[go: up one dir, main page]

JP7035702B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP7035702B2
JP7035702B2 JP2018061651A JP2018061651A JP7035702B2 JP 7035702 B2 JP7035702 B2 JP 7035702B2 JP 2018061651 A JP2018061651 A JP 2018061651A JP 2018061651 A JP2018061651 A JP 2018061651A JP 7035702 B2 JP7035702 B2 JP 7035702B2
Authority
JP
Japan
Prior art keywords
separator
lithium
secondary battery
surface portion
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018061651A
Other languages
Japanese (ja)
Other versions
JP2019175656A (en
Inventor
智彦 長谷川
秀明 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018061651A priority Critical patent/JP7035702B2/en
Publication of JP2019175656A publication Critical patent/JP2019175656A/en
Application granted granted Critical
Publication of JP7035702B2 publication Critical patent/JP7035702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.

近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、このような状況下において、充放電容量が大きく、高エネルギー密度を有するリチウムイオン二次電池が注目されている。 In recent years, electronic devices such as mobile phones and personal computers have been rapidly miniaturized and cordless, and there is an increasing demand for a secondary battery that is compact, lightweight, and has a high energy density as a power source for driving them. Further, under such a situation, a lithium ion secondary battery having a large charge / discharge capacity and a high energy density is attracting attention.

上記リチウムイオン二次電池は、一般的に電極体と非水電解液を備え、電極体の形状から積層型電池と捲回型電池の大きく二つに分類することが出来る。このうち、捲回型電池の電極体は、長尺なシート状の電極および長尺なシート状のセパレータを一まとめとして扁平形状に捲回して製造されることから、一巻きのロールから連続的に製造が可能で、生産性に優れるという優位点を有している。 The lithium ion secondary battery generally includes an electrode body and a non-aqueous electrolytic solution, and can be roughly classified into two types, a laminated type battery and a wound type battery, according to the shape of the electrode body. Of these, the electrode body of the winding type battery is manufactured by winding a long sheet-shaped electrode and a long sheet-shaped separator together into a flat shape, so that it is continuous from one roll. It has the advantage of being able to be manufactured and having excellent productivity.

ただし、上記捲回型電池はその構造上、電極体に平面部と曲面部が存在することとなり、この曲面部に起因する特有の問題が発生することも知られている。例えば、曲面部の応力の不均一性によって製造過程で微小短絡を生じる問題について、特許文献1では、捲回体の最外周部に余剰セパレータ領域を設けることで、曲面部における応力緩和と、電荷担体のバランスを改善し、上記問題を解決する方法が開示されている。 However, it is also known that the wound type battery has a flat surface portion and a curved surface portion on the electrode body due to its structure, and a peculiar problem caused by this curved surface portion occurs. For example, regarding the problem that a minute short circuit occurs in the manufacturing process due to the non-uniformity of stress in the curved surface portion, in Patent Document 1, by providing a surplus separator region in the outermost peripheral portion of the wound body, stress relaxation in the curved surface portion and charge are provided. Methods for improving carrier balance and solving the above problems have been disclosed.

特開2017-10878号JP-A-2017-10878

しかしながら、従来技術の方法では未だ諸特性は満足されず、特に曲面部における繰り返し充放電時の金属リチウム析出の抑制が求められている。 However, various characteristics are still not satisfied by the method of the prior art, and it is particularly required to suppress the precipitation of metallic lithium during repeated charging and discharging on the curved surface portion.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、曲面部における繰り返し充放電時の金属リチウム析出が抑制されたリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a lithium ion secondary battery in which metal lithium precipitation is suppressed during repeated charging and discharging on a curved surface portion.

上記課題を解決するため、本発明に係るリチウムイオン二次電池は、正極と負極とがセパレータを介して捲回された捲回体と、上記捲回体を収納する外装体と、を備え、上記捲回体は、複数の平面部と上記平面部を連結する曲面部とを含んでなり、上記曲面部におけるセパレータの算術平均粗さをRa、上記平面部におけるセパレータの算術平均粗さをRaとしたとき、Ra>Raの関係を満たすことを特徴とするリチウムイオン二次電池。 In order to solve the above problems, the lithium ion secondary battery according to the present invention includes a wound body in which a positive electrode and a negative electrode are wound via a separator, and an exterior body for accommodating the wound body. The wound body includes a plurality of flat surface portions and a curved surface portion connecting the flat surface portions, and the arithmetic average roughness of the separator in the curved surface portion is Ra 1 , and the arithmetic average roughness of the separator in the flat surface portion is determined. A lithium ion secondary battery characterized in that the relationship of Ra 1 > Ra 2 is satisfied when Ra 2 is set.

これによれば、捲回体の曲面部は作製時に隙間が生じやすく、極板間距離が空くことで充放電が不均一になりやすい。本発明に係るセパレータを用いることで、捲回体作製時のずれが抑制されるとともに、曲面部におけるセパレータの表面積が大となることで局所的な電解液の保液量が大幅に向上し、リチウムイオンが速やかに供給されることで充放電が均一に進行し、曲面部における繰り返し充放電時の金属リチウム析出が抑制される。 According to this, the curved surface portion of the wound body tends to have a gap at the time of manufacturing, and the charging / discharging tends to be non-uniform due to the gap between the plates. By using the separator according to the present invention, deviation during fabrication of the wound body is suppressed, and the surface area of the separator on the curved surface is increased, so that the amount of local electrolytic solution retained is significantly improved. By promptly supplying lithium ions, charging and discharging proceed uniformly, and metal lithium precipitation during repeated charging and discharging on the curved surface portion is suppressed.

本発明に係るリチウムイオン二次電池は更に、上記曲面部におけるセパレータの算術平均粗さRaが0.40μm以上であることが好ましい。 Further, in the lithium ion secondary battery according to the present invention, it is preferable that the arithmetic average roughness Ra 1 of the separator on the curved surface portion is 0.40 μm or more.

これによれば、曲面部におけるセパレータの算術平均粗さとして好適であり、曲面部における繰り返し充放電時の金属リチウム析出が抑制される。 According to this, it is suitable as the arithmetic mean roughness of the separator on the curved surface portion, and the precipitation of metallic lithium during repeated charging and discharging on the curved surface portion is suppressed.

本発明に係るリチウムイオン二次電池は更に、上記曲面部におけるセパレータが、上記負極と接する主面上に、セルロース誘導体を含む表面コート層を有することが好ましい。 Further, in the lithium ion secondary battery according to the present invention, it is preferable that the separator in the curved surface portion has a surface coat layer containing a cellulose derivative on the main surface in contact with the negative electrode.

本発明によれば、曲面部における繰り返し充放電時の金属リチウム析出が抑制されたリチウムイオン二次電池が提供される。 According to the present invention, there is provided a lithium ion secondary battery in which metal lithium precipitation is suppressed during repeated charging and discharging on a curved surface portion.

本実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross-sectional view of the lithium ion secondary battery which concerns on this embodiment. 本実施形態に係るリチウムイオン二次電池における捲回体を展開した図である。It is a figure which developed the winding body in the lithium ion secondary battery which concerns on this embodiment. 本実施形態に係るリチウムイオン二次電池における捲回体の端部を拡大した模式断面図である。It is a schematic cross-sectional view which enlarged the end part of the winding body in the lithium ion secondary battery which concerns on this embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of each component may differ from the actual ones. be. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

<リチウムイオン二次電池>
図1は、本実施形態に係るリチウムイオン二次電池の模式断面図である。図1に示すように、本実施形態に係るリチウムイオン二次電池100は、発電素子1と外装体2とを備える。発電素子1は、正極10と負極20とセパレータ30とを有する。図1に示す発電素子1は、正極10と負極20とが、セパレータ30を挟んで対向配置され、捲回されてなる捲回体である。正極10及び負極20のそれぞれには、外部との電気的接続のための端子15、25が設けられている。
<Lithium-ion secondary battery>
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to the present embodiment. As shown in FIG. 1, the lithium ion secondary battery 100 according to the present embodiment includes a power generation element 1 and an exterior body 2. The power generation element 1 has a positive electrode 10, a negative electrode 20, and a separator 30. The power generation element 1 shown in FIG. 1 is a wound body in which a positive electrode 10 and a negative electrode 20 are arranged so as to face each other with the separator 30 interposed therebetween and wound. Each of the positive electrode 10 and the negative electrode 20 is provided with terminals 15 and 25 for electrical connection with the outside.

図2は、本実施形態に係るリチウムイオン二次電池における捲回体を展開した図である。正極10は、板状の正極集電体12に正極活物質層14が設けられたものである。負極20は、板状の負極集電体22に負極活物質層24が設けられたものである。また正極10及び負極20の一部には、絶縁テープ40が貼られている。絶縁テープ40は、端子15、25の短絡を防ぎ、活物質層が集電体から剥離するのを抑制する。 FIG. 2 is a developed view of a wound body in the lithium ion secondary battery according to the present embodiment. The positive electrode 10 is a plate-shaped positive electrode current collector 12 provided with a positive electrode active material layer 14. The negative electrode 20 is a plate-shaped negative electrode current collector 22 provided with a negative electrode active material layer 24. Further, an insulating tape 40 is attached to a part of the positive electrode 10 and the negative electrode 20. The insulating tape 40 prevents short circuits of the terminals 15 and 25 and suppresses the active material layer from peeling from the current collector.

図3は、本実施形態に係るリチウムイオン二次電池における捲回体の端部を拡大した模式断面図である。捲回体端部は、平面部Rと、平面部Rを連結する曲面部Rとを有する。 FIG. 3 is an enlarged schematic cross-sectional view of an end portion of a wound body in the lithium ion secondary battery according to the present embodiment. The winding body end portion has a flat surface portion RP and a curved surface portion RC connecting the flat surface portions RP .

<正極>
正極10は、正極集電体12と、正極集電体12の両面に設けられた正極活物質層14とを有する。
<Positive electrode>
The positive electrode 10 has a positive electrode current collector 12 and a positive electrode active material layer 14 provided on both sides of the positive electrode current collector 12.

(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Positive current collector)
The positive electrode current collector 12 may be any conductive plate material, and for example, a thin metal plate (metal foil) such as aluminum or an alloy thereof or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive auxiliary agent.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の正極活物質を使用できる。上記正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、ニッケルマンガン酸リチウム、Li(NiCoMn)O(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1であり、MはAl、Mg、Nb、Ti、Cu、Zn、Crから選択される少なくとも一種)で表される複合金属酸化物、Li(PO(1≦a≦4、1≦b≦2、1≦c≦3であり、MはFe,V,Co,Mn,Ni,VOから選択される少なくとも一種)で表されるポリアニオンオリビン型正極、等が挙げられる。
(Positive electrode active material)
As the positive electrode active material, the storage and release of lithium ions, the desorption and insertion (intercalation) of lithium ions, or the doping and dedoping of the counter anion of the lithium ions (for example, PF 6- ) are reversibly performed. A known positive electrode active material can be used without particular limitation as long as it can be advanced. Examples of the positive electrode active material include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium nickel manganate, and Li (Ni x Coy Mn z Ma ) O. 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr. Li a M b (PO 4 ) c (1 ≦ a ≦ 4, 1 ≦ b ≦ 2, 1 ≦ c ≦ 3, where M is Fe, V, Co. , Mn, Ni, at least one selected from VO), a polyanion olivine type positive electrode, and the like.

(正極用バインダー)
正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂や、ビニリデンフルオライド-ヘキサフルオロプロピレン(VDF-HFP)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン(VDF-HFP-TFE)、ビニリデンフルオライド-クロロトリフルオロエチレン(VDF-CTFE)等のビニリデンフルオライド系フッ素樹脂、スチレン・ブタジエンゴム(SBR)、エチレン・プロピレンゴム(EPR)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)等の非フッ素樹脂を用いてもよい。
(Binder for positive electrode)
The positive electrode binder binds the positive electrode active materials to each other, and also bonds the positive electrode active material layer 14 and the positive electrode current collector 12. The binder may be any one capable of the above-mentioned binding, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroelene-. Perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) ) And other fluororesins, vinylidene fluoride-hexafluoropropylene (VDF-HFP), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene (VDF-HFP-TFE), vinylidene fluoride-chlorotrifluoroethylene (VDF-). Using a vinylidene fluoride-based fluororesin such as CTFE), a non-fluororesin such as styrene / butadiene rubber (SBR), ethylene / propylene rubber (EPR), polyamide (PA), polyimide (PI), and polyamideimide (PAI). May be good.

更に、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。 Further, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron-conducting conductive polymer include polyacetylene, polythiophene, polyaniline and the like. Examples of the ionic conductive polymer include a composite of a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6 . Be done.

(正極用導電助剤)
正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属、酸化インジウムスズ(ITO)等の導電性酸化物が挙げられる。また、正極活物質のみで十分な導電性を確保できる場合は、正極活物質層14は導電助剤を含んでいなくても良い。
(Conductive aid for positive electrode)
The conductive auxiliary agent for the positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metals such as copper, nickel, stainless steel and iron, and conductive oxides such as indium tin oxide (ITO). Further, if sufficient conductivity can be ensured only by the positive electrode active material, the positive electrode active material layer 14 may not contain the conductive auxiliary agent.

<負極>
負極20は、負極集電体22と、負極集電体22の両面に設けられた負極活物質層24と、を有する。
<Negative electrode>
The negative electrode 20 has a negative electrode current collector 22 and a negative electrode active material layer 24 provided on both sides of the negative electrode current collector 22.

(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate (metal leaf) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and a negative electrode conductive auxiliary agent.

(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の負極活物質を使用できる。上記負極活物質としては、例えば、グラファイト、ハードカーボン、ソフトカーボン等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと合金を形成することが出来る金属、酸化シリコン、酸化スズ等の非晶質の酸化物、チタン酸リチウム(LiTi12)、等が挙げられる。
(Negative electrode active material)
As the negative electrode active material, occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of the counter anion of the lithium ions (for example, PF 6- ) are reversibly performed. A known negative electrode active material can be used without particular limitation as long as it can be advanced. Examples of the negative electrode active material include carbon materials such as graphite, hard carbon and soft carbon, metals capable of forming alloys with lithium such as aluminum, silicon and tin, and amorphous substances such as silicon oxide and tin oxide. Examples thereof include oxides, lithium titanate (Li 4 Ti 5 O 12 ), and the like.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
The binder for the negative electrode is not particularly limited, and the same binder as the binder for the positive electrode described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
The conductive auxiliary agent for the negative electrode is not particularly limited, and the same conductive auxiliary agent for the positive electrode described above can be used.

<セパレータ>
セパレータ30は、電気絶縁性の多孔質構造を有する。上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンの単層体あるいは積層体や、セルロース、ポリエステル、ポリアクリロニトリル等からなる繊維不織布が挙げられる。
<Separator>
The separator 30 has an electrically insulating porous structure. Examples of the separator include a monolayer or laminate of polyolefin such as polyethylene and polypropylene, and a fibrous nonwoven fabric made of cellulose, polyester, polyacrylonitrile and the like.

また、上記セパレータは、その表面を無機化合物や有機化合物で被覆されていても良い。上記無機化合物としては、アルミナやベーマイト等の絶縁性金属酸化物、上記有機化合物としては、ポリフッ化ビニリデン(PVDF)やポリエチレンオキシド(PEO)等を用いることが出来る。 Further, the surface of the separator may be coated with an inorganic compound or an organic compound. As the inorganic compound, an insulating metal oxide such as alumina or boehmite can be used, and as the organic compound, polyvinylidene fluoride (PVDF), polyethylene oxide (PEO) or the like can be used.

以下で、本実施形態に係るセパレータについて、更に詳しく記載する。 The separator according to the present embodiment will be described in more detail below.

本実施形態に係るセパレータは、曲面部Rにおけるセパレータの算術平均粗さをRa、平面部Rにおけるセパレータの算術平均粗さをRaとしたとき、Ra>Raである。 The separator according to the present embodiment is Ra 1 > Ra 2 when the arithmetic average roughness of the separator in the curved surface portion RC is Ra 1 and the arithmetic average roughness of the separator in the flat surface portion R P is Ra 2 .

これによれば、捲回体の曲面部は作製時に隙間が生じやすく、極板間距離が空くことで充放電が不均一になりやすい。本実施形態に係るセパレータを用いることで、捲回体作製時のずれが抑制されるとともに、曲面部におけるセパレータの表面積が大となることで局所的な電解液の保液量が大幅に向上し、リチウムイオンが速やかに供給されることで充放電が均一に進行し、曲面部における繰り返し充放電時の金属リチウム析出が抑制される。 According to this, the curved surface portion of the wound body tends to have a gap at the time of manufacturing, and the charging / discharging tends to be non-uniform due to the gap between the plates. By using the separator according to the present embodiment, the displacement during the production of the wound body is suppressed, and the surface area of the separator on the curved surface is increased, so that the amount of local electrolytic solution retained is greatly improved. By promptly supplying lithium ions, charging and discharging proceed uniformly, and metal lithium precipitation during repeated charging and discharging on the curved surface portion is suppressed.

本実施形態に係るセパレータは更に、上記曲面部におけるセパレータの算術平均粗さRaが0.40μm以上であることが好ましい。 Further, the separator according to the present embodiment preferably has an arithmetic average roughness Ra 1 of the separator on the curved surface portion of 0.40 μm or more.

これによれば、曲面部におけるセパレータの算術平均粗さとして好適であり、曲面部における繰り返し充放電時の金属リチウム析出が抑制される。 According to this, it is suitable as the arithmetic mean roughness of the separator on the curved surface portion, and the precipitation of metallic lithium during repeated charging and discharging on the curved surface portion is suppressed.

算術平均粗さを上記既定の範囲に調整する方法としては、例えば、無機フィラーと高分子樹脂から成る保護層を塗布する方法が挙げられる。特に、無機フィラーの粒径や粒子形状を適当なものとすることで、任意の算術平均粗さのセパレータを得ることが出来る。上記無機フィラーとしては特に限定はされないが、アルミナやベーマイト等を用いることができ、上記高分子樹脂としても特に限定はされないが、PVDF、PTFE、ポリエチレンオキシド(PEO)等、一般的な材料を用いることが出来る。 As a method of adjusting the arithmetic mean roughness to the above-mentioned predetermined range, for example, a method of applying a protective layer composed of an inorganic filler and a polymer resin can be mentioned. In particular, by setting the particle size and particle shape of the inorganic filler to be appropriate, a separator having an arbitrary arithmetic mean roughness can be obtained. The inorganic filler is not particularly limited, but alumina, boehmite and the like can be used, and the polymer resin is not particularly limited, but general materials such as PVDF, PTFE and polyethylene oxide (PEO) are used. Can be done.

本実施形態に係るセパレータは更に、上記曲面部におけるセパレータが負極と接する主面上に、セルロース誘導体を含む表面コート層を有することが好ましい。 Further, the separator according to the present embodiment preferably has a surface coat layer containing a cellulose derivative on the main surface of the curved surface portion where the separator is in contact with the negative electrode.

これによれば、曲面部におけるセパレータの負極と接する主面上に、セルロース誘導体を含む表面コート層を有することで、セパレータ-負極間の界面抵抗が減少し、曲面部における繰り返し充放電時の金属リチウム析出がより抑制される。 According to this, by having a surface coat layer containing a cellulose derivative on the main surface of the curved surface portion in contact with the negative electrode of the separator, the interfacial resistance between the separator and the negative electrode is reduced, and the metal during repeated charging and discharging on the curved surface portion. Lithium precipitation is more suppressed.

<電解液>
本発明に係る電解液は、溶媒および電解質から主に構成されるものである。
<Electrolytic solution>
The electrolytic solution according to the present invention is mainly composed of a solvent and an electrolyte.

(溶媒)
上記溶媒としては、一般にリチウムイオン二次電池に用いられている溶媒を任意の割合で混合して使用することが出来る。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等の鎖状カーボネート化合物、γ-ブチロラクトン(GBL)等の環状エステル化合物、プロピオン酸プロピル(PrP)、プロピオン酸エチル(PrE)、酢酸エチル等の鎖状エステル化合物が挙げられる。
(solvent)
As the solvent, a solvent generally used for a lithium ion secondary battery can be mixed and used at an arbitrary ratio. For example, cyclic carbonate compounds such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, chain carbonate compounds such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC), γ-butyrolactone. Examples thereof include cyclic ester compounds such as (GBL), and chain ester compounds such as propyl propionate (PrP), ethyl propionate (PrE), and ethyl acetate.

(電解質)
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte for a lithium ion secondary battery, and is, for example, an inorganic acid anion salt such as LiPF 6 , LiBF 4 , lithium bisoxalate boronate, LiCF 3 SO 3 , and the like. Organic acid anionic salts such as (CF 3 SO 2 ) 2 NLi and (FSO 2 ) 2 NLi can be used.

以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1]
(正極の作製)
Li(Ni0.80Co0.15Al0.05)O85質量部、アセチレンブラック5質量部、PVDF10質量部をN-メチル-2-ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミニウム金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 1]
(Preparation of positive electrode)
Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 85 parts by mass, acetylene black 5 parts by mass, PVDF 10 parts by mass are dispersed in N-methyl-2-pyrrolidone (NMP) to form a positive electrode active material layer. The slurry for was adjusted. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the amount of the positive electrode active material applied was 9.0 mg / cm 2 , and dried at 100 ° C. to form a positive electrode active material layer. Then, it was pressure-molded by a roller press to prepare a positive electrode.

(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN-メチル-2-ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
(Manufacturing of negative electrode)
90 parts by mass of scaly artificial graphite, 5 parts by mass of acetylene black, and 5 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied was 6.0 mg / cm 2 , and dried at 100 ° C. to form a negative electrode active material layer. Then, it was pressure-molded by a roller press to prepare a negative electrode.

(セパレータの作製)
セパレータとして、厚み16μm、空孔率60%のポリエチレン製多孔質フィルムを準備した。無機フィラーとしてα-Al(平均粒径1.0μm)95質量部、高分子樹脂としてPVDF5質量部を水に分散させたスラリーを、上記セパレータに塗布し、60℃で真空乾燥することで保護層を形成した。その後、油圧式加熱プレスを用い、平面部に当たる領域を温度60℃、圧力400kPaで、曲面部に当たる領域を温度40℃、圧力100kPaでそれぞれ加圧成型した。
(Making a separator)
As a separator, a polyethylene porous film having a thickness of 16 μm and a porosity of 60% was prepared. A slurry in which 95 parts by mass of α-Al 2 O 3 (average particle size 1.0 μm) as an inorganic filler and 5 parts by mass of PVDF as a polymer resin are dispersed in water is applied to the separator and vacuum dried at 60 ° C. Formed a protective layer with. Then, using a hydraulic heating press, the region corresponding to the flat surface portion was pressure-molded at a temperature of 60 ° C. and a pressure of 400 kPa, and the region corresponding to the curved surface portion was pressure-molded at a temperature of 40 ° C. and a pressure of 100 kPa.

上記で作製したセパレータに、カルボキシメチルセルロース1wt%を水:メチルエチルケトン(MEK)=70:30(vol%)に溶解させた溶液を、塗布量が0.1mg/cmとなるように塗布して表面コート層を形成した。 A solution prepared by dissolving 1 wt% of carboxymethyl cellulose in water: methyl ethyl ketone (MEK) = 70: 30 (vol%) is applied to the separator prepared above so that the coating amount is 0.1 mg / cm 2 on the surface. A coat layer was formed.

(算術平均粗さの測定)
上記で作製したセパレータについて、レーザー顕微鏡(株式会社キーエンス製 VK-9710)にて表面を観察し、解析ソフト(キーエンスソフトウェア株式会社製 VK―Analyzer)を用いてJIS B0601:1994に準じた条件で、曲面部におけるセパレータの算術平均表面粗さRaおよび平面部におけるセパレータの算術平均粗さRaを求めた。結果を表1に示す。
(Measurement of arithmetic mean roughness)
Observe the surface of the separator produced above with a laser microscope (VK-9710 manufactured by KEYENCE CORPORATION), and use analysis software (VK-Analyzer manufactured by KEYENCE Software Co., Ltd.) under the conditions according to JIS B0601: 1994. The arithmetic average surface roughness Ra 1 of the separator on the curved surface portion and the arithmetic average roughness Ra 2 of the separator on the flat surface portion were obtained. The results are shown in Table 1.

(捲回体の作製)
上記で作製した正極、負極およびセパレータの一端側を軸としてこれらを巻き取り、捲回体を作製した。ここで、上記負極と接する主面上に上記セパレータの表面コート層が配置されるように捲回体を作製した。
(Making a wound body)
The positive electrode, the negative electrode, and the separator prepared above were wound around one end side as an axis to prepare a wound body. Here, the wound body was prepared so that the surface coat layer of the separator was arranged on the main surface in contact with the negative electrode.

(電解液の作製)
体積比でEC:DEC=30:70となるように混合し、これに1.0mol/Lの濃度となるようにLiPFを溶解し、電解液を作製した。
(Preparation of electrolyte)
The mixture was mixed so that the volume ratio was EC: DEC = 30: 70, and LiPF 6 was dissolved therein so as to have a concentration of 1.0 mol / L to prepare an electrolytic solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した捲回体を、収容空間が形成されているアルミラミネートフィルムの外装体内に収納し、上記で作製した電解液を注入し、真空シールを行って評価用リチウムイオン二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The wound body manufactured above is housed in the outer shell of the aluminum laminated film in which the accommodation space is formed, the electrolytic solution prepared above is injected, and vacuum sealing is performed to prepare a lithium ion secondary battery for evaluation. did.

(電池化)
上記で作製した評価用リチウムイオン二次電池を、充放電試験装置(北斗電工株式会社製)を用い、25℃の恒温槽内で充電レート0.2Cの定電流充電で電池電圧が4.2Vとなるまで充電を行った後、放電レート0.2Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。ここで、X(C)とは、25℃で定電流充電を行ったときに1/X時間で充電終了となる電流値を示す。
(Battery)
The evaluation lithium ion secondary battery produced above is charged with a constant current at a charging rate of 0.2 C in a constant temperature bath at 25 ° C using a charge / discharge test device (manufactured by Hokuto Denko Co., Ltd.), and the battery voltage is 4.2 V. After charging until the battery voltage reached 2.8 V, the battery was discharged at a constant current discharge rate of 0.2 C until the battery voltage became 2.8 V. Here, X (C) indicates a current value at which charging ends in 1 / X time when constant current charging is performed at 25 ° C.

(サイクル経過後リチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池を、25℃の恒温槽内で充電レート2.0Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、続いて、放電レート1.0Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。上記充放電パターンを1サイクルとし、100サイクルの充放電を行った。100サイクル経過後の電池について、グローブボックス中、不活性雰囲気化で電池を解体して負極曲面部の確認を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium precipitation after the cycle)
The evaluation lithium ion secondary battery converted into a battery above is charged in a constant temperature bath at 25 ° C. with a constant current charge at a charging rate of 2.0 C until the battery voltage reaches 4.2 V, and then the discharge rate is 1. The battery was discharged with a constant current discharge of 0.0 C until the battery voltage became 2.8 V. The charge / discharge pattern was set to 1 cycle, and 100 cycles of charge / discharge were performed. Regarding the battery after 100 cycles, when the battery was disassembled in the glove box in an inert atmosphere and the negative electrode curved surface portion was confirmed, lithium precipitation was not confirmed.

[実施例2]
(セパレータの作製)
無機フィラーとしてα-Al(平均粒径3.0μm)を使用した以外は実施例1と同様として、実施例2のセパレータを作製した。
[Example 2]
(Making a separator)
The separator of Example 2 was prepared in the same manner as in Example 1 except that α-Al 2 O 3 (average particle size 3.0 μm) was used as the inorganic filler.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例2の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
A lithium secondary battery for evaluation of Example 2 was produced by the same method as in Example 1 except that the separator produced above was used.

[実施例3]
(セパレータの作製)
無機フィラーとしてベーマイト(平均粒径4.0μm)を使用した以外は実施例1と同様として、実施例3のセパレータを作製した。
[Example 3]
(Making a separator)
The separator of Example 3 was prepared in the same manner as in Example 1 except that boehmite (average particle size 4.0 μm) was used as the inorganic filler.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例3の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
A lithium secondary battery for evaluation of Example 3 was prepared by the same method as in Example 1 except that the separator prepared above was used.

[実施例4]
(セパレータの作製)
セパレータの作製において、曲面部に当たる領域を温度40℃、圧力200kPaで加圧成型した以外は実施例1と同様にして、実施例4のセパレータを作製した。
[Example 4]
(Making a separator)
In the production of the separator, the separator of Example 4 was produced in the same manner as in Example 1 except that the region corresponding to the curved surface portion was pressure-molded at a temperature of 40 ° C. and a pressure of 200 kPa.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例4の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The evaluation lithium secondary battery of Example 4 was produced by the same method as in Example 1 except that the separator produced above was used.

[実施例5]
(セパレータの作製)
セパレータの作製において、メチルセルロース1wt%を水:MEK=50:50(vol%)に溶解させ、塗布量が0.1mg/cmとなるように塗布して表面コート層を形成した以外は実施例1と同様として、実施例5のセパレータを作製した。
[Example 5]
(Making a separator)
In the preparation of the separator, examples except that 1 wt% of methyl cellulose was dissolved in water: MEK = 50: 50 (vol%) and applied so that the coating amount was 0.1 mg / cm 2 to form a surface coat layer. The separator of Example 5 was prepared in the same manner as in 1.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例5の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The evaluation lithium secondary battery of Example 5 was produced by the same method as in Example 1 except that the separator produced above was used.

[実施例6]
(セパレータの作製)
セパレータの作製において、エチルセルロース1wt%を水:MEK=50:50(vol%)に溶解させ、塗布量が0.1mg/cmとなるように塗布して表面コート層を形成した以外は実施例1と同様として、実施例6のセパレータを作製した。
[Example 6]
(Making a separator)
In the preparation of the separator, examples except that 1 wt% of ethyl cellulose was dissolved in water: MEK = 50: 50 (vol%) and applied so that the coating amount was 0.1 mg / cm 2 to form a surface coat layer. The separator of Example 6 was prepared in the same manner as in 1.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例6の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The evaluation lithium secondary battery of Example 6 was produced by the same method as in Example 1 except that the separator produced above was used.

[実施例7]
(セパレータの作製)
セパレータの作製において、ヒドロキシエチルセルロース1wt%を水:MEK=70:30(vol%)に溶解させ、塗布量が0.1mg/cmとなるように塗布して表面コート層を形成した以外は実施例1と同様として、実施例7のセパレータを作製した。
[Example 7]
(Making a separator)
In the preparation of the separator, 1 wt% of hydroxyethyl cellulose was dissolved in water: MEK = 70: 30 (vol%) and applied so that the coating amount was 0.1 mg / cm 2 to form a surface coat layer. The separator of Example 7 was prepared in the same manner as in Example 1.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例7の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The evaluation lithium secondary battery of Example 7 was produced by the same method as in Example 1 except that the separator produced above was used.

[実施例8]
(セパレータの作製)
セパレータの作製において、セパレータの曲面部に当たる領域のみに保護層を間欠塗布した以外は実施例1と同様の方法で、実施例8のセパレータを作製した。
[Example 8]
(Making a separator)
In the production of the separator, the separator of Example 8 was produced by the same method as in Example 1 except that the protective layer was intermittently applied only to the region corresponding to the curved surface portion of the separator.

(評価用リチウムイオン二次電池の作製)
上記で作製したセパレータを用いた以外は実施例1と同様の方法で、実施例8の評価用リチウム二次電池を作製した。
(Manufacturing of lithium-ion secondary battery for evaluation)
The evaluation lithium secondary battery of Example 8 was produced by the same method as in Example 1 except that the separator produced above was used.

[比較例1]
(評価用リチウムイオン二次電池の作製)
保護層および表面コート層を形成しなかった未処理のセパレータを用いた以外は実施例1と同様の方法で、比較例1の評価用リチウム二次電池を作製した。
[Comparative Example 1]
(Manufacturing of lithium-ion secondary battery for evaluation)
A lithium secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that an untreated separator that did not form a protective layer and a surface coat layer was used.

[比較例2]
(評価用リチウムイオン二次電池の作製)
表面コート層のみ形成したセパレータを用いた以外は実施例1と同様の方法で、比較例2の評価用リチウム二次電池を作製した。
[Comparative Example 2]
(Manufacturing of lithium-ion secondary battery for evaluation)
A lithium secondary battery for evaluation of Comparative Example 2 was produced by the same method as in Example 1 except that a separator having only a surface coat layer formed was used.

(算術平均粗さの測定)
実施例2~8および比較例1~2で作製したセパレータについて、実施例1と同様の方法で曲面部におけるセパレータの算術平均表面粗さRaおよび平面部におけるセパレータの算術平均粗さRaを求めた。結果を表1に示す。
(Measurement of arithmetic mean roughness)
For the separators produced in Examples 2 to 8 and Comparative Examples 1 and 2, the arithmetic average surface roughness Ra 1 of the separator on the curved surface portion and the arithmetic average roughness Ra 2 of the separator on the flat surface portion were obtained in the same manner as in Example 1. I asked. The results are shown in Table 1.

(サイクル経過後リチウム析出の確認)
実施例2~8、および比較例1~2で作製した評価用リチウムイオン二次電池について、実施例1と同様の方法でサイクル経過後のリチウム析出を確認した。結果を表1に示す。なお、表中において、「◎」はリチウム析出が全くない状態、「○」はリチウム析出が僅かに確認された状態(負極曲面部の総面積に対して1%以下)、「△」はリチウム析出が確認された状態(負極曲面部の総面積に対して5%以下)、「×」はリチウム析出が多く確認された状態(負極曲面部の総面積に対して10%以下)であることを示す。
(Confirmation of lithium precipitation after the cycle)
For the evaluation lithium ion secondary batteries produced in Examples 2 to 8 and Comparative Examples 1 and 2, lithium precipitation after the cycle was confirmed by the same method as in Example 1. The results are shown in Table 1. In the table, "◎" indicates no lithium precipitation, "○" indicates a slight lithium precipitation (1% or less with respect to the total area of the negative electrode curved surface), and "△" indicates lithium. Precipitation is confirmed (5% or less with respect to the total area of the negative electrode curved surface), and "x" is a state with a large amount of lithium precipitation confirmed (10% or less with respect to the total area of the negative electrode curved surface). Is shown.

実施例1~8はいずれも、曲面部および平面部におけるセパレータの算術平均粗さを最適化しなかった比較例1~2よりも、繰り返し充放電時の負極曲面部におけるリチウム析出が改善することが確認された。 In each of Examples 1 to 8, lithium precipitation in the negative electrode curved surface portion during repeated charging and discharging can be improved as compared with Comparative Examples 1 and 2 in which the arithmetic mean roughness of the separator in the curved surface portion and the flat surface portion was not optimized. confirmed.

実施例1~4の結果から、表面コート層としてカルボキシメチルセルロースを有する場合、繰り返し充放電時の負極曲面部におけるリチウム析出がより改善することが確認された。 From the results of Examples 1 to 4, it was confirmed that when carboxymethyl cellulose was provided as the surface coat layer, the lithium precipitation on the curved surface portion of the negative electrode during repeated charging and discharging was further improved.

Figure 0007035702000001
Figure 0007035702000001

本発明により、曲面部における繰り返し充放電時の金属リチウム析出が抑制されたリチウムイオン二次電池が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a lithium ion secondary battery in which metal lithium precipitation is suppressed during repeated charging and discharging on a curved surface portion is provided.

1…発電素子、2…外装体、10…正極、12…正極集電体、14…正極活物質層、15…端子、20…負極、22…負極集電体、24…負極活物質層、25…端子、30…セパレータ、40…絶縁テープ、100…リチウムイオン二次電池、R…平面部、R…曲面部



1 ... Power generation element, 2 ... Exterior body, 10 ... Positive electrode, 12 ... Positive electrode current collector, 14 ... Positive electrode active material layer, 15 ... Terminal, 20 ... Negative electrode, 22 ... Negative electrode current collector, 24 ... Negative electrode active material layer, 25 ... Terminal, 30 ... Separator, 40 ... Insulation tape, 100 ... Lithium ion secondary battery, RP ... Flat part, RC ... Curved part



Claims (2)

正極と負極とがセパレータを介して捲回された捲回体と、
前記捲回体を収納する外装体と、を備え、
前記捲回体は、複数の平面部と前記平面部を連結する曲面部とを含んでなり、
前記曲面部におけるセパレータの算術平均粗さをRa、前記平面部におけるセパレータの算術平均粗さをRaとしたとき、Ra が、0.40μm以上であり、Ra>Raの関係を満たすことを特徴とする
リチウムイオン二次電池。
A wound body in which the positive electrode and the negative electrode are wound via a separator, and
With an exterior body for storing the winding body,
The wound body includes a plurality of flat surface portions and a curved surface portion connecting the flat surface portions.
When the arithmetic average roughness of the separator on the curved surface portion is Ra 1 and the arithmetic average roughness of the separator on the flat surface portion is Ra 2 , Ra 1 is 0.40 μm or more, and the relationship of Ra 1 > Ra 2 is established. A lithium-ion secondary battery characterized by filling.
前記曲面部におけるセパレータが、前記負極と接する主面上に、セルロース誘導体を含む表面コート層を有することを特徴とする請求項1または2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2, wherein the separator on the curved surface portion has a surface coat layer containing a cellulose derivative on a main surface in contact with the negative electrode.
JP2018061651A 2018-03-28 2018-03-28 Lithium ion secondary battery Active JP7035702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061651A JP7035702B2 (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061651A JP7035702B2 (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019175656A JP2019175656A (en) 2019-10-10
JP7035702B2 true JP7035702B2 (en) 2022-03-15

Family

ID=68167554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061651A Active JP7035702B2 (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7035702B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081067A (en) 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Non-aqueous secondary battery
JP2009091461A (en) 2007-10-09 2009-04-30 Asahi Kasei Chemicals Corp Polyolefin microporous membrane
JP2011166043A (en) 2010-02-15 2011-08-25 Panasonic Corp Accumulator device and method of manufacturing the same
JP2011171250A (en) 2010-02-22 2011-09-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2012072380A (en) 2010-08-30 2012-04-12 Toray Ind Inc Porous polypropylene film and electricity storage device
JP2013020821A (en) 2011-07-12 2013-01-31 Mitsubishi Motors Corp Lithium ion secondary battery
WO2013133025A1 (en) 2012-03-06 2013-09-12 ソニー株式会社 Separator, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
JP2016219148A (en) 2015-05-15 2016-12-22 株式会社Gsユアサ Power storage element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081067A (en) 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Non-aqueous secondary battery
JP2009091461A (en) 2007-10-09 2009-04-30 Asahi Kasei Chemicals Corp Polyolefin microporous membrane
JP2011166043A (en) 2010-02-15 2011-08-25 Panasonic Corp Accumulator device and method of manufacturing the same
JP2011171250A (en) 2010-02-22 2011-09-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2012072380A (en) 2010-08-30 2012-04-12 Toray Ind Inc Porous polypropylene film and electricity storage device
JP2013020821A (en) 2011-07-12 2013-01-31 Mitsubishi Motors Corp Lithium ion secondary battery
WO2013133025A1 (en) 2012-03-06 2013-09-12 ソニー株式会社 Separator, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
JP2016219148A (en) 2015-05-15 2016-12-22 株式会社Gsユアサ Power storage element

Also Published As

Publication number Publication date
JP2019175656A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7329803B2 (en) lithium secondary battery
US11127949B2 (en) Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
JP5418088B2 (en) Current collector for lithium ion secondary battery
JP7272120B2 (en) lithium secondary battery
US20220173377A1 (en) Thick electrodes for electrochemical cells
JP2015037008A (en) Electrode active material layer for non-aqueous electrolyte secondary battery and method for producing the same
CN110265629B (en) Negative electrode and lithium ion secondary battery
US20230238539A1 (en) Lithium secondary battery, and anode free battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP2022181396A (en) lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP7069938B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery using it
US20230246161A1 (en) Pre-lithiation, precursor electrodes and methods of making and using the same
JP2019175655A (en) Lithium ion secondary battery
JP7035702B2 (en) Lithium ion secondary battery
JP7243381B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP2023069760A (en) Negative electrode for secondary battery and method for producing the same
JP2022149660A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery
CN111213277B (en) Nonaqueous electrolyte secondary battery
JP7087532B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250