びTa/KTaO化合物の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of KTaO 3 and Ta 3 N 5 / KTaO 3 compound. Cr/Rh担持Ta/KTaO光触媒を用いた、光照射時間と水素及び酸素生成量との関係を示す図である。It is a figure which shows the relationship between the light irradiation time and the amount of hydrogen and oxygen production using a Cr 2 O 3 / Rh-supported Ta 3 N 5 / KTaO 3 photocatalyst. Cr/Rh担持Ta/KTaO光触媒における窒化時間と光触媒活性との関係を示す図である。It is a figure which shows the relationship between the nitriding time and the photocatalyst activity in a Cr 2 O 3 / Rh-supported Ta 3 N 5 / KTaO 3 photocatalyst. 助触媒担持Ta/KTaO光触媒における助触媒の種類と光触媒活性との関係を示す図である。It is a figure which shows the relationship between the kind of the co-catalyst and the photocatalyst activity in the co-catalyst-supported Ta 3 N 5 / KTaO 3 photocatalyst.

<光触媒の製造方法>
本実施形態の、水からの水素生成に用いられる光触媒の製造方法は、所定の金属酸化物の表面に、窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物を析出させる析出工程と、当該化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種を担持させる担持工程と、を備える。
<Manufacturing method of photocatalyst>
The method for producing a photocatalyst used for producing hydrogen from water according to the present embodiment is to precipitate at least one compound selected from the group consisting of nitrides and oxynitrides on the surface of a predetermined metal oxide. It comprises a step and a carrying step of supporting at least one selected from the group consisting of noble metals and noble metal oxides on the surface of the compound.

[析出工程]
金属酸化物としては下記一般式(1)~(3)のいずれかで表される金属酸化物が挙げられる。なお、一般式(2)及び(3)で表される層状ペロブスカイト構造酸化物は、一般式(1)で表されるペロブスカイト構造酸化物AXO層が金属イオンAを挟み込むようにして積層されたものである。いずれの構造も発明者らの知見によれば、水からの水素生成に用いられる光触媒の基体として用いられる際に、同等の作用機序が得られることが分かっている。
ペロブスカイト構造酸化物AXO・・・(1)
層状ペロブスカイト構造酸化物An+13n+1・・・(2)
層状ペロブスカイト構造酸化物A3m+2・・・(3)
式中、Aはアルカリ金属、アルカリ土類金属及び希土類金属からなる群より選択される少なくとも1種を示し、より良好な水素生成活性を得ることができるという観点からアルカリ金属が好ましく、NaやKであることがより好ましい。Xは遷移金属イオンであるTi、V、Zr、Ta、Nb、W、Mo、Ga、In、Ge及びSnからなる群より選択される少なくとも1種を示し、より良好な水素生成活性を得ることができるという観点からTi、Ta、Nb等であることが好ましい。また、nは1又は2を示し、mは2又は4を示す。
[Precipitation step]
Examples of the metal oxide include metal oxides represented by any of the following general formulas (1) to (3). The layered perovskite structural oxides represented by the general formulas (2) and (3) were laminated so that the three layers of the perovskite structural oxide AXO represented by the general formula (1) sandwiched the metal ion A. It is a thing. According to the findings of the inventors, both structures have the same mechanism of action when used as a substrate for a photocatalyst used for hydrogen production from water.
Perovskite structure oxide AXO 3 ... (1)
Layered perovskite structure Oxide An + 1 X n O 3n + 1 ... (2)
Layered perovskite structure oxide A m X m O 3 m + 2 ... (3)
In the formula, A represents at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and alkali metals are preferable from the viewpoint of obtaining better hydrogen generation activity, and Na and K are preferable. Is more preferable. X represents at least one selected from the group consisting of transition metal ions Ti, V, Zr, Ta, Nb, W, Mo, Ga, In, Ge and Sn to obtain better hydrogen production activity. Ti, Ta, Nb and the like are preferable from the viewpoint of being able to. Further, n indicates 1 or 2, and m indicates 2 or 4.

以下、ペロブスカイト構造を持つ金属酸化物として、KTaOの調製方法を説明し、他の化合物の調製方法の代表例とする。なお、金属酸化物は、以下に示すように固相反応法又はフラックス法の2とおりの方法で作製することができる。 Hereinafter, a method for preparing KTaO3 as a metal oxide having a perovskite structure will be described, and a representative example of a method for preparing other compounds will be described. The metal oxide can be produced by two methods, a solid phase reaction method or a flux method, as shown below.

固相反応法:出発物質であるTa及びKCOを含む原料粉末を、K/Ta比で0.9~1.2で混合した後、アルミナルツボに入れる。これを電気炉において大気下で1000~1200℃で10~20時間加熱することでKTaOを得ることができる。
フラックス法:出発物質であるTa及びKCOを含む原料粉末を、K/Ta比で0.9~1.2で混合し、さらにフラックスとしてKCO、KCl、NaCl等を原料粉末に対し重量比で3~20倍加える。これを電気炉において大気下で800~1100℃で10~15時間加熱することでKTaOを得ることができる。
Solid phase reaction method: Raw material powder containing the starting materials Ta 2 O 5 and K 2 CO 3 is mixed at a K / Ta ratio of 0.9 to 1.2, and then placed in an alumina crucible. KTaO 3 can be obtained by heating this in an electric furnace at 1000 to 1200 ° C. for 10 to 20 hours in the atmosphere.
Flux method: Raw material powder containing the starting materials Ta 2 O 5 and K 2 CO 3 is mixed at a K / Ta ratio of 0.9 to 1.2, and K 2 CO 3 , KCl, NaCl, etc. are further mixed as a flux. Is added 3 to 20 times by weight to the raw material powder. KTaO 3 can be obtained by heating this in an electric furnace at 800 to 1100 ° C. for 10 to 15 hours in the atmosphere.

金属酸化物は、良質な窒化物及び酸窒化物を析出させる観点から、表面処理を行っても良い。表面処理には、無機酸(王水、フッ酸)や有機酸(ポリスチレンスルホン酸:PSSA)を用いることができる。例えば王水を用いる場合は、金属酸化物を80℃にて30分間処理すればよい。フッ酸を用いる場合は、20%フッ酸水溶液を調製し、これを用いて金属酸化物を室温にて10~30分間処理すればよい。PSSAを用いる場合は、金属酸化物を室温で2~20時間処理すればよい。いずれの酸を用いる場合でも、処理後に水洗、濾過、乾燥等を行い、窒化用の試料とする。 The metal oxide may be surface-treated from the viewpoint of precipitating high-quality nitrides and oxynitrides. For the surface treatment, an inorganic acid (aqua regia, hydrofluoric acid) or an organic acid (polystyrene sulfonic acid: PSSA) can be used. For example, when aqua regia is used, the metal oxide may be treated at 80 ° C. for 30 minutes. When hydrofluoric acid is used, a 20% hydrofluoric acid aqueous solution may be prepared and the metal oxide may be treated at room temperature for 10 to 30 minutes. When PSSA is used, the metal oxide may be treated at room temperature for 2 to 20 hours. Regardless of which acid is used, the sample is washed with water, filtered, dried, etc. after the treatment to prepare a sample for nitriding.

金属酸化物の平均粒子径は、特に限定されないが、懸濁液(後述)を調製して好適に光触媒反応を行う観点、内部まで窒化物/酸窒化物となることを抑制する観点等から、0.05~10μmであることが好ましく、0.1~1.0μmであることがより好ましい。 The average particle size of the metal oxide is not particularly limited, but from the viewpoint of preparing a suspension (described later) and appropriately performing a photocatalytic reaction, and from the viewpoint of suppressing the formation of nitride / oxynitride to the inside, etc. It is preferably 0.05 to 10 μm, and more preferably 0.1 to 1.0 μm.

窒化物及び酸窒化物の組成は、析出工程の手順及び用いる金属酸化物の組成に依存する。後述の析出方法1を実施する場合、窒化物としては、例えばTa、Nb、Ga、In、Ge、Sn等の窒化物(Ta、(Ta,Nb)、GaN、InN、Ge等)が挙げられる。 The composition of nitrides and oxynitrides depends on the procedure of the precipitation process and the composition of the metal oxide used. When the precipitation method 1 described later is carried out, as the nitride, for example, a nitride such as Ta, Nb, Ga, In, Ge, Sn (Ta 3 N 5 , (Ta, Nb) 3 N 5 , GaN, InN, Ge 3 N 4 etc.).

また、後述の析出方法2を実施する場合、無機塩等に含まれる金属元素も組み込まれる。当該金属元素は後述のとおりであり、したがって酸窒化物としてはBaTaON、CaTaON、BaNbON、SrTaON、LaTaON等が挙げられる。 Further, when the precipitation method 2 described later is carried out, a metal element contained in an inorganic salt or the like is also incorporated. The metal element is as described below, and therefore, examples of the oxynitride include BaTaO 2 N, CaTaO 2 N, BaNbO 2 N, SrTaO 2 N, LaTaON 2 , and the like.

析出工程は、具体的には次の2とおりの方法で実施することができる。
析出方法1:金属酸化物をアンモニア含有気体中で熱処理する工程により実施する。
析出方法2:他の金属酸化物を表面に担持させた金属酸化物を、アンモニア含有気体中で熱処理する工程により実施する。
以下、KTaOの窒化方法を代表例として説明する。
Specifically, the precipitation step can be carried out by the following two methods.
Precipitation method 1: The metal oxide is heat-treated in an ammonia-containing gas.
Precipitation method 2: The metal oxide having another metal oxide supported on the surface is heat-treated in an ammonia-containing gas.
Hereinafter, the nitriding method of KTaO 3 will be described as a representative example.

析出方法1:KTaOに対して、フラックスとしてKCOやKClを重量比で0.5~2倍となるように加え、これらをアルミナ管に導入する。その後、反応気体として100%アンモニア気体、又は窒素及びアンモニアをNH/(N+NH)の流量比0.05~0.50で混合した気体を、全流量速度10~500mlmin-1で流し、管状電気炉を用いて800~950℃で好ましくは0.05~2時間熱処理することにより、窒化物/金属酸化物構造をもつTa/KTaOを得ることができる。すなわち析出方法1によれば、金属酸化物表面に窒化物を析出させることができる。 Precipitation method 1: Add K2 CO 3 or KCl as a flux to KTaO 3 so that the weight ratio is 0.5 to 2 times, and introduce these into an alumina tube. Then, 100% ammonia gas as a reaction gas, or a gas in which nitrogen and ammonia are mixed at a flow rate ratio of NH 3 / (N 2 + NH 3 ) of 0.05 to 0.50 is flown at a total flow rate of 10 to 500 mlmin -1 . , Ta 3 N 5 / KTaO 3 having a nitride / metal oxide structure can be obtained by heat treatment at 800 to 950 ° C. for preferably 0.05 to 2 hours using a tubular electric furnace. That is, according to the precipitation method 1, the nitride can be deposited on the surface of the metal oxide.

析出方法2:KTaOを、無機塩、有機塩、錯塩等の金属塩を含む溶液に含浸させた後、乾燥させて揮発成分を除去する。金属塩を構成する金属としては、アルカリ土類金属、La等が挙げられる。金属塩としては、例えば、これらの金属の硝酸塩であるBa(NO、Ca(NO、Sr(NO、La(NO等が挙げられる。その後、必要に応じ大気中あるいは酸素雰囲気中で酸化処理することで、金属酸化物の表面にこれらの金属の酸化物(他の金属酸化物)を担持させる。このようにして他の金属酸化物を表面に担持させた金属酸化物を、さらに析出方法1と同様にして100%アンモニア気体等を用いて窒化処理をすることにより、例えばBaTaON/KTaO、SrTaON/KTaO、LaTaON/KTaO等の酸窒化物/金属酸化物構造をもつ化合物を得ることができる。すなわち析出方法2によれば、金属酸化物表面に酸窒化物を析出させることができる。 Precipitation method 2: KTaO 3 is impregnated into a solution containing a metal salt such as an inorganic salt, an organic salt or a complex salt, and then dried to remove volatile components. Examples of the metal constituting the metal salt include alkaline earth metals, La and the like. Examples of the metal salt include Ba (NO 3 ) 2 , Ca (NO 3 ) 2 , Sr (NO 3 ) 2 , La (NO 3 ) 3 , and the like, which are nitrates of these metals. Then, if necessary, the metal oxides are subjected to oxidation treatment in the air or oxygen atmosphere to support the oxides of these metals (other metal oxides) on the surface of the metal oxides. The metal oxide on which the other metal oxide is supported on the surface in this manner is further subjected to nitriding treatment using 100% ammonia gas or the like in the same manner as in the precipitation method 1, for example, BaTaO 2 N / KTaO 3 , SrTaO 2 N / KTaO 3 , LaTaON 2 / KTaO 3 , and the like, compounds having an oxynitride / metal oxide structure can be obtained. That is, according to the precipitation method 2, the oxynitride can be deposited on the surface of the metal oxide.

なお、析出工程における熱処理時間は、好ましくは0.05~2時間であるが、0.05~1.5時間、0.05~1時間、あるいは0.1~0.5時間とすることができる。0.05より短時間では充分な触媒活性を得られ難い(充分な量の窒化物/酸窒化物が析出し難い)傾向があり、また、還元性気体であるアンモニアに曝される時間が長すぎると、窒化物/酸窒化物表面に欠陥や、上記X元素の還元種等が生成する傾向があり、これが触媒活性の低下を引き起こす虞がある。 The heat treatment time in the precipitation step is preferably 0.05 to 2 hours, but may be 0.05 to 1.5 hours, 0.05 to 1 hour, or 0.1 to 0.5 hours. can. In a shorter time than 0.05, it tends to be difficult to obtain sufficient catalytic activity (sufficient amount of nitride / oxynitride is difficult to precipitate), and the time of exposure to ammonia, which is a reducing gas, is long. If it is too much, defects on the surface of the nitride / oxynitride and the reduced species of the above-mentioned element X tend to be generated, which may cause a decrease in catalytic activity.

得られたKTaO、Ta/KTaO等は、XRDにより得られる回折パターンと、ICDD-PDF(International Center for Diffraction Data-PDF)のデータベースとを比較することにより同定することができる。 The obtained KTaO 3 , Ta 3 N 5 / KTaO 3 , etc. can be identified by comparing the diffraction pattern obtained by XRD with the database of ICDD-PDF (International Center for Diffraction Data-PDF).

析出工程により得られる窒化物又は酸窒化物/金属酸化物構造を有する化合物の平均粒子径は特に限定されないが、懸濁液(後述)を調製して好適に光触媒反応を行う観点から、0.05~10μmであることが好ましく、0.1~1.0μmであることがより好ましい。 The average particle size of the nitride or the compound having an oxynitride / metal oxide structure obtained by the precipitation step is not particularly limited, but from the viewpoint of preparing a suspension (described later) and preferably performing a photocatalytic reaction, 0. It is preferably 05 to 10 μm, more preferably 0.1 to 1.0 μm.

[担持工程]
貴金属及び貴金属酸化物は助触媒として機能する。ここで、貴金属とは、Au、Ag、Pt、Pd、Rh、Ir、Ru及びOsからなる群に属する金属をいう。触媒活性をより向上させるという観点から、これら貴金属の中でも、Rh、Ir、Ru、Pt及びPdからなる群より選択される少なくとも1種であることが好ましい。これらは酸化物(貴金属酸化物)であってもよい。
[Supporting process]
Precious metals and noble metal oxides function as co-catalysts. Here, the noble metal refers to a metal belonging to the group consisting of Au, Ag, Pt, Pd, Rh, Ir, Ru and Os. From the viewpoint of further improving the catalytic activity, it is preferable that at least one of these precious metals is selected from the group consisting of Rh, Ir, Ru, Pt and Pd. These may be oxides (precious metal oxides).

これら貴金属及び貴金属酸化物は、Cr、Co、V、Mo、W等の酸化物と共に用いられてもよい(すなわち、助触媒は「共担持」の態様であってもよい)。このような酸化物としては、具体的には、Cr、CoO(0≦x≦2)、V、MoO、WO等が挙げられる。 These noble metals and noble metal oxides may be used together with oxides such as Cr, Co, V, Mo, W (ie, the co-catalyst may be in a "co-supported" mode). Specific examples of such oxides include Cr 2 O 3 , CoO x (0 ≦ x ≦ 2), V 2 O 5 , MoO 3 , WO 3 , and the like.

可視光領域での水の分解反応においてより高い水素生成活性を発現するという観点から、金属酸化物及び窒化物と、助触媒との好ましい組み合わせとしては、Ta/KTaOと、Pt、Ir、Ru及びRhのいずれか1種及びCrと、の組み合わせが挙げられ、これらの中でもTa/KTaOと、Rh及びCrと、の組み合せが好ましい。 From the viewpoint of exhibiting higher hydrogen production activity in the decomposition reaction of water in the visible light region, preferred combinations of metal oxides and nitrides with co-catalysts include Ta 3N 5 / KTaO 3 and Pt. Examples thereof include any one of Ir, Ru and Rh and a combination of Cr 2 O 3 , and among these, a combination of Ta 3 N 5 / KTaO 3 and Rh and Cr 2 O 3 is preferable.

金属酸化物の全質量を基準として、助触媒としての貴金属等(貴金属及び貴金属酸化物)の担持量は、0.01~1.0質量%が好ましく、0.02~0.05質量%がより好ましい。また、貴金属等と共担持されてもよい上記金属の酸化物の担持量は、貴金属等の担持量の2~5倍が望ましい。このようにすることで、光触媒が、安定で高い水素生成活性を発現し易くなる傾向にある。 Based on the total mass of the metal oxide, the amount of the noble metal or the like (precious metal and noble metal oxide) supported as a co-catalyst is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.05% by mass. More preferred. Further, the amount of the oxide of the metal that may be supported together with the noble metal or the like is preferably 2 to 5 times the amount of the supported amount of the noble metal or the like. By doing so, the photocatalyst tends to easily develop stable and high hydrogen production activity.

担持工程は、含浸法、光電着法、及び水素還元法といった一般的な方法により実施することができる。以下、いくつかの助触媒を担持させる例を説明し、他の助触媒の担持方法の代表例とする。 The supporting step can be carried out by a general method such as an impregnation method, a photoelectric adhesion method, and a hydrogen reduction method. Hereinafter, examples of supporting some co-catalysts will be described, and examples of other methods of supporting co-catalysts will be described.

(含浸法による助触媒の担持例)
助触媒としてRuO(0≦x≦2)を採用する場合は、塩化ルテニウムRuCl・HOの水溶液に、析出工程を経た金属酸化物を含浸させる。これを真空乾固後、大気下で酸化処理し、RuClをRuO(0≦x≦2)に変換することにより、析出工程を経た金属酸化物にRuO(0≦x≦2)を担持させることができる。あるいは、Ruのカルボニル錯体であるRu(CO)12のTHF(テトラヒドロフラン)溶液へ、析出工程を経た金属酸化物を含浸させたのち、真空乾固し、さらに大気雰囲気で酸化処理して、Ru(CO)12をRuO(0≦x≦2)に変換することにより、析出工程を経た金属酸化物にRuO(0≦x≦2)を担持させることができる。
(Example of supporting a co-catalyst by the impregnation method)
When RuO x (0 ≦ x ≦ 2) is adopted as the co-catalyst, the aqueous solution of ruthenium ruthenium RuCl3H2O is impregnated with the metal oxide that has undergone the precipitation step. This is vacuum-dried and then oxidized in the atmosphere to convert RuCl 3 into RuO x (0 ≦ x ≦ 2), whereby RuO x (0 ≦ x ≦ 2) is added to the metal oxide that has undergone the precipitation step. Can be carried. Alternatively, a THF (tetratetra) solution of Ru 3 (CO) 12 , which is a carbonyl complex of Ru, is impregnated with a metal oxide that has undergone a precipitation step, dried in vacuum, and further oxidized in an air atmosphere to be Ru. By converting 3 (CO) 12 to RuO x (0 ≦ x ≦ 2), RuO x (0 ≦ x ≦ 2) can be supported on the metal oxide that has undergone the precipitation step.

含浸法における酸化処理は、好ましくは300~450℃、より好ましくは350~400℃の温度条件にて、好ましくは2~7時間、より好ましくは3~5時間処理することで実施することができる。このような条件で酸化処理することにより、RuClやRu(CO)12をより確実にRuO(0≦x≦2)に変換することが可能である。 The oxidation treatment in the impregnation method can be carried out by treating at a temperature condition of preferably 300 to 450 ° C., more preferably 350 to 400 ° C., preferably for 2 to 7 hours, more preferably 3 to 5 hours. .. By performing the oxidation treatment under such conditions, it is possible to more reliably convert RuCl 3 and Ru 3 (CO) 12 to RuO x (0 ≦ x ≦ 2).

(光電着法による助触媒の担持例)
助触媒としてRhを、共助触媒としてCrを採用する場合は、まず、RhCl・HOのメタノール水溶液に、析出工程を経た金属酸化物を加える。これをガラス反応セルに移し、溶存酸素を脱気後、真空下でXeランプ光を3時間照射する。さらに、この溶液にCr(NOをRhに対しモル比で3倍のCr量となるように加えて、さらに真空下でXeランプ光を12時間照射する。光電着終了後、溶液の濾過、洗浄及び乾燥により、析出工程を経た金属酸化物にCr及びRhを担持させることができる。
(Example of supporting a co-catalyst by the photoelectric adhesion method)
When Rh is used as the co-catalyst and Cr 2 O 3 is used as the co-catalyst, first, the metal oxide that has undergone the precipitation step is added to the aqueous methanol solution of RhCl 3・ H 2 O. This is transferred to a glass reaction cell, the dissolved oxygen is degassed, and then the Xe lamp light is irradiated under vacuum for 3 hours. Further, Cr (NO 3 ) 3 is added to this solution so that the amount of Cr is 3 times the molar ratio of Rh, and the solution is further irradiated with Xe lamp light for 12 hours under vacuum. After the photoadhesion is completed, Cr2O3 and Rh can be supported on the metal oxide that has undergone the precipitation step by filtering, washing and drying the solution.

(水素還元法による助触媒の担持例)
助触媒としてIr又はPtを採用する場合は、まず、(NHIrCl水溶液あるいはHPtCl・6HO水溶液に、析出工程を経た金属酸化物を加えて還流する。その後、これを真空乾固し、水素と窒素の混合気体を流通させ、例えば、300~400℃で3~5時間還元処理することで、析出工程を経た金属酸化物にIr又はPtを担持させることができる。なお、これをさらに、KCrO水溶液を入れた反応セルに移し、Xeランプ光で10~12時間照射してCr光電着させ、溶液の濾過、洗浄及び乾燥をすることで、析出工程を経た金属酸化物にCr及びIr、又はCr及びPtを担持させることができる。
(Example of supporting a co-catalyst by the hydrogen reduction method)
When Ir or Pt is adopted as the co-catalyst, first , the metal oxide that has undergone the precipitation step is added to the (NH 4 ) 2 IrCl 6 aqueous solution or the H 2 PtCl 6.6 H2 O aqueous solution and refluxed. Then, this is vacuum-dried, and a mixed gas of hydrogen and nitrogen is circulated, and for example, it is reduced at 300 to 400 ° C. for 3 to 5 hours to support Ir or Pt on the metal oxide that has undergone the precipitation step. be able to. Further, this is further transferred to a reaction cell containing an aqueous solution of K2 CrO 4 , irradiated with Xe lamp light for 10 to 12 hours to carry out Cr photoelectric adhesion, and the solution is filtered, washed and dried to carry out the precipitation step. Cr 2 O 3 and Ir, or Cr 2 O 3 and Pt can be supported on the aged metal oxide.

<光触媒>
以上の工程を実施することで、本実施形態の水からの水素生成に用いられる光触媒を得ることができる。すなわち、本実施形態の光触媒は、以下のものであるということができる。
下記一般式(1)~(3)のいずれかで表される金属酸化物と、該金属酸化物の表面に窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物と、該化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種と、を備える、水からの水素生成に用いられる光触媒。
AXO・・・(1)
n+13n+1・・・(2)
3m+2・・・(3)
式中、Aはアルカリ金属、アルカリ土類金属及び希土類金属からなる群より選択される少なくとも1種を示し、XはTi、V、Zr、Ta、Nb、W、Mo、Ga、In、Ge及びSnからなる群より選択される少なくとも1種を示し、nは1又は2を示し、mは2又は4を示す。
<Photocatalyst>
By carrying out the above steps, a photocatalyst used for hydrogen generation from water of the present embodiment can be obtained. That is, it can be said that the photocatalyst of the present embodiment is as follows.
A metal oxide represented by any of the following general formulas (1) to (3), at least one compound selected from the group consisting of nitrides and oxynitrides on the surface of the metal oxide, and the above-mentioned compound. A photocatalyst used for hydrogen production from water, comprising on the surface of a compound at least one selected from the group consisting of noble metals and noble metal oxides.
AXO 3 ... (1)
A n + 1 X n O 3n + 1 ... (2)
A m X m O 3m + 2 ... (3)
In the formula, A represents at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and X indicates Ti, V, Zr, Ta, Nb, W, Mo, Ga, In, Ge and Indicates at least one selected from the group consisting of Sn, where n indicates 1 or 2 and m indicates 2 or 4.

なお、本実施形態の光触媒は粒子状であることが好ましい。光触媒粒子の平均粒子径は、懸濁液(後述)を調製して好適に光触媒反応を行う観点から0.05~10μmであることが好ましく、0.1~1.0μmであることがより好ましい。 The photocatalyst of this embodiment is preferably in the form of particles. The average particle size of the photocatalytic particles is preferably 0.05 to 10 μm, more preferably 0.1 to 1.0 μm from the viewpoint of preparing a suspension (described later) and preferably performing a photocatalytic reaction. ..

<光触媒を用いた水素生成方法>
本実施形態の水素生成方法は、上記のとおり得られた光触媒の存在下、可視光を用いた光反応により水からの水素生成を行う。すなわち、水の分解反応により水素を得るものである。具体的には、光触媒及び純水を含む懸濁液を調製し、この懸濁液に対して特定領域の波長の光を外部より照射することにより、水素を得ることができる。本実施形態の光触媒は、好ましくは350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となる。したがって、本実施形態の水素生成方法によれば、太陽光の可視光領域(波長がおよそ350~600nm)での水の分解反応において好適に水素を得ることができる。
<Hydrogen generation method using photocatalyst>
In the hydrogen generation method of the present embodiment, hydrogen is generated from water by a photoreaction using visible light in the presence of the photocatalyst obtained as described above. That is, hydrogen is obtained by the decomposition reaction of water. Specifically, hydrogen can be obtained by preparing a suspension containing a photocatalyst and pure water and irradiating the suspension with light having a wavelength in a specific region from the outside. The photocatalyst of the present embodiment is excited by irradiating with light having a wavelength selected from the range of preferably 350 to 600 nm. Therefore, according to the hydrogen generation method of the present embodiment, hydrogen can be suitably obtained in the decomposition reaction of water in the visible light region (wavelength of about 350 to 600 nm) of sunlight.

光触媒活性の評価には、例えば、通常の閉鎖循環系反応装置を用いることができる。この装置は、真空排気系、光照射用反応ガラスセル、気体循環用ピストンポンプ、圧力計等により構成される。光触媒反応により生成する気体(H、O)は、反応系に直結したガスクロマトグラフにより随時分析することができる。この装置は循環反応系のため、反応時間の経過と共に発生する気体生成物は装置内に蓄積される。そのため、反応を繰り返す場合には、気相を排気した後、再度反応操作を繰り返せばよい。 For the evaluation of photocatalytic activity, for example, a normal closed circulatory system reactor can be used. This device includes a vacuum exhaust system, a reaction glass cell for light irradiation, a piston pump for gas circulation, a pressure gauge, and the like. The gas (H 2 , O 2 ) generated by the photocatalytic reaction can be analyzed at any time by a gas chromatograph directly connected to the reaction system. Since this device is a circulating reaction system, gas products generated over time of the reaction are accumulated in the device. Therefore, when the reaction is repeated, the reaction operation may be repeated again after the gas phase is exhausted.

光触媒の評価用サンプルとしては、上記のとおり得られた光触媒を光照射用反応ガラスセルに入れ、これに純水(例えば、蒸留水をさらにイオン交換した純水)を加えて懸濁させ、さらに懸濁液中の溶存酸素及び窒素を真空排気により除いたものを使用することができる。水に対する好ましい光触媒量は、光がほぼすべての光触媒粒子に当たる程度の量とすればよい。例えば光触媒としてTa/KTaOを用いる場合には、光触媒の含有量は、純水の全重量を基準として、0.03~0.3重量%が好ましく、0.1~0.2重量%がより好ましい。なお、測定にあたっては、評価用サンプルの温度は15~40℃であることが好ましい。また、評価サンプルのpHは5~10であることが好ましく、6~8であることがより好ましい。 As a sample for evaluation of the photocatalyst, the photocatalyst obtained as described above is placed in a reaction glass cell for light irradiation, pure water (for example, pure water obtained by further ion-exchanged distilled water) is added thereto, and the suspension is further carried out. Dissolved oxygen and nitrogen in the suspension can be removed by vacuum exhaust. The preferable amount of the photocatalyst for water may be such that the light hits almost all the photocatalyst particles. For example, when Ta 3 N 5 / KTaO 3 is used as the photocatalyst, the content of the photocatalyst is preferably 0.03 to 0.3% by weight, preferably 0.1 to 0.2% based on the total weight of pure water. % By weight is more preferred. In the measurement, the temperature of the evaluation sample is preferably 15 to 40 ° C. The pH of the evaluation sample is preferably 5 to 10, more preferably 6 to 8.

また、懸濁液の撹拌には、反応装置内に設けたマグネットスターラー等を用い、光照射には、Xeランプ(例えば、イーグルエンジニアリング株式会社製 300W Xe ランプ装置R300-3J)等を用いることができる。この際、照射される光の波長は、本実施形態の光触媒が可視光領域での水の分解反応において高い水素生成活性を示すという観点から、350~800nmとすることができ、420~800nmとすることができる。なお、本実施形態の光触媒は、上述のとおり350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となるため、照射される光の波長は、350~600nmとしてもよい。 Further, a magnet stirrer or the like provided in the reaction device may be used for stirring the suspension, and an Xe lamp (for example, 300W Xe lamp device R300-3J manufactured by Eagle Engineering Co., Ltd.) or the like may be used for light irradiation. can. At this time, the wavelength of the irradiated light can be 350 to 800 nm, and 420 to 800 nm, from the viewpoint that the photocatalyst of the present embodiment exhibits high hydrogen generation activity in the decomposition reaction of water in the visible light region. can do. Since the photocatalyst of the present embodiment is excited by irradiating light having a wavelength selected from the range of 350 to 600 nm as described above, the wavelength of the irradiated light may be 350 to 600 nm. ..

本光触媒粒子は水中に懸濁させて用いることができるが、その他、光触媒粒子をアルミナ、ガラス、プラスチック等の基板上に膜状に固着させることによって、光触媒パネルとして用いることができる。 The photocatalyst particles can be used by suspending them in water, but can also be used as a photocatalyst panel by fixing the photocatalyst particles on a substrate such as alumina, glass, or plastic in a film form.

以下、実施例により本発明を具体的に説明するが、これは本発明をより理解しやすくすることを目的とするものであり、これにより本発明が限定的に解釈されないことは当然である。 Hereinafter, the present invention will be specifically described with reference to Examples, but this is intended to make the present invention easier to understand, and it is natural that the present invention is not construed in a limited manner.

(実施例1:Ta/KTaO化合物)
1)光触媒の作製
1-1)KTaOの作製
出発物質であるTa及びKCOの原料粉末を、K:Taのモル比で1.05:1.0で混合したのち、アルミナルツボに入れ、電気炉において大気下で1150℃で10時間加熱し、白色のKTaO粉末を得た。
(Example 1: Ta 3 N 5 / KTaO 3 compound)
1) Preparation of photocatalyst 1-1) Preparation of KTaO 3 Raw material powders of Ta 2 O 5 and K 2 CO 3 which are starting materials are mixed at a molar ratio of K: Ta at 1.05: 1.0, and then. It was placed in an alumina pentoxide pot and heated in an electric furnace at 1150 ° C. for 10 hours in an electric furnace to obtain a white KTaO 3 powder.

1-2)KTaOの窒化
上記1-1)で作製したKTaO試料をボート型のアルミナルツボに移し、それをアルミナ管に導入したのち、反応気体として100%アンモニア気体を、全流量速度100mlmin-1で流し、アルミナ管を管状電気炉で、900℃で0.05~10時間加熱して粉末を得た。
1-2) Nitride of KTaO 3 The KTaO 3 sample prepared in 1-1) above was transferred to a boat-type alumina talc, introduced into an alumina tube, and then 100% ammonia gas was used as the reaction gas at a total flow rate of 100 mlmin. The flow was carried out at -1 , and the alumina tube was heated in a tubular electric furnace at 900 ° C. for 0.05 to 10 hours to obtain a powder.

得られた粉末について、リガク社製の粉末X線回折装置(RINT2000HF)を用いてXRD(CuKα線)測定を行った。窒化前後の粉末のX線回折パターンを図1に示す。図1中、(A)はX線回折パターンの全領域を示し、(B)はX線回折パターンの一部を拡大したものを示す。また、(a)はKTaOを窒化する前のパターンを、(b)~(g)はKTaOをそれぞれ窒化時間0.25h、0.5h、1h、2h、4h、10hとして窒化した後のパターンを示す。得られたX線回折パターンと、これまでに報告されている粉末X線回折のためのデータベースICDD-PDFのデータとを対比したところ、上記1-1)で得られた粉末がKTaOの構造を有することが分かり、目的とする出発物質がほぼ単一相で合成できたことを確認した。さらに、窒化温度を900℃とし、窒化時間を長くしていくと、KTaOに基づく回折パターンに加えてTaに帰属されるXRDピークが、2θ=36°付近に生じた。そのピーク強度は、窒化時間と共に増加することが示されており、KTaOを窒化することによって、Ta/KTaO化合物(KTaOの表面にTaを有する化合物)が生成していることが確認された。なお、図1には示していないが、KTaOをそれぞれ窒化時間0.05h、0.125hとして窒化したものについても、同様に、Ta/KTaO化合物が生成していた。 The obtained powder was subjected to XRD (CuKα ray) measurement using a powder X-ray diffractometer (RINT2000HF) manufactured by Rigaku Corporation. The X-ray diffraction pattern of the powder before and after nitriding is shown in FIG. In FIG. 1, (A) shows the entire region of the X-ray diffraction pattern, and (B) shows a part of the X-ray diffraction pattern enlarged. Further, (a) is a pattern before nitriding KTaO 3 , and (b) to (g) are after nitriding KTaO 3 with nitriding times of 0.25h, 0.5h, 1h, 2h, 4h, and 10h, respectively. Show the pattern. Comparing the obtained X-ray diffraction pattern with the data of the database ICDD-PDF for powder X-ray diffraction reported so far, the powder obtained in 1-1) above is the structure of KTaO3 . It was confirmed that the target starting material could be synthesized in almost a single phase. Further, when the nitriding temperature was set to 900 ° C. and the nitriding time was lengthened, an XRD peak attributed to Ta 3 N 5 was generated in the vicinity of 2θ = 36 ° in addition to the diffraction pattern based on KTaO 3 . Its peak intensity has been shown to increase with nitriding time, and nitriding KTaO 3 produces a Ta 3 N 5 / KTaO 3 compound (a compound having Ta 3 N 5 on the surface of KTaO 3 ). It was confirmed that Although not shown in FIG. 1, the Ta 3N 5 / KTaO 3 compound was also produced in the case of nitriding KTaO 3 with a nitriding time of 0.05 h and 0.125 h, respectively.

得られたKTaO粉末、及び窒化後に得られたTa/KTaO粉末の、紫外可視拡散反射スペクトルを測定した。具体的には、得られた粉末を所定のガラス板に固着させ、JASCO社製の紫外可視近赤外分光光度計V-670(参照粉末:アルミナ)を用いて測定した。その結果を図2に示す。図中の(a)~(g)は、図1の(a)~(g)に対応している。同図によれば、KTaOの光吸収波長は350nm程度であるが、窒化後のTa/KTaOの光吸収波長は、可視光領域の600nm程度までシフトした。 The ultraviolet-visible diffuse reflection spectra of the obtained KTaO 3 powder and the Ta 3 N 5 / KTaO 3 powder obtained after nitriding were measured. Specifically, the obtained powder was fixed to a predetermined glass plate and measured using an ultraviolet-visible near-infrared spectrophotometer V-670 (reference powder: alumina) manufactured by JASCO Corporation. The results are shown in FIG. (A) to (g) in the figure correspond to (a) to (g) in FIG. According to the figure, the light absorption wavelength of KTaO 3 is about 350 nm, but the light absorption wavelength of Ta 3 N 5 / KTaO 3 after nitriding is shifted to about 600 nm in the visible light region.

得られたKTaO粉末、及び窒化後に得られたTa/KTaO粉末を、それぞれ高分解能電界放射型走査型電子顕微鏡(HITACHI、24TK004300)により観察した。その走査型電子顕微鏡像を図3に示す。図3中、(A)はKTaOの、(B)及び(C)はそれぞれ窒化時間0.25h及び0.5hとして窒化した後のKTaOの走査型電子顕微鏡像を示す。(A)に示すように、KTaOは、稜線に面をもつ立方晶構造を示した。これらの粒子の粒子径は0.2~0.8μmであった。一方、(B)及び(C)に示すように、窒化後はこのKTaO粒子の立方晶構造はほぼ維持されるものの、稜線上を中心として柱状結晶が析出した。柱状結晶の出現はX線回折ピークの出現と合致し、光吸収特性はTa化合物のそれと良い一致を示した。このことから、柱状結晶はTaに帰属されると考えられる。 The obtained KTaO 3 powder and the Ta 3 N 5 / KTaO 3 powder obtained after nitriding were observed with a high-resolution field emission scanning electron microscope (HITACHI, 24TK004300), respectively. The scanning electron microscope image is shown in FIG. In FIG. 3, (A) shows the scanning electron microscope images of KTaO 3 , and (B) and (C) show the scanning electron microscope images of KTaO 3 after nitriding with nitriding times of 0.25 h and 0.5 h, respectively. As shown in (A), KTaO 3 showed a cubic structure having a surface on the ridgeline. The particle size of these particles was 0.2 to 0.8 μm. On the other hand, as shown in (B) and (C), although the cubic structure of the KTaO3 particles was almost maintained after nitriding, columnar crystals were precipitated mainly on the ridgeline. The appearance of columnar crystals coincided with the appearance of X-ray diffraction peaks, and the light absorption characteristics showed good agreement with those of the Ta 3N 5 compound . From this, it is considered that the columnar crystals belong to Ta 3 N 5 .

1-3)Ta/KTaOへの助触媒(Cr/Rh)の担持
Ta/KTaOを、RhCl・HOの10体積%メタノール水溶液に加えた。この時、Rhの担持量が、Ta/KTaOに対して、Rh換算で0.01~0.5重量%となるように調整した。これを光照射用のガラス反応セルに移し、液中の溶存酸素を脱気した後、真空下で300WのXeランプ光を3時間照射した。さらに、この溶液に、Rhに対しモル比で3倍のCr量となるようにKCrOを加えて、さらに真空下でXeランプ光を12時間照射した。RhとCrの光電着終了後、溶液の濾過、洗浄及び乾燥を行い、Cr/Rh担持Ta/KTaO光触媒を得た。
1-3) Support of co-catalyst (Cr 2 O 3 / Rh) on Ta 3 N 5 / KTaO 3 Ta 3 N 5 / KTaO 3 was added to a 10% by volume methanol aqueous solution of RhCl 3・ H 2 O. At this time, the amount of Rh supported was adjusted to be 0.01 to 0.5% by weight in terms of Rh with respect to Ta 3 N 5 / KTaO 3 . This was transferred to a glass reaction cell for light irradiation, and after degassing the dissolved oxygen in the liquid, it was irradiated with 300 W Xe lamp light for 3 hours under vacuum. Further, K2 CrO 4 was added to this solution so that the amount of Cr was 3 times the molar ratio of Rh, and the solution was further irradiated with Xe lamp light for 12 hours under vacuum. After the photoelectric adhesion of Rh and Cr 2 O 3 was completed, the solution was filtered, washed and dried to obtain a Cr 2 O 3 / Rh-supported Ta 3 N 5 / KTaO 3 photocatalyst.

2)水素生成活性の評価
得られた光触媒を含む測定用サンプルを作製し、上述の閉鎖循環系反応装置を用いて、水からの水素生成反応の活性の評価を行った。この際、光触媒は窒化時間0.25hとして窒化したKTaOを含むものを用いた。また、光触媒の量は、純水の全重量を基準として0.1~0.3重量%とし、評価用サンプルの温度を15℃、pHを7として評価を行った。また、光照射にはXeランプ(イーグルエンジニアリング株式会社製 300W Xe ランプ装置R300-3J)を用いて、外部照射法により420~800nmの波長の光を照射した。
2) Evaluation of hydrogen production activity A measurement sample containing the obtained photocatalyst was prepared, and the activity of the hydrogen production reaction from water was evaluated using the above-mentioned closed circulatory system reactor. At this time, a photocatalyst containing KTaO 3 nitrided with a nitriding time of 0.25 h was used. The amount of the photocatalyst was 0.1 to 0.3% by weight based on the total weight of pure water, and the evaluation was performed with the temperature of the evaluation sample at 15 ° C. and the pH at 7. Further, a Xe lamp (300W Xe lamp device R300-3J manufactured by Eagle Engineering Co., Ltd.) was used for light irradiation, and light having a wavelength of 420 to 800 nm was irradiated by an external irradiation method.

図4は、照射時間と、生成水素量及び生成酸素量との関係を示すグラフである。まず、波長420~800nmの光照射により、水素と酸素がほぼ化学量論比を保ち、定常的に生成することを確認した。気相の水素と酸素を排気(Evac.)した後、同光照射条件において反応を繰り返した場合にも、水素と酸素がほぼ化学量論比を保ち、定常的に生成した。再度排気及び同条件での反応を行っても、再現良く水素と酸素が生成した。これらのことより、本光触媒が420nmより長波長の可視広域で水の完全分解に活性を示すことが実証された。なお、この光触媒は、波長420~800nmの可視光を照射した際に、水素生成活性が約10μmolh-1であり、酸素生成活性が約5μmolh-1であった。 FIG. 4 is a graph showing the relationship between the irradiation time and the amount of hydrogen produced and the amount of oxygen produced. First, it was confirmed that hydrogen and oxygen were constantly generated with a stoichiometric ratio maintained by irradiation with light having a wavelength of 420 to 800 nm. Even when the reaction was repeated under the same light irradiation conditions after exhausting hydrogen and oxygen in the gas phase (Evac.), Hydrogen and oxygen were constantly generated while maintaining a stoichiometric ratio. Even when the exhaust gas and the reaction under the same conditions were performed again, hydrogen and oxygen were generated with good reproducibility. From these facts, it was demonstrated that this photocatalyst is active in the complete decomposition of water in a visible wide range with a wavelength longer than 420 nm. The photocatalyst had a hydrogen production activity of about 10 μmolh -1 and an oxygen production activity of about 5 μmolh -1 when irradiated with visible light having a wavelength of 420 to 800 nm.

3)窒化時間による光触媒活性検討
図5は、窒化時間と、生成水素量及び生成酸素量との関係を示すグラフである。図5に示すように、窒化時間0.05hとして短時間で窒化した後のKTaOについても、充分な水素及び酸素生成の活性が生じていた。本実施例では、窒化時間0.25hをピークとして、窒化時間10hまでは活性が漸減したものの、水素及び酸素の生成は確認された。
3) Examination of photocatalytic activity by nitriding time FIG. 5 is a graph showing the relationship between the nitriding time and the amount of hydrogen produced and the amount of oxygen produced. As shown in FIG. 5, sufficient hydrogen and oxygen generation activity was also produced in KTaO 3 after nitriding in a short time with a nitriding time of 0.05 h. In this example, the activity peaked at the nitriding time of 0.25 h and the activity gradually decreased until the nitriding time of 10 h, but the production of hydrogen and oxygen was confirmed.

4)助触媒の種類による光触媒活性検討
Rhに代えて、Pt、Ir、又はRuを用いたこと以外は、上記と同様にして助触媒担持Ta/KTaO光触媒を作製した。なお、Pt、Ir及びRuの光電着には、出発原料としてそれぞれ、HPtCl、KIrCl、及びRuClを用いた。また、光触媒は窒化時間0.25hとして窒化したKTaOを含むものを用いた。そして、それぞれについて水の分解反応における水素及び酸素生成の活性を測定した。結果を図6に示す。いずれの助触媒も、顕著な水素及び酸素生成能を示したが、その活性序列は、Rh>Pt>Ir>Ruであった。
4) Examination of photocatalyst activity depending on the type of co-catalyst A co-catalyst-supported Ta 3 N 5 / KTaO 3 photocatalyst was prepared in the same manner as above except that Pt, Ir, or Ru was used instead of Rh. For photoelectric adhesion of Pt, Ir and Ru, H2 PtCl 6 , K2 IrCl 6 and RuCl 3 were used as starting materials, respectively. Further, a photocatalyst containing KTaO 3 nitrided with a nitriding time of 0.25 h was used. Then, the activity of hydrogen and oxygen production in the decomposition reaction of water was measured for each. The results are shown in FIG. Both co-catalysts showed remarkable hydrogen and oxygen producing ability, but their activity sequence was Rh>Pt>Ir> Ru.

上記に示すように、Ta/KTaO光触媒は極めて優れた水素生成活性を示す。この理由を発明者らは次のように推察する。すなわち、NH雰囲気下でのKTaOからのTa結晶の成長においては、Kの脱離が起こる過程を含む。そのため、Taの生成が緩やかに進行することで、高い結晶性をもつ柱状結晶がKTaO表面に析出するものと考えられる。このような高い結晶性のTaは欠陥濃度が低く、光励起によって生じる励起電子や正孔が再結合無く移動できるため、水の分解に対し高い活性をもたらすものと考えられる。 As shown above, the Ta 3 N 5 / KTaO 3 photocatalyst exhibits extremely good hydrogen production activity. The inventors infer the reason for this as follows. That is, the growth of Ta 3 N 5 crystals from KT a O 3 in the NH 3 atmosphere involves the process of K desorption. Therefore, it is considered that the formation of Ta 3 N 5 proceeds slowly, so that columnar crystals having high crystallinity are deposited on the surface of KTaO 3 . Such high crystalline Ta 3 N 5 has a low defect concentration, and excited electrons and holes generated by photoexcitation can move without recombination, so that it is considered to bring high activity to the decomposition of water.

(実施例2:BaTaON/KTaO化合物)
実施例1において作製したKTaOを、Ba(NO水溶液に含浸し、KTaO表面にBa(NOを1~16モル%で担持させた。これを大気中900℃で酸化処理した。その後、実施例1と同様にして窒化処理(0.5~4時間)してBaTaON/KTaO粉末を得、さらに助触媒を担持させ、Cr/Rh担持BaTaON/KTaO光触媒を得た。得られた光触媒は、上記の可視光を照射した際に、水の分解反応における水素及び酸素生成活性を示した。
(Example 2: BaTaO 2 N / KTaO 3 compound)
The KTaO 3 prepared in Example 1 was impregnated into a Ba (NO 3 ) 2 aqueous solution, and Ba (NO 3 ) 2 was supported on the surface of KTaO 3 in an amount of 1 to 16 mol%. This was oxidized in the air at 900 ° C. Then, in the same manner as in Example 1, a nitriding treatment (0.5 to 4 hours) was performed to obtain BaTaO 2 N / KTaO 3 powder, and a co-catalyst was further supported to support Cr 2O 3 / Rh-supported BaTaO 2 N / KTaO. 3 Photocatalysts were obtained. The obtained photocatalyst showed hydrogen and oxygen production activity in the decomposition reaction of water when irradiated with the above visible light.

(比較例1)
G.Hitoki,A.Ishikawa,T.Takata,J.Kondo,M.Hara,K.Domen,Catal. Lett.,2002, 736-737.に記載の従来の方法に基づき、Taを1150℃で10時間焼成処理した後、アンモニア気体下で、900℃にてTaが完全にTaに変換されるまで窒化を行った。得られたTaに対し、実施例1と同様にして助触媒を担持させ、Cr/Rh担持Ta光触媒を得た。得られた光触媒は、上記の可視光を照射した際に、水の分解反応に対してほとんど水素生成活性を示さなかった。
(Comparative Example 1)
G. Hitoki, A. Ishikawa, T.M. Takata, J. et al. Kondo, M.D. Hara, K.K. Domen, Catal. Let. , 2002, 736-737. After firing Ta 2 O 5 at 1150 ° C. for 10 hours at 900 ° C., nitriding until Ta 2 O 5 is completely converted to Ta 3 N 5 at 900 ° C. Was done. A co-catalyst was supported on the obtained Ta 3 N 5 in the same manner as in Example 1, and a Cr 2 O 3 / Rh-supported Ta 3 N 5 photocatalyst was obtained. The obtained photocatalyst showed almost no hydrogen production activity with respect to the decomposition reaction of water when irradiated with the above visible light.

(比較例2)
比較例1と同様に、従来の方法に基づき、BaTa15酸化物を1150℃で15時間焼成処理した後、アンモニア気体下で、900℃にてBaTa15が完全にBaTaONに変換されるまで窒化を行った。得られたBaTaONに対し、実施例1と同様にして助触媒を担持させ、Cr/Rh担持BaTaON光触媒を得た。得られた光触媒は、上記の可視光を照射した際に、水の分解反応に対してほとんど水素生成活性を示さなかった。
(Comparative Example 2)
Similar to Comparative Example 1, the Ba 5 Ta 4 O 15 oxide was calcined at 1150 ° C. for 15 hours based on the conventional method, and then Ba 5 Ta 4 O 15 was completely calcinated at 900 ° C. under ammonia gas. Nitriding was performed until it was converted to BaTaO 2N. A co-catalyst was supported on the obtained BaTaO 2 N in the same manner as in Example 1, and a Cr 2O 3 / Rh-supported BaTaO 2 N photocatalyst was obtained. The obtained photocatalyst showed almost no hydrogen production activity with respect to the decomposition reaction of water when irradiated with the above visible light.

以上説明したように、600nm程度までの長波長光を吸収できる、本発明により得られる光触媒において、水の完全分解により水素生成が可能であるという発見は、水からの水素生成に対する可視光領域の光触媒の開発に対して突破口を開くものであり、再生エネルギー技術確立に充分に貢献するものである。そして、可視光領域での水の分解反応において高い水素生成活性を示す、本発明により得られる光触媒は、無尽蔵に供給される太陽エネルギーを有効に活用できることから産業上の利用性が極めて高いものである。 As described above, the discovery that hydrogen can be produced by complete decomposition of water in the photocatalyst obtained by the present invention, which can absorb long wavelength light up to about 600 nm, is found in the visible light region for hydrogen generation from water. It opens a breakthrough in the development of photocatalysts and contributes sufficiently to the establishment of renewable energy technology. The photocatalyst obtained by the present invention, which exhibits high hydrogen generation activity in the decomposition reaction of water in the visible light region, has extremely high industrial utility because it can effectively utilize the inexhaustibly supplied solar energy. be.

Claims (5)

下記一般式(1)で表される金属酸化物の表面に、前記金属酸化物が有するX元素を含む窒化物及び酸窒化物からなる群より選択される少なくとも1種の化合物を析出させる工程であって、前記金属酸化物、又はアルカリ土類金属の酸化物を表面に担持させた前記金属酸化物を、アンモニア含有気体中で熱処理する工程を備える、析出工程と、
前記化合物の表面に、貴金属及び貴金属酸化物からなる群より選択される少なくとも1種を担持させる担持工程と、を備える、水からの水素生成に用いられる光触媒の製造方法。
AXO・・・(1
式中、Aはアルカリ金属を示し、XはTaを示す。)
In the step of precipitating at least one compound selected from the group consisting of nitrides and oxynitrides containing the X element of the metal oxide on the surface of the metal oxide represented by the following general formula (1 ) . A precipitation step comprising a step of heat-treating the metal oxide or the metal oxide having an oxide of an alkaline earth metal on the surface in an ammonia-containing gas .
A method for producing a photocatalyst used for hydrogen generation from water, comprising a supporting step of supporting at least one selected from the group consisting of a noble metal and a noble metal oxide on the surface of the compound.
AXO 3 ... (1 )
( In the formula, A represents an alkali metal and X represents Ta .)
前記析出工程における前記熱処理の時間が0.05~2時間である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the heat treatment time in the precipitation step is 0.05 to 2 hours. 前記担持工程が、前記化合物の表面に、さらにCr、Co、V、Mo及びWからなる群より選択される少なくとも1種の金属の酸化物を担持させる工程を備える、請求項1又は2に記載の製造方法。 The carrying step according to claim 1 or 2, wherein the supporting step further comprises a step of supporting an oxide of at least one metal selected from the group consisting of Cr, Co, V, Mo and W on the surface of the compound. Manufacturing method. 前記光触媒が、350~600nmの範囲から選択される波長を有する光を照射することにより励起状態となる、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the photocatalyst is excited by irradiating with light having a wavelength selected from the range of 350 to 600 nm. 請求項1~4のいずれか一項に記載の製造方法により得られる光触媒の存在下、可視光を用いた光反応により水からの水素生成を行う、水素生成方法。 A hydrogen production method for producing hydrogen from water by a photoreaction using visible light in the presence of a photocatalyst obtained by the production method according to any one of claims 1 to 4.
JP2017160149A 2017-08-23 2017-08-23 Photocatalyst manufacturing method and hydrogen generation method Active JP7045662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017160149A JP7045662B2 (en) 2017-08-23 2017-08-23 Photocatalyst manufacturing method and hydrogen generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017160149A JP7045662B2 (en) 2017-08-23 2017-08-23 Photocatalyst manufacturing method and hydrogen generation method

Publications (2)

Publication Number Publication Date
JP2019037918A JP2019037918A (en) 2019-03-14
JP7045662B2 true JP7045662B2 (en) 2022-04-01

Family

ID=65724878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017160149A Active JP7045662B2 (en) 2017-08-23 2017-08-23 Photocatalyst manufacturing method and hydrogen generation method

Country Status (1)

Country Link
JP (1) JP7045662B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973665B (en) * 2019-12-02 2023-08-15 南京工业大学 Low-temperature preparation of high-performance monocrystal SrTaO 2 Method for N photo-anode
CN112458492A (en) * 2020-12-01 2021-03-09 国网新疆电力有限公司电力科学研究院 Photo-anode with continuous solid-solid consolidation and solid-liquid consolidation and preparation method and application thereof
CN113198515B (en) * 2021-05-19 2023-07-28 上海城投原水有限公司 A kind of ternary photocatalyst and its preparation method and application
WO2024070179A1 (en) * 2022-09-29 2024-04-04 Jx金属株式会社 Method for producing tantalum nitride material, and tantalum nitride material
CN115518668B (en) * 2022-10-14 2024-05-14 苏州西热节能环保技术有限公司 Oxygen-nitrogen compound heterojunction and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190809A (en) 2001-10-15 2003-07-08 Jfe Steel Kk Method for manufacturing composite material formed with photocatalyst film
JP2003236389A (en) 2002-02-14 2003-08-26 Japan Science & Technology Corp Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light
JP2007185605A (en) 2006-01-13 2007-07-26 Univ Of Tokyo Cocatalyst for photocatalyst and photocatalyst material
JP2011131170A (en) 2009-12-24 2011-07-07 Mitsubishi Chemicals Corp Electrode for photolytic water decomposition reaction using photocatalyst
US20130266809A1 (en) 2012-04-10 2013-10-10 Massachusetts Institute Of Technology Biotemplated perovskite nanomaterials
JP2016064949A (en) 2014-09-24 2016-04-28 国立大学法人 東京大学 Method for producing metal oxynitride
JP2016183073A (en) 2015-03-26 2016-10-20 富士フイルム株式会社 Perovskite oxynitride particle production method, and perovskite oxynitride particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190809A (en) 2001-10-15 2003-07-08 Jfe Steel Kk Method for manufacturing composite material formed with photocatalyst film
JP2003236389A (en) 2002-02-14 2003-08-26 Japan Science & Technology Corp Photocatalyst containing titanium fluoronitride for decomposition of water on irradiation with visible light
JP2007185605A (en) 2006-01-13 2007-07-26 Univ Of Tokyo Cocatalyst for photocatalyst and photocatalyst material
JP2011131170A (en) 2009-12-24 2011-07-07 Mitsubishi Chemicals Corp Electrode for photolytic water decomposition reaction using photocatalyst
US20130266809A1 (en) 2012-04-10 2013-10-10 Massachusetts Institute Of Technology Biotemplated perovskite nanomaterials
JP2016064949A (en) 2014-09-24 2016-04-28 国立大学法人 東京大学 Method for producing metal oxynitride
JP2016183073A (en) 2015-03-26 2016-10-20 富士フイルム株式会社 Perovskite oxynitride particle production method, and perovskite oxynitride particles

Also Published As

Publication number Publication date
JP2019037918A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
Sun et al. Activating layered perovskite compound Sr2TiO4 via La/N codoping for visible light photocatalytic water splitting
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
JP6875009B2 (en) Catalyst and its use
Jana et al. Photocatalytic hydrogen production in the water/methanol system using Pt/RE: NaTaO3 (RE= Y, La, Ce, Yb) catalysts
JP5999548B2 (en) Photocatalyst and method for producing the same
JP2020501875A (en) Method for producing catalyst containing intermetallic compound and catalyst produced by the method
WO2015151775A1 (en) Photoelectrode for use in decomposition of water, and water decomposition device
JP3845720B2 (en) Potassium niobate photocatalyst and method for producing the same
JP6077505B2 (en) Water-splitting photocatalyst and method for producing the same, water-splitting photoelectrode
JP5219137B2 (en) Dendritic substances and structures containing them
Pawar et al. Boosting photocatalytic CO 2 conversion using strongly bonded Cu/reduced Nb 2 O 5 nanosheets
CN103933990B (en) A kind of preparation method of 26 body structure CaCu 3 Ti 4 Os
JP6165937B2 (en) Method for producing porous silica-encapsulated particles
JP4487362B2 (en) Photocatalytic substance
JP6211499B2 (en) Strontium titanate fine particles, photocatalyst and hydrogen / oxygen generation photocatalyst system
WO2003068393A1 (en) Photocatalyst comprising titanium fluoride nitride for water decomposition with visible light irradiation
CN115569658B (en) CABB/UCNT heterojunction composite photocatalyst, and preparation method and application thereof
JP2023160953A (en) Photocatalyst and method of producing the same
JP2006089323A (en) Visible light responsive photocatalyst and synthesis method thereof
JP2023142187A (en) Method for producing photocatalyst and photocatalyst component
Tang et al. Photocatalytic splitting of water under visible-light irradiation over the NiOx-loaded Sm2InTaO7 with 4f-d10-d0 configuration
WO2023286845A1 (en) Photocatalyst for hydrogen generation, water splitting system, and hydrogen production method
JP2015196155A (en) Photocatalyst and hydrogen generation method using the same
JP2015167882A (en) Photocatalyst production method, photocatalyst, and hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220311

R150 Certificate of patent or registration of utility model

Ref document number: 7045662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250