JP7031263B2 - Lithium recovery method - Google Patents
Lithium recovery method Download PDFInfo
- Publication number
- JP7031263B2 JP7031263B2 JP2017232984A JP2017232984A JP7031263B2 JP 7031263 B2 JP7031263 B2 JP 7031263B2 JP 2017232984 A JP2017232984 A JP 2017232984A JP 2017232984 A JP2017232984 A JP 2017232984A JP 7031263 B2 JP7031263 B2 JP 7031263B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- aluminum
- wastewater
- manufacturing process
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims description 112
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 110
- 238000000034 method Methods 0.000 title claims description 63
- 238000011084 recovery Methods 0.000 title description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 59
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 50
- 238000004519 manufacturing process Methods 0.000 claims description 44
- 238000001179 sorption measurement Methods 0.000 claims description 44
- 239000002351 wastewater Substances 0.000 claims description 39
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 31
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 29
- 229910001416 lithium ion Inorganic materials 0.000 claims description 29
- 239000007864 aqueous solution Substances 0.000 claims description 28
- 238000010828 elution Methods 0.000 claims description 27
- 230000002378 acidificating effect Effects 0.000 claims description 20
- 239000003729 cation exchange resin Substances 0.000 claims description 19
- 239000007774 positive electrode material Substances 0.000 claims description 19
- 239000011734 sodium Substances 0.000 claims description 18
- 125000000524 functional group Chemical group 0.000 claims description 14
- 239000003456 ion exchange resin Substances 0.000 claims description 14
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 14
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 9
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 159000000000 sodium salts Chemical class 0.000 claims description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 9
- 235000011152 sodium sulphate Nutrition 0.000 claims description 9
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 7
- 238000006467 substitution reaction Methods 0.000 claims description 5
- 239000011347 resin Substances 0.000 description 26
- 229920005989 resin Polymers 0.000 description 26
- 239000007788 liquid Substances 0.000 description 24
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 15
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 15
- 229910052808 lithium carbonate Inorganic materials 0.000 description 15
- -1 aluminum ions Chemical class 0.000 description 13
- 239000003480 eluent Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 150000003983 crown ethers Chemical class 0.000 description 11
- 239000002253 acid Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 238000000638 solvent extraction Methods 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002905 metal composite material Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical group [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、リチウム二次電池用正極材料のリチウムとアルミニウムを含有する製造工程排水からリチウムを回収するリチウムの回収方法に関する。 The present invention relates to a method for recovering lithium from waste in a manufacturing process containing lithium and aluminum as a positive electrode material for a lithium secondary battery.
リチウムは陶器やガラスの添加剤、鉄鋼連続鋳造用のガラスフラックス、グリース、医薬品、電池等、産業において広く利用されている。特に、リチウム二次電池はエネルギー密度が高く、電圧が高いことから、最近ではノートパソコンなどの電子機器のバッテリーや電気自動車・ハイブリッド車の車載バッテリーとしての用途が拡大しており、需要が急増している。 Lithium is widely used in industries such as additives for pottery and glass, glass flux for continuous steel casting, grease, pharmaceuticals, and batteries. In particular, lithium secondary batteries have high energy density and high voltage, so their use as batteries for electronic devices such as laptop computers and in-vehicle batteries for electric vehicles and hybrid vehicles has recently expanded, and demand has increased sharply. ing.
最近では資源の有効活用のため、リチウム二次電池用正極材料の製造工程で排出される排水(以下、「製造工程排水」ともいう)からリチウムを回収することが推進されている。 Recently, in order to make effective use of resources, it has been promoted to recover lithium from wastewater discharged in the manufacturing process of positive electrode materials for lithium secondary batteries (hereinafter, also referred to as “manufacturing process wastewater”).
例えば、ニッケル系正極材料(NCA)における製造工程排水にはリチウムとアルミニウムが含まれている。この製造工程排水からリチウムを回収するにはリチウムとアルミニウムを分離する必要があるが、分離方法として特許文献1に中和沈殿法が、特許文献2及び3に溶媒抽出法が提案されている。
For example, the manufacturing process wastewater in a nickel-based positive electrode material (NCA) contains lithium and aluminum. In order to recover lithium from this manufacturing process wastewater, it is necessary to separate lithium and aluminum. As separation methods, a neutralization precipitation method is proposed in Patent Document 1, and a solvent extraction method is proposed in
しかし、特許文献1の中和沈殿法及び特許文献2の溶媒抽出法ではアルミニウム分離後の製造工程排水にリチウムが残留する。製造工程排水に残留したリチウム濃度は低いため、リチウムを炭酸塩又は水酸化物塩として回収するには製造工程排水を蒸発させリチウムを濃縮する必要がある。このため、リチウム回収のコストが高くなり経済的に好ましくないという問題があった。
However, in the neutralization precipitation method of Patent Document 1 and the solvent extraction method of
特許文献3の溶媒抽出法では、クラウンエーテルを用いて製造工程排水からリチウムを分離し、その後でクラウンエーテルからリチウムを逆抽出する。この方法は逆抽出時にリチウムの濃縮が可能であるため、蒸発による濃縮を必要とせずコスト的に有利である。しかし、クラウンエーテルが高価であること、溶媒抽出法は排水処理が必要となり工程が複雑になることからリチウム回収のコストが高くなるという問題があった。 In the solvent extraction method of Patent Document 3, lithium is separated from the wastewater in the manufacturing process using crown ether, and then lithium is back-extracted from the crown ether. Since this method can concentrate lithium at the time of back extraction, it does not require concentration by evaporation and is advantageous in terms of cost. However, there are problems that the cost of lithium recovery is high because the crown ether is expensive and the solvent extraction method requires wastewater treatment and the process is complicated.
本発明は上記課題に鑑みてなされたものであり、リチウムとアルミニウムを含有するリチウム二次電池用正極材料の製造工程排水からリチウムをより簡便に回収し、かつ回収コストを低減する方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a method for more easily recovering lithium from wastewater in the manufacturing process of a positive electrode material for a lithium secondary battery containing lithium and aluminum, and reducing the recovery cost. The purpose is.
本発明の一態様は、リチウム二次電池用正極材料のリチウムとアルミニウムを含有する製造工程排水からリチウムを回収するリチウムの回収方法であって、製造工程排水にイオン交換樹脂を接触させてイオン交換樹脂にリチウムイオンを選択的に吸着させる吸着工程と、吸着工程においてリチウムイオンを選択的に吸着させたイオン交換樹脂にナトリウム塩を含有する水溶液を接触させてイオン交換樹脂からリチウムイオンを溶離させる溶離工程とを有し、イオン交換樹脂は、スルホン酸基のナトリウム型の官能基を有する強酸性陽イオン交換樹脂であり、吸着工程における製造工程排水のpHは9以上であり、吸着工程における製造工程排水のリチウム濃度は0.3g/L以上であることを特徴とする。 One aspect of the present invention is a method for recovering lithium from a manufacturing process wastewater containing lithium and aluminum as a positive electrode material for a lithium secondary battery, in which an ion exchange resin is brought into contact with the manufacturing process wastewater to exchange ions. Elution to elute lithium ions from the ion exchange resin by contacting an aqueous solution containing a sodium salt with the ion exchange resin that selectively adsorbs lithium ions in the adsorption step and the adsorption step that selectively adsorbs lithium ions to the resin. The ion exchange resin is a strongly acidic cation exchange resin having a sodium-type functional group of a sulfonic acid group , and the pH of the manufacturing process wastewater in the adsorption process is 9 or more, and the ion exchange resin is in the adsorption process. The lithium concentration of the manufacturing process wastewater is 0.3 g / L or more .
このようにすれば、製造工程排水から選択的にリチウムを回収することができる。そして、製造工程排水を蒸発させリチウムを濃縮させる工程無しにリチウムを濃縮することができるため、リチウムをより簡便に回収し、かつ回収コストを低減することができる。 In this way, lithium can be selectively recovered from the wastewater from the manufacturing process. Since lithium can be concentrated without the process of evaporating wastewater from the manufacturing process and concentrating lithium, lithium can be recovered more easily and the recovery cost can be reduced.
このようにすれば吸着工程において、製造工程排水中のアルミニウムとリチウムを分離させられ、またイオン交換反応が阻害されることを防ぐことができるので、リチウムをより簡便に回収し、かつ回収コストを低減することができる。 By doing so, in the adsorption process, aluminum and lithium in the wastewater of the manufacturing process can be separated, and the ion exchange reaction can be prevented from being hindered. Therefore, lithium can be recovered more easily and the recovery cost can be reduced. Can be reduced.
このようにすれば、吸着工程において選択性の低いリチウムイオンをイオン交換樹脂に吸着させることができる。 By doing so, lithium ions having low selectivity in the adsorption step can be adsorbed on the ion exchange resin.
また、本発明の一態様では置換工程は、吸着工程の前にさらにイオン交換樹脂に含有される官能基を置換する置換工程を有し、置換工程は、官能基をスルホン酸基からナトリウム型に置換してもよい。
Further, in one aspect of the present invention, the substitution step further comprises a substitution step of substituting the functional group contained in the ion exchange resin before the adsorption step, and the substitution step changes the functional group from the sulfonic acid group to the sodium type . May be replaced with.
このようにすれば吸着工程におけるpHの低下を防ぐことができ、吸着工程におけるイオン交換反応が阻害されることを防ぐことができる。 By doing so, it is possible to prevent a decrease in pH in the adsorption step and prevent the ion exchange reaction in the adsorption step from being hindered.
また、本発明の一態様では溶離工程におけるナトリウム塩は硫酸ナトリウムであるとしてもよい。 Further, in one aspect of the present invention, the sodium salt in the elution step may be sodium sulfate.
例えば溶離工程おいて塩化ナトリウムを用いた場合、沈殿回収した炭酸リチウムに塩素が残留するが、このようにすれば沈殿回収した炭酸リチウムに塩素が残留することを防ぐことができるため、塩素による設備の構造材腐食を防ぐことができる。 For example, when sodium chloride is used in the elution step, chlorine remains in the precipitated lithium carbonate, but in this way it is possible to prevent chlorine from remaining in the precipitated lithium carbonate. It is possible to prevent corrosion of structural materials.
本発明によれば製造工程排水から選択的にリチウムを回収することができ、製造工程排水を蒸発させリチウムを濃縮させる工程無しにリチウムを濃縮することができるため、リチウムとアルミニウムを含有するリチウム二次電池用正極材料の製造工程排水からリチウムをより簡便に回収し、かつ回収コストを低減することができる。 According to the present invention, lithium can be selectively recovered from the wastewater in the manufacturing process, and lithium can be concentrated without the step of evaporating the wastewater in the manufacturing process and concentrating lithium. Therefore, lithium ion containing lithium and aluminum can be concentrated. Lithium can be more easily recovered from the wastewater in the manufacturing process of the positive electrode material for the next battery, and the recovery cost can be reduced.
以下、本発明の具体的な実施形態(以下、「本実施形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention.
[1.リチウム二次電池用正極材料の製造工程の概要]
まず、リチウム二次電池用正極材料の製造工程の概要について図面を使用しながら説明する。図1は、リチウム二次電池用正極材料の製造工程の概略を示すフロー図である。リチウム二次電池用正極材料の製造工程は、図1に示すように、晶析工程S101と分離工程S102と焼成工程S103と水洗工程S104とから構成される。詳細には、晶析工程S101は、ニッケル、コバルト、又はアルミニウム等の原料からなる各硫酸金属塩の混合水溶液に、水酸化ナトリウム水溶液を加えて、これらの金属水酸化物を共沈させて金属水酸化物を含むスラリーを得る工程である。また、分離工程S102は、得られた金属水酸化物を含むスラリーから金属複合水酸化物を固液分離等により分離する工程である。また、焼成工程S103は、得られた金属複合水酸化物と水酸化リチウムとを混合し、この混合物を所定の温度で焼成することによりリチウム金属複合酸化物を得る工程である。そして、水洗工程S104は、得られたリチウム金属複合酸化物を水洗処理する工程である。
[1. Overview of the manufacturing process of positive electrode materials for lithium secondary batteries]
First, an outline of the manufacturing process of the positive electrode material for a lithium secondary battery will be described with reference to the drawings. FIG. 1 is a flow chart showing an outline of a manufacturing process of a positive electrode material for a lithium secondary battery. As shown in FIG. 1, the manufacturing process of the positive electrode material for a lithium secondary battery includes a crystallization step S101, a separation step S102, a firing step S103, and a washing step S104. Specifically, in the crystallization step S101, a sodium hydroxide aqueous solution is added to a mixed aqueous solution of each metal sulfate salt made of a raw material such as nickel, cobalt, or aluminum, and these metal hydroxides are co-precipitated into a metal. This is a step of obtaining a slurry containing hydroxide. Further, the separation step S102 is a step of separating the metal composite hydroxide from the obtained slurry containing the metal hydroxide by solid-liquid separation or the like. Further, the firing step S103 is a step of mixing the obtained metal composite hydroxide and lithium hydroxide and firing this mixture at a predetermined temperature to obtain a lithium metal composite oxide. The water washing step S104 is a step of washing the obtained lithium metal composite oxide with water.
リチウム二次電池用正極材料の製造工程のうち、水洗工程S104では、正極材料を水洗するため、リチウムイオンとアルミニウムイオンを高濃度で含む排水が排出される。
排水濃度は、例えばリチウムイオンが、1~4g/Lであり、アルミニウムイオンが、0.04~0.18g/Lを有している。このような排水を公共用水域に放流することは、リチウムが工業的にも有用な金属であるため好ましくない。そして、資源のリサイクルにおいて、製造工程において排出されるリチウムを廃棄せずに回収し有効活用することが求められている。
In the washing step S104 of the manufacturing process of the positive electrode material for the lithium secondary battery, since the positive electrode material is washed with water, wastewater containing a high concentration of lithium ions and aluminum ions is discharged.
The wastewater concentration is, for example, 1 to 4 g / L for lithium ions and 0.04 to 0.18 g / L for aluminum ions. Discharging such wastewater into public water bodies is not preferable because lithium is an industrially useful metal. In the recycling of resources, it is required to recover lithium discharged in the manufacturing process without discarding it and effectively utilize it.
上述したように、例えばNCAの製造工程排水はリチウムとアルミニウムを含む水溶液になるため、この製造工程排水からリチウム化合物を回収しようとした場合、アルミニウムの分離が必要になる。 As described above, for example, the wastewater from the manufacturing process of NCA becomes an aqueous solution containing lithium and aluminum, and therefore, when trying to recover the lithium compound from the wastewater from the manufacturing process, it is necessary to separate aluminum.
アルミニウムとリチウムを含有する水溶液からアルミニウムを分離するには中和沈殿法(例えば特許文献1)、溶媒抽出法(例えば特許文献2及び3)、イオン交換法などがある。
To separate aluminum from an aqueous solution containing aluminum and lithium, there are a neutralization precipitation method (for example, Patent Document 1), a solvent extraction method (for example,
中和沈殿法ではアルミニウムが水酸化物となるpH領域にpH調整を行い、アルミニウムを沈殿物として分離する。この方法を用いるとリチウムは水溶液中に残留する。 In the neutralization precipitation method, the pH is adjusted in the pH range where aluminum becomes a hydroxide, and aluminum is separated as a precipitate. When this method is used, lithium remains in the aqueous solution.
溶媒抽出法では、例えばカルボン酸やリン酸などを官能基として持つ、酸性抽出剤が広く用いられているが、酸性抽出剤は通常、形成する酸化物の塩基性が高い金属ほど抽出し難いことから、リチウムはアルミニウムより抽出し難い。このため、アルミニウムを抽出して分離する。この方法を用いた場合も、リチウムは水溶液中に残留する。 In the solvent extraction method, for example, an acidic extractant having a carboxylic acid or a phosphoric acid as a functional group is widely used. However, it is usually difficult to extract an acidic extractant as the oxide having a higher basicity is formed. Therefore, lithium is more difficult to extract than aluminum. Therefore, aluminum is extracted and separated. Even when this method is used, lithium remains in the aqueous solution.
イオン交換法では、カチオンを捕捉するために陽イオン交換樹脂やキレート樹脂が広く用いられているが、アルミニウムよりリチウムを選択的に捕捉する樹脂はないため、アルミニウムを捕捉して液から分離する。この方法を用いた場合もリチウムは水溶液中に残留する。 In the ion exchange method, cation exchange resins and chelate resins are widely used to capture cations, but since there is no resin that selectively captures lithium over aluminum, aluminum is captured and separated from the liquid. Lithium remains in the aqueous solution even when this method is used.
このように、アルミニウムを選択的に除去して液中にリチウムを残す分離法は多くあるが、リチウムを炭酸塩又は水酸化物として回収しようとした場合、液中のリチウム濃度が低い場合は不利になる。例えば炭酸リチウムで回収しようとした場合、炭酸ナトリウムなどの炭酸源を添加して、炭酸リチウムを沈殿させて回収するが、炭酸リチウムは20℃で約13g/Lの溶解度を持つため、リチウム濃度はこの濃度以上でなければならない。鉱石や工程中間品の浸出液は条件を調整することで、リチウム濃度を高くすることはできるが、浸出時のpHを下げるために酸を多く消費するなど経済的には好ましくない状況になる可能性がある。また、製造工程排水中のリチウム濃度は通常ロスを低減するために低く抑えられることから、この濃度以上になることはほとんどない。 In this way, there are many separation methods that selectively remove aluminum and leave lithium in the liquid, but when trying to recover lithium as a carbonate or hydroxide, it is disadvantageous if the lithium concentration in the liquid is low. become. For example, when trying to recover with lithium carbonate, a carbonic acid source such as sodium carbonate is added to precipitate and recover lithium carbonate, but since lithium carbonate has a solubility of about 13 g / L at 20 ° C, the lithium concentration is high. Must be above this concentration. Lithium concentration can be increased by adjusting the conditions of the leachate of ore and process intermediate products, but it may be economically unfavorable because it consumes a large amount of acid to lower the pH at the time of leachation. There is. Further, since the lithium concentration in the wastewater from the manufacturing process is usually kept low in order to reduce the loss, it rarely exceeds this concentration.
このため、製造工程排水中のリチウム濃度が低い場合は濃縮を行う必要がある。水酸化リチウムで回収しようとした場合でも、水酸化リチウムは炭酸リチウムに消石灰を添加して転換する場合が多いため、中間品の炭酸リチウムを得るために濃縮する必要がある。 Therefore, if the lithium concentration in the wastewater from the manufacturing process is low, it is necessary to concentrate it. Even when recovery is attempted with lithium hydroxide, lithium hydroxide is often converted by adding slaked lime to lithium carbonate, so it is necessary to concentrate it in order to obtain an intermediate lithium carbonate.
良く知られている濃縮法として蒸発濃縮法があるが、水を蒸発させるには標準大気圧で539kcal/kgと多大なエネルギーが必要になり、エネルギーコストが高くなるため、経済的に好ましくない。 There is an evaporation concentration method as a well-known concentration method, but it is economically unfavorable because a large amount of energy of 539 kcal / kg at standard atmospheric pressure is required to evaporate water and the energy cost is high.
溶媒抽出法とイオン交換法は回収対象の金属を抽出又は吸着した後、逆抽出又は溶離することで精製した水溶液にするが、逆抽出液や溶離液の流量を調整することで、回収対象の金属を濃縮することができる。このため、リチウムを選択的に抽出又は吸着できれば、エネルギーコストの高い蒸発濃縮法を用いなくても、炭酸リチウムを沈殿させることが可能なリチウム濃度の精製液を得ることが可能になる。 In the solvent extraction method and the ion exchange method, the metal to be recovered is extracted or adsorbed, and then back-extracted or eluted to obtain a purified aqueous solution. The metal can be concentrated. Therefore, if lithium can be selectively extracted or adsorbed, it becomes possible to obtain a purified liquid having a lithium concentration capable of precipitating lithium carbonate without using an energy-intensive evaporative concentration method.
アルカリ金属やアルカリ土類金属を選択的に抽出できる抽出剤又は吸着できる樹脂としては大環状化合物であるクラウンエーテルを官能基の持つ抽出剤又は樹脂が知られている(例えば特許文献3)。クラウンエーテルは金属イオンを環の中に取り込むことで錯体を形成することが知られており、環の半径に適合するイオン半径を持つ金属イオンに選択性を持つ。環を構成する元素が炭素と酸素のクラウンエーテルは特にアルカリ金属やアルカリ土類金属に親和性があり、12-crown-4がリチウムと特異的に錯体を形成することが知られている。しかし、クラウンエーテルは水溶性があるため、相分離する必要のある溶媒抽出法には適さない。クラウンエーテルに親油性のアルキル基などを修飾して、非水溶性の性質にすることも考えられるが、特別な合成が必要になり工業的に利用しようとした場合、コストが高価になるといったことや、供給安定性が保てないといった問題から、利用は現実的ではない。 As an extractant or a resin capable of selectively extracting an alkali metal or an alkaline earth metal, an extractant or a resin having a crown ether as a macrocyclic compound as a functional group is known (for example, Patent Document 3). Crown ethers are known to form complexes by incorporating metal ions into the ring, and have selectivity for metal ions with an ionic radius that matches the radius of the ring. It is known that crown ethers in which the elements constituting the ring are carbon and oxygen have an particular affinity for alkali metals and alkaline earth metals, and that 12-crown-4 specifically forms a complex with lithium. However, since crown ethers are water-soluble, they are not suitable for solvent extraction methods that require phase separation. It is conceivable to modify crown ethers with lipophilic alkyl groups to make them water-insoluble, but if special synthesis is required and industrial use is attempted, the cost will be high. It is not realistic to use because of the problem that supply stability cannot be maintained.
さらに、溶媒抽出法は抽出後の抽出残液に微小な液滴の状態で有機相が混入するため、通常排水を放流するには活性炭処理などが必要になる。また、抽出剤などの有機溶媒由来の水溶性不純物や水溶性分解物などが水相に溶解し、排水中のCODが増加するため、酸化分解処理などの排水処理が必要になり、工程が複雑になり、処理コストが高くなる傾向がある。 Further, in the solvent extraction method, since the organic phase is mixed in the extraction residual liquid after extraction in the form of minute droplets, activated carbon treatment or the like is usually required to discharge the wastewater. In addition, water-soluble impurities derived from organic solvents such as extractants and water-soluble decomposition products dissolve in the aqueous phase, and COD in the wastewater increases, which requires wastewater treatment such as oxidative decomposition treatment, which complicates the process. Therefore, the processing cost tends to be high.
このため、クラウンエーテルを担持させた樹脂を用いることが最も簡便な方法になるが、クラウンエーテルは試薬自体が高価であり、樹脂も高価となり、現在は分析用のカラムとして用いる程度にしか実用例はない。したがって、クラウンエーテルを用いて大規模に精製を行うことは現時点ではコスト的に不利である。 For this reason, it is the simplest method to use a resin on which crown ether is supported, but the reagent itself is expensive and the resin is also expensive for crown ether, and at present, it is only practically used as a column for analysis. There is no. Therefore, large-scale purification using crown ethers is currently disadvantageous in terms of cost.
このような問題があり、アルミニウムとリチウムを含有する水溶液から選択的にリチウムを回収し、炭酸リチウムや水酸化リチウムを得るために適した濃度の水溶液とするための簡便な方法が求められていた。 Due to such a problem, there has been a demand for a simple method for selectively recovering lithium from an aqueous solution containing aluminum and lithium to obtain an aqueous solution having a concentration suitable for obtaining lithium carbonate or lithium hydroxide. ..
このような実情に鑑み、発明者らは鋭意検討を重ねた結果、アルミニウムとリチウムを含有する製造工程排水を所定のpHに調整し、官能基をナトリウム型(以下、Na型と記載)に調整したスルホン酸基を有する強酸性陽イオン交換樹脂と接触させることでリチウムイオンを選択的に吸着してアルミニウムイオンを液中に残す吸着工程と、ナトリウム塩を含む水溶液を用いて強酸性陽イオン交換樹脂に吸着したリチウムイオンを溶離する溶離工程とを組み合わせることで、簡便にアルミニウムとリチウムを含有する製造工程排水から選択的にリチウムを回収し、炭酸リチウムや水酸化リチウムを得るために適した濃度の水溶液にすることが可能になることを見出し、本発明を完成するに至った。 In view of such circumstances, as a result of diligent studies, the inventors adjusted the wastewater from the manufacturing process containing aluminum and lithium to a predetermined pH, and adjusted the functional group to a sodium type (hereinafter referred to as Na type). A adsorption step that selectively adsorbs lithium ions by contacting them with a strongly acidic cation exchange resin having a sulfonic acid group to leave aluminum ions in the liquid, and a strong acid cation exchange using an aqueous solution containing a sodium salt. By combining with an elution process that elutes lithium ions adsorbed on the resin, lithium can be easily recovered selectively from the wastewater from the manufacturing process containing aluminum and lithium, and the concentration is suitable for obtaining lithium carbonate and lithium hydroxide. We have found that it is possible to make an aqueous solution of the above, and have completed the present invention.
[2.リチウムの回収工程]
本実施形態に係るリチウムの回収方法は、リチウム二次電池用正極材料の製造工程排水からリチウムを回収するものであって、置換工程と、吸着工程と、溶離工程とを有する。以下、リチウムの回収方法の概要及び各工程をそれぞれ説明する。
[2. Lithium recovery process]
The lithium recovery method according to the present embodiment recovers lithium from the wastewater from the manufacturing process of the positive electrode material for a lithium secondary battery, and includes a replacement step, an adsorption step, and an elution step. Hereinafter, the outline of the lithium recovery method and each step will be described.
[2-1.リチウムの回収方法の概要]
まず、リチウムの回収方法の概要について図面を使用しながら説明する。図2は、リチウムの回収方法の概略を示すフロー図である。本発明の一実施形態に係るリチウムの回収方法は、図2に示すように、置換工程S1と吸着工程S2と溶離工程S3とから構成される。
[2-1. Overview of lithium recovery method]
First, an outline of the lithium recovery method will be described with reference to the drawings. FIG. 2 is a flow chart showing an outline of a lithium recovery method. As shown in FIG. 2, the lithium recovery method according to the embodiment of the present invention comprises a substitution step S1, an adsorption step S2, and an elution step S3.
[2-2-1.置換工程]
置換工程S1は、強酸性陽イオン交換樹脂に含有される官能基であるスルホン酸基(以下、「H型」ともいう。)をナトリウム型(以下、「Na型」ともいう。)に置換する工程である。本実施形態で、H型をNa型に置換する理由は、吸着工程の項目で説明する。なお、置換工程は、後述する吸着工程と溶離工程とを複数回繰り返すことで、リチウムイオンに対する強酸性陽イオン交換樹脂の吸着性が低下するので、この吸着性を再生する目的で行うこともできる。なお置換工程は強酸性イオン交換樹脂がNa型になっている場合には省略することができる。
[2-2-1. Replacement process]
In the replacement step S1, the sulfonic acid group (hereinafter, also referred to as “H type”), which is a functional group contained in the strongly acidic cation exchange resin, is replaced with a sodium type (hereinafter, also referred to as “Na type”). It is a process. The reason for substituting the H type with the Na type in the present embodiment will be described in the item of the adsorption step. The replacement step can be performed for the purpose of regenerating the adsorptivity of the strongly acidic cation exchange resin to lithium ions by repeating the adsorption step and the elution step described later a plurality of times. .. The replacement step can be omitted when the strong acid ion exchange resin is of the Na type.
[2-2-2.吸着工程]
吸着工程S2では、製造工程排水に強酸性陽イオン交換樹脂を接触させて、強酸性陽イオン交換樹脂にリチウムイオンを選択的に吸着させる。アルミニウムとリチウムを含有するリチウム液はどのような金属濃度でもかまわないが、水溶液のpHを9以上に調整することで、アルミニウムイオンをアルミン酸イオン[Al(OH)4]-にする。この液をNa型に調整したスルホン酸基を含有する強酸性陽イオン交換樹脂に通液すると、カチオンであるリチウムイオンは吸着するが、アニオンであるアルミン酸イオンは吸着しない。ここで、アルミニウムイオンはリチウムイオンより選択性が高い。そのため、製造工程排水中にアルミニウムイオンが存在する場合はリチウムを強酸性陽イオン交換樹脂に選択的に吸着させるのは困難である。そこで、本発明の一実施形態に係る吸着工程では、アルミニウムイオンをアルミン酸イオンにすることでリチウムイオンを選択的に吸着させることができるようにした。このとき官能基が水素型(以下、H型と記載)であると、リチウムイオンと交換した水素イオンが水溶液中に放出され、樹脂近傍のpHは低下する。この場合、ろ過性の悪い水酸化アルミニウムが析出して、樹脂に付着して、通液やイオン交換反応を阻害する。最悪の場合はカラムを用いた吸着工程が不可能になる。樹脂近傍のpHがさらに低下し、アルミニウムがカチオンとして存在する酸性領域になった場合はリチウムイオンより選択的に吸着され分離が困難になる。強酸性陽イオン交換樹脂の場合であれば、前記の水酸化アルミニウムのような塩基を分解してアルミニウムとイオン交換して吸着するため、リチウムとの分離が困難になる。
[2-2-2. Adsorption process]
In the adsorption step S2, the strong acid cation exchange resin is brought into contact with the wastewater from the manufacturing process, and the lithium ions are selectively adsorbed on the strong acid cation exchange resin. The lithium solution containing aluminum and lithium may have any metal concentration, but by adjusting the pH of the aqueous solution to 9 or higher, the aluminum ion becomes an aluminate ion [Al (OH) 4 ] - . When this liquid is passed through a strongly acidic cation exchange resin containing a sulfonic acid group adjusted to Na type, lithium ions, which are cations, are adsorbed, but aluminate ions, which are anions, are not adsorbed. Here, aluminum ions are more selective than lithium ions. Therefore, when aluminum ions are present in the wastewater from the manufacturing process, it is difficult to selectively adsorb lithium to the strongly acidic cation exchange resin. Therefore, in the adsorption step according to the embodiment of the present invention, lithium ions can be selectively adsorbed by converting aluminum ions into aluminate ions. At this time, if the functional group is of the hydrogen type (hereinafter referred to as H type), the hydrogen ion exchanged with the lithium ion is released into the aqueous solution, and the pH in the vicinity of the resin is lowered. In this case, aluminum hydroxide having poor filterability precipitates and adheres to the resin, which hinders liquid passage and ion exchange reaction. In the worst case, the adsorption process using a column becomes impossible. When the pH in the vicinity of the resin is further lowered and aluminum becomes an acidic region in which it exists as a cation, it is selectively adsorbed from lithium ions and separation becomes difficult. In the case of a strongly acidic cation exchange resin, the base such as aluminum hydroxide is decomposed and ion-exchanged with aluminum to be adsorbed, which makes separation from lithium difficult.
しかし、Na型に予め調整しておくことで、このようなpH低下を防ぎ、水酸化アルミニウムやアルミニウムイオンの生成を抑制し、アルミニウムはアルミン酸イオンの状態に保持できるため、樹脂に吸着されることはない。ナトリウムイオンとリチウムイオンではリチウムイオンの方が選択性に劣るため、Na型でリチウムイオンを吸着するには、リチウム濃度が0.3g/L以上にする必要があり、0.5g/L以上であることが望ましい。もし、製造工程排水中のリチウム濃度は0.3g/L未満である場合には、リチウムイオンがNa型の強酸性陽イオン交換樹脂に吸着し難いおそれがある。なお強酸性陽イオン交換樹脂は耐久性が高いため、官能基にカルボキシ基を有する弱酸性陽イオン交換樹脂に比べ、より多く吸着工程及び溶離工程を行うことができる。 However, by adjusting to the Na type in advance, such a decrease in pH can be prevented, the generation of aluminum hydroxide and aluminum ions can be suppressed, and aluminum can be maintained in the state of aluminate ions, so that it is adsorbed by the resin. There is no such thing. Since lithium ion is inferior in selectivity between sodium ion and lithium ion, the lithium concentration must be 0.3 g / L or more in order to adsorb lithium ion in Na type, and at 0.5 g / L or more. It is desirable to have. If the lithium concentration in the wastewater from the manufacturing process is less than 0.3 g / L, it may be difficult for lithium ions to be adsorbed on the Na-type strongly acidic cation exchange resin. Since the strongly acidic cation exchange resin has high durability, more adsorption steps and elution steps can be performed as compared with the weakly acidic cation exchange resin having a carboxy group as a functional group.
[2-2-3.溶離工程]
溶離工程S3ではナトリウム塩を含有する水溶液を用いてリチウムイオンを溶離する。例えば硫酸ナトリウム水溶液を用いることができる。陽イオン交換樹脂は通常酸を用いて溶離を行うが、カラムを用いて吸着と溶離を行う場合、吸着工程で通液した液が残留していると、液の混合によるpH低下で水酸化アルミニウムの沈殿が発生する、アルミニウムが酸性領域でカチオンの形態になり樹脂に吸着されるなどの不具合が発生する。
[2-2-3. Elution process]
In the elution step S3, lithium ions are eluted using an aqueous solution containing a sodium salt. For example, an aqueous solution of sodium sulfate can be used. Cation exchange resins are usually eluted using an acid, but when adsorption and elution are performed using a column, if the liquid that has passed through the adsorption step remains, aluminum hydroxide will drop due to the pH drop due to the mixing of the liquid. Elution occurs, aluminum becomes a cation form in the acidic region and is adsorbed by the resin, and other problems occur.
また、溶離工程から吸着工程に移行する場合も同様であり、残留している酸との混合により、pH9以上に調整したアルミニウムとリチウムを含有する水溶液のpHが低下し、pH低下で水酸化アルミニウムの沈殿が発生する、アルミニウムが酸性領域でカチオンの形態になり樹脂に吸着されるなどの不具合が発生する。 The same applies to the case of shifting from the elution step to the adsorption step. The pH of the aqueous solution containing aluminum and lithium adjusted to pH 9 or higher is lowered by mixing with the residual acid, and the pH is lowered to reduce the pH of aluminum hydroxide. Precipitation occurs, aluminum becomes a cation form in the acidic region and is adsorbed by the resin.
このような不具合に対する回避策として、各工程の間に徹底した水洗工程を設けることも考えられるが、強酸性陽イオン交換樹脂では通常、溶離に強酸を用いるため、カラム内の液が中性付近になるまで水洗するには大量の水が必要になり、処理量低下、排水処理負荷の増大など、デメリットが大きく現実的ではない。 As a workaround for such a problem, it is conceivable to provide a thorough washing step between each step, but since a strong acid is usually used for elution in a strongly acidic cation exchange resin, the liquid in the column is near neutral. A large amount of water is required to wash with water until it becomes full, and there are major disadvantages such as a decrease in the amount of treatment and an increase in the load of wastewater treatment, which is not realistic.
さらに酸で溶離した場合、官能基はH型になるため、次の吸着工程を行うためにナトリウム塩を含有する水溶液を通液する必要があり、工程が増えるといったデメリットがある。溶離液にナトリウムを含む水溶液を用いれば、pH変動による不具合を回避でき、溶離と同時に官能基をNa型に戻すことができるため、工程も簡素になる。また、溶離液の流量を調整することで、溶離液のリチウムを濃縮することができる。このため、エネルギーコストの高い蒸発濃縮法を用いなくてもリチウムを回収することが可能になる。 Further, when eluted with an acid, the functional group becomes H-type, so that it is necessary to pass an aqueous solution containing a sodium salt in order to perform the next adsorption step, which has the disadvantage of increasing the number of steps. If an aqueous solution containing sodium is used as the eluent, problems due to pH fluctuation can be avoided, and the functional group can be returned to the Na type at the same time as elution, so that the process is simplified. In addition, lithium in the eluent can be concentrated by adjusting the flow rate of the eluent. Therefore, lithium can be recovered without using the evaporation concentration method, which has a high energy cost.
溶離液はリチウムとナトリウムを含有する水溶液であるが、炭酸リチウムを沈殿させて回収するには炭酸ナトリウムを添加するため、ナトリウム塩を用いることは炭酸リチウムの沈殿生成に悪影響を及ぼさない。得られた炭酸リチウムは用途に応じた品位を要求されるが、必要に応じて水洗することで、不純物となるナトリウム濃度を低減できる。 The eluent is an aqueous solution containing lithium and sodium, but since sodium carbonate is added to precipitate and recover lithium carbonate, the use of a sodium salt does not adversely affect the precipitation formation of lithium carbonate. The obtained lithium carbonate is required to have a quality according to the intended use, but the concentration of sodium as an impurity can be reduced by washing with water as necessary.
ナトリウム塩には塩化ナトリウムや硫酸ナトリウムといったものがあるが、塩化ナトリウムを用いた場合、沈殿回収した炭酸リチウムに塩素が残留する。回収した炭酸リチウムは二次電池の正極材料の原料としてリサイクルされるが、塩素は設備の構造材を腐食するといったデメリットがあることから硫酸ナトリウムを用いることが望ましい。 Sodium salts include sodium chloride and sodium sulfate, but when sodium chloride is used, chlorine remains in the precipitated and recovered lithium carbonate. The recovered lithium carbonate is recycled as a raw material for the positive electrode material of the secondary battery, but it is desirable to use sodium sulfate because chlorine has the disadvantage of corroding the structural material of the equipment.
以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。 Hereinafter, specific examples to which the present invention is applied will be described, but the present invention is not limited to these examples.
<実施例1>
[3-1.置換工程]
50mLの強酸性陽イオン交換樹脂(住化ケムテック社製:デュオライトCF20LF)を直径20mmのガラス製カラムに詰め次の操作を3回繰り返して行い、樹脂をNa型にした。
a)73g/Lの塩酸水溶液をSV10で500mL(BV10)通液した。
b)塩酸水溶液を通液後、純水をSV10で500mL(BV10)通液して樹脂を洗浄した。
c)洗浄後、50g/Lの硫酸ナトリウム水溶液をSV10で500mL(BV10)通液した。
<Example 1>
[3-1. Replacement process]
50 mL of a strongly acidic cation exchange resin (Duolite CF20LF manufactured by Sumika Chemtech Co., Ltd.) was packed in a glass column having a diameter of 20 mm, and the following operation was repeated three times to make the resin Na type.
a) A 73 g / L hydrochloric acid aqueous solution was passed through 500 mL (BV10) with SV10.
b) After passing the aqueous hydrochloric acid solution, 500 mL (BV10) of pure water was passed through SV10 to wash the resin.
c) After washing, 500 mL (BV10) of a 50 g / L sodium sulfate aqueous solution was passed through SV10.
[3-2.吸着工程]
[3-1.]の置換工程で洗浄した樹脂を10mL分取し、直径10mmの別のカラムに詰めた。このカラムにリチウムを2.0g/L、ナトリウムを0.07g/L、アルミニウムを0.1g/L含み、pHが約12である二次電池正極材料の製造工程排水をSV20で0.6L(BV60)通液してリチウムイオンを吸着させた。吸着後の樹脂に純水をSV20で2.0L(BV200)通液して残留液を洗浄した。
[3-2. Adsorption process]
[3-1. ], 10 mL of the resin washed in the replacement step was taken and packed in another column having a diameter of 10 mm. This column contains 2.0 g / L of lithium, 0.07 g / L of sodium, 0.1 g / L of aluminum, and 0.6 L of waste from the manufacturing process of the positive electrode material of the secondary battery having a pH of about 12 (SV20). BV60) The liquid was passed through to adsorb lithium ions. Pure water was passed through the adsorbed resin with SV20 in an amount of 2.0 L (BV200) to wash the residual liquid.
[3-3.溶離工程]
[3-2.]の吸着工程における洗浄後の樹脂に150g/Lの硫酸ナトリウム水溶液を通液し、SV1で70mL(BV7)通液して、樹脂に吸着したリチウムイオンを溶離した。
[3-3. Elution process]
[3-2. ], A 150 g / L sodium sulfate aqueous solution was passed through the washed resin in the adsorption step, and 70 mL (BV7) was passed through SV1 to elute the lithium ions adsorbed on the resin.
[3-1.]の置換工程から[3-3.溶離工程]は全て常温で行った。実施例1で得られた結果について、図3に吸着曲線(BVと吸着後液中のリチウム及びアルミニウム濃度の関係)を示し、図4に溶離曲線(BVと溶離液中のリチウム及びアルミニウム濃度の関係)を示す。 [3-1. ] From the replacement step [3-3. Elution step] was performed at room temperature. Regarding the results obtained in Example 1, the adsorption curve (relationship between BV and the concentration of lithium and aluminum in the eluent after adsorption) is shown in FIG. 3, and the elution curve (the concentration of lithium and aluminum in the BV and the eluent) is shown in FIG. Relationship) is shown.
<比較例1>
比較例1では、実施例1と異なり、H型の強酸性陽イオン交換樹脂を使用して、リチウム二次電池用正極材料の製造工程排水に含まれるリチウムイオンを下記の操作により溶離した。
<Comparative Example 1>
In Comparative Example 1, unlike Example 1, lithium ions contained in the wastewater from the manufacturing process of the positive electrode material for a lithium secondary battery were eluted by the following operation using an H-type strongly acidic cation exchange resin.
[4-1.置換工程]
50mLの強酸性陽イオン交換樹脂(住化ケムテック社製:デュオライトCF20LF)を直径20mmのガラス製カラムに詰め次の操作を2回繰り返して行った後、3回目はa)及びb)のみ実施し、樹脂をH型にした。
a)73g/Lの塩酸水溶液をSV10で500mL(BV10)通液した。
b)塩酸水溶液を通液後、純水をSV10で500mL(BV10)通液して樹脂を洗浄した。
c)洗浄後、50g/Lの硫酸ナトリウム水溶液をSV10で500mL(BV10)通液した。
[4-1. Replacement process]
50 mL of strongly acidic cation exchange resin (Duolite CF20LF manufactured by Sumika Chemtech) was packed in a glass column with a diameter of 20 mm, and the following operations were repeated twice, and then only a) and b) were performed the third time. Then, the resin was made H-shaped.
a) A 73 g / L hydrochloric acid aqueous solution was passed through 500 mL (BV10) with SV10.
b) After passing the aqueous hydrochloric acid solution, 500 mL (BV10) of pure water was passed through SV10 to wash the resin.
c) After washing, 500 mL (BV10) of a 50 g / L sodium sulfate aqueous solution was passed through SV10.
[4-2.吸着工程]
[4-1.]の置換工程で洗浄した樹脂を10mL分取し、直径10mmの別のカラムに詰めた。このカラムにリチウムを2.0g/L、ナトリウムを0.07g/L、アルミニウムを0.1g/L含み、pHが約12である二次電池正極材料の製造工程排水をSV20で0.6L(BV60)通液してリチウムイオンを吸着させた。吸着後の樹脂に純水をSV20で2.0L(BV200)通液して残留液を洗浄した。
[4-2. Adsorption process]
[4-1. ], 10 mL of the resin washed in the replacement step was taken and packed in another column having a diameter of 10 mm. This column contains 2.0 g / L of lithium, 0.07 g / L of sodium, 0.1 g / L of aluminum, and 0.6 L of waste from the manufacturing process of the positive electrode material of the secondary battery having a pH of about 12 (SV20). BV60) The liquid was passed through to adsorb lithium ions. Pure water was passed through the adsorbed resin with SV20 in an amount of 2.0 L (BV200) to wash the residual liquid.
[4-3.溶離工程]
洗浄後の樹脂に150g/Lの硫酸ナトリウム水溶液を通液し、SV1で70mL(BV7)通液して、樹脂に吸着したリチウムイオンを溶離した。
[4-3. Elution process]
A 150 g / L sodium sulfate aqueous solution was passed through the washed resin, and 70 mL (BV7) was passed through SV1 to elute the lithium ions adsorbed on the resin.
<実施例による考察>
実施例1の吸着曲線を示す図3ではBV20以降アルミニウム濃度は原液の0.1g/Lであり、吸着していないことがわかる。BV10で吸着後液のアルミニウム濃度が下がっているが、これはカラム残留液による希釈効果のためであり、吸着しているとは断定できない。溶離曲線を示す図4からは高濃度のリチウムを含有する溶離液が回収できたことがわかる。一方で溶離液中のアルミニウムはほぼ0であり、吸着工程でほとんどアルミニウムは吸着しなかったことがわかる。
<Discussion by Example>
In FIG. 3, which shows the adsorption curve of Example 1, the aluminum concentration after BV20 is 0.1 g / L of the undiluted solution, and it can be seen that the aluminum is not adsorbed. At BV10, the aluminum concentration of the post-adsorption liquid is lowered, but this is due to the diluting effect of the column residual liquid, and it cannot be concluded that the liquid is adsorbed. From FIG. 4, which shows the elution curve, it can be seen that the eluent containing a high concentration of lithium could be recovered. On the other hand, the amount of aluminum in the eluent was almost 0, indicating that almost no aluminum was adsorbed in the adsorption step.
比較例1の吸着曲線を示す図5ではBV20でも吸着後液中のアルミニウム濃度が低く、実施例1と比較するとアルミニウムが吸着している様子が確認できる。BV10ではアルミニウム濃度は0であるが、残留液の希釈効果があったとしても吸着していない場合は0になることはないため、アルミニウムが確実に吸着していることがわかる。溶離曲線を示す図6からは高濃度のリチウムを含有する溶離液が回収できているが、溶離液中のアルミニウム濃度は高く、BV4以上では15mg/L以上あることがわかる。このことから、H型の場合、アルミニウムイオンは吸着工程で吸着され、溶離工程で溶離されるため、リチウムとの分離は不可能であることがわかる。これらの結果から、本発明の一実施形態に係るリチウムの回収方法を用いることでアルミニウムを含有する液からリチウムを選択的に分離することが可能であることがわかった。 In FIG. 5, which shows the adsorption curve of Comparative Example 1, the concentration of aluminum in the liquid after adsorption is low even in BV20, and it can be confirmed that aluminum is adsorbed as compared with Example 1. In BV10, the aluminum concentration is 0, but even if there is a diluting effect of the residual liquid, it does not become 0 if it is not adsorbed, so it can be seen that aluminum is definitely adsorbed. From FIG. 6 showing the elution curve, it can be seen that the eluent containing a high concentration of lithium can be recovered, but the aluminum concentration in the eluent is high, and it is 15 mg / L or more at BV4 or higher. From this, it can be seen that in the case of the H type, aluminum ions are adsorbed in the adsorption step and eluted in the elution step, so that they cannot be separated from lithium. From these results, it was found that lithium can be selectively separated from the aluminum-containing liquid by using the lithium recovery method according to the embodiment of the present invention.
なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment and each embodiment of the present invention have been described in detail as described above, those skilled in the art will be able to make many modifications that do not substantially deviate from the new matters and effects of the present invention. , Will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.
例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、リチウムの回収方法の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in a specification or drawing with a different term in a broader or synonymous manner may be replaced by that different term anywhere in the specification or drawing. Further, the configuration and operation of the lithium recovery method are not limited to those described in each embodiment and each embodiment of the present invention, and various modifications can be carried out.
S1 置換工程、S2 吸着工程、S3 溶離工程、S101 晶析工程、S102 分離工程、S103 焼成工程、S104 水洗工程 S1 replacement step, S2 adsorption step, S3 elution step, S101 crystallization step, S102 separation step, S103 firing step, S104 washing step
Claims (3)
前記製造工程排水にイオン交換樹脂を接触させて前記イオン交換樹脂にリチウムイオンを選択的に吸着させる吸着工程と、
前記吸着工程において前記リチウムイオンを選択的に吸着させた前記イオン交換樹脂にナトリウム塩を含有する水溶液を接触させて前記イオン交換樹脂からリチウムイオンを溶離させる溶離工程とを有し、
前記イオン交換樹脂は、スルホン酸基のナトリウム型の官能基を有する強酸性陽イオン交換樹脂であり、
前記吸着工程における前記製造工程排水のpHは9以上であり、
前記吸着工程における前記製造工程排水のリチウム濃度は0.3g/L以上であることを特徴とするリチウムの回収方法。 A method for recovering lithium from wastewater in a manufacturing process containing lithium and aluminum, which are positive electrode materials for lithium secondary batteries.
An adsorption step in which an ion exchange resin is brought into contact with the wastewater in the manufacturing process to selectively adsorb lithium ions to the ion exchange resin.
The adsorption step comprises an elution step in which an aqueous solution containing a sodium salt is brought into contact with the ion exchange resin on which the lithium ions are selectively adsorbed to elute lithium ions from the ion exchange resin.
The ion exchange resin is a strongly acidic cation exchange resin having a sodium-type functional group of a sulfonic acid group .
The pH of the wastewater from the manufacturing process in the adsorption step is 9 or more, and the pH is 9 or more.
A method for recovering lithium, wherein the lithium concentration of the wastewater from the manufacturing process in the adsorption step is 0.3 g / L or more .
前記置換工程は、前記官能基を前記スルホン酸基から前記ナトリウム型に置換することを特徴とする、請求項1に記載のリチウムの回収方法。 Prior to the adsorption step, a substitution step of substituting the functional group contained in the ion exchange resin is further provided.
The method for recovering lithium according to claim 1 , wherein the replacement step replaces the functional group with the sodium type from the sulfonic acid group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017232984A JP7031263B2 (en) | 2017-12-04 | 2017-12-04 | Lithium recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017232984A JP7031263B2 (en) | 2017-12-04 | 2017-12-04 | Lithium recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019099874A JP2019099874A (en) | 2019-06-24 |
JP7031263B2 true JP7031263B2 (en) | 2022-03-08 |
Family
ID=66976192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017232984A Active JP7031263B2 (en) | 2017-12-04 | 2017-12-04 | Lithium recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7031263B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190072667A (en) | 2016-11-14 | 2019-06-25 | 리락 솔루션즈, 인크. | Lithium Extraction Using Coated Ion Exchange Particles |
CN111163852A (en) | 2017-08-02 | 2020-05-15 | 锂莱克解决方案公司 | Lithium extraction using porous ion exchange beads |
CN112041470A (en) | 2018-02-28 | 2020-12-04 | 锂莱克解决方案公司 | Ion exchange reactor with particle trap for extracting lithium |
CA3166921A1 (en) | 2020-01-09 | 2021-07-15 | Lilac Solutions, Inc. | Process for separating undesirable metals |
CA3167773A1 (en) * | 2020-01-17 | 2021-07-22 | Bl Technologies, Inc. | Ion exchange system and method for conversion of aqueous lithium solution |
KR20230023714A (en) | 2020-06-09 | 2023-02-17 | 리락 솔루션즈, 인크. | Lithium extraction in the presence of scalent |
WO2021252381A1 (en) * | 2020-06-09 | 2021-12-16 | Lilac Solutions, Inc. | Lithium extraction in the presence of scalants |
KR20220039288A (en) * | 2020-09-22 | 2022-03-29 | 에스케이이노베이션 주식회사 | Method of recycling active metal of lithium secondary battery |
CA3199218A1 (en) | 2020-11-20 | 2022-05-27 | David Henry SNYDACKER | Lithium production with volatile acid |
CN112717468A (en) * | 2020-12-09 | 2021-04-30 | 西安蓝晓科技新材料股份有限公司 | Method for recovering lithium in lithium precipitation mother liquor |
CA3216001A1 (en) | 2021-04-23 | 2022-10-27 | David Henry SNYDACKER | Ion exchange devices for lithium extraction |
CN113634045A (en) * | 2021-08-17 | 2021-11-12 | 新乡赛普瑞特环保科技有限公司 | Recovery system and recovery method for trace lithium ions in lithium fluoride mother liquor |
WO2023192195A1 (en) | 2022-03-28 | 2023-10-05 | Lilac Solutions, Inc. | Devices for efficient sorbent utilization in lithium extraction |
AR128953A1 (en) | 2022-04-01 | 2024-06-26 | Lilac Solutions Inc | LITHIUM EXTRACTION WITH CHEMICAL ADDITIVES |
CN115287468B (en) * | 2022-07-01 | 2023-07-25 | 山西科化技术服务有限公司 | Process for extracting lithium ions from salt lake brine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003157913A (en) | 2001-08-20 | 2003-05-30 | Ind Technol Res Inst | Recovery method for metals in waste lithium ion batteries |
JP2011006275A (en) | 2009-06-25 | 2011-01-13 | Kobelco Eco-Solutions Co Ltd | Method and apparatus for producing lithium carbonate |
-
2017
- 2017-12-04 JP JP2017232984A patent/JP7031263B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003157913A (en) | 2001-08-20 | 2003-05-30 | Ind Technol Res Inst | Recovery method for metals in waste lithium ion batteries |
JP2011006275A (en) | 2009-06-25 | 2011-01-13 | Kobelco Eco-Solutions Co Ltd | Method and apparatus for producing lithium carbonate |
Also Published As
Publication number | Publication date |
---|---|
JP2019099874A (en) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7031263B2 (en) | Lithium recovery method | |
US20210079496A1 (en) | Method for the recovery of lithium | |
US11047022B2 (en) | Processes for the recovery of uranium from wet-process phosphoric acid using dual or single cycle continuous ion exchange approaches | |
CN101760651B (en) | A kind of vanadium extraction process of stone coal acid leaching | |
JP7558647B2 (en) | How lithium hydroxide is produced | |
JP2021172537A (en) | Method for producing lithium hydroxide | |
CN113293293B (en) | Method for recovering nickel and cobalt from laterite-nickel ore by resin adsorption method | |
WO2010103173A1 (en) | Method for purifying lithium bicarbonate | |
WO2021215486A1 (en) | Method for producing lithium hydroxide | |
JP7003507B2 (en) | Lithium recovery method | |
CN101838735B (en) | A method for separating and extracting valuable metals from acid leaching solution for nickel-molybdenum multi-metallurgical materials | |
CN103805794B (en) | Recovery method for extracting gallium from aluminum oxide coarse-fine liquid by using acid-process fly ash | |
JP7102743B2 (en) | Lithium recovery method | |
JP7115123B2 (en) | Lithium purification method | |
WO2023054258A1 (en) | Method for producing lithium hydroxide | |
CN104030510A (en) | Method for recycling acid and heavy metal in gold smelting acid wastewater | |
JP7031264B2 (en) | Lithium recovery method | |
CN115216643B (en) | Purification and recovery process of nickel in high-ammonium-salt wastewater | |
US20140262816A1 (en) | Systems and methods for cobalt recovery | |
JP2020011193A (en) | Elution method of lithium | |
CN116670311A (en) | Process for recovering and purifying lithium | |
US20240308864A1 (en) | Method for producing lithium containing solution and method for producing lithium hydroxide | |
EP4245869A1 (en) | Method for processing black mass to battery chemicals | |
WO2023248025A1 (en) | Process for recovery of lithium from brine | |
CN114350950A (en) | Method for extracting rubidium and cesium from complex underground brine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7031263 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |