[go: up one dir, main page]

JP7034861B2 - Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods - Google Patents

Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods Download PDF

Info

Publication number
JP7034861B2
JP7034861B2 JP2018147157A JP2018147157A JP7034861B2 JP 7034861 B2 JP7034861 B2 JP 7034861B2 JP 2018147157 A JP2018147157 A JP 2018147157A JP 2018147157 A JP2018147157 A JP 2018147157A JP 7034861 B2 JP7034861 B2 JP 7034861B2
Authority
JP
Japan
Prior art keywords
mass
less
steel pipe
temperature
circular steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018147157A
Other languages
Japanese (ja)
Other versions
JP2020020028A (en
Inventor
亮太 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018147157A priority Critical patent/JP7034861B2/en
Publication of JP2020020028A publication Critical patent/JP2020020028A/en
Application granted granted Critical
Publication of JP7034861B2 publication Critical patent/JP7034861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、高強度かつ低降伏比で溶接性に優れた円形鋼管用鋼板および円形鋼管ならびにそれらの製造方法に関する。 The present invention relates to steel sheets and pipes for circular steel pipes having high strength, low yield ratio and excellent weldability, and methods for manufacturing them.

土木、建築、橋梁などの溶接構造用の鋼板として、引張強さが550MPa以上の高強度鋼板が用いられる。仮付け溶接や吊り工具の溶接等の様に小入熱かつビード長さの短い溶接を行うと、溶接熱影響部が硬化しやすい。溶接熱影響部が硬いと低温割れや遅れ破壊などの危険があるため予熱を行う。予熱は時間・コストを要するため低減することが求められている。よって鋼板には、予熱を低減しても、耐溶接割れ性、耐溶接硬化性に優れることが求められる。 As a steel plate for welded structures such as civil engineering, construction, and bridges, a high-strength steel plate having a tensile strength of 550 MPa or more is used. When welding with a small heat input and a short bead length, such as temporary welding or welding of hanging tools, the weld heat-affected zone tends to harden. If the weld heat affected zone is hard, there is a risk of low temperature cracking and delayed fracture, so preheating is performed. Preheating requires time and cost, so it is required to reduce it. Therefore, the steel sheet is required to have excellent weld cracking resistance and weld hardening resistance even if the preheating is reduced.

また、建築構造物に使用される円形鋼管には、耐震安全性の観点から、降伏比YR(=降伏強度YS/引張強度TS)が85%以下の低YRを示すことが要求される。 Further, the circular steel pipe used for a building structure is required to exhibit a low YR with a yield ratio YR (= yield strength YS / tensile strength TS) of 85% or less from the viewpoint of seismic safety.

低降伏比の鋼管と該鋼管の製造に供する鋼板に関して特許文献1~3が挙げられる。尚、以下では鋼管の製造に供する鋼板を原板ということがある。 Patent Documents 1 to 3 are mentioned with respect to a steel pipe having a low yield ratio and a steel plate used for manufacturing the steel pipe. In the following, the steel plate used for manufacturing steel pipes may be referred to as a master plate.

特許文献1には、厚鋼板を鋼管に成形した後に、SR(Stress Relief)処理を施さなくても所定の機械的特性を発揮することができる引張強さ490MPa級以上の低降伏比冷間成形円形鋼管の製造方法が示されている。具体的に特許文献1には、所定の化学成分組成を有する鋼スラブを用い、適切な熱処理を施して厚鋼板を製造することによって、円形鋼管の板厚をt(mm)、外径をD(mm)、鋼管製品規格の降伏強さをYS0(MPa)以上、引張強さをTS0(MPa)以上、降伏比を85%以下としたとき、前記鋼板における降伏強さが(YS0-980t/D)~(YS0-980t/D+120)(MPa)、鋼板の引張強さが(TS0-560t/D)~(TS0-560t/D+100)(MPa)、鋼板の降伏比が(75-82t/D)%以下、鋼板表裏面から深さ1mmでの硬さがHV140~200となるように夫々制御し、該鋼板をプレスベンド冷間成形で円形鋼管とすることが示されている。 Patent Document 1 describes cold forming with a low yield ratio of 490 MPa class or more, which can exhibit predetermined mechanical properties without performing SR (Stress Relief) treatment after forming a thick steel sheet into a steel pipe. A method for manufacturing a circular steel pipe is shown. Specifically, in Patent Document 1, a steel slab having a predetermined chemical composition is used, and an appropriate heat treatment is performed to produce a thick steel plate, whereby the thickness of the circular steel pipe is t (mm) and the outer diameter is D. When (mm), the yield strength of the steel pipe product standard is YS 0 (MPa) or more, the tensile strength is TS 0 (MPa) or more, and the yield ratio is 85% or less, the yield strength of the steel sheet is (YS 0 ). -980t / D) to (YS 0-980t / D + 120) (MPa), the tensile strength of the steel sheet is (TS 0-560t / D) to (TS 0-560t / D + 100) (MPa), and the yield ratio of the steel sheet is It was shown that the hardness was controlled to be (75-82t / D)% or less and the hardness at a depth of 1 mm from the front and back surfaces of the steel sheet was HV140 to 200, respectively, and the steel sheet was pressed-bend cold-formed into a circular steel pipe. ing.

特許文献2には、SR処理を施さなくとも、80%以下の低降伏比および高靭性の建築丸柱用原板の製造方法が示されている。具体的には、重量%で、C:0.06~0.17%、Si:0.06~0.50%、Mn:0.5~1.6%、P:0.015%以下、S:0.005%以下、Al:0.07%以下、N:0.006%以下を含み、さらにCu:0.05~0.5%、Ni:0.05~0.8%、Cr:0.05~0.5%、Nb:0.005~0.05%からなる群から選択される1種または2種以上を含む鋼片を、1000℃以上に加熱後熱間圧延し、その後Ar3点以上の温度から直ちに常温まで急冷し、再度740~780℃の温度範囲から急冷し、その後400℃以上550℃以下の温度範囲で焼戻すことが示されている。 Patent Document 2 discloses a method for manufacturing a master plate for a building round pillar having a low yield ratio of 80% or less and high toughness without SR treatment. Specifically, in% by weight, C: 0.06 to 0.17%, Si: 0.06 to 0.50%, Mn: 0.5 to 1.6%, P: 0.015% or less, S: 0.005% or less, Al: 0.07% or less, N: 0.006% or less, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.8%, Cr A steel piece containing one or more kinds selected from the group consisting of: 0.05 to 0.5% and Nb: 0.005 to 0.05% is heated to 1000 ° C. or higher and then hot-rolled. After that, it has been shown that the mixture is rapidly cooled from a temperature of 3 points or more to room temperature, rapidly cooled again from a temperature range of 740 to 780 ° C., and then rebaked in a temperature range of 400 ° C. or higher and 550 ° C. or lower.

特許文献3には、重量比でC:0.01~0.20%、Si:0.5%以下、Mn:0.5~1.6%、P:0.03%以下、S:0.01%以下、Ti:0.005~0.025%、Al:0.06%以下、N:0.006%以下を含有し、残部が鉄および不可避的不純物からなる鋼を900~1200℃の温度範囲に再加熱して、900℃以下の累積圧下量が30%以上となるように圧延を行った後、750℃以上の温度から直ちに常温まで焼入し、700~850℃の温度範囲に再加熱、焼入れし、Ac1変態点以下の温度範囲で焼戻処理を施し、且つ降伏比(YR)≦80-0.8×t/D(t:板厚、D:鋼管外径)に制御した鋼板を用いて冷間成形により建築用低降伏比600N/mm2級鋼管を製作することが示されている。すなわち、SRを施さずに鋼管を製造している。 In Patent Document 3, C: 0.01 to 0.20%, Si: 0.5% or less, Mn: 0.5 to 1.6%, P: 0.03% or less, S: 0 in terms of weight ratio. Steel containing 0.01% or less, Ti: 0.005 to 0.025%, Al: 0.06% or less, N: 0.006% or less, and the balance consisting of iron and unavoidable impurities at 900 to 1200 ° C. After reheating to the temperature range of 900 ° C or lower and rolling so that the cumulative rolling reduction of 900 ° C or lower is 30% or more, quenching from a temperature of 750 ° C or higher to room temperature immediately is performed, and the temperature range is 700 to 850 ° C. Is reheated and hardened, tempered in a temperature range below the Ac 1 transformation point, and yield ratio (YR) ≤80-0.8 × t / D (t: plate thickness, D: steel pipe outer diameter). It has been shown that a steel pipe with a low yield ratio of 600 N / mm for construction is manufactured by cold forming using a steel plate controlled by. That is, the steel pipe is manufactured without performing SR.

特開2007-270304号公報Japanese Unexamined Patent Publication No. 2007-270304 特開平9-165622号公報Japanese Unexamined Patent Publication No. 9-165622 特開平6-264144号公報Japanese Unexamined Patent Publication No. 6-264144

特許文献1の様にSRを施さず曲げたままでは、鋼管の特性のばらつきが大きい。具体的には、80MPa程度のYPのばらつきや15MPa程度のTSのばらつきが、鋼管の板厚t/外径Dの比率によらず生じると思われる。特に板厚70mm以上では、特性評価のための試験片採取位置において歪の導入量が大きくなり、低YRを実現することが難しい。また特許文献1では、板厚70mm以上の厚い領域において、55キロ級の強度と低いYR、および低い炭素当量Ceq、すなわち溶接性を兼備した厚鋼板は実現できていないと思われる。 As in Patent Document 1, if the steel pipe is bent without SR, the characteristics of the steel pipe vary greatly. Specifically, it seems that variations in YP of about 80 MPa and variations in TS of about 15 MPa occur regardless of the ratio of the plate thickness t / outer diameter D of the steel pipe. In particular, when the plate thickness is 70 mm or more, the amount of strain introduced is large at the test piece sampling position for characteristic evaluation, and it is difficult to realize low YR. Further, in Patent Document 1, it seems that a thick steel sheet having a strength of 55 kg class, a low YR, and a low carbon equivalent Ceq, that is, weldability, cannot be realized in a thick region having a plate thickness of 70 mm or more.

特許文献2では、強度確保のために合金元素を多く添加しており、その結果、Ceqが高く溶接性を確保し難いと考えられる。または、合金元素の添加により鋼板のYRが高くなり、SRを施した場合に、軟質相の硬さが低下せずYRが高いままと考えられる。また特許文献2において板厚を厚くすると、硬質相の割合が低減し原板ままでのYRが高くなると思われる。加えて、厚肉化による冷却速度低下とSR処理により強度が低下し、機械特性を満足しない可能性がある。 In Patent Document 2, a large amount of alloying elements are added in order to secure the strength, and as a result, it is considered that the Ceq is high and it is difficult to secure the weldability. Alternatively, it is considered that the YR of the steel sheet becomes high due to the addition of the alloying element, and when SR is applied, the hardness of the soft phase does not decrease and the YR remains high. Further, in Patent Document 2, when the plate thickness is increased, the ratio of the hard phase is reduced and the YR of the original plate is considered to be increased. In addition, the cooling rate may decrease due to the thickening and the strength may decrease due to the SR treatment, which may not satisfy the mechanical properties.

特許文献3では、板厚70mm超の鋼板において、55キロ級の強度と低いYRを達成できているが、強度確保を目的に合金元素を添加しているためCeqが高く、溶接性が悪いと考えられる。また特許文献3において、鋼管の特性のばらつきを抑えるためSRを行うと、強度が低下して機械特性を満足しない可能性があると思われる。 According to Patent Document 3, a steel sheet having a thickness of more than 70 mm can achieve a strength of 55 kg class and a low YR. Conceivable. Further, in Patent Document 3, if SR is performed in order to suppress variations in the characteristics of steel pipes, it is considered that the strength may decrease and the mechanical characteristics may not be satisfied.

本発明は、このような状況を鑑みてなされたものであり、その目的は、鋼板の板厚が70mm以上と厚い範囲においても、高強度かつ低降伏比で優れた溶接性を示す円形鋼管用鋼板、および高強度かつ低降伏比で優れた溶接性を示す円形鋼管、ならびにそれらの製造方法を提供することである。 The present invention has been made in view of such a situation, and an object thereof is for a circular steel pipe showing excellent weldability with high strength and a low yield ratio even in a thick range of a steel plate having a thickness of 70 mm or more. It is an object of the present invention to provide steel sheets, circular steel pipes having high strength and excellent weldability at a low yield ratio, and methods for producing them.

態様1は、成分組成が、
C :0.125~0.170質量%、
Si:0.10~0.60質量%、
Mn:0.90~1.60質量%、
P :0質量%超、0.015質量%以下、
S :0質量%超、0.008質量%以下、
Al:0.010~0.080質量%、
N :0.0010~0.0065質量%、および
残部が鉄および不可避的不純物からなる円形鋼管用鋼板であって、
板厚が70mm以上であり、
下記式(1)で表される炭素当量Ceqが0.42質量%以下、
下記式(2)で表される溶接割れ感受性組成Pcmが0.15~0.27質量%、および
下記式(3)で表される焼入性倍数DIが1.05以上を満たし、
板厚の1/4位置における金属組織が硬質相と軟質相からなり、硬質相の分率が15~27面積%、残部は軟質相であり、軟質相の硬さHv(3gf)が149~180、硬質相の硬さHv(3gf)が260~330であり、
降伏比が73%以下であり、降伏強度YSが下記式(4)を満たすと共に、引張強度TSが下記式(5)を満たす円形鋼管用鋼板である。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14…(1)
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]…(2)
Mn量が1.20質量%以上の場合は、
DI=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)
Mn量が1.20質量%未満の場合は、
DI=1.16×([C]/10)0.5×(0.7×[Si]+1)×(3.33×[Mn]+1)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)…(3)
ただし、上記式(1)~(3)中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
YS=(385-840×t/D)~(710-940×t/D)×0.73(MPa)…(4)
TS=(540-170×t/D)~(710-940×t/D)(MPa)…(5)
ただし、上記式(4)および(5)中のDは円形鋼管の外径(mm)、tは円形鋼管の板厚(mm)を示す。
Aspect 1 has a component composition of
C: 0.125 to 0.170% by mass,
Si: 0.10 to 0.60% by mass,
Mn: 0.90 to 1.60% by mass,
P: More than 0% by mass, 0.015% by mass or less,
S: More than 0% by mass, 0.008% by mass or less,
Al: 0.010 to 0.080% by mass,
N: 0.0010 to 0.0065% by mass, and the balance is a steel sheet for circular steel pipes composed of iron and unavoidable impurities.
The plate thickness is 70 mm or more,
The carbon equivalent Ceq represented by the following formula (1) is 0.42% by mass or less,
The weld crack susceptibility composition Pcm represented by the following formula (2) satisfies 0.15 to 0.27% by mass, and the hardenable multiple DI represented by the following formula (3) satisfies 1.05 or more.
The metal structure at the 1/4 position of the plate thickness consists of a hard phase and a soft phase, the fraction of the hard phase is 15 to 27 area%, the rest is the soft phase, and the hardness Hv (3 gf) of the soft phase is 149 to. 180, the hardness Hv (3 gf) of the hard phase is 260 to 330, and
A steel sheet for circular steel pipes having a yield ratio of 73% or less, a yield strength YS satisfying the following formula (4), and a tensile strength TS satisfying the following formula (5).
Ceq = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 ... (1)
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] ... (2)
When the amount of Mn is 1.20% by mass or more,
DI = 1.16 x ([C] / 10) 0.5 x (0.7 x [Si] + 1) x (5.1 x ([Mn] -1.2) + 5) x (0.35 x) [Cu] +1) x (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] +1) x (1.75 x [V] +1) x (200) × [B] +1)
If the amount of Mn is less than 1.20% by mass,
DI = 1.16 × ([C] / 10) 0.5 × (0.7 × [Si] +1) × (3.33 × [Mn] +1) × (0.35 × [Cu] +1) × (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] +1) x (1.75 x [V] +1) x (200 x [B] +1) … (3)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] in the above formulas (1) to (3) are The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V and B shown in mass% are shown respectively, and the elements not contained are set to zero.
YS = (385-840 x t / D) to (710-940 x t / D) x 0.73 (MPa) ... (4)
TS = (540-170 × t / D) to (710-940 × t / D) (MPa) ... (5)
However, D in the above formulas (4) and (5) indicates the outer diameter (mm) of the circular steel pipe, and t indicates the plate thickness (mm) of the circular steel pipe.

態様2は、更に、
Cu:0質量%超、0.35質量%以下、
Ni:0質量%超、0.35質量%以下、
Cr:0質量%超、0.35質量%以下、
Mo:0質量%超、0.35質量%以下、
V :0質量%超、0.050質量%以下、
B :0質量%超、0.0030質量%以下、および
Ti:0.005質量%超、0.030質量%以下
よりなる群から選択される1種以上の元素を含む態様1に記載の円形鋼管用鋼板である。
Aspect 2 is further described.
Cu: More than 0% by mass, 0.35% by mass or less,
Ni: More than 0% by mass, 0.35% by mass or less,
Cr: More than 0% by mass, 0.35% by mass or less,
Mo: More than 0% by mass, 0.35% by mass or less,
V: More than 0% by mass, 0.050% by mass or less,
B: Circular according to aspect 1 containing one or more elements selected from the group consisting of more than 0% by mass, 0.0030% by mass or less, and Ti: more than 0.005% by mass, 0.030% by mass or less. It is a steel plate for steel pipes.

態様3は、更に、Ca:0質量%超、0.0030質量%以下を含む態様1または2に記載の円形鋼管用鋼板である。 Aspect 3 is the steel sheet for circular steel pipe according to Aspect 1 or 2, further comprising Ca: more than 0% by mass and 0.0030% by mass or less.

態様4は、態様1~3のいずれかに記載の円形鋼管用鋼板で形成された円形鋼管である。 Aspect 4 is a circular steel pipe formed of the steel plate for circular steel pipe according to any one of aspects 1 to 3.

態様5は、態様1~3のいずれかに記載の円形鋼管用鋼板の製造方法であって、
鋼片を950~1250℃に加熱し、熱間圧延を、860~1000℃の温度域の累積圧下率が30%以上で、仕上圧延温度が840~960℃の条件で行った後、平均冷却速度2~30℃/sで、800℃以上の冷却開始温度から、500℃以下の冷却停止温度まで冷却し、
次いで熱間圧延材を、焼入れ温度:735~850℃、焼入れ加熱時間:5~60分で再加熱してから焼入れを行い、その後、焼戻し温度:DIが1.4未満の場合は400℃以上、600℃未満、DIが1.4以上の場合は400℃以上、650℃以下、焼戻し時間:5~60分の条件で焼戻しを行う円形鋼管用鋼板の製造方法である。
Aspect 5 is the method for manufacturing a steel sheet for a circular steel pipe according to any one of Aspects 1 to 3.
The steel pieces are heated to 950 to 1250 ° C., hot rolling is performed under the conditions that the cumulative rolling reduction rate in the temperature range of 860 to 1000 ° C. is 30% or more and the finish rolling temperature is 840 to 960 ° C., and then the average cooling is performed. Cool from a cooling start temperature of 800 ° C or higher to a cooling stop temperature of 500 ° C or lower at a speed of 2 to 30 ° C / s.
Next, the hot-rolled material is reheated at a quenching temperature of 735 to 850 ° C. and a quenching heating time of 5 to 60 minutes, and then quenched. Then, if the tempering temperature: DI is less than 1.4, the temperature is 400 ° C. or higher. , 600 ° C. or higher, DI is 1.4 or higher, 400 ° C. or higher, 650 ° C. or lower, tempering time: 5 to 60 minutes. This is a method for manufacturing a steel sheet for circular steel pipes.

態様6は、態様4に記載の円形鋼管を製造する方法であって、
態様1~3のいずれかに記載の円形鋼管用鋼板を用い、
D/t=10~30(Dは円形鋼管の外径(mm)、tは円形鋼管の板厚(mm))を満たすよう曲げ加工を行う工程と、
450℃以上、650℃以下の温度で熱処理を施す工程をこの順に含む円形鋼管の製造方法である。
Aspect 6 is a method for manufacturing a circular steel pipe according to Aspect 4, wherein the circular steel pipe is manufactured.
Using the steel sheet for circular steel pipe according to any one of aspects 1 to 3,
Bending process to satisfy D / t = 10 to 30 (D is the outer diameter of the circular steel pipe (mm), t is the plate thickness of the circular steel pipe (mm)).
This is a method for manufacturing a circular steel pipe, which comprises a step of performing heat treatment at a temperature of 450 ° C. or higher and 650 ° C. or lower in this order.

本発明によれば、鋼板の板厚が厚い領域においても、高強度かつ低降伏比で溶接性に優れた円形鋼管用鋼板および円形鋼管、ならびにそれらの製造方法を提供することが可能である。 According to the present invention, it is possible to provide a steel sheet for circular steel pipes and a circular steel pipe having high strength, a low yield ratio and excellent weldability even in a region where the thickness of the steel sheet is thick, and a method for producing the same.

図1は、鋼管加工した際のt/DとΔTS1(鋼管のTSと鋼板のTSの差)を示したグラフである。FIG. 1 is a graph showing t / D and ΔTS1 (difference between TS of steel pipe and TS of steel plate) when steel pipe is processed. 図2は、鋼管加工した際のt/DとΔTS2(鋼管の最大TSと鋼管の最小TSの差)を示したグラフである。FIG. 2 is a graph showing t / D and ΔTS2 (difference between the maximum TS of the steel pipe and the minimum TS of the steel pipe) when the steel pipe is machined. 図3は、鋼管加工した際のt/DとΔYS(鋼管のYSと鋼板のYSの差)を示したグラフである。FIG. 3 is a graph showing t / D and ΔYS (difference between YS of steel pipe and YS of steel plate) when steel pipe is processed. 図4は、軟質相の硬さと降伏比YRの関係を示したグラフである。FIG. 4 is a graph showing the relationship between the hardness of the soft phase and the yield ratio YR.

鋼板の板厚が例えば約50mm超と厚い場合、円形鋼管は、プレスベンドにて曲げ加工を行って製造される。この曲げ加工に伴って生じる歪により鋼板には転位が導入される。導入される転位は板厚が厚くなるほど大きくなる。よって、厚肉鋼管で55キロ級以上の強度と低降伏比を実現するには上記転位を制御することが重要となる。 When the thickness of the steel plate is as thick as, for example, more than about 50 mm, the circular steel pipe is manufactured by bending with a press bend. Dislocations are introduced into the steel sheet due to the strain generated by this bending process. The dislocations introduced increase as the plate thickness increases. Therefore, it is important to control the above dislocations in order to achieve strength of 55 kg class or higher and a low yield ratio in thick-walled steel pipes.

また、板厚が70mm以上のより厚い鋼板に対して、D/t(D:鋼管の直径、t:鋼管の板厚)の値が小さい厳しい条件で加工を行うと、プレスの押しこみ位置に応じて特性のばらつきが大きくなる。そのため本発明では、鋼管製造後の熱処理(SR)が必須であり、SRを実施することで鋼管の特性を安定して得ることができる。 Further, when processing is performed on a thicker steel plate having a plate thickness of 70 mm or more under severe conditions where the value of D / t (D: diameter of steel pipe, t: plate thickness of steel pipe) is small, the pressing position of the press is reached. The variation in characteristics increases accordingly. Therefore, in the present invention, heat treatment (SR) after manufacturing the steel pipe is indispensable, and the characteristics of the steel pipe can be stably obtained by carrying out SR.

低YRを達成するための鋼板製造プロセスとして、熱間圧延後のDQ(直接焼入れ)-Q’(二相域焼入れ)-T(焼戻し)プロセスが有効である。しかし、このプロセスでは高強度が得られにくい。原板の板厚が70mm以上と厚くなると、特に高強度が得られにくい。 As a steel sheet manufacturing process for achieving a low YR, a DQ (direct quenching) -Q'(two-phase region quenching) -T (tempering) process after hot rolling is effective. However, it is difficult to obtain high strength by this process. When the thickness of the original plate is as thick as 70 mm or more, it is difficult to obtain particularly high strength.

これらのことを考慮して検討を重ねた結果、鋼管の高強度と低YRを実現するには、鋼管製造時の曲げ加工とSRを考慮して鋼板の特性範囲を定める必要があること、また、この鋼板の特性を確保するには、鋼板の組織において、硬質相と軟質相を存在させ、かつ各相の硬さと割合を適切な範囲に制御すればよいことが分かった。本発明では、低YRを実現すべく、熱間圧延後に前記DQ-Q’-Tプロセスを採用するが、二相域焼入れ時に高温となっても転位を残存させて軟質相の硬さを適切な範囲とすべく、DIを制御する必要があること、硬質相の硬さと硬質相の割合を適切な範囲とするには、合金元素を管理することが重要であること、更に、鋼板と鋼管の溶接性を確保するため、炭素当量Ceqを抑えることを前提に、上記合金元素の管理等を行う必要があることを見いだした。 As a result of repeated studies in consideration of these points, in order to realize high strength and low YR of steel pipes, it is necessary to determine the characteristic range of steel sheets in consideration of bending during steel pipe manufacturing and SR. It was found that in order to secure the characteristics of this steel sheet, a hard phase and a soft phase should be present in the structure of the steel sheet, and the hardness and ratio of each phase should be controlled within an appropriate range. In the present invention, the DQ-Q'-T process is adopted after hot rolling in order to realize low YR, but even if the temperature becomes high during the two-phase region quenching, dislocations remain and the hardness of the soft phase is appropriate. It is necessary to control DI in order to keep the range within a certain range, it is important to control the alloying elements in order to keep the ratio of the hardness of the hard phase and the hard phase in an appropriate range, and further, the steel plate and the steel pipe It was found that it is necessary to control the above alloying elements on the premise that the carbon equivalent Ceq is suppressed in order to secure the weldability of the above.

以下、本発明の円形鋼管用鋼板の板厚、特性、組織、成分組成およびその製造方法、円形鋼管およびその製造方法について順に説明する。なお以下では、円形鋼管用鋼板、円形鋼管をそれぞれ単に、鋼板、鋼管ということがある。 Hereinafter, the plate thickness, characteristics, structure, composition and manufacturing method thereof, and the circular steel pipe and its manufacturing method of the steel sheet for circular steel pipe of the present invention will be described in order. In the following, the steel plate for circular steel pipe and the circular steel pipe may be simply referred to as a steel plate and a steel pipe, respectively.

1.板厚
本発明の鋼板は、板厚が70mm以上であることを前提とする。板厚は、更に80mm以上、より更には85mm以上とすることができる。一方、本発明の鋼板に求める特性と、それを実現するための製造条件を考慮すると、板厚の上限は100mm程度となる。
1. 1. Plate thickness The steel plate of the present invention is premised on a plate thickness of 70 mm or more. The plate thickness can be further 80 mm or more, and further 85 mm or more. On the other hand, in consideration of the characteristics required for the steel sheet of the present invention and the manufacturing conditions for realizing the characteristics, the upper limit of the plate thickness is about 100 mm.

2.特性 2. 2. Characteristic

(1)降伏比YR、降伏強度YS、および引張強度TS
降伏比YR:73%以下、降伏強度YS:下記式(4)の範囲内、引張強度TS:下記式(5)の範囲内
YS=(385-840×t/D)~(710-940×t/D)×0.73(MPa)…(4)
TS=(540-170×t/D)~(710-940×t/D)(MPa)…(5)
ただし、上記式(4)および(5)中のDは円形鋼管の外径(mm)、tは円形鋼管の板厚(mm)を示す。
(1) Yield ratio YR, yield strength YS, and tensile strength TS
Yield ratio YR: 73% or less, yield strength YS: within the range of the following formula (4), tensile strength TS: within the range of the following formula (5) YS = (385-840 × t / D) to (710-940 × t / D) × 0.73 (MPa) ... (4)
TS = (540-170 × t / D) to (710-940 × t / D) (MPa) ... (5)
However, D in the above formulas (4) and (5) indicates the outer diameter (mm) of the circular steel pipe, and t indicates the plate thickness (mm) of the circular steel pipe.

本発明では、鋼管の特性として、YS≧385MPa、550MPa≦TS≦670MPa、およびYR≦85%を得ることを目標とした。そして上述の通り、鋼管製造時の曲げ加工とSRを考慮して、原板での狙い特性範囲、つまり鋼板の特性を上記の通り設定した。 In the present invention, it was aimed to obtain YS ≧ 385 MPa, 550 MPa ≦ TS ≦ 670 MPa, and YR ≦ 85% as the characteristics of the steel pipe. Then, as described above, the target characteristic range of the original plate, that is, the characteristics of the steel plate was set as described above in consideration of the bending process and SR at the time of manufacturing the steel pipe.

原板での特性範囲を求めるべく実験を行った結果、次のことがわかった。即ち、t/Dが大きくなると、曲げ加工時の転位導入が大きくなる。その後のSR処理により大部分の歪が回復するが、t/Dの値によっては歪みが残存してしまい、降伏比が高くなることがわかった。そのため、t/Dに応じて原板の強度の目標値を設定する必要がある。尚、D/tは10~30の範囲内であり、t/Dは0.033~0.10の範囲内である。 As a result of conducting an experiment to determine the characteristic range of the original plate, the following was found. That is, as t / D increases, dislocation introduction during bending increases. It was found that most of the strain was recovered by the subsequent SR processing, but the strain remained depending on the t / D value, and the yield ratio became high. Therefore, it is necessary to set the target value of the strength of the original plate according to t / D. The D / t is in the range of 10 to 30, and the t / D is in the range of 0.033 to 0.10.

上記鋼板のYSとTSの範囲は次の導出によるものである。鋼板から鋼管を製造した際の特性変化量の最小値を見積もった結果、以下の結果が得られた。また以下に示す通り、押し込み位置による特性変化を考慮して狙い目標値を設定した。 The range of YS and TS of the steel sheet is based on the following derivation. As a result of estimating the minimum value of the amount of change in characteristics when a steel pipe was manufactured from a steel plate, the following results were obtained. In addition, as shown below, the target value was set in consideration of the characteristic change depending on the pushing position.

図1は、鋼管加工した際のt/DとΔTS1(鋼管のTSと鋼板のTSの差)を示したグラフである。ここでの「鋼管のTS」とは、曲げた際の押しこみ位置により特性ばらつきが生じるが、その際の最小の値である。また図2は、鋼管加工した際のt/DとΔTS2(鋼管の最大TSと鋼管の最小TSの差)を示したグラフである。ばらつきは上限側のみ適用されるため、鋼板のTSの範囲について、(550-ΔTS1(max))~(670-ΔTS1(min)-ΔTS2)、図1、2より(550-10-170×t/D)~(670+20-340×t/D+20-600×t/D)(MPa)、すなわち(540-170×t/D)~(710-940×t/D)(MPa)を導出した。 FIG. 1 is a graph showing t / D and ΔTS1 (difference between TS of steel pipe and TS of steel plate) when steel pipe is processed. The "TS of steel pipe" here is the minimum value at that time, although the characteristics vary depending on the pushing position when bent. Further, FIG. 2 is a graph showing t / D and ΔTS2 (difference between the maximum TS of the steel pipe and the minimum TS of the steel pipe) when the steel pipe is machined. Since the variation is applied only on the upper limit side, regarding the TS range of the steel sheet, (550-ΔTS1 (max)) to (670-ΔTS1 (min) -ΔTS2), FIGS. 1 and 2 show (550-10-170 × t). / D) to (670 + 20-340 × t / D + 20-600 × t / D) (MPa), that is, (540-170 × t / D) to (710-940 × t / D) (MPa) were derived.

図3は、鋼管加工した際のt/DとΔYS(鋼管のYSと鋼板のYSの差)を示したグラフである。このグラフをもとに、鋼板のYSの範囲についても、上記鋼板のTSと同様に求めた。
FIG. 3 is a graph showing t / D and ΔYS (difference between YS of steel pipe and YS of steel plate) when steel pipe is processed. Based on this graph, the range of YS of the steel sheet was also determined in the same manner as the TS of the steel sheet.

YRは、t/Dによらず73%以下とすることで目標とする鋼管の特性を安定して実現できる。YRは、好ましくは70%以下である。YRは低いほど好ましくその下限は特に限定されないが、下限はおおよそ50%である。 By setting the YR to 73% or less regardless of t / D, the target steel pipe characteristics can be stably realized. YR is preferably 70% or less. The lower the YR, the more preferable, and the lower limit thereof is not particularly limited, but the lower limit is approximately 50%.

鋼板の上記特性評価に使用する試験片の採取位置は、鋼管外面側から板厚の1/4位置に相当する鋼板の位置、すなわち鋼管製造のための曲げ加工時にパンチと接触する鋼板表面から板厚の3/4の位置とするのがよい。ただし、鋼板(原板)の特性と組織は板厚中心に対して対称であり、鋼板表面から板厚の1/4の位置で評価しても同値となる。よって本発明では、表裏面を問わず、鋼板表面から板厚の1/4の位置において上記特性と組織の評価を行う。 The sampling position of the test piece used for the above-mentioned characteristic evaluation of the steel sheet is the position of the steel sheet corresponding to the position of 1/4 of the plate thickness from the outer surface side of the steel pipe, that is, the plate from the surface of the steel plate that comes into contact with the punch during bending for manufacturing the steel pipe. The position should be 3/4 of the thickness. However, the characteristics and structure of the steel plate (original plate) are symmetrical with respect to the center of the plate thickness, and even if evaluated at a position of 1/4 of the plate thickness from the surface of the steel plate, the values are the same. Therefore, in the present invention, the above-mentioned characteristics and structure are evaluated at a position of 1/4 of the plate thickness from the surface of the steel plate regardless of the front and back surfaces.

(2)溶接性
本発明の鋼板には、鋼管製造に必要な溶接性も要求される。更に鋼管にも、溶接構造物の製造に必要な溶接性が要求される。本発明では、後記のCeqを0.42質量%以下とすることによって、溶接性が優れていると評価した。
(2) Weldability The steel sheet of the present invention is also required to have weldability required for manufacturing steel pipes. Further, the steel pipe is also required to have weldability required for manufacturing a welded structure. In the present invention, it was evaluated that the weldability was excellent by setting the Ceq described later to 0.42% by mass or less.

3.組織
本発明の鋼板の金属組織は、板厚の1/4位置において硬質相と軟質相からなる。また、硬質相の分率が15~27面積%であって、残部は軟質相である。更に、軟質相の硬さHv(3gf)が149~180、硬質相の硬さHv(3gf)が260~330である。以下、この組織について説明する。
3. 3. Structure The metal structure of the steel sheet of the present invention consists of a hard phase and a soft phase at a position of 1/4 of the plate thickness. Further, the fraction of the hard phase is 15 to 27 area%, and the balance is the soft phase. Further, the hardness Hv (3 gf) of the soft phase is 149 to 180, and the hardness Hv (3 gf) of the hard phase is 260 to 330. Hereinafter, this organization will be described.

上述した引張特性を、低Ceq成分範囲で達成するには、硬質相と軟質相の各相の硬さと割合をそれぞれ制御する必要がある。 In order to achieve the above-mentioned tensile properties in the low Ceq component range, it is necessary to control the hardness and ratio of each of the hard phase and the soft phase.

なお、本発明において「硬質相」とは、二相域に加熱時に生成する逆変態オーステナイト部を、その後、焼入れ焼戻しすることにより生成する相である。逆変態時に炭素および合金元素が濃縮し、セメンタイトが凝集している相である。具体的には、炭素濃度の高い、焼戻しベイナイトまたは、焼戻しマルテンサイトのいずれか1つ以上の組織を指す。 In the present invention, the "hard phase" is a phase formed by quenching and tempering a reverse-transformed austenite portion generated during heating in a two-phase region. It is a phase in which carbon and alloying elements are concentrated during reverse transformation and cementite is aggregated. Specifically, it refers to the structure of any one or more of tempered bainite and tempered martensite having a high carbon concentration.

また本発明において「軟質相」とは、加熱、熱間圧延および熱間圧延後の冷却(加速冷却)により生成するベイナイトおよび擬ポリゴナルフェライトが、その後の再加熱時、すなわち二相域加熱時に、オーステナイトに逆変態せず、高温で焼戻された組織であり、セル状の転位を含む。擬ポリゴナルフェライトは炭素固溶量が非常に小さいため、組織観察上セメンタイトの存在しない相である。ベイナイトは高温で焼戻されているため、非常に粗大な炭化物が生成している。硬さを測定する際は、粗大な炭化物を避けて測定する。 Further, in the present invention, the "soft phase" means that bainite and pseudopolygonal ferrite produced by heating, hot rolling and cooling (accelerated cooling) after hot rolling are subjected to subsequent reheating, that is, during two-phase region heating. , A structure that is tempered at high temperature without reverse transformation to austenite and contains cell-like dislocations. Pseudopolygonal ferrite has a very small amount of carbon solid solution, so it is a phase in which cementite does not exist in the microstructure observation. Bainite is tempered at high temperatures, producing very coarse carbides. When measuring hardness, avoid coarse carbides.

なお、本発明では、鋼板の製造工程において、焼戻しを400℃以上で施すため、MA等の硬質脆化組織はなくなり存在しない。 In the present invention, since tempering is performed at 400 ° C. or higher in the steel sheet manufacturing process, the hard embrittled structure such as MA disappears and does not exist.

鋼板の所望の特性、特に、高い引張強度と低降伏比を確保するには、鋼の全組織に占める硬質相の分率を適正化する必要がある。硬質相の分率を15面積%以上に高めることによって、高い引張強度と低降伏比を確保できる。硬質相の分率は、好ましくは17.0面積%以上、より好ましくは18.0面積%以上である。一方、硬質相の分率が高すぎると、硬質相の硬さが低下しやすくなる。よって硬質相の分率は、27面積%以下とする。好ましくは26.0面積%以下、より好ましくは25.0面積%以下である。 In order to ensure the desired properties of the steel sheet, especially high tensile strength and low yield ratio, it is necessary to optimize the fraction of the hard phase in the entire structure of the steel. By increasing the fraction of the hard phase to 15 area% or more, high tensile strength and low yield ratio can be ensured. The fraction of the hard phase is preferably 17.0 area% or more, more preferably 18.0 area% or more. On the other hand, if the fraction of the hard phase is too high, the hardness of the hard phase tends to decrease. Therefore, the fraction of the hard phase is set to 27 area% or less. It is preferably 26.0 area% or less, more preferably 25.0 area% or less.

更に各相の硬さも適正化することで、高い引張強度と低降伏比をより確実に確保できる。特に軟質相の硬さの範囲を制御することで低降伏比を容易に実現することができる。軟質相の硬さHv(3gf)は149以上である。軟質相の硬さHv(3gf)は好ましくは152以上である。また軟質相の硬さHv(3gf)は、180以下であり、好ましくは175以下である。軟質相の硬さは焼入れ時に決まることから、転位密度の高さに対応する軟質相の硬さはDIで制御する。DIを高めることによって、軟質相の硬さを高めることができ、鋼板の高強度を達成できる。 Furthermore, by optimizing the hardness of each phase, high tensile strength and low yield ratio can be ensured more reliably. In particular, a low yield ratio can be easily realized by controlling the hardness range of the soft phase. The hardness Hv (3 gf) of the soft phase is 149 or more. The hardness Hv (3 gf) of the soft phase is preferably 152 or more. The hardness Hv (3 gf) of the soft phase is 180 or less, preferably 175 or less. Since the hardness of the soft phase is determined at the time of quenching, the hardness of the soft phase corresponding to the high dislocation density is controlled by DI. By increasing the DI, the hardness of the soft phase can be increased and the high strength of the steel sheet can be achieved.

硬質相の硬さHv(3gf)を260以上とすることで高強度を実現できる。硬質相の硬さHv(3gf)は、好ましく270以上、より好ましくは280以上である。一方、硬質相の硬さが高すぎる場合は、非常に脆い相となり母材靭性が低下する。よって前記硬質相の硬さHv(3gf)は330以下とする。硬質相の硬さHv(3gf)は好ましくは320以下である。上記硬質相の硬さは、合金元素量の最適化により達成することができる。特にC量を厳格に制御するのがよい。 High strength can be realized by setting the hardness Hv (3 gf) of the hard phase to 260 or more. The hardness Hv (3 gf) of the hard phase is preferably 270 or more, more preferably 280 or more. On the other hand, if the hardness of the hard phase is too high, the phase becomes very brittle and the toughness of the base metal decreases. Therefore, the hardness Hv (3 gf) of the hard phase is set to 330 or less. The hardness Hv (3 gf) of the hard phase is preferably 320 or less. The hardness of the hard phase can be achieved by optimizing the amount of alloying elements. In particular, it is better to strictly control the amount of C.

4.成分組成
本発明では、後記する各成分の範囲を満たした上で、下記式(1)~(3)で示されるパラメータである、炭素当量Ceq、溶接割れ感受性組成Pcmおよび焼入性倍数DIを各範囲内とする必要がある。以下、各パラメータについて説明する。
4. Component composition In the present invention, after satisfying the range of each component described later, carbon equivalent Ceq, weld crack susceptibility composition Pcm, and hardenability multiple DI, which are the parameters represented by the following formulas (1) to (3), are used. Must be within each range. Hereinafter, each parameter will be described.

下記式(1)で表される炭素当量Ceqが0.42質量%以下
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14…(1)
ただし、上記式(1)中の[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]および[V]は、それぞれ、質量%で示したC、Si、Mn、Ni、Cr、MoおよびVの含有量を示し、含まない元素は含有量をゼロとする。
Carbon equivalent Ceq represented by the following formula (1) is 0.42% by mass or less Ceq = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4+ [V] / 14 ... (1)
However, [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] in the above formula (1) are C, Si and Mn represented by mass%, respectively. , Ni, Cr, Mo and V are shown, and the content of elements not contained is set to zero.

Ceqは炭素等量と呼ばれる。本発明では、鋼板と鋼管の溶接性を確保する観点から、Ceqを0.42質量%以下とする。Ceqは、好ましくは0.40質量%以下である。溶接性確保の観点からはCeqは低いほど好ましいため下限は特に限定されない。Ceqの下限は例えば0.35質量%程度とすることができる。本発明では、溶接性確保の観点からCeqを上記の通り低減している。しかしCeqを小さくすると、強度が低くなるため、本発明では、Ceqの値を小さく抑えた上で、高強度を図ることが必要である。 Ceq is called carbon equivalent. In the present invention, Ceq is set to 0.42% by mass or less from the viewpoint of ensuring the weldability of the steel plate and the steel pipe. Ceq is preferably 0.40% by mass or less. From the viewpoint of ensuring weldability, the lower the Ceq is, the more preferable it is, so the lower limit is not particularly limited. The lower limit of Ceq can be, for example, about 0.35% by mass. In the present invention, Ceq is reduced as described above from the viewpoint of ensuring weldability. However, when the Ceq is made small, the strength becomes low. Therefore, in the present invention, it is necessary to keep the Ceq value small and to achieve high strength.

下記式(2)で表される溶接割れ感受性組成Pcmが0.15~0.27質量%
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]…(2)
ただし、上記式(2)中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素は含有量をゼロとする。
Weld crack susceptibility composition Pcm represented by the following formula (2) is 0.15 to 0.27% by mass.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] ... (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] in the above formula (2) are mass%, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V and B shown in the above are shown, and the content of the elements not contained is set to zero.

Pcmは溶接割れ感受性組成と呼ばれる。厚肉で拘束度が大きい鋼板においても、溶接割れを安定して抑制するため、このPcmを0.27質量%以下とする。好ましくは0.26質量%以下である。低ければ低いほど好ましいが、本発明で規定の成分組成を考慮すると、その下限はおおよそ0.20質量%程度である。 Pcm is called the weld crack sensitive composition. This Pcm is set to 0.27% by mass or less in order to stably suppress welding cracks even in a thick steel sheet having a large degree of restraint. It is preferably 0.26% by mass or less. The lower the value, the more preferable, but considering the component composition specified in the present invention, the lower limit is about 0.20% by mass.

下記式(3)で表される焼入性倍数DIが1.05以上
Mn量が1.20質量%以上の場合は、
DI=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)
Mn量が1.20質量%未満の場合は、
DI=1.16×([C]/10)0.5×(0.7×[Si]+1)×(3.33×[Mn]+1)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)…(3)
ただし、上記式(3)中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]および[V]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、MoおよびVの含有量を示し、含まない元素は含有量をゼロとする。
When the hardenable multiple DI represented by the following formula (3) is 1.05 or more and the Mn amount is 1.20% by mass or more,
DI = 1.16 x ([C] / 10) 0.5 x (0.7 x [Si] + 1) x (5.1 x ([Mn] -1.2) + 5) x (0.35 x) [Cu] +1) x (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] +1) x (1.75 x [V] +1) x (200) × [B] +1)
If the amount of Mn is less than 1.20% by mass,
DI = 1.16 × ([C] / 10) 0.5 × (0.7 × [Si] +1) × (3.33 × [Mn] +1) × (0.35 × [Cu] +1) × (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] +1) x (1.75 x [V] +1) x (200 x [B] +1) … (3)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [V] in the above formula (3) are C represented by mass%, respectively. , Si, Mn, Cu, Ni, Cr, Mo and V are shown, and the content of elements not contained is set to zero.

DIは焼入性倍数と呼ばれ、焼入れ性を表わす指標となる。上述の通り鋼板の金属組織における軟質相の硬さを高め、鋼板の高強度を達成するため、DIを1.05以上とする。DIは、好ましくは1.10以上、より好ましくは1.20以上である。DIの上限は特に限定されないが2.00程度となる。 DI is called a hardenability multiple and is an index showing hardenability. As described above, in order to increase the hardness of the soft phase in the metal structure of the steel sheet and achieve the high strength of the steel sheet, the DI is set to 1.05 or more. DI is preferably 1.10 or more, more preferably 1.20 or more. The upper limit of DI is not particularly limited, but is about 2.00.

次に、各成分の範囲について説明する。 Next, the range of each component will be described.

C:0.125~0.170質量%
Cは、高強度化に寄与する元素であり、一方で溶接性を劣化させる元素でもある。本発明では、所望の組織、特に金属組織における硬質相の硬さを所定の範囲内として高強度を達成するため、C量を0.125質量%以上とする。C量は好ましくは0.130質量%以上である。C量が多くなると、強度は確保しやすくなるが、耐溶接割れ性の劣化を招く。本発明では、耐溶接割れ性を確保する観点から、C量は0.170質量%以下とする。C量は、好ましくは0.165質量%以下である。
C: 0.125 to 0.170% by mass
C is an element that contributes to high strength, and on the other hand, is also an element that deteriorates weldability. In the present invention, the amount of C is set to 0.125% by mass or more in order to achieve high strength while keeping the hardness of the hard phase in a desired structure, particularly a metal structure, within a predetermined range. The amount of C is preferably 0.130% by mass or more. When the amount of C is large, it becomes easy to secure the strength, but the weld crack resistance is deteriorated. In the present invention, the amount of C is 0.170% by mass or less from the viewpoint of ensuring weld crack resistance. The amount of C is preferably 0.165% by mass or less.

Si:0.10~0.60質量%
Siは、脱酸材として有効な元素であり、また母材強度の向上にも有効な元素である。よってSi量は、0.10質量%以上とする。Si量は、好ましくは0.15質量%以上であり、より好ましくは0.20質量%以上である。一方、溶接性を確保する観点から、Si量は、0.60質量%以下とする。Si量は、好ましくは0.55質量%以下、より好ましくは0.50質量%以下、更に好ましくは0.45質量%以下である。
Si: 0.10 to 0.60% by mass
Si is an element effective as a deoxidizing material and also an element effective for improving the strength of the base material. Therefore, the amount of Si is set to 0.10% by mass or more. The amount of Si is preferably 0.15% by mass or more, and more preferably 0.20% by mass or more. On the other hand, from the viewpoint of ensuring weldability, the amount of Si is set to 0.60% by mass or less. The amount of Si is preferably 0.55% by mass or less, more preferably 0.50% by mass or less, still more preferably 0.45% by mass or less.

Mn:0.90~1.60質量%
Mnは、オーステナイトを安定化させ、変態温度を低温化させることで、焼入れ性の向上に寄与する元素である。この効果を発揮させるため、Mnを0.90質量%以上含有させる。Mn量は、好ましくは1.00質量%以上である。一方、Mnを過剰に含有させると、MnSが粗大化し、母材靭性が劣化するため、Mn量の上限を1.60質量%とする。Mn量は、好ましくは1.55質量%以下である。
Mn: 0.90 to 1.60% by mass
Mn is an element that stabilizes austenite and lowers the transformation temperature, thereby contributing to the improvement of hardenability. In order to exert this effect, Mn is contained in an amount of 0.90% by mass or more. The amount of Mn is preferably 1.00% by mass or more. On the other hand, if Mn is excessively contained, MnS becomes coarse and the toughness of the base metal deteriorates. Therefore, the upper limit of the amount of Mn is set to 1.60% by mass. The amount of Mn is preferably 1.55% by mass or less.

P:0質量%超、0.015質量%以下
不可避的不純物であるPは、母材と溶接部の靭性に悪影響を及ぼす。よって、P含有量を0.015質量%以下に抑える必要がある。好ましくは0.010質量%以下である。工業上、P量を0質量%にすることは困難であり、下限は0.002質量%程度である。
P: More than 0% by mass, 0.015% by mass or less P, which is an unavoidable impurity, adversely affects the toughness of the base metal and the weld. Therefore, it is necessary to suppress the P content to 0.015% by mass or less. It is preferably 0.010% by mass or less. Industrially, it is difficult to set the amount of P to 0% by mass, and the lower limit is about 0.002% by mass.

S:0質量%超、0.008質量%以下
Sは、MnSを形成して衝撃特性や母材伸びを劣化させるため少ない方が好ましい。よって、S含有量は0.008質量%以下に抑制する必要がある。S量は、好ましくは0.005質量%以下、より好ましくは0.0030質量%以下である。工業上、S量を0質量%にすることは困難であり、下限は0.001質量%程度である。
S: More than 0% by mass, 0.008% by mass or less S is preferably less because it forms MnS and deteriorates impact characteristics and base metal elongation. Therefore, the S content needs to be suppressed to 0.008% by mass or less. The amount of S is preferably 0.005% by mass or less, more preferably 0.0030% by mass or less. Industrially, it is difficult to set the amount of S to 0% by mass, and the lower limit is about 0.001% by mass.

Al:0.010~0.080質量%
Alは脱酸に必要な元素である。この効果を発揮させるため、Al量を0.010質量%以上とする。Al量は、好ましくは0.015質量%以上であり、より好ましくは0.020質量%以上である。一方、Alを過剰に含有させると、アルミナ系の粗大な介在物を形成し衝撃特性が低下する。よってAl量の上限を0.080質量%とする。Al量は、好ましくは0.070質量%以下、より好ましくは0.060質量%以下である。
Al: 0.010 to 0.080 mass%
Al is an element required for deoxidation. In order to exert this effect, the amount of Al is 0.010% by mass or more. The amount of Al is preferably 0.015% by mass or more, and more preferably 0.020% by mass or more. On the other hand, if Al is excessively contained, coarse alumina-based inclusions are formed and the impact characteristics are deteriorated. Therefore, the upper limit of the amount of Al is set to 0.080% by mass. The amount of Al is preferably 0.070% by mass or less, more preferably 0.060% by mass or less.

N:0.0010~0.0065質量%
Nは、AlNを生成し、熱間圧延前の加熱時、および溶接時におけるγ粒の粗大化を防止し、母材靭性やHAZ靭性を向上させるのに有効な元素である。この効果を発揮させるため、Nを0.0010質量%以上含有させる。N量は、好ましくは0.0020質量%以上である。一方、Nを過剰に含有させると、固溶Nの増大により、母材靭性が劣化する。よってN量は0.0065質量%以下とする。N量は、好ましくは0.0060質量%以下である。
N: 0.0010 to 0.0065% by mass
N is an element that produces AlN, prevents coarsening of γ grains during heating before hot rolling and during welding, and is effective in improving base metal toughness and HAZ toughness. In order to exert this effect, N is contained in an amount of 0.0010% by mass or more. The amount of N is preferably 0.0020% by mass or more. On the other hand, if N is excessively contained, the toughness of the base metal deteriorates due to the increase in the solid solution N. Therefore, the amount of N is set to 0.0065% by mass or less. The amount of N is preferably 0.0060% by mass or less.

本発明の鋼板の基本成分は上記の通りであり、残部は鉄および不可避的不純物である。不可避的不純物は、原料、資材、製造設備等の状況によって持ち込まれる元素である。不可避的不純物には、例えばO、Sb等の他、0.005質量%以下のNbも含まれる。Nbは、軟質相の硬さを著しく上昇させるため添加せず、含まれる場合であっても、その量は、上記不可避的不純物程度である。また、Tiを添加しない場合であっても、Tiを不可避的不純物として0.005質量%以下含む場合がある。なお、例えばPおよびSのように、通常、含有量が少ないほど好ましく、従って不可避的不純物であるが、その組成範囲について上記のように別途規定した元素がある。このため、本明細書における上記「不可避的不純物」とは、別途その組成範囲が規定された元素を除いたものを意味する。 The basic components of the steel sheet of the present invention are as described above, and the balance is iron and unavoidable impurities. Inevitable impurities are elements that are brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like. Inevitable impurities include, for example, O, Sb and the like, as well as Nb of 0.005% by mass or less. Nb is not added because it significantly increases the hardness of the soft phase, and even if it is contained, the amount thereof is about the above-mentioned unavoidable impurities. Further, even when Ti is not added, Ti may be contained as an unavoidable impurity in an amount of 0.005% by mass or less. It should be noted that, for example, P and S, which usually have a smaller content, are preferable, and therefore are unavoidable impurities, but there are elements whose composition range is separately defined as described above. Therefore, the above-mentioned "unavoidable impurities" in the present specification mean those excluding the elements whose composition range is separately defined.

本発明の鋼板は、成分組成において、上記元素を含み、式(1)~(3)で表されるパラメータが所定の範囲内にあればよい。下記に述べる選択元素は、含まれていなくてもよいが、上記元素と共に必要に応じて含有させることにより、高強度化をより容易に達成させたり、母材靭性等の向上に寄与する。以下、選択元素について述べる。 The steel sheet of the present invention may contain the above elements in the component composition, and the parameters represented by the formulas (1) to (3) may be within a predetermined range. The selective elements described below may not be contained, but by containing them together with the above elements as needed, it is possible to more easily achieve high strength and contribute to improvement of base metal toughness and the like. Hereinafter, the selected element will be described.

Cu:0質量%超、0.35質量%以下、
Ni:0質量%超、0.35質量%以下、
Cr:0質量%超、0.35質量%以下、
Mo:0質量%超、0.35質量%以下、
V :0質量%超、0.050質量%以下、
B :0質量%超、0.0030質量%以下、および
Ti:0.005質量%超、0.030質量%以下
よりなる群から選択される1種以上の元素
Cu: More than 0% by mass, 0.35% by mass or less,
Ni: More than 0% by mass, 0.35% by mass or less,
Cr: More than 0% by mass, 0.35% by mass or less,
Mo: More than 0% by mass, 0.35% by mass or less,
V: More than 0% by mass, 0.050% by mass or less,
B: One or more elements selected from the group consisting of more than 0% by mass and 0.0030% by mass or less, and Ti: more than 0.005% by mass and 0.030% by mass or less.

Cu、Ni、Cr、Mo、V、Bは、いずれも溶接性、HAZ靭性に大きな悪影響を及ぼすことなく、焼入れ性を向上させ、母材の強度と靭性を向上させるのに有効な元素である。Tiは、Nと結合してTiNを形成し、熱間圧延前の加熱時におけるオーステナイト粒、即ちγ粒の粗大化を防止し、母材靭性の向上に寄与する元素である。また、鋼中のNを固定して、固溶Nによる母材靭性の劣化を防ぐ効果もある。 Cu, Ni, Cr, Mo, V, and B are all effective elements for improving hardenability and improving the strength and toughness of the base metal without significantly adversely affecting weldability and HAZ toughness. .. Ti is an element that combines with N to form TiN, prevents the coarsening of austenite grains, that is, γ grains, during heating before hot rolling, and contributes to the improvement of the toughness of the base metal. It also has the effect of fixing N in the steel to prevent deterioration of the toughness of the base metal due to the solid solution N.

これらの効果を発揮させるため、Cu、Ni、Cr、Moを含有させる場合、各元素の含有量を、0質量%超とすることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。Vについては、0質量%超とすることが好ましく、より好ましくは0.005質量%以上、更に好ましくは0.010質量%以上である。Bについては、0質量%超とすることが好ましく、より好ましくは0.0005質量%以上である。Tiについては、0.005質量%超とすることが好ましい。 In order to exert these effects, when Cu, Ni, Cr, and Mo are contained, the content of each element is preferably more than 0% by mass, more preferably 0.05% by mass or more, still more preferably. It is 0.10% by mass or more. V is preferably more than 0% by mass, more preferably 0.005% by mass or more, still more preferably 0.010% by mass or more. B is preferably more than 0% by mass, more preferably 0.0005% by mass or more. Ti is preferably more than 0.005% by mass.

一方、これらの元素が過剰に含まれていると、原料コストの上昇を招くため、Cu、Ni、Cr、Moについては、0.35質量%以下とすることが好ましく、より好ましくは0.30質量%以下である。Vについては、0.050質量%以下とすることが好ましい。Bについては、0.0030質量%以下とすることが好ましい。またTiについては、0.030質量%以下とすることが好ましい。 On the other hand, if these elements are excessively contained, the raw material cost will increase. Therefore, the amount of Cu, Ni, Cr and Mo is preferably 0.35% by mass or less, more preferably 0.30. It is less than mass%. V is preferably 0.050% by mass or less. B is preferably 0.0030% by mass or less. The Ti is preferably 0.030% by mass or less.

Ca:0質量%超、0.0030質量%以下
Caは、MnSの球状化に寄与し、母材靭性や板厚方向の延性の改善に有効な元素である。該効果を発揮させるには、Ca量を、0質量%超とすることが好ましく、0.0005質量%以上とすることがより好ましい。一方、Ca量が過剰になると、介在物が粗大化し、割れの原因となる。よってCa量は、0.0030質量%以下とすることが好ましい。
Ca: More than 0% by mass, 0.0030% by mass or less Ca contributes to the spheroidization of MnS and is an effective element for improving the toughness of the base metal and the ductility in the plate thickness direction. In order to exert the effect, the Ca amount is preferably more than 0% by mass, more preferably 0.0005% by mass or more. On the other hand, when the amount of Ca is excessive, inclusions become coarse and cause cracking. Therefore, the amount of Ca is preferably 0.0030% by mass or less.

5.円形鋼管
本発明には、上記鋼板を用いて得られた円形鋼管も含まれる。円形鋼管として、後記する方法で製造された冷間円形鋼管が挙げられる。円形鋼管に求められる特性は、前述の通り、YS≧385MPa、550MPa≦TS≦670MPa、およびYR≦85%である。また、円形鋼管の外径Dの範囲は、700~3000mmであり、円形鋼管の板厚tの範囲は、70mm以上、100mm以下である。円形鋼管の板厚tは、円形鋼管の製造に供する鋼板の板厚とほぼ同じである。本発明において、前述の通りD/tは10~30の範囲内であり、t/Dは0.033~0.10の範囲内である。
5. Circular steel pipe The present invention also includes a circular steel pipe obtained by using the above steel plate. Examples of the circular steel pipe include a cold circular steel pipe manufactured by the method described later. As described above, the characteristics required for the circular steel pipe are YS ≧ 385 MPa, 550 MPa ≦ TS ≦ 670 MPa, and YR ≦ 85%. The range of the outer diameter D of the circular steel pipe is 700 to 3000 mm, and the range of the plate thickness t of the circular steel pipe is 70 mm or more and 100 mm or less. The plate thickness t of the circular steel pipe is substantially the same as the plate thickness of the steel plate used for manufacturing the circular steel pipe. In the present invention, as described above, D / t is in the range of 10 to 30, and t / D is in the range of 0.033 to 0.10.

6.鋼板の製造方法
次に本発明に係る鋼板の製造方法について説明する。該方法では、前記成分組成を満たす鋼片を950~1250℃に加熱してから、熱間圧延を、860~1000℃の温度域の累積圧下率が30%以上、かつ仕上圧延温度が840~960℃の条件で行った後、平均冷却速度2~30℃/sで、800℃以上の冷却開始温度から、500℃以下の冷却停止温度まで冷却し、次いで熱間圧延材を、焼入れ温度:735~850℃、焼入れ加熱時間:5~60分で再加熱してから焼入れを行い、その後、焼戻し温度:DIが1.4未満の場合は400℃以上、600℃未満、DIが1.4以上の場合は400℃以上、650℃以下、焼戻し時間:5~60分の条件で焼戻しを行う。これらの製造条件を規定した理由について説明する。
6. Method for Manufacturing Steel Sheet Next, a method for manufacturing a steel sheet according to the present invention will be described. In this method, a steel piece satisfying the above-mentioned composition is heated to 950 to 1250 ° C., and then hot rolling is performed. After performing under the condition of 960 ° C., the material is cooled from a cooling start temperature of 800 ° C. or higher to a cooling stop temperature of 500 ° C. or lower at an average cooling rate of 2 to 30 ° C./s, and then the hot rolled material is subjected to quenching temperature: Reheating at 735 to 850 ° C., quenching heating time: 5 to 60 minutes, and then quenching. After that, tempering temperature: 400 ° C. or higher, less than 600 ° C., DI is 1.4 when DI is less than 1.4. In the above cases, tempering is performed under the conditions of 400 ° C. or higher, 650 ° C. or lower, and tempering time: 5 to 60 minutes. The reason for defining these manufacturing conditions will be described.

[加熱温度:950~1250℃]
加熱温度が低いと、元素が固溶し難く、特に炭化物が再固溶せず、圧延やその後の熱処理で粗大化してしまう。そのため加熱温度は950℃以上とした。好ましくは990℃以上である。一方、加熱温度が高すぎると、γが粗大となってしまい、焼入れ性が高くなり軟質相の分率が低下する。よって、加熱温度は1250℃以下とする。好ましくは1200℃以下である。
[Heating temperature: 950 to 1250 ° C]
When the heating temperature is low, the elements are difficult to dissolve in solid solution, and in particular, the carbides do not re-dissolve and become coarse in rolling and subsequent heat treatment. Therefore, the heating temperature was set to 950 ° C. or higher. It is preferably 990 ° C. or higher. On the other hand, if the heating temperature is too high, γ becomes coarse, the hardenability becomes high, and the fraction of the soft phase decreases. Therefore, the heating temperature is set to 1250 ° C. or lower. It is preferably 1200 ° C. or lower.

[860~1000℃の温度域の累積圧下率:30%以上]
本発明で求める特性を得るには、組織を均質化させることが重要である。そのためには、再結晶温度域での圧延を行って、オーステナイト粒を繰り返し再結晶させる必要がある。よって、860~1000℃の温度域における累積圧下率を30%以上とする。累積圧下率は、好ましくは35%以上である。なお、累積圧下率の上限はおおよそ70%である。
[Cumulative reduction rate in the temperature range of 860 to 1000 ° C: 30% or more]
In order to obtain the properties required by the present invention, it is important to homogenize the structure. For that purpose, it is necessary to repeatedly recrystallize the austenite grains by rolling in the recrystallization temperature range. Therefore, the cumulative reduction rate in the temperature range of 860 to 1000 ° C. is set to 30% or more. The cumulative reduction rate is preferably 35% or more. The upper limit of the cumulative reduction rate is approximately 70%.

[仕上圧延温度(FRT):840~960℃]
仕上圧延温度が低温になると、熱間圧延時にオーステナイトが再結晶しない、いわゆる未再結晶域での圧延となる。未再結晶域での圧下を増大させると、音響異方性が大きくなることから仕上圧延温度の下限を840℃とした。仕上圧延温度は、好ましくは860℃以上である。また仕上圧延温度は960℃以下とする。好ましくは900℃以下である。
[Finishing rolling temperature (FRT): 840 to 960 ° C]
When the finish rolling temperature becomes low, austenite does not recrystallize during hot rolling, that is, rolling in a so-called unrecrystallized region. Since the acoustic anisotropy increases when the rolling reduction in the unrecrystallized region is increased, the lower limit of the finish rolling temperature is set to 840 ° C. The finish rolling temperature is preferably 860 ° C. or higher. The finish rolling temperature is 960 ° C. or lower. It is preferably 900 ° C. or lower.

[平均冷却速度:2~30℃/s]
前記熱間圧延後は、平均冷却速度2~30℃/sで、下記の冷却開始温度から冷却停止温度まで冷却する。熱間圧延後の冷却時の平均冷却速度が遅いと、軟質相の硬さと、硬質相の分率が低下し、降伏強度が不足する。よって上記平均冷却速度は、2℃/s以上とする。好ましくは3℃/s以上である。一方、平均冷却速度が過度に大きいと、硬質相の分率が必要以上に増加し、降伏比が上昇する。よって上記平均冷却速度は、30℃/s以下とする。好ましくは20℃/s以下である。
[Average cooling rate: 2 to 30 ° C / s]
After the hot rolling, the mixture is cooled from the following cooling start temperature to the cooling stop temperature at an average cooling rate of 2 to 30 ° C./s. If the average cooling rate during cooling after hot rolling is slow, the hardness of the soft phase and the fraction of the hard phase decrease, and the yield strength becomes insufficient. Therefore, the average cooling rate is set to 2 ° C./s or higher. It is preferably 3 ° C./s or higher. On the other hand, if the average cooling rate is excessively high, the fraction of the hard phase increases more than necessary and the yield ratio increases. Therefore, the average cooling rate is set to 30 ° C./s or less. It is preferably 20 ° C./s or less.

[冷却開始温度(SCT):800℃以上]
上記平均冷却速度での冷却開始温度が、鋼板の表面温度で800℃を下回ると、軟質なポリゴナルフェライトが生成し、母材強度の低下を招く。よって、上記平均冷却速度での冷却は、800℃以上の温度から開始する。冷却開始温度は、好ましくは840℃以上である。なお、冷却開始温度の上限は特に限定されず、おおよそ、仕上圧延温度と同程度である。
[Cooling start temperature (SCT): 800 ° C or higher]
When the cooling start temperature at the average cooling rate is lower than 800 ° C. at the surface temperature of the steel sheet, soft polygonal ferrite is formed, which causes a decrease in the strength of the base metal. Therefore, cooling at the above average cooling rate starts from a temperature of 800 ° C. or higher. The cooling start temperature is preferably 840 ° C. or higher. The upper limit of the cooling start temperature is not particularly limited, and is approximately the same as the finish rolling temperature.

[冷却停止温度(FCT):500℃以下]
上記平均冷却速度での冷却を500℃よりも高い温度域で停止すると、変態が完了せず、硬質相の硬さが低下し、強度、特に降伏強度が不足する。よって、冷却停止温度は500℃以下とする。冷却停止温度は好ましくは400℃以下であり、更に200℃以下とすることもできる。尚、冷却停止温度の下限は特に限定されず、室温付近まで上記平均冷却速度で冷却してもよい。
[Cooling shutdown temperature (FCT): 500 ° C or less]
When cooling at the average cooling rate is stopped in a temperature range higher than 500 ° C., the transformation is not completed, the hardness of the hard phase decreases, and the strength, particularly the yield strength, is insufficient. Therefore, the cooling shutdown temperature is set to 500 ° C. or lower. The cooling shutdown temperature is preferably 400 ° C. or lower, and may be further 200 ° C. or lower. The lower limit of the cooling stop temperature is not particularly limited, and cooling may be performed at the above average cooling rate to near room temperature.

前記冷却停止温度が、室温よりも高い場合、冷却停止温度から室温までは空冷とすればよい。 When the cooling stop temperature is higher than room temperature, air cooling may be performed from the cooling stop temperature to room temperature.

前記室温までの冷却を行った後、下記の焼入れ温度まで再加熱を行ってから焼入れを行い、次いで焼戻しを行う。以下、各条件について説明する。 After cooling to the room temperature, the mixture is reheated to the following quenching temperature, then quenched, and then tempered. Hereinafter, each condition will be described.

[焼入れ温度:735~850℃]
[焼入れ加熱時間:5~60分]
焼入れ温度は二相域の温度に該当する。この再加熱を二相域加熱という場合がある。焼入れ温度が低いと、逆変態分率が不足し、硬質相の分率が不足して高強度を達成できない。よって、焼入れ温度は735℃以上とする。好ましくは750℃以上である。一方、焼入れ温度が高いと、逆変態分率は増加するが、硬質相となる部分の成分濃縮が不足し、硬質相の硬さが低下する。よって、焼入れ温度は850℃以下とする。好ましくは830℃以下であり、更に800℃以下とすることもできる。また、焼入れ加熱時間、すなわち焼入れ温度での保持時間が少ないと、元素が濃縮しづらく硬さを確保できない。よって、焼入れ加熱時間は5分以上とする。好ましくは10分以上である。一方、焼入れ加熱時間が長いと、生産性が低下するため60分以下とする。
[Quenching temperature: 735-850 ° C]
[Quenching heating time: 5 to 60 minutes]
The quenching temperature corresponds to the temperature in the two-phase region. This reheating may be referred to as two-phase region heating. When the quenching temperature is low, the reverse transformation fraction is insufficient, and the hard phase fraction is insufficient to achieve high strength. Therefore, the quenching temperature is set to 735 ° C. or higher. It is preferably 750 ° C. or higher. On the other hand, when the quenching temperature is high, the reverse transformation fraction increases, but the component concentration of the portion to be the hard phase is insufficient, and the hardness of the hard phase decreases. Therefore, the quenching temperature is set to 850 ° C. or lower. It is preferably 830 ° C or lower, and may be further 800 ° C or lower. Further, if the quenching heating time, that is, the holding time at the quenching temperature is short, the elements are difficult to concentrate and the hardness cannot be secured. Therefore, the quenching and heating time is set to 5 minutes or more. It is preferably 10 minutes or more. On the other hand, if the quenching and heating time is long, the productivity is lowered, so the time is set to 60 minutes or less.

前記保持後は、ほぼ室温まで焼入れを行う。焼入れは、水焼入れや油焼入れ等を行うことができる。前記二相域加熱によって逆変態したオーステナイトには、CをはじめとするMn、Mo等の合金元素が濃縮しており、焼入れ性の高い状態となっている。よって、焼入れ時の平均冷却速度が遅くとも硬質相となりえるが、硬質相の硬さを確実に高めるため、焼入れは1℃/s以上の平均冷却速度で冷却することが好ましい。 After the holding, quenching is performed to about room temperature. Quenching can be water quenching, oil quenching, or the like. Alloy elements such as C, Mn, and Mo are concentrated in the austenite that has been reverse-transformed by the two-phase region heating, and is in a state of high hardenability. Therefore, even if the average cooling rate at the time of quenching is slow, the hard phase can be obtained, but in order to surely increase the hardness of the hard phase, it is preferable to cool the quenching at an average cooling rate of 1 ° C./s or more.

[焼戻し温度:DIが1.4未満の場合は400℃以上、600℃未満、
DIが1.4以上の場合は400℃以上、650℃以下]
[焼戻し時間:5~60分]
本発明では、高強度を確保するためDIに応じて、焼戻し温度の範囲、特に焼戻し温度の上限を設定している。焼戻し温度が低温では、硬質相が硬くなりすぎて強度が必要以上に高くなる。よって、焼戻し温度の下限は、DIによらず400℃以上とする。焼戻し温度は、DIによらず、450℃以上とすることが好ましく、490℃以上とすることがより好ましい。一方、焼戻し温度が高温になると、硬質相の硬さが低下し、強度不足となりやすく、軟質相と硬質相の硬さ比が低下して降伏比が上昇する。よって焼戻し温度は、DIが1.4未満の場合は600℃未満、DIが1.4以上の場合は650℃以下とする。焼戻し温度は、DIが1.4未満の場合は580℃以下とすることが好ましく、DIが1.4以上の場合は610℃以下とすることが好ましい。また、焼戻しの効果を得るため、焼戻し時間は5分以上とする。好ましくは10分以上である。一方、生産性の観点から、焼戻し時間は60分以下とする。
[Tempering temperature: 400 ° C or higher, less than 600 ° C when DI is less than 1.4,
When DI is 1.4 or more, 400 ° C or higher, 650 ° C or lower]
[Tempering time: 5 to 60 minutes]
In the present invention, in order to secure high strength, the range of the tempering temperature, particularly the upper limit of the tempering temperature is set according to DI. When the tempering temperature is low, the hard phase becomes too hard and the strength becomes higher than necessary. Therefore, the lower limit of the tempering temperature is 400 ° C. or higher regardless of DI. The tempering temperature is preferably 450 ° C. or higher, more preferably 490 ° C. or higher, regardless of DI. On the other hand, when the tempering temperature becomes high, the hardness of the hard phase decreases, the strength tends to be insufficient, the hardness ratio of the soft phase and the hard phase decreases, and the yield ratio increases. Therefore, the tempering temperature is set to less than 600 ° C. when the DI is less than 1.4, and 650 ° C. or lower when the DI is 1.4 or more. The tempering temperature is preferably 580 ° C. or lower when the DI is less than 1.4, and preferably 610 ° C. or lower when the DI is 1.4 or more. In addition, in order to obtain the effect of tempering, the tempering time is set to 5 minutes or more. It is preferably 10 minutes or more. On the other hand, from the viewpoint of productivity, the tempering time is 60 minutes or less.

7.円形鋼管の製造方法 7. Manufacturing method of circular steel pipe

本発明の円形鋼管の製造方法について説明する。該方法では、前記鋼板を用いて、D/t=10~30(但しD:円形鋼管の外径(mm)、t:円形鋼管の板厚(mm))の範囲となるよう曲げ加工を行う工程と、450℃以上、650℃以下の温度で熱処理(SR)を施す工程をこの順に含む。本発明では、前記曲げ加工として冷間曲げ加工を行う。該曲げ加工の方法として、プレスベンド法が挙げられる。前記熱処理(SR)は、前記曲げ加工で導入された歪を除去するために行う。 The method for manufacturing a circular steel pipe of the present invention will be described. In this method, the steel plate is used and bent so as to be in the range of D / t = 10 to 30 (however, D: outer diameter of circular steel pipe (mm), t: plate thickness of circular steel pipe (mm)). This includes a step and a step of performing heat treatment (SR) at a temperature of 450 ° C. or higher and 650 ° C. or lower in this order. In the present invention, cold bending is performed as the bending. As a method of the bending process, a press bend method can be mentioned. The heat treatment (SR) is performed to remove the strain introduced in the bending process.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by the following examples, and can be carried out with appropriate modifications to the extent that it can meet the above-mentioned and later-described intent, and both of them are the technical scope of the present invention. Included in.

表1に示す成分組成を満たす鋼片(スラブ)を常法により得た。表1において空欄は、その成分が検出されなかったことを意味する。上記鋼片を、表2-1、表2-2に示す加熱温度まで加熱してから、表2-1、表2-2に示す条件で熱間圧延と、熱間圧延直後の冷却を行った。なお、表2-1、表2-2における「圧下率」は、860~1000℃の温度域の累積圧下率を示す。また、冷却停止温度から室温までは空冷とした。次いで、室温から表2-1、表2-2に示す焼入れ温度まで再加熱し、この焼入れ温度で表2-1、表2-2に示す焼入れ加熱時間保持した後、焼入れを行った。次いで、表2-1、表2-2に示す条件で焼戻しを行って、表2-1、表2-2に仕上厚として示す板厚の鋼板を得た。 Steel pieces (slabs) satisfying the composition shown in Table 1 were obtained by a conventional method. Blanks in Table 1 mean that the component was not detected. After heating the steel pieces to the heating temperatures shown in Tables 2-1 and 2-2, hot rolling and cooling immediately after hot rolling are performed under the conditions shown in Tables 2-1 and 2-2. rice field. The "reduction rate" in Tables 2-1 and 2-2 indicates the cumulative reduction rate in the temperature range of 860 to 1000 ° C. In addition, air cooling was performed from the cooling shutdown temperature to room temperature. Then, it was reheated from room temperature to the quenching temperature shown in Table 2-1 and Table 2-2, and after maintaining the quenching heating time shown in Table 2-1 and Table 2-2 at this quenching temperature, quenching was performed. Next, tempering was performed under the conditions shown in Tables 2-1 and 2-2 to obtain steel sheets having the plate thickness shown in Tables 2-1 and 2-2 as the finish thickness.

前記焼入れ時および焼戻し時の加熱温度は、鋼板の板厚中心部の温度であり、熱処理炉の炉内雰囲気温度と在炉時間から差分法により計算するか、実験炉を用いた場合は同板厚のダミー材に熱電対を差し込んで実測した温度である。また、焼入れ・焼戻しの前の、加熱-熱間圧延-冷却時の温度は、鋼板の表面温度を測定した。なお、一般的な加熱炉での加熱では鋼板の板厚中心部も概ね表面温度と同等の温度となる。 The heating temperature at the time of quenching and tempering is the temperature at the center of the plate thickness of the steel plate, and is calculated from the atmosphere temperature in the furnace of the heat treatment furnace and the in-fire time by the difference method, or when an experimental furnace is used, the same plate. It is the temperature actually measured by inserting a thermocouple into a thick dummy material. The surface temperature of the steel sheet was measured as the temperature during heating-hot rolling-cooling before quenching / tempering. In addition, in the heating in a general heating furnace, the temperature at the center of the thickness of the steel plate is almost the same as the surface temperature.

得られた鋼板に対して、金属組織の評価を下記の要領で行うと共に、引張試験を下記の要領で実施して引張特性を評価した。本実施例では、いずれの例においても、得られる鋼管がD/t=10、即ちt/D=0.1であることを想定して特性の評価を行った。 The metallographic structure of the obtained steel sheet was evaluated as follows, and a tensile test was carried out as follows to evaluate the tensile properties. In this example, in each of the examples, the characteristics were evaluated on the assumption that the obtained steel pipe was D / t = 10, that is, t / D = 0.1.

[金属組織の観察]
金属組織の観察は以下のようにして実施した。
(1)圧延方向(鋼管の軸方向)に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150~#1000)での研磨、またはそれと同等の機能を有する研磨方法(ダイヤモンドスラリー等の研磨剤を用いた研磨等)により、観察面の鏡面仕上を行った。
(3)研磨されたサンプルを、目的に応じて3%ナイタール溶液を用いて腐食し、硬質相および軟質相を現出させた。
(4)板厚tの1/4の部位において、現出させた組織から各相分率を算出した。
[Observation of metallographic structure]
The metallographic structure was observed as follows.
(1) A sample was taken from the above steel sheet so that a sheet thickness cross section including the front and back surfaces of the steel sheet, which was parallel to the rolling direction (axial direction of the steel pipe) and perpendicular to the surface of the steel sheet, could be observed.
(2) The observation surface was mirror-finished by polishing with wet emery polishing paper (# 150 to # 1000) or by a polishing method having the same function (polishing with a polishing agent such as diamond slurry). ..
(3) The polished sample was corroded with a 3% nital solution according to the purpose to reveal a hard phase and a soft phase.
(4) Each phase fraction was calculated from the exposed structure at the site of 1/4 of the plate thickness t.

<軟質相および硬質相の硬さの測定方法>
軟質相と硬質相の各相の硬さHv(3gf)は、上記腐食されたサンプルを用い、マイクロビッカース硬度計を用いて測定した。測定荷重は0.03Nとした。軟質相の硬さは、セメンタイトが存在しない部分の硬さを測定し、硬質相の硬さはセメンタイトが凝集している部分の硬さを測定した。この測定は、板厚の1/4の位置で少なくとも各相5点以上行った。
<Measuring method of hardness of soft phase and hard phase>
The hardness Hv (3 gf) of each phase of the soft phase and the hard phase was measured using the above corroded sample and using a Micro Vickers hardness tester. The measured load was 0.03N. The hardness of the soft phase was measured by measuring the hardness of the portion where cementite was not present, and the hardness of the hard phase was measured by measuring the hardness of the portion where cementite was agglomerated. This measurement was performed at least 5 points for each phase at a position of 1/4 of the plate thickness.

[引張試験(引張特性の評価)]
板厚の1/4の位置から圧延方向すなわち管軸方向(L方向)に丸棒引張試験片(JIS4号試験片と同じ)を採取して、JIS Z 2201の要領で引張試験を行い、降伏強度YSと引張強度TSを測定し、降伏比YRを求めた。そして、降伏強度が301~450MPa、引張強度が523~616MPa、降伏比が73%以下のものを、高強度かつ低降伏比を示すと評価した。尚、下記表3-1、表3-2では、降伏強度、引張強度、降伏比をそれぞれ、YS、TS、YRと示す。これらの結果を表3-1、表3-2に示す。尚、表3-1、表3-2では、上記引張試験により求められたUE(一様伸び)もあわせて示す。
[Tensile test (evaluation of tensile properties)]
A round bar tensile test piece (same as JIS No. 4 test piece) is collected from a position of 1/4 of the plate thickness in the rolling direction, that is, in the pipe axis direction (L direction), and a tensile test is performed in the same manner as JIS Z 2201, and yield is performed. The strength YS and the tensile strength TS were measured, and the yield ratio YR was determined. Then, those having a yield strength of 301 to 450 MPa, a tensile strength of 523 to 616 MPa, and a yield ratio of 73% or less were evaluated as exhibiting high strength and low yield ratio. In Tables 3-1 and 3-2 below, the yield strength, tensile strength, and yield ratio are shown as YS, TS, and YR, respectively. These results are shown in Table 3-1 and Table 3-2. In addition, in Table 3-1 and Table 3-2, the UE (uniform elongation) obtained by the above tensile test is also shown.

更に、表1の鋼種Eを用いた試験No.28の鋼板を用い、D/t=10とD/t=15の各条件で冷間曲げ加工を行った後、表4に示す温度でSR処理を行って鋼管を得た。そして該鋼管を用い、鋼板と同様の丸棒試験片JIS4号(JIS Z 2201)を用いた条件で引張試験を行った。試験片採取位置は、鋼管外面側から板厚の1/4位置である。その結果を表4に示す。 Further, Test No. using the steel grade E in Table 1 Using 28 steel sheets, cold bending was performed under the conditions of D / t = 10 and D / t = 15, and then SR treatment was performed at the temperatures shown in Table 4 to obtain steel pipes. Then, using the steel pipe, a tensile test was conducted under the condition of using a round bar test piece JIS No. 4 (JIS Z 2201) similar to that of a steel plate. The test piece sampling position is 1/4 of the plate thickness from the outer surface side of the steel pipe. The results are shown in Table 4.

Figure 0007034861000001
Figure 0007034861000001

Figure 0007034861000002
Figure 0007034861000002

Figure 0007034861000003
Figure 0007034861000003

Figure 0007034861000004
Figure 0007034861000004

Figure 0007034861000005
Figure 0007034861000005

Figure 0007034861000006
Figure 0007034861000006

表1~4の結果を考察する。 Consider the results in Tables 1-4.

試験No.1~61は、本発明で規定する成分組成を満たし、かつ規定する条件で鋼板を製造したので、得られた鋼板は、所望の組織を有し、かつ高強度と低降伏比を実現できた。また。試験No.1~61の鋼板はCeqが小さいことから、該鋼板を用いて円形鋼管を製造する際に、優れた溶接性も発揮し得ることがわかる。 Test No. Since 1 to 61 satisfy the component composition specified in the present invention and the steel sheet is manufactured under the specified conditions, the obtained steel sheet has a desired structure, and high strength and low yield ratio can be realized. .. Also. Test No. Since the steel plates 1 to 61 have a small Ceq, it can be seen that excellent weldability can be exhibited when a circular steel pipe is manufactured using the steel plates.

これに対して、試験No.62~80は、成分組成と製造方法の少なくともいずれかが規定する範囲を外れているため、所望の金属組織が得られず、強度、降伏比、溶接性の少なくともいずれかが劣る結果となった。 On the other hand, the test No. In Nos. 62 to 80, since at least one of the component composition and the manufacturing method is out of the specified range, the desired metal structure cannot be obtained, and at least one of the strength, the yield ratio, and the weldability is inferior. ..

このうち、No.62~65、70、71、および77~79は、Nbを添加したため軟質相の硬さが高くなり、YRが高くなった。尚、No.71はCeqが高く、溶接性も確保できていない。 Of these, No. In 62 to 65, 70, 71, and 77 to 79, the hardness of the soft phase was increased and the YR was increased because Nb was added. In addition, No. The Ceq of 71 is high, and weldability cannot be ensured.

No.66および67は、DIが規定範囲を下回っており、かつNo.67は焼戻し温度が高いため、いずれもTSが低くなった。 No. In 66 and 67, the DI is below the specified range, and No. Since the tempering temperature of 67 was high, the TS was low in both cases.

No.68、69および72~76は、焼戻し温度が、DIに対して設定した上限を超えて高めであったため、いずれもTSが低くなった。 No. In 68, 69 and 72-76, the tempering temperature was higher than the upper limit set for DI, so that the TS was low in all of them.

No.80は、焼入れ温度が低く、ガンマ域への逆変態量が少ないため、硬質相の分率が小さくなり、高強度を確保できなかった。 No. In No. 80, since the quenching temperature was low and the amount of reverse transformation to the gamma region was small, the fraction of the hard phase was small and high strength could not be ensured.

一例として、上記No.28の鋼板を用い鋼管を製造した結果、得られた鋼管は、表4に示す通り、目標とするYS≧385MPa、550≦TS≦670MPa、およびYR≦85%を満たした。本発明の鋼板を用いれば、所望の特性の鋼管が得られることがわかる。また、得られた鋼管は、Ceqの小さい鋼板を用いているため、例えば建築構造物の製造時に、優れた溶接性も発揮し得る。 As an example, the above No. As a result of manufacturing a steel pipe using 28 steel plates, the obtained steel pipe satisfied the target YS ≧ 385 MPa, 550 ≦ TS ≦ 670 MPa, and YR ≦ 85% as shown in Table 4. It can be seen that if the steel sheet of the present invention is used, a steel pipe having desired characteristics can be obtained. Further, since the obtained steel pipe uses a steel plate having a small Ceq, excellent weldability can be exhibited, for example, when manufacturing a building structure.

本実施例で得られたデータを用いて作成した、軟質相の硬さと降伏比YRの関係を示したグラフを図4に示す。図4から、軟質相の硬さHv(3gf)を149~180の範囲内とすることによって、YR73%以下を実現できることがわかる。なお、図4中の楕円形の破線で囲んだ低YRを示す比較例(■)は、強度が低いなど他の特性に劣る例である。またNo.80は、上述の通り強度不足の例である。 FIG. 4 shows a graph showing the relationship between the hardness of the soft phase and the yield ratio YR, which was created using the data obtained in this example. From FIG. 4, it can be seen that YR 73% or less can be realized by setting the hardness Hv (3 gf) of the soft phase within the range of 149 to 180. In addition, the comparative example (■) showing the low YR surrounded by the elliptical broken line in FIG. 4 is an example inferior to other characteristics such as low strength. In addition, No. Reference numeral 80 is an example of insufficient strength as described above.

本発明の円形鋼管用鋼板は、高強度かつ低降伏比を示し、更に溶接性に優れているので、低降伏比で引張強さが550MPa級以上である円形鋼管の製造に好適である。該円形鋼管は、特に耐震性に優れており、建築構造物に好適に用いることができる。 The steel sheet for circular steel pipes of the present invention exhibits high strength, low yield ratio, and excellent weldability, and is therefore suitable for manufacturing circular steel pipes having a low yield ratio and a tensile strength of 550 MPa class or more. The circular steel pipe is particularly excellent in earthquake resistance and can be suitably used for building structures.

Claims (6)

成分組成が、
C :0.125~0.170質量%、
Si:0.10~0.60質量%、
Mn:0.90~1.60質量%、
P :0質量%超、0.015質量%以下、
S :0質量%超、0.008質量%以下、
Al:0.010~0.080質量%、
N :0.0010~0.0065質量%、および
残部が鉄および不可避的不純物からなる円形鋼管用鋼板であって、
板厚が70mm以上であり、
下記式(1)で表される炭素当量Ceqが0.42質量%以下、
下記式(2)で表される溶接割れ感受性組成Pcmが0.15~0.27質量%、および
下記式(3)で表される焼入性倍数DIが1.05以上を満たし、
板厚の1/4位置における金属組織が硬質相である焼戻しベイナイトまたは、焼戻しマルテンサイトのいずれか1つ以上の組織と軟質相である焼戻しベイナイトおよび擬ポリゴナルフェライトからなり、硬質相の分率が15~27面積%、残部は軟質相であり、軟質相の硬さHv(3gf)が149~180、硬質相の硬さHv(3gf)が260~330であり、
降伏比が73%以下であり、降伏強度YSが下記式(4)を満たすと共に、引張強度TSが下記式(5)を満たす円形鋼管用鋼板。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14…(1)
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]…(2)
Mn量が1.20質量%以上の場合は、
DI=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)
Mn量が1.20質量%未満の場合は、
DI=1.16×([C]/10)0.5×(0.7×[Si]+1)×(3.33×[Mn]+1)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)…(3)
ただし、上記式(1)~(3)中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
YS=(385-840×t/D)~(710-940×t/D)×0.73(MPa)…(4)
TS=(540-170×t/D)~(710-940×t/D)(MPa)…(5)
ただし、上記式(4)および(5)中のDは円形鋼管の外径(mm)、tは円形鋼管の板厚(mm)を示し、t/Dは0.033~0.10の範囲内である
Ingredient composition,
C: 0.125 to 0.170% by mass,
Si: 0.10 to 0.60% by mass,
Mn: 0.90 to 1.60% by mass,
P: More than 0% by mass, 0.015% by mass or less,
S: More than 0% by mass, 0.008% by mass or less,
Al: 0.010 to 0.080% by mass,
N: 0.0010 to 0.0065% by mass, and the balance is a steel sheet for circular steel pipes composed of iron and unavoidable impurities.
The plate thickness is 70 mm or more,
The carbon equivalent Ceq represented by the following formula (1) is 0.42% by mass or less,
The weld crack susceptibility composition Pcm represented by the following formula (2) satisfies 0.15 to 0.27% by mass, and the hardenable multiple DI represented by the following formula (3) satisfies 1.05 or more.
The metal structure at the 1/4 position of the plate thickness is composed of tempered bainite, which is a hard phase, or tempered bainite, which is a soft phase , and pseudopolygonal ferrite, which are one or more structures of tempered martensite, and the fraction of the hard phase. Is 15 to 27 area%, the balance is the soft phase, the hardness Hv (3 gf) of the soft phase is 149 to 180, and the hardness Hv (3 gf) of the hard phase is 260 to 330.
A steel sheet for circular steel pipes having a yield ratio of 73% or less, a yield strength YS satisfying the following formula (4), and a tensile strength TS satisfying the following formula (5).
Ceq = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 ... (1)
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] ... (2)
When the amount of Mn is 1.20% by mass or more,
DI = 1.16 x ([C] / 10) 0.5 x (0.7 x [Si] + 1) x (5.1 x ([Mn] -1.2) + 5) x (0.35 x) [Cu] +1) x (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] +1) x (1.75 x [V] +1) x (200) × [B] +1)
If the amount of Mn is less than 1.20% by mass,
DI = 1.16 × ([C] / 10) 0.5 × (0.7 × [Si] +1) × (3.33 × [Mn] +1) × (0.35 × [Cu] +1) × (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] +1) x (1.75 x [V] +1) x (200 x [B] +1) … (3)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] in the above formulas (1) to (3) are The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V and B shown in mass% are shown respectively, and the elements not contained are set to zero.
YS = (385-840 x t / D) to (710-940 x t / D) x 0.73 (MPa) ... (4)
TS = (540-170 × t / D) to (710-940 × t / D) (MPa) ... (5)
However, D in the above formulas (4) and (5) indicates the outer diameter (mm) of the circular steel pipe, t indicates the plate thickness (mm) of the circular steel pipe, and t / D is 0.033 to 0.10. It is within the range .
更に、
Cu:0質量%超、0.35質量%以下、
Ni:0質量%超、0.35質量%以下、
Cr:0質量%超、0.35質量%以下、
Mo:0質量%超、0.35質量%以下、
V :0質量%超、0.050質量%以下、
B :0質量%超、0.0030質量%以下、および
Ti:0.005質量%超、0.030質量%以下
よりなる群から選択される1種以上の元素を含む請求項1に記載の円形鋼管用鋼板。
In addition,
Cu: More than 0% by mass, 0.35% by mass or less,
Ni: More than 0% by mass, 0.35% by mass or less,
Cr: More than 0% by mass, 0.35% by mass or less,
Mo: More than 0% by mass, 0.35% by mass or less,
V: More than 0% by mass, 0.050% by mass or less,
B: The first aspect of claim 1 comprising one or more elements selected from the group consisting of more than 0% by mass, 0.0030% by mass or less, and Ti: more than 0.005% by mass, 0.030% by mass or less. Steel plate for circular steel pipe.
更に、Ca:0質量%超、0.0030質量%以下を含む請求項1または2に記載の円形鋼管用鋼板。 The steel sheet for circular steel pipe according to claim 1 or 2, further comprising Ca: more than 0% by mass and 0.0030% by mass or less. 請求項1~3のいずれかに記載の円形鋼管用鋼板で形成された円形鋼管。 A circular steel pipe formed of the steel plate for circular steel pipe according to any one of claims 1 to 3. 請求項1~3のいずれかに記載の円形鋼管用鋼板の製造方法であって、
鋼片を950~1250℃に加熱し、熱間圧延を、860~1000℃の温度域の累積圧下率が30%以上、かつ仕上圧延温度が840~960℃の条件で行った後、平均冷却速度2~30℃/sで、800℃以上の冷却開始温度から、500℃以下の冷却停止温度まで冷却し、
次いで熱間圧延材を、焼入れ温度:735~850℃、焼入れ加熱時間:5~60分で再加熱してから焼入れを行い、その後、焼戻し温度:DIが1.4未満の場合は400℃以上、600℃未満、DIが1.4以上の場合は400℃以上、650℃以下、焼戻し時間:5~60分の条件で焼戻しを行う円形鋼管用鋼板の製造方法。
The method for manufacturing a steel sheet for a circular steel pipe according to any one of claims 1 to 3.
The steel pieces are heated to 950 to 1250 ° C., hot rolling is performed under the conditions that the cumulative rolling reduction in the temperature range of 860 to 1000 ° C. is 30% or more and the finish rolling temperature is 840 to 960 ° C., and then the average cooling is performed. Cool from a cooling start temperature of 800 ° C or higher to a cooling stop temperature of 500 ° C or lower at a speed of 2 to 30 ° C / s.
Next, the hot-rolled material is reheated at a quenching temperature of 735 to 850 ° C. and a quenching heating time of 5 to 60 minutes, and then quenched. Then, if the tempering temperature: DI is less than 1.4, the temperature is 400 ° C. or higher. A method for manufacturing a steel sheet for a circular steel pipe, which is tempered under the conditions of less than 600 ° C., 400 ° C. or higher when DI is 1.4 or higher, 650 ° C. or lower, and tempering time: 5 to 60 minutes.
請求項4に記載の円形鋼管を製造する方法であって、
請求項1~3のいずれかに記載の円形鋼管用鋼板を用い、
D/t=10~30(Dは円形鋼管の外径(mm)、tは円形鋼管の板厚(mm))を満たすよう曲げ加工を行う工程と、
450℃以上、650℃以下の温度で熱処理を施す工程をこの順に含む円形鋼管の製造方法。
The method for manufacturing a circular steel pipe according to claim 4.
Using the steel sheet for circular steel pipe according to any one of claims 1 to 3,
Bending process to satisfy D / t = 10 to 30 (D is the outer diameter of the circular steel pipe (mm), t is the plate thickness of the circular steel pipe (mm)).
A method for manufacturing a circular steel pipe, which comprises a step of performing heat treatment at a temperature of 450 ° C. or higher and 650 ° C. or lower in this order.
JP2018147157A 2018-08-03 2018-08-03 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods Active JP7034861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018147157A JP7034861B2 (en) 2018-08-03 2018-08-03 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018147157A JP7034861B2 (en) 2018-08-03 2018-08-03 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2020020028A JP2020020028A (en) 2020-02-06
JP7034861B2 true JP7034861B2 (en) 2022-03-14

Family

ID=69589602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018147157A Active JP7034861B2 (en) 2018-08-03 2018-08-03 Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP7034861B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023328A (en) 2005-07-14 2007-02-01 Kobe Steel Ltd Method for manufacturing steel sheet with low yield ratio, high strength and high toughness
JP2007270304A (en) 2006-03-31 2007-10-18 Kobe Steel Ltd Manufacturing method of press-bend cold rolled circular steel tube having excellent earthquake resistance
JP2007332402A (en) 2006-06-13 2007-12-27 Jfe Steel Kk Steel material superior in fatigue-crack propagation resistance and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529044B2 (en) * 1991-10-24 1996-08-28 新日本製鐵株式会社 Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH07109521A (en) * 1993-10-12 1995-04-25 Nippon Steel Corp Manufacturing method of low yield ratio 600N / mm2 class steel pipe for building by cold forming
JPH08100234A (en) * 1994-09-30 1996-04-16 Nkk Corp Production of steel plate with low yield ratio, high toughness, and high tensile strength
JPH09157742A (en) * 1995-12-01 1997-06-17 Nkk Corp Manufacture of high tensile strength steel plate
KR101096992B1 (en) * 2008-03-27 2011-12-20 가부시키가이샤 고베 세이코쇼 780MPa class resistance composite round steel pipe with excellent seismic resistance and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023328A (en) 2005-07-14 2007-02-01 Kobe Steel Ltd Method for manufacturing steel sheet with low yield ratio, high strength and high toughness
JP2007270304A (en) 2006-03-31 2007-10-18 Kobe Steel Ltd Manufacturing method of press-bend cold rolled circular steel tube having excellent earthquake resistance
JP2007332402A (en) 2006-06-13 2007-12-27 Jfe Steel Kk Steel material superior in fatigue-crack propagation resistance and manufacturing method therefor

Also Published As

Publication number Publication date
JP2020020028A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP4940882B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
CN106133154A (en) For the method producing high intensity flat product
JP5194522B2 (en) High-strength, high-workability hot-rolled steel sheet excellent in workability of the friction stir welding method and its production
JP6645107B2 (en) H-section steel and manufacturing method thereof
WO2018020660A1 (en) High-strength steel sheet
WO2017077967A1 (en) Steel member and steel plate, and production processes therefor
JP2007138289A (en) Thick high strength hot rolled steel plate and its production method
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
CN113692456A (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP7022822B2 (en) Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
JP7034862B2 (en) Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
JP7048378B2 (en) High strength and high ductility steel sheet
EP2860276B1 (en) Steel plate
JPH10251794A (en) Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
JP6177733B2 (en) Low yield ratio high-strength steel sheet with large work-hardening ability and excellent uniform elongation and weldability, and its manufacturing method
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP7048379B2 (en) High strength and high ductility steel sheet
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
JP7034861B2 (en) Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP6179609B2 (en) Manufacturing method of thick high-strength steel sheet with excellent cold workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R151 Written notification of patent or utility model registration

Ref document number: 7034861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151