[go: up one dir, main page]

JP7029091B2 - Luminous module - Google Patents

Luminous module Download PDF

Info

Publication number
JP7029091B2
JP7029091B2 JP2020139622A JP2020139622A JP7029091B2 JP 7029091 B2 JP7029091 B2 JP 7029091B2 JP 2020139622 A JP2020139622 A JP 2020139622A JP 2020139622 A JP2020139622 A JP 2020139622A JP 7029091 B2 JP7029091 B2 JP 7029091B2
Authority
JP
Japan
Prior art keywords
light
light emitting
guide plate
emitting element
emitting module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020139622A
Other languages
Japanese (ja)
Other versions
JP2020188029A (en
Inventor
勇作 阿地
良平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2020139622A priority Critical patent/JP7029091B2/en
Publication of JP2020188029A publication Critical patent/JP2020188029A/en
Application granted granted Critical
Publication of JP7029091B2 publication Critical patent/JP7029091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)

Description

本開示は、導光板の一方の表面に複数の発光素子を配置してなる面状の発光モジュールに関する。 The present disclosure relates to a planar light emitting module in which a plurality of light emitting elements are arranged on one surface of a light guide plate.

導光板の一方の面に複数の発光ダイオード等の発光素子を用いた発光モジュールは、液晶ディスプレイのバックライトやディスプレイ等の各種の光源として広く利用されている。例えば、特許文献1に開示される光源装置は、導光板の一方の面に、複数の発光素子を配置している。 A light emitting module using a light emitting element such as a plurality of light emitting diodes on one surface of a light guide plate is widely used as a backlight of a liquid crystal display or various light sources such as a display. For example, in the light source device disclosed in Patent Document 1, a plurality of light emitting elements are arranged on one surface of a light guide plate.

特開平10-82915号公報Japanese Unexamined Patent Publication No. 10-82915

導光板の片面に所定の間隔で複数の発光素子を配置する発光モジュールは、薄型化して輝度ムラを抑制することが要求されている。本開示は、薄型化しながら輝度ムラを抑制できる発光モジュールを提供することにある。 A light emitting module in which a plurality of light emitting elements are arranged at predetermined intervals on one surface of a light guide plate is required to be thinned to suppress uneven brightness. The present disclosure is to provide a light emitting module capable of suppressing luminance unevenness while reducing the thickness.

本開示の発光モジュールは、外部に光を放射する発光面となる第1主面と、第1主面と反対側にある第2主面と、を有する透光性の導光板と、導光板の第2主面に配置されて、導光板に向かって光を照射する発光素子とを備える。導光板は、第1主面であって発光素子から照射される光の光軸に、発光素子の発光面よりも大きい光学機能部を配置しており、導光板の第1主面側であって発光素子の光軸には遮光散乱層が配置されており、平面視において、遮光散乱層は光学機能部を覆っている。 The light emitting module of the present disclosure has a translucent light guide plate having a first main surface as a light emitting surface that radiates light to the outside and a second main surface opposite to the first main surface, and a light guide plate. It is provided with a light emitting element which is arranged on the second main surface of the above and irradiates light toward the light guide plate. The light guide plate has an optical functional unit that is larger than the light emitting surface of the light emitting element on the optical axis of the light emitted from the light emitting element, which is the first main surface, and is on the first main surface side of the light guide plate. A light-shielding scattering layer is arranged on the optical axis of the light-emitting element, and the light-shielding scattering layer covers the optical functional portion in a plan view.

本開示によると、薄型化しながら輝度ムラを抑制できる発光モジュールを提供できる。 According to the present disclosure, it is possible to provide a light emitting module capable of suppressing luminance unevenness while reducing the thickness.

実施形態にかかる液晶ディスプレイ装置の各構成を示す構成図である。It is a block diagram which shows each structure of the liquid crystal display apparatus which concerns on embodiment. 実施形態にかかる発光モジュールの模式平面図である。It is a schematic plan view of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの一部拡大模式断面図である。It is a partially enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す拡大模式平面図と拡大模式断面図である。It is an enlarged schematic plan view and the enlarged schematic sectional view which shows an example of the light guide plate which concerns on embodiment. 発光素子ユニットの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of a light emitting element unit. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの製造工程の一例を示す拡大模式断面図である。It is an enlarged schematic cross-sectional view which shows an example of the manufacturing process of the light emitting module which concerns on embodiment. 他の実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic cross-sectional view of the light emitting module which concerns on other embodiment. 実施形態にかかる発光モジュールの模式平面図である。It is a schematic plan view of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの構成を示す回路図である。It is a circuit diagram which shows the structure of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールを液晶ディスプレイ装置に用いた場合の模式平面図である。It is a schematic plan view when the light emitting module which concerns on embodiment is used for the liquid crystal display apparatus. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す平面図、縦断面図、横断面図、底面図である。It is a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view which show an example of the light guide plate which concerns on embodiment. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す平面図、縦断面図、横断面図、底面図である。It is a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view which show an example of the light guide plate which concerns on embodiment. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す平面図、縦断面図、横断面図、底面図である。It is a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view which show an example of the light guide plate which concerns on embodiment. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す平面図、縦断面図、横断面図、底面図である。It is a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view which show an example of the light guide plate which concerns on embodiment. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの拡大模式断面図である。It is an enlarged schematic sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる発光モジュールの模式断面図である。It is a schematic cross-sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す平面図、縦断面図、横断面図、底面図である。It is a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view which show an example of the light guide plate which concerns on embodiment. 実施形態にかかる発光モジュールの模式断面図である。It is a schematic cross-sectional view of the light emitting module which concerns on embodiment. 実施形態にかかる導光板の一例を示す平面図、縦断面図、横断面図、底面図である。It is a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view which show an example of the light guide plate which concerns on embodiment. 図16Aに示す発光モジュールの導光板の要部拡大断面図である。FIG. 16A is an enlarged cross-sectional view of a main part of the light guide plate of the light emitting module shown in FIG. 16A. 実施形態にかかる発光モジュールの模式断面図である。It is a schematic cross-sectional view of the light emitting module which concerns on embodiment.

以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
さらに、以下に示す実施形態は、本発明の技術思想を具体化するための発光モジュールを例示するものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
Hereinafter, the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction or position (for example, "upper", "lower", and other terms including those terms) are used as necessary, but the use of these terms is used. The purpose is to facilitate understanding of the invention with reference to the drawings, and the meaning of these terms does not limit the technical scope of the present invention. Further, the parts having the same reference numerals appearing in a plurality of drawings indicate the same or equivalent parts or members.
Further, the embodiments shown below exemplify a light emitting module for embodying the technical idea of the present invention, and do not limit the present invention to the following. In addition, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention to the specific description, but are exemplified. It was intended. Further, the contents described in one embodiment and the embodiment can be applied to other embodiments and the embodiments. In addition, the size and positional relationship of the members shown in the drawings may be exaggerated in order to clarify the explanation.

(液晶ディスプレイ装置3000)
図1は、本実施形態にかかる液晶ディスプレイ装置3000の各構成を示す構成図である。図1で示す液晶ディスプレイ装置3000は、上側から順に、液晶パネル120と、2枚のレンズシート110a、110bと、拡散シート110cと、発光モジュール100とを備える。本実施形態にかかる液晶ディスプレイ装置3000は、液晶パネル120の下方に発光モジュール100を配置するいわゆる直下型の液晶ディスプレイ装置である。液晶ディスプレイ装置3000は、発光モジュール100から照射される光を、液晶パネル120に照射する。なお、上述の構成部材以外に、さらに偏光フィルムやカラーフィルタ、DBEF等の部材を備えてもよい。
(Liquid crystal display device 3000)
FIG. 1 is a configuration diagram showing each configuration of the liquid crystal display device 3000 according to the present embodiment. The liquid crystal display device 3000 shown in FIG. 1 includes a liquid crystal panel 120, two lens sheets 110a and 110b, a diffusion sheet 110c, and a light emitting module 100 in this order from the upper side. The liquid crystal display device 3000 according to the present embodiment is a so-called direct type liquid crystal display device in which the light emitting module 100 is arranged below the liquid crystal panel 120. The liquid crystal display device 3000 irradiates the liquid crystal panel 120 with the light emitted from the light emitting module 100. In addition to the above-mentioned constituent members, members such as a polarizing film, a color filter, and a DBEF may be further provided.

1.実施形態1
(発光モジュール100)
本実施形態の発光モジュールの構成を図2Aから図2Cに示す。
図2Aは、本実施形態にかかる発光モジュール100の模式平面図である。図2Bは、本実施形態にかかる発光モジュール100を示す一部拡大模式断面図である。図2Cは、実施形態にかかる導光板1の光学機能部2と、導光板1に波長変換部を設ける凹部1bの一例を示す一部拡大模式平面図と一部拡大模式断面図である。
1. 1. Embodiment 1
(Light emitting module 100)
The configuration of the light emitting module of this embodiment is shown in FIGS. 2A to 2C.
FIG. 2A is a schematic plan view of the light emitting module 100 according to the present embodiment. FIG. 2B is a partially enlarged schematic cross-sectional view showing the light emitting module 100 according to the present embodiment. FIG. 2C is a partially enlarged schematic plan view and a partially enlarged schematic cross-sectional view showing an example of an optical function unit 2 of the light guide plate 1 according to the embodiment and a recess 1b in which the light guide plate 1 is provided with a wavelength conversion unit.

発光モジュール100は、導光板1と、導光板1に配置された複数の発光素子11と、導光板1の表面に積層している遮光散乱層3とを備える。各々の発光素子11は導光板1上にマトリクス状に配置されている。発光モジュール100の導光板1は、外部に光を放射する発光面である第1主面1cと、第1主面1cと反対側の第2主面1dと、を備える。導光板1は、第2主面1dに、複数の区画凹部1eを設けて、隣接する区画凹部1eの間に波長変換部12を配置している。波長変換部12は、導光板1に設けた凹部1bに設けられており、発光素子11と導光板1との間に配置される。波長変換部12は、発光素子11の発光を波長変換して導光板1に入射する。波長変換部12のそれぞれに1つの発光素子11が配置されている。 The light emitting module 100 includes a light guide plate 1, a plurality of light emitting elements 11 arranged on the light guide plate 1, and a light-shielding scattering layer 3 laminated on the surface of the light guide plate 1. Each light emitting element 11 is arranged in a matrix on the light guide plate 1. The light guide plate 1 of the light emitting module 100 includes a first main surface 1c which is a light emitting surface that radiates light to the outside, and a second main surface 1d opposite to the first main surface 1c. The light guide plate 1 is provided with a plurality of partition recesses 1e on the second main surface 1d, and the wavelength conversion unit 12 is arranged between the adjacent partition recesses 1e. The wavelength conversion unit 12 is provided in the recess 1b provided in the light guide plate 1 and is arranged between the light emitting element 11 and the light guide plate 1. The wavelength conversion unit 12 converts the light emitted from the light emitting element 11 into wavelength and incidents it on the light guide plate 1. One light emitting element 11 is arranged in each of the wavelength conversion units 12.

図2Bに示す発光モジュール100は、図3に示すように、発光素子11と、発光素子11の主発光面11cを覆う波長変換部12と、発光素子11の側面を覆う光反射性部材16とを備える発光素子ユニット10を形成すると共に、この発光素子ユニット10を、図4に示すように、導光板1の凹部1bに接合することにより、導光板1の定位置に波長変換部12と発光素子11とを配置して、発光素子11から放射される光を波長変換部12を介して導光板1に入射するようにしている。ただ、発光モジュールは、必ずしも波長変換部や発光素子を発光素子ユニットとして導光板に配置する必要はなく、導光板に形成された凹部に波長変換材料を充填して波長変換部を形成すると共に、この波長変換部に発光素子を接合して導光板の定位置に波長変換部と発光素子とを配置することもできる。 As shown in FIG. 3, the light emitting module 100 shown in FIG. 2B includes a light emitting element 11, a wavelength conversion unit 12 that covers the main light emitting surface 11c of the light emitting element 11, and a light reflecting member 16 that covers the side surface of the light emitting element 11. By forming the light emitting element unit 10 provided with the light emitting element unit 10 and joining the light emitting element unit 10 to the recess 1b of the light guide plate 1 as shown in FIG. 4, the wavelength conversion unit 12 and the light emitting unit 12 emit light at a fixed position of the light guide plate 1. The element 11 is arranged so that the light emitted from the light emitting element 11 is incident on the light guide plate 1 via the wavelength conversion unit 12. However, in the light emitting module, it is not always necessary to arrange the wavelength conversion unit and the light emitting element as the light emitting element unit in the light guide plate, and the concave portion formed in the light guide plate is filled with the wavelength conversion material to form the wavelength conversion unit. It is also possible to join a light emitting element to this wavelength conversion unit and arrange the wavelength conversion unit and the light emitting element at a fixed position of the light guide plate.

さらに、図2Bに示す発光モジュール100は、導光板1の第1主面1c側に光学機能部2を設けて、平面視において光学機能部2を覆う位置に遮光散乱層3を配置している。光学機能部2は、発光素子11の光軸上に配置され、この光軸上には遮光散乱層3も配置され、発光素子11の発光は、光学機能部2と遮光散乱層3を介して外部に放射される。 Further, in the light emitting module 100 shown in FIG. 2B, the optical function unit 2 is provided on the first main surface 1c side of the light guide plate 1, and the light-shielding scattering layer 3 is arranged at a position covering the optical function unit 2 in a plan view. .. The optical function unit 2 is arranged on the optical axis of the light emitting element 11, and the light-shielding scattering layer 3 is also arranged on the optical axis. It is radiated to the outside.

発光素子11から放射される光は、波長変換部12を介して導光板1に入射される。以上の発光モジュール100は、発光素子11の発光が波長変換部12を介して導光板1に入射される。本明細書において、「発光素子の発光面」は、発光素子の光が導光板に入射される面を意味するので、発光素子の発光が波長変換部を介して導光板に入射する発光モジュールでは、波長変換部の表面(発光素子ユニットの表面)が発光素子の発光面となる。発光モジュールは、発光素子の発光を、波長変換部を介して導光板に入射する構造には特定しない。たとえば、発光モジュールは、光調整層を介して発光素子の光を導光板に入射することもできる。発光素子の光が光調整層を介して導光板に入射される発光モジュールは、発光素子の発光面が光調整層の表面となる。光調整層は、たとえば、発光素子の光を散乱して導光板に入射する層など、発光素子の光をコントロールして導光板に入射する全ての層とすることができる。また、この場合、波長変換部に代わって光調整層を備える発光素子ユニットを形成し、この発光素子ユニットを導光板に配置することにより、光調整層を介して発光素子の光を導光板に入射することができる。 The light emitted from the light emitting element 11 is incident on the light guide plate 1 via the wavelength conversion unit 12. In the above light emitting module 100, the light emitted from the light emitting element 11 is incident on the light guide plate 1 via the wavelength conversion unit 12. In the present specification, the "light emitting surface of the light emitting element" means a surface on which the light of the light emitting element is incident on the light guide plate. The surface of the wavelength conversion unit (the surface of the light emitting element unit) is the light emitting surface of the light emitting element. The light emitting module does not specify the light emitted from the light emitting element in a structure that is incident on the light guide plate via the wavelength conversion unit. For example, the light emitting module can also incident the light of the light emitting element on the light guide plate through the light adjusting layer. In the light emitting module in which the light of the light emitting element is incident on the light guide plate via the light adjusting layer, the light emitting surface of the light emitting element becomes the surface of the light adjusting layer. The light adjustment layer can be any layer that controls the light of the light emitting element and is incident on the light guide plate, such as a layer that scatters the light of the light emitting element and is incident on the light guide plate. Further, in this case, by forming a light emitting element unit provided with an optical adjustment layer instead of the wavelength conversion unit and arranging the light emitting element unit on the light guide plate, the light of the light emitting element is transferred to the light guide plate via the light adjustment layer. Can be incident.

本開示に係る発光モジュールは、導光板1の第2主面1dに発光素子11を配置し、第1主面1cには光学機能部2を配置して、光学機能部2を覆うように遮光散乱層3を積層している。この構造の発光モジュール100は、薄型化しながら輝度ムラを抑制できる。発光素子11の光軸上に光学機能部2と遮光散乱層3とを多層に配置する発光モジュール100は、発光素子11の発光面11aから導光板1に入射される光を光学機能部2で光軸から周囲に拡散し、さらに、導光板1と光学機能部2を透過した光軸上の光を遮光散乱層3で遮光して、発光素子11の光軸上の強い発光を遮光して周囲に拡散することで、全体を薄型化しながら輝度ムラを効果的に抑制できる。また、発光素子11の光軸上に配置した光学機能部2を覆うように遮光散乱層3を配置しているので、光学機能部2を透過した発光を遮光散乱層3で遮光、拡散して、輝度ムラをさらに少なくできる。さらに、光学機能部2と発光素子11との位置ずれによる輝度ムラを遮光散乱層3で抑制して、薄型化しながら輝度ムラの少ない発光モジュール100を効率よく多量生産できる。 In the light emitting module according to the present disclosure, the light emitting element 11 is arranged on the second main surface 1d of the light guide plate 1, the optical functional unit 2 is arranged on the first main surface 1c, and light shielding is performed so as to cover the optical functional unit 2. The scattering layer 3 is laminated. The light emitting module 100 having this structure can suppress uneven brightness while reducing the thickness. The light emitting module 100 in which the optical function unit 2 and the light-shielding scattering layer 3 are arranged in multiple layers on the optical axis of the light emitting element 11 receives light incident on the light guide plate 1 from the light emitting surface 11a of the light emitting element 11 by the optical function unit 2. The light on the optical axis that diffuses from the optical axis and has passed through the light guide plate 1 and the optical function unit 2 is shielded by the light-shielding scattering layer 3, and the strong light emission on the optical axis of the light-emitting element 11 is shielded. By diffusing to the surroundings, uneven brightness can be effectively suppressed while making the whole thinner. Further, since the light-shielding scattering layer 3 is arranged so as to cover the optical function unit 2 arranged on the optical axis of the light-emitting element 11, the light emitted through the optical function unit 2 is shielded and diffused by the light-shielding scattering layer 3. , Brightness unevenness can be further reduced. Further, the light-shielding scattering layer 3 suppresses the luminance unevenness due to the positional deviation between the optical function unit 2 and the light-emitting element 11, so that the light-emitting module 100 with less luminance unevenness can be efficiently mass-produced while being made thinner.

直下型の液晶ディスプレイ装置では、液晶パネルと発光モジュールとの距離が近いため、発光モジュールの輝度ムラが液晶ディスプレイ装置の輝度ムラに影響を及ぼす可能性がある。そのため、直下型の液晶ディスプレイ装置の発光モジュールとして、輝度ムラの少ない発光モジュールが望まれている。 In a direct-type liquid crystal display device, since the distance between the liquid crystal panel and the light emitting module is short, the uneven brightness of the light emitting module may affect the uneven brightness of the liquid crystal display device. Therefore, as a light emitting module of a direct type liquid crystal display device, a light emitting module having less uneven brightness is desired.

本実施形態の発光モジュール100の構成をとれば、発光モジュール100の厚みを、5mm以下、3mm以下、1mm以下等、薄くすることができる。 By adopting the configuration of the light emitting module 100 of the present embodiment, the thickness of the light emitting module 100 can be reduced to 5 mm or less, 3 mm or less, 1 mm or less, and the like.

本実施形態にかかる発光モジュール100を構成する各部材および製造方法について以下に詳述する。 Each member constituting the light emitting module 100 and the manufacturing method according to the present embodiment will be described in detail below.

(導光板1)
導光板1は、発光素子11からの光が入射され、面状の発光を行う透光性の部材である。
本実施形態の導光板1は、発光面となる第1主面1cと、第1主面1cと反対側の第2主面1dと、を備える。
この導光板1は第2主面1dに複数の発光素子11を配置している。図2に示す導光板1は、第2主面1dに設けた凹部1bに発光素子ユニット10を配置しており、これにより、導光板1と発光素子11との距離を縮めることができ、発光モジュール100の薄型化が可能になる。
導光板1の大きさは、例えば、一辺が1cm~200cm程度とすることができ、3cm~30cm程度が好ましい。厚みは0.1mm~5mm程度とすることができ、0.5mm~3mmが好ましい。
導光板1の平面形状は例えば、略矩形や略円形等とすることができる。
(Light guide plate 1)
The light guide plate 1 is a translucent member to which light from the light emitting element 11 is incident and emits light in a planar manner.
The light guide plate 1 of the present embodiment includes a first main surface 1c as a light emitting surface and a second main surface 1d opposite to the first main surface 1c.
The light guide plate 1 has a plurality of light emitting elements 11 arranged on the second main surface 1d. In the light guide plate 1 shown in FIG. 2, the light emitting element unit 10 is arranged in the recess 1b provided on the second main surface 1d, whereby the distance between the light guide plate 1 and the light emitting element 11 can be shortened, and light emission can be achieved. The module 100 can be made thinner.
The size of the light guide plate 1 can be, for example, about 1 cm to 200 cm on a side, and is preferably about 3 cm to 30 cm. The thickness can be about 0.1 mm to 5 mm, preferably 0.5 mm to 3 mm.
The planar shape of the light guide plate 1 can be, for example, a substantially rectangular shape, a substantially circular shape, or the like.

導光板1の材料としては、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート、ポリエステル等の熱可塑性樹脂、エポキシ、シリコーン等の熱硬化性樹脂等の樹脂材料やガラスなどの光学的に透明な材料を用いることができる。特に、熱可塑性の樹脂材料は、射出成型によって効率よく製造することができるため、好ましい。中でも、透明性が高く、安価なポリカーボネートが好ましい。導光板1に発光素子11を実装した後に配線基板を貼りつける発光モジュールは、リフロー半田のような高温がかかる工程を省略できるため、ポリカーボネートのような熱可塑性であり耐熱性の低い材料であっても用いることができる。
導光板1は、例えば、射出成型やトランスファーモールド、熱転写等で成形することができる。導光板1が後述する光学機能部2や凹部1b、区画凹部1eを備えている場合には、これらも一括して金型で形成することが好ましい。これにより、光学機能部2と凹部1b、区画凹部1eの成形位置ずれを低減することができる。
As the material of the light guide plate 1, a thermoplastic resin such as acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate and polyester, a resin material such as a thermosetting resin such as epoxy and silicone, and an optically transparent material such as glass are used. be able to. In particular, a thermoplastic resin material is preferable because it can be efficiently manufactured by injection molding. Of these, polycarbonate, which has high transparency and is inexpensive, is preferable. The light emitting module to which the wiring board is attached after mounting the light emitting element 11 on the light guide plate 1 is a thermoplastic and low heat resistant material such as polycarbonate because the process of applying a high temperature such as reflow solder can be omitted. Can also be used.
The light guide plate 1 can be molded by, for example, injection molding, transfer molding, thermal transfer, or the like. When the light guide plate 1 is provided with an optical function portion 2, a recess 1b, and a partition recess 1e, which will be described later, it is preferable that these are also collectively formed by a mold. As a result, it is possible to reduce the molding position deviation between the optical function portion 2, the recess 1b, and the partition recess 1e.

本実施形態の導光板1は単層で形成されていてもよく、複数の透光性の層が積層されて形成されていてもよい。複数の透光性の層が積層されている場合には、任意の層間に屈折率の異なる層、例えば空気の層等を設けることが好ましい。これにより、光をより拡散させやすくなり、輝度ムラを低減した発光モジュールとすることができる。このような構成は、例えば、任意の複数の透光性の層の間にスペーサを設けて離間させ、空気の層を設けることで実現することができる。
また、導光板1の第1主面1c上に透光性の層と、導光板1の第1主面1cと透光性の層の間に屈折率の異なる層、例えば空気の層等を設けてもよい。これにより、光をより拡散させやすくなり、輝度ムラを低減した液晶ディスプレイ装置とすることができる。このような構成は、例えば、任意の導光板1と透光性の層の間にスペーサを設けて離間させ、空気の層を設けることで実現することができる。
The light guide plate 1 of the present embodiment may be formed of a single layer, or may be formed by laminating a plurality of translucent layers. When a plurality of translucent layers are laminated, it is preferable to provide a layer having a different refractive index, for example, an air layer, between arbitrary layers. This makes it easier to diffuse the light, and it is possible to obtain a light emitting module with reduced luminance unevenness. Such a configuration can be realized, for example, by providing a spacer between any plurality of translucent layers to separate them and providing an air layer.
Further, a transparent layer is provided on the first main surface 1c of the light guide plate 1, and a layer having a different refractive index, for example, an air layer, is provided between the first main surface 1c of the light guide plate 1 and the transparent layer. It may be provided. This makes it easier to diffuse the light, and it is possible to obtain a liquid crystal display device with reduced luminance unevenness. Such a configuration can be realized, for example, by providing a spacer between an arbitrary light guide plate 1 and a translucent layer to separate them, and providing an air layer.

(光学機能部2)
導光板1は、第1主面1c側に光学機能部2を備えている。
光学機能部2は、例えば、導光板1に入射される光を光学機能部2で面内に広げる機能を有することができる。光学機能部2は、例えば、導光板1の材料と屈折率の異なる材料で設けられる。光学機能部2は、具体的には、図2Bに示すように、導光板1に設けた凹部1aで構成することができる。この図の光学機能部2は、凹部1aの内周面に傾斜面1xを設けている。傾斜面1xは、凹部1aの中央に向かって発光素子11に接近するように、図において上り勾配に傾斜する。図2Bの断面図に示す光学機能部2は、傾斜面1xを、中央部に向かって次第に傾斜角(α)が大きくなる形状としている。このような形状の光学機能部2を設けることにより、発光素子11の発光面11aから導光板1に入射される光をより効果的に導光板1の面方向に広げることができる。さらに、光学機能部2は、底部に平面部1yを設けている。光学機能部2は、平面部1yを凹部1aの中央部に配置している。凹部1aの中央部に平面部1yを設けた光学機能部2は、凹部1aを設けて導光板1の強度が低下する弊害を少なくできる。中央部に設けた平面部1yが、導光板1の最小厚さを厚くできるからである。光学機能部2は、発光素子11の光軸上に配置することが好ましく、より好ましくは、光学機能部2に設けた平面部1yを発光素子11の光軸上に配置することが好ましい。平面部1yのある光学機能部2は、平面部のない光学機能部に比較して、発光素子11と光学機能部2との相対的な位置ずれによる輝度ムラを少なくできる。平面部1yが光入射面である発光素子11の発光面11aと平行に配置されて、平面部1yと光入射面との相対的な位置ずれによる輝度ムラが少なくなるからである。ただ、光学機能部は、図示しないが、第1主面側に設けられた逆円錐や逆四角錐、逆六角錐等の逆多角錐形等の凹みとして、底部に平面部を設け、あるいは平面部を設けない形状とすることもできる。
(Optical function unit 2)
The light guide plate 1 is provided with an optical function unit 2 on the first main surface 1c side.
The optical function unit 2 can have, for example, a function of spreading the light incident on the light guide plate 1 in the plane by the optical function unit 2. The optical functional unit 2 is provided, for example, with a material having a refractive index different from that of the light guide plate 1. Specifically, as shown in FIG. 2B, the optical function unit 2 can be configured by a recess 1a provided in the light guide plate 1. The optical functional unit 2 in this figure is provided with an inclined surface 1x on the inner peripheral surface of the concave portion 1a. The inclined surface 1x is inclined upward in the figure so as to approach the light emitting element 11 toward the center of the recess 1a. The optical function unit 2 shown in the cross-sectional view of FIG. 2B has an inclined surface 1x having a shape in which the inclination angle (α) gradually increases toward the central portion. By providing the optical functional unit 2 having such a shape, the light incident on the light guide plate 1 from the light emitting surface 11a of the light emitting element 11 can be more effectively spread in the surface direction of the light guide plate 1. Further, the optical function unit 2 is provided with a flat surface portion 1y at the bottom thereof. In the optical function unit 2, the flat surface portion 1y is arranged in the central portion of the recess 1a. The optical functional unit 2 having the flat surface portion 1y provided in the central portion of the concave portion 1a can reduce the adverse effect of providing the concave portion 1a to reduce the strength of the light guide plate 1. This is because the flat surface portion 1y provided in the central portion can increase the minimum thickness of the light guide plate 1. The optical functional unit 2 is preferably arranged on the optical axis of the light emitting element 11, and more preferably, the flat surface portion 1y provided on the optical functional unit 2 is arranged on the optical axis of the light emitting element 11. The optical function unit 2 having the flat surface portion 1y can reduce the luminance unevenness due to the relative positional deviation between the light emitting element 11 and the optical function unit 2 as compared with the optical function unit without the flat surface portion. This is because the flat surface portion 1y is arranged parallel to the light emitting surface 11a of the light emitting element 11 which is the light incident surface, and the luminance unevenness due to the relative positional deviation between the flat surface portion 1y and the light incident surface is reduced. However, although not shown, the optical function unit is provided with a flat surface portion at the bottom as a recess such as an inverted cone, an inverted quadrangular pyramid, or an inverted hexagonal pyramid provided on the first main surface side, or a flat surface. It is also possible to have a shape without a portion.

光学機能部2は、導光板1と屈折率の異なる材料(例えば空気)と凹部1aの傾斜面1xとの界面で、発光素子11から入射される光を発光素子11の側方方向に反射するものを用いることができる。また、例えば、傾斜面1xを有する凹部1aに光反射性の材料(例えば金属等の反射膜や白色の樹脂)等を設けたものであってもよい。光学機能部2の傾斜面1xは、断面視において曲線とするが、直線でもよい。図2B及び図2Cの断面図に示す光学機能部2の傾斜面1xは、断面視において凹部1aの中央に向かって次第に傾斜角(α)を大きくする曲線とするが、断面視において傾斜角(α)が異なる直線として、中央に向かって次第に傾斜角(α)を大きくすることもできる。 The optical function unit 2 reflects the light incident from the light emitting element 11 in the lateral direction of the light emitting element 11 at the interface between the light guide plate 1, a material having a different refractive index (for example, air), and the inclined surface 1x of the recess 1a. Things can be used. Further, for example, a light-reflecting material (for example, a reflective film such as metal or a white resin) may be provided in the recess 1a having the inclined surface 1x. The inclined surface 1x of the optical function unit 2 is a curved line in a cross-sectional view, but may be a straight line. The inclined surface 1x of the optical functional unit 2 shown in the cross-sectional views of FIGS. 2B and 2C is a curved line in which the inclination angle (α) is gradually increased toward the center of the recess 1a in the cross-sectional view. As straight lines with different α), the inclination angle (α) can be gradually increased toward the center.

光学機能部2は、後述するように、それぞれの発光素子11に対応する、つまり、第2主面1d側に配置された発光素子11と反対側の位置に配置される。 As will be described later, the optical functional unit 2 is arranged at a position corresponding to each light emitting element 11, that is, at a position opposite to the light emitting element 11 arranged on the second main surface 1d side.

光学機能部2の大きさは、適宜設定することができる。図2Bに示す光学機能部2は、平面視において円形の開口部の外形を、発光素子11の発光面11aである、波長変換部12の外形よりも大きくしている。この光学機能部2は、発光素子11の発光面11aから導光板1に入射される光をより効果的に導光板1の内部に反射して導光板1の面方向に広げることができる。発光素子11の発光を波長変換部12を介して導光板1に入射する発光モジュール100は、波長変換部12から全方向に光が導光板1に入射される。導光板1に入射される発光は、光学機能部2との界面で全反射して導光板1の面方向に効率よく広げられるが、導光板1の入射光は、一部が全反射して導光板1の面方向に反射され、一部は光学機能部2との界面で全反射することなく光学機能部2を透過して導光板1の第1主面1cから外部に放射される。とくに、凹部1aの中央部に設けた平面部1yは、傾斜面1xに比較して、光学機能部2と導光板1との界面における光の入射角が小さくなって、全反射する確率が低下して外部に放射される光が強くなる。光学機能部2を透過して導光板1の第1主面1cから外部に放射される光は、輝度ムラを低下させる原因となる。 The size of the optical function unit 2 can be appropriately set. The optical function unit 2 shown in FIG. 2B has a circular opening having an outer shape larger than the outer shape of the wavelength conversion unit 12 which is the light emitting surface 11a of the light emitting element 11. The optical function unit 2 can more effectively reflect the light incident on the light guide plate 1 from the light emitting surface 11a of the light emitting element 11 into the inside of the light guide plate 1 and spread it in the surface direction of the light guide plate 1. In the light emitting module 100 in which the light emitted from the light emitting element 11 is incident on the light guide plate 1 via the wavelength conversion unit 12, light is incident on the light guide plate 1 in all directions from the wavelength conversion unit 12. The light emitted from the light guide plate 1 is totally reflected at the interface with the optical function unit 2 and efficiently spread in the surface direction of the light guide plate 1, but the incident light of the light guide plate 1 is partially totally reflected. It is reflected in the surface direction of the light guide plate 1, and a part of it is transmitted through the optical function unit 2 without being totally reflected at the interface with the optical function unit 2 and is radiated to the outside from the first main surface 1c of the light guide plate 1. In particular, the flat surface portion 1y provided in the central portion of the recess 1a has a smaller incident angle of light at the interface between the optical function portion 2 and the light guide plate 1 as compared with the inclined surface 1x, and the probability of total reflection is reduced. Then, the light emitted to the outside becomes stronger. The light transmitted through the optical function unit 2 and radiated to the outside from the first main surface 1c of the light guide plate 1 causes a decrease in luminance unevenness.

(遮光散乱層3)
発光モジュール100は、導光板1に光学機能部2を設けて、発光素子11からの光を側方に広げて、導光板1の第1主面1cから外部に放射される光の発光強度を平均化させるが、このことは、輝度ムラを少なくすることから好ましい。発光モジュール100は、発光素子11間の間隔を狭くして、輝度ムラを少なくできるが、発光素子11の間隔を狭くすると、導光板1に固定する発光素子数が増加して部品コストと製造コストが高くなる。発光モジュール100は、発光素子11の個数を少なくしてコストダウンしながら、輝度ムラを少なくするという難しい課題がある。また、導光板1に複数の光学機能部2を設け、各々の光学機能部2に発光素子11を配置する発光モジュール100は、光学機能部2と発光素子11との相対的な位置ずれによる輝度ムラも課題となる。導光板1に凹部1aを設けて光学機能部2を構成する発光モジュール100は、光学機能部2の中央部において導光板1が薄くなって強度が低下する。光学機能部2の凹部中央部に平面部1yを設る構造は、凹部中央部の強度を高くでき、また、平面部1yによって発光素子11との相対的な位置ずれによる輝度ムラを少なくできるが、光学機能部2の平面部1yにおいて、発光素子11の光の透過率が高くなって、輝度ムラの抑制効果は減少する。
(Light-shielding scattering layer 3)
The light emitting module 100 is provided with an optical function unit 2 on the light guide plate 1 to spread the light from the light emitting element 11 laterally to increase the light emission intensity of the light radiated to the outside from the first main surface 1c of the light guide plate 1. Although it is averaged, this is preferable because it reduces uneven brightness. In the light emitting module 100, the distance between the light emitting elements 11 can be narrowed to reduce the uneven brightness. However, if the distance between the light emitting elements 11 is narrowed, the number of light emitting elements fixed to the light guide plate 1 increases, and the component cost and the manufacturing cost increase. Will be higher. The light emitting module 100 has a difficult problem of reducing uneven brightness while reducing the number of light emitting elements 11 to reduce the cost. Further, the light emitting module 100 in which a plurality of optical function units 2 are provided on the light guide plate 1 and the light emitting element 11 is arranged in each optical function unit 2 has a brightness due to a relative positional deviation between the optical function unit 2 and the light emitting element 11. Unevenness is also an issue. In the light emitting module 100 in which the light guide plate 1 is provided with the recess 1a to form the optical function unit 2, the light guide plate 1 becomes thin in the central portion of the optical function unit 2 and the strength is lowered. The structure in which the flat surface portion 1y is provided in the central portion of the concave portion of the optical function portion 2 can increase the strength of the central portion of the concave portion, and the flat surface portion 1y can reduce the luminance unevenness due to the relative positional deviation from the light emitting element 11. In the flat surface portion 1y of the optical function unit 2, the light transmittance of the light emitting element 11 becomes high, and the effect of suppressing luminance unevenness decreases.

そこで、本実施形態における発光モジュールは、光学機能部2を覆う位置に遮光散乱層3を設けることで、導光板1の強度低下を防止しながら、光学機能部2を透過した発光素子11からの入射光を散乱し、遮光することで、光学機能部2の弊害を少なくして、輝度ムラを抑制する。本実施形態の発光モジュールは、光学機能部2と遮光散乱層3を積層構造に配置する独特の構造で、発光素子11からの光を精度よく均一化して、輝度ムラの少ない良質なバックライト用光源とする。 Therefore, in the light emitting module of the present embodiment, by providing a light-shielding scattering layer 3 at a position covering the optical function unit 2, the light emitting element 11 transmitted through the optical function unit 2 while preventing the intensity of the light guide plate 1 from decreasing. By scattering the incident light and blocking it, the harmful effects of the optical function unit 2 are reduced and uneven brightness is suppressed. The light emitting module of the present embodiment has a unique structure in which the optical function unit 2 and the light-shielding scattering layer 3 are arranged in a laminated structure. Use as a light source.

遮光散乱層3は、導光板1の第1主面1cに、光学機能部2を覆う位置に配置される。遮光散乱層3は、光学機能部2を透過する光を拡散し、遮光して輝度集中を緩和する。遮光散乱層3は、具体的には、透光性のプラスチックやガラス等のシート材に、顔料や染料を添加した層である。顔料や染料は好ましくは白色で、光の反射率を高くして、遮光散乱層3による発光モジュール100の輝度低下を防止しながら輝度ムラを抑制する。遮光散乱層3は、透過する光を吸収して遮光するのではなく、透過光を散乱して遮光する。ただし、遮光散乱層3の顔料や染料は、着色された顔料、たとえば赤色、橙色、黄色等として、透過光の一部を吸収して発光モジュール100の発光色をコントロールして散乱し、遮光することもできる。とくに、発光素子11を青色発光ダイオードとする発光モジュールは、遮光散乱層3に、青色を吸収する顔料や染料を使用することで、青色発光ダイオードの青色を波長変換して外部に放射することもできる。 The light-shielding scattering layer 3 is arranged on the first main surface 1c of the light guide plate 1 at a position covering the optical functional unit 2. The light-shielding scattering layer 3 diffuses the light transmitted through the optical function unit 2 to block light and alleviate the luminance concentration. Specifically, the light-shielding scattering layer 3 is a layer in which a pigment or a dye is added to a sheet material such as a translucent plastic or glass. The pigment or dye is preferably white, and the reflectance of light is increased to suppress the brightness unevenness of the light emitting module 100 due to the light-shielding scattering layer 3. The light-shielding scattering layer 3 does not absorb the transmitted light to block light, but scatters the transmitted light to block light. However, the pigment or dye of the light-shielding scattering layer 3 is a colored pigment such as red, orange, or yellow, and absorbs a part of the transmitted light to control the light-emitting color of the light-emitting module 100 to scatter and block light. You can also do it. In particular, in a light emitting module in which the light emitting element 11 is a blue light emitting diode, the blue light of the blue light emitting diode can be wavelength-converted and radiated to the outside by using a pigment or dye that absorbs blue in the light-shielding scattering layer 3. can.

遮光散乱層3は、好ましくは白色の顔料等を含有させた樹脂であることが好ましい。遮光散乱層3は、顔料や染料の添加量で遮光量をコントロールできる。遮光散乱層3は、シリコーン樹脂に、白色顔料として酸化チタンを添加したものが好ましい。遮光散乱層3は、白色顔料の添加量で透過光の透過率をコントロールする。遮光散乱層3は、樹脂に添加する白色顔料の添加量を多くして、透過光の透過率を低くできる。透過率は、遮光散乱層3を厚さ方向に直線状に透過する光の減衰比率で、「遮光散乱層3を厚さ方向に透過する光強度/入射光の強度」の比率である。遮光散乱層3は、好ましくは、60重量%以下の白色顔料を添加して、透過率を最適値に設定する。遮光散乱層3は、顔料や染料の添加率をコントロールして透過率を調整できる。 The light-shielding scattering layer 3 is preferably a resin containing a white pigment or the like. The light-shielding scattering layer 3 can control the amount of light-shielding by the amount of pigment or dye added. The light-shielding scattering layer 3 is preferably a silicone resin to which titanium oxide is added as a white pigment. The light-shielding scattering layer 3 controls the transmittance of transmitted light by the amount of the white pigment added. The light-shielding scattering layer 3 can reduce the transmittance of transmitted light by increasing the amount of the white pigment added to the resin. The transmittance is the attenuation ratio of light transmitted linearly in the light-shielding scattering layer 3 in the thickness direction, and is the ratio of "light intensity transmitted in the light-shielding scattering layer 3 in the thickness direction / intensity of incident light". The light-shielding scattering layer 3 is preferably added with a white pigment of 60% by weight or less to set the transmittance to an optimum value. The light-shielding scattering layer 3 can adjust the transmittance by controlling the addition rate of pigments and dyes.

遮光散乱層3は、透過する光を反射し、散乱して遮光する。遮光散乱層3は、平面視において、光学機能部2を覆っている。導光板1の第1主面1cに設けている光学機能部2は、波長変換部12から入射する光を導光板1の面方向に広げて輝度ムラを抑制する。光学機能部2は、図2Bの矢印Bで示すように、導光板1との境界で全反射する光を100%反射して導光板1の面方向に拡散する。光の全反射は、入射角(θ)が臨界角を越える状態で発生する。光の入射角(θ)が臨界角よりも小さい光は、光学機能部2と導光板1との境界で全反射することなく、外部にも放射される。図2Bにおいて矢印Aで示す光は、入射角(θ)が小さく、光学機能部2の平面部1yを透過する。遮光散乱層3は、光学機能部2を透過して外部に放射される光学機能部2の透過光を遮光して発光モジュール100の輝度ムラを抑制する。 The light-shielding scattering layer 3 reflects the transmitted light, scatters it, and blocks light. The light-shielding scattering layer 3 covers the optical function unit 2 in a plan view. The optical function unit 2 provided on the first main surface 1c of the light guide plate 1 spreads the light incident from the wavelength conversion unit 12 in the surface direction of the light guide plate 1 to suppress luminance unevenness. As shown by the arrow B in FIG. 2B, the optical function unit 2 reflects 100% of the light totally reflected at the boundary with the light guide plate 1 and diffuses it in the surface direction of the light guide plate 1. Total internal reflection of light occurs when the incident angle (θ) exceeds the critical angle. Light whose incident angle (θ) is smaller than the critical angle is radiated to the outside without being totally reflected at the boundary between the optical function unit 2 and the light guide plate 1. The light indicated by the arrow A in FIG. 2B has a small incident angle (θ) and passes through the flat surface portion 1y of the optical function portion 2. The light-shielding scattering layer 3 blocks the transmitted light of the optical function unit 2 transmitted to the outside through the optical function unit 2 and suppresses the uneven brightness of the light emitting module 100.

図2の発光モジュール100は、透光性シート4を介して遮光散乱層3を定位置に配置する。透光性シート4は、導光板1の第1主面1cに積層されて、遮光散乱層3を光学機能部2を覆う位置に配置する。遮光散乱層3は透光性シート4に積層して設けられる。透光性シート4は、透過光を散乱して透過させる散乱シートである。透光性シート4を散乱シートとする発光モジュール100は、透光性シート4で発光モジュール100の輝度ムラを抑制することに加えて、遮光散乱層3でさらに輝度ムラを抑制できる。ただ、透光性シート4は、白色顔料の添加されない透光性の高いシートとすることもできる。透光性シート4は、好ましくは膜厚を約100μm以上であって1000μm以下、さらに好ましく100μm以上であって500μm以下とするPET等の透光性樹脂シートに白色顔料を混合しているシートを使用できる。透光性シート4の白色顔料には酸化チタンなどの無機白色粉末が適している。 In the light emitting module 100 of FIG. 2, the light-shielding scattering layer 3 is arranged at a fixed position via the translucent sheet 4. The translucent sheet 4 is laminated on the first main surface 1c of the light guide plate 1 and the light-shielding scattering layer 3 is arranged at a position covering the optical functional unit 2. The light-shielding scattering layer 3 is provided so as to be laminated on the translucent sheet 4. The translucent sheet 4 is a scattering sheet that scatters and transmits transmitted light. In the light emitting module 100 using the translucent sheet 4 as a scattering sheet, in addition to suppressing the luminance unevenness of the light emitting module 100 by the translucent sheet 4, the light-shielding scattering layer 3 can further suppress the luminance unevenness. However, the translucent sheet 4 can also be a highly translucent sheet to which a white pigment is not added. The translucent sheet 4 is a sheet in which a white pigment is mixed with a translucent resin sheet such as PET having a film thickness of preferably about 100 μm or more and 1000 μm or less, and more preferably 100 μm or more and 500 μm or less. Can be used. Inorganic white powder such as titanium oxide is suitable for the white pigment of the translucent sheet 4.

遮光散乱層3は、シリコーン樹脂などの透光性樹脂に白色顔料を添加した層とすることが好ましい。遮光散乱層3は、透光性シート4よりも、厚さ方向に透過する光の透過率を小さくすることが好ましい。透光性シート4が、発光モジュール全面の輝度ムラを抑制するのに対し、遮光散乱層3が発光素子11近傍において中央部に輝度が集中するのを緩和して輝度ムラを解消するからである。遮光散乱層3が厚さ方向に透過する光を遮光する透過率は、好ましくは、0.1/10~7/10、より好ましくは0.3/10~5/10の範囲に設定することができる。ただし、遮光散乱層3の透過率は、導光板1の厚さ、発光素子11の発光面11aの面積、発光素子11の発光強度、光学機能部2の形状等を考慮して最適値に調整することができる。 The light-shielding scattering layer 3 is preferably a layer obtained by adding a white pigment to a translucent resin such as a silicone resin. It is preferable that the light-shielding scattering layer 3 has a smaller transmittance of light transmitted in the thickness direction than the translucent sheet 4. This is because the translucent sheet 4 suppresses the uneven brightness of the entire surface of the light emitting module, while the light-shielding scattering layer 3 alleviates the concentration of brightness in the central portion in the vicinity of the light emitting element 11 and eliminates the uneven brightness. .. The transmittance by which the light-shielding scattering layer 3 blocks light transmitted in the thickness direction is preferably set in the range of 0.1 / 10 to 7/10, more preferably 0.3 / 10 to 5/10. Can be done. However, the transmittance of the light-shielding scattering layer 3 is adjusted to an optimum value in consideration of the thickness of the light guide plate 1, the area of the light emitting surface 11a of the light emitting element 11, the light emitting intensity of the light emitting element 11, the shape of the optical functional unit 2, and the like. can do.

遮光散乱層3は、透光性シート4の表面に積層され、あるいは透光性シート4と一体構造として、光学機能部2を覆う位置に配置される。透光性シート4に積層される遮光散乱層3は、好ましくは、透光性シート4よりも透過光の透過率を低くすることが好ましい。遮光散乱層3が、光学機能部2からの入射光を遮光することで、発光モジュール100が外部に放射する光を局部的に遮光して輝度ムラを少なくするのに対し、散乱シートである透光性シート4は発光モジュール100の全面から放射される光を散乱して輝度ムラを少なくするからである。 The light-shielding scattering layer 3 is laminated on the surface of the translucent sheet 4 or is arranged at a position covering the optical functional unit 2 as an integral structure with the translucent sheet 4. The light-shielding scattering layer 3 laminated on the translucent sheet 4 preferably has a lower transmittance of transmitted light than the translucent sheet 4. The light-shielding scattering layer 3 blocks the incident light from the optical function unit 2 to locally block the light radiated to the outside by the light emitting module 100 to reduce the uneven brightness, whereas the light-shielding scattering layer 3 is a scattering sheet. This is because the optical sheet 4 scatters the light radiated from the entire surface of the light emitting module 100 to reduce the unevenness of brightness.

透光性シート4に積層して定位置に配置される遮光散乱層3は、透光性シート4の表面であって導光板1との対向面に接合される。この発光モジュール100は、光学機能部2を透過した光を遮光散乱層3に透過し、さらに遮光散乱層3を透過した光を透光性シート4に透過させて、輝度ムラを効率よく抑制できる。とくに、透光性シート4を散乱シートとする発光モジュール100は、遮光散乱層3を導光板1との対向面に配置して、輝度ムラを効果的に抑制できる。ただし、遮光散乱層は透光性シートの導光板との対向面の反対側に積層することもできる。この発光モジュールは、光学機能部を透過し、透光性シートを透過した光を遮光散乱層に透過させる。散乱シートの透光性シート4に遮光散乱層3を積層する発光モジュール100は、遮光散乱層3を導光板1との対向面に配置することで、遮光散乱層3を対向面との反対側に配置するよりも輝度ムラをより効果的に抑制できる。遮光散乱層3で輝度ムラの抑制された光を、散乱シートに透過させるからである。 The light-shielding scattering layer 3 laminated on the translucent sheet 4 and arranged at a fixed position is the surface of the translucent sheet 4 and is joined to the surface facing the light guide plate 1. The light emitting module 100 can efficiently suppress luminance unevenness by transmitting the light transmitted through the optical function unit 2 to the light-shielding scattering layer 3 and further transmitting the light transmitted through the light-shielding scattering layer 3 to the translucent sheet 4. .. In particular, in the light emitting module 100 using the translucent sheet 4 as the scattering sheet, the light-shielding scattering layer 3 can be arranged on the surface facing the light guide plate 1 to effectively suppress the uneven luminance. However, the light-shielding scattering layer can also be laminated on the opposite side of the light-transmitting sheet facing the light guide plate. This light emitting module transmits the optical function unit and transmits the light transmitted through the translucent sheet to the light-shielding scattering layer. In the light emitting module 100 in which the light-shielding scattering layer 3 is laminated on the translucent sheet 4 of the scattering sheet, the light-shielding scattering layer 3 is arranged on the surface facing the light guide plate 1, so that the light-shielding scattering layer 3 is on the opposite side to the facing surface. Brightness unevenness can be suppressed more effectively than arranging in. This is because the light whose luminance unevenness is suppressed by the light-shielding scattering layer 3 is transmitted to the scattering sheet.

発光モジュール100は、遮光散乱層3と透光性シート4とを一体構造として、透光性シート4に部分的に遮光散乱層3を設けることができる。この透光性シート4は、透光性のプラスチックシートに、遮光散乱層3を構成する領域に、顔料や染料を添加して遮光散乱層3を構成する。透光性シート4のプラスチックシートは、例えばフッ素樹脂フィルムが使用でき、厚さは、好ましくは50μm以上であって500μm以下とすることができる。散乱シートと遮光散乱層3とを一体構造とする透光性シート4は、遮光散乱層3の領域と、散乱シートの領域とで、顔料や染料の濃度や材質を変更する。遮光散乱層3は、好ましくは、散乱シートよりも光の透過率を低くするので、顔料や染料の添加量を、散乱シートの領域よりも多くして実現できる。 In the light emitting module 100, the light-shielding scattering layer 3 and the light-transmitting sheet 4 are integrated, and the light-shielding scattering layer 3 can be partially provided on the light-transmitting sheet 4. The translucent sheet 4 constitutes the light-shielding scattering layer 3 by adding a pigment or a dye to the region constituting the light-shielding scattering layer 3 on the transparent plastic sheet. As the plastic sheet of the translucent sheet 4, for example, a fluororesin film can be used, and the thickness can be preferably 50 μm or more and 500 μm or less. The translucent sheet 4 having the scattering sheet and the light-shielding scattering layer 3 as an integral structure changes the concentration and material of the pigment or dye between the region of the light-shielding scattering layer 3 and the region of the scattering sheet. Since the light-shielding scattering layer 3 preferably has a lower light transmittance than the scattering sheet, the amount of the pigment or dye added can be made larger than that of the scattering sheet region.

透光性シート4で定位置に配置される遮光散乱層3は、光学機能部2を覆う位置に配置される。透光性シート4は、部分的に導光板1に接合されて、導光板1の定位置に配置される。方形状の導光板1の第1主面1c側に、方形状の透光性シート4を積層する発光モジュール100は、透光性シート4の一辺を導光板1に接合して導光板1の定位置に配置できる。この発光モジュール100は、温度変化で透光性シート4と導光板1との熱収縮が異なる状態で、透光性シート4を平面状に保持して導光板1の表面に積層して、遮光散乱層3を導光板1の光学機能部2の位置に接近して配置できる。 The light-shielding scattering layer 3 arranged at a fixed position on the translucent sheet 4 is arranged at a position covering the optical functional unit 2. The translucent sheet 4 is partially joined to the light guide plate 1 and arranged at a fixed position of the light guide plate 1. The light emitting module 100 in which the rectangular translucent sheet 4 is laminated on the first main surface 1c side of the rectangular light guide plate 1 has one side of the translucent sheet 4 joined to the light guide plate 1 to form the light guide plate 1. Can be placed in place. In this light emitting module 100, the translucent sheet 4 is held in a flat shape and laminated on the surface of the light guide plate 1 in a state where the heat shrinkage between the translucent sheet 4 and the light guide plate 1 is different due to a temperature change, and the light emitting module 100 is shielded from light. The scattering layer 3 can be arranged close to the position of the optical functional unit 2 of the light guide plate 1.

遮光散乱層3の大きさは、適宜設定することができる。平面視において、遮光散乱層3の外形は、光学機能部2の外形よりも大きく、光学機能部2の全面を覆うように配置される。この遮光散乱層3は、光学機能部2から照射される光を散乱し、遮光し、輝度集中を緩和して、輝度ムラを抑制して外部に放射する。導光板1の第2主面1dに発光素子11をマトリクスに配置する発光モジュール100は、発光素子11の近傍の輝度が高くなる。発光素子11の発光は、波長変換部12から光学機能部2に、光学機能部2から遮光散乱層3を透過して輝度ムラを抑制して外部に放射される。光学機能部2を凹部1aで構成する導光板1は、光学機能部2の中央部が薄くなる。さらに、中央部に平面部1yのある凹部1aは、平面部1yによって光学機能部2と発光素子11との相対的な位置ずれによる輝度ムラ等の弊害を少なくできるが、平面部1yによって、導光板1の特定領域が薄くなり、この領域における透過光の強度が強くなって輝度ムラの原因となる。遮光散乱層3は、平面部1yの透過光をも散乱し、遮光して輝度集中を緩和して透過光による輝度ムラをより効果的に抑制する。光学機能部2の透過光は、種々の方向から遮光散乱層3に入射するが、遮光散乱層3は、種々の方向から入射する光を遮光し、散乱して透過光の強度を低下して輝度ムラを抑制する。 The size of the light-shielding scattering layer 3 can be appropriately set. In a plan view, the outer shape of the light-shielding scattering layer 3 is larger than the outer shape of the optical function unit 2, and is arranged so as to cover the entire surface of the optical function unit 2. The light-shielding scattering layer 3 scatters the light emitted from the optical function unit 2, blocks light, alleviates the luminance concentration, suppresses the luminance unevenness, and radiates it to the outside. In the light emitting module 100 in which the light emitting element 11 is arranged in a matrix on the second main surface 1d of the light guide plate 1, the brightness in the vicinity of the light emitting element 11 becomes high. The light emitted from the light emitting element 11 is transmitted from the wavelength conversion unit 12 to the optical function unit 2 and from the optical function unit 2 through the light-shielding scattering layer 3 to suppress luminance unevenness and is radiated to the outside. In the light guide plate 1 in which the optical function portion 2 is composed of the recess 1a, the central portion of the optical function portion 2 becomes thin. Further, in the recess 1a having the flat surface portion 1y in the central portion, the flat surface portion 1y can reduce adverse effects such as luminance unevenness due to the relative positional deviation between the optical function unit 2 and the light emitting element 11, but the flat surface portion 1y guides the recess 1a. The specific region of the optical plate 1 becomes thin, and the intensity of transmitted light in this region becomes strong, which causes uneven brightness. The light-shielding scattering layer 3 also scatters the transmitted light of the flat surface portion 1y, shields the light, reduces the luminance concentration, and more effectively suppresses the luminance unevenness due to the transmitted light. The transmitted light of the optical function unit 2 is incident on the light-shielding scattering layer 3 from various directions, but the light-shielding scattering layer 3 shields the light incident from various directions and scatters the light to reduce the intensity of the transmitted light. Suppresses uneven brightness.

(凹部1b)
導光板1は、第2主面1d側に、凹部1bを備えていてもよい。凹部1bは、発光素子11の実装位置の目標とすることができればどのような形態でもよい。具体的には、例えば、図2B、図2C及び図4Aに示すような凹部や、凸部、溝等とすることができる。
凹部1bの平面視における大きさは、例えば、0.05mm~10mmとすることができ、0.1mm~1mmが好ましい。深さは0.05mm~4mmとすることができ、0.1mm~1mmが好ましい。光学機能部2と凹部1bの間の距離は光学機能部2と凹部1bが離間している範囲で適宜設定できる。
凹部1bの平面視形状は、例えば、略矩形、略円形とすることができ、凹部1bの配列ピッチ等によって選択可能である。凹部1bの配列ピッチ(最も近接した2つの凹部の間の距離)が略均等である場合には、略円形または略正方形が好ましい。なかでも、略円形とすることで、発光素子11からの光を良好に広げることができる。
(Recess 1b)
The light guide plate 1 may be provided with a recess 1b on the second main surface 1d side. The recess 1b may have any shape as long as it can be targeted at the mounting position of the light emitting element 11. Specifically, for example, it may be a concave portion, a convex portion, a groove or the like as shown in FIGS. 2B, 2C and 4A.
The size of the recess 1b in a plan view can be, for example, 0.05 mm to 10 mm, preferably 0.1 mm to 1 mm. The depth can be 0.05 mm to 4 mm, preferably 0.1 mm to 1 mm. The distance between the optical function unit 2 and the recess 1b can be appropriately set within a range in which the optical function unit 2 and the recess 1b are separated from each other.
The plan view shape of the recess 1b can be, for example, a substantially rectangular shape or a substantially circular shape, and can be selected depending on the arrangement pitch of the recess 1b and the like. When the arrangement pitch of the recesses 1b (the distance between the two closest recesses) is substantially uniform, a substantially circular or substantially square is preferable. Above all, by making it substantially circular, the light from the light emitting element 11 can be satisfactorily spread.

(発光素子ユニット10)
発光素子ユニット10は、発光素子11と、発光素子11の主発光面11cを覆う波長変換部12と、発光素子11の側面を覆う光反射性部材16とを備えている。
図3の発光素子ユニット10は、波長変換部12の表面に発光素子11を接合して、発光素子11の主発光面11cを波長変換部12で被覆している。発光素子11は、透光性接着部材17を介して、波長変換部12の表面に接合している。図3の発光素子ユニット10は、平面視において、波長変換部12の外形を発光素子11の外形よりも大きくしている。この発光素子ユニット10は、発光素子11の主発光面11cから照射されるより多くの光を波長変換部12に透過させて導光板1に入射して色ムラや輝度ムラを少なくできる。さらに、発光素子ユニット10は、発光素子11の側面を光反射性部材16で被覆している。図に示す発光素子ユニット10は、光反射性部材16の外側面と波長変換部12の外側面を略同一平面としている。
(Light emitting element unit 10)
The light emitting element unit 10 includes a light emitting element 11, a wavelength conversion unit 12 that covers the main light emitting surface 11c of the light emitting element 11, and a light reflecting member 16 that covers the side surface of the light emitting element 11.
In the light emitting element unit 10 of FIG. 3, the light emitting element 11 is bonded to the surface of the wavelength conversion unit 12, and the main light emitting surface 11c of the light emitting element 11 is covered with the wavelength conversion unit 12. The light emitting element 11 is bonded to the surface of the wavelength conversion unit 12 via the translucent adhesive member 17. In the light emitting element unit 10 of FIG. 3, the outer shape of the wavelength conversion unit 12 is larger than the outer shape of the light emitting element 11 in a plan view. The light emitting element unit 10 can transmit more light emitted from the main light emitting surface 11c of the light emitting element 11 to the wavelength conversion unit 12 and enter the light guide plate 1 to reduce color unevenness and luminance unevenness. Further, the light emitting element unit 10 covers the side surface of the light emitting element 11 with a light reflecting member 16. In the light emitting element unit 10 shown in the figure, the outer surface of the light reflecting member 16 and the outer surface of the wavelength conversion unit 12 are substantially flush with each other.

(波長変換部12)
本実施形態の発光モジュール100は、発光素子11からの光を拡散して、発光素子11からの光の波長を変換する波長変換部12を備えていてもよい。
波長変換部12は、図2Bに示すように、発光素子11と導光板1との間に設けられ、導光板1の第2主面1d側に配置されている。波長変換部12は、それに照射された発光素子11からの光を内部で拡散、均等化する。図の発光モジュール100は、発光素子ユニット10として、発光素子11と波長変換部12とを一体的に形成することにより、発光素子11の主発光面11cを波長変換部12で被覆している。波長変換部12は、発光モジュールの薄型化等の目的から、図2Bに示すように、前述の導光板1の凹部1b内に配置されていることが好ましい。
(Wavelength converter 12)
The light emitting module 100 of the present embodiment may include a wavelength conversion unit 12 that diffuses the light from the light emitting element 11 and converts the wavelength of the light from the light emitting element 11.
As shown in FIG. 2B, the wavelength conversion unit 12 is provided between the light emitting element 11 and the light guide plate 1, and is arranged on the second main surface 1d side of the light guide plate 1. The wavelength conversion unit 12 internally diffuses and equalizes the light emitted from the light emitting element 11. In the light emitting module 100 shown in the figure, the light emitting element 11 and the wavelength conversion unit 12 are integrally formed as the light emitting element unit 10, so that the main light emitting surface 11c of the light emitting element 11 is covered with the wavelength conversion unit 12. The wavelength conversion unit 12 is preferably arranged in the recess 1b of the light guide plate 1 as shown in FIG. 2B for the purpose of reducing the thickness of the light emitting module.

ただ、波長変換部12は、図5に示す発光モジュール200のように、平坦な導光板201の第2主面201d上に配置することもできる。図に示す発光モジュール200は、平坦な導光板201の第2主面201d上に、発光素子ユニット10の波長変換部12を接合して固定することにより、導光板201と発光素子11の間に波長変換部12を配置している。この発光素子ユニット10は、例えば、透光性接着部材17を介して接合される。このように、波長変換部12は、第2主面201dの面から突出するように設けられていてもよい。 However, the wavelength conversion unit 12 can also be arranged on the second main surface 201d of the flat light guide plate 201 as in the light emitting module 200 shown in FIG. The light emitting module 200 shown in the figure is formed between the light guide plate 201 and the light emitting element 11 by joining and fixing the wavelength conversion unit 12 of the light emitting element unit 10 on the second main surface 201d of the flat light guide plate 201. The wavelength conversion unit 12 is arranged. The light emitting element unit 10 is joined via, for example, a translucent adhesive member 17. In this way, the wavelength conversion unit 12 may be provided so as to project from the surface of the second main surface 201d.

さらに、発光モジュールは、図示しないが、導光板に形成された凹部に波長変換材料を充填して波長変換部を形成することもできる。この発光モジュールは、それぞれ離間した複数の波長変換部を備えることが好ましい。これにより、波長変換材料を削減することができる。また、それぞれの発光素子の1つに対して、1つの波長変換部が設けられることが好ましい。これにより、発光素子からの光を波長変換部において均一化させることで、輝度ムラや色ムラを低減することができる。 Further, although not shown, the light emitting module may be formed by filling a recess formed in the light guide plate with a wavelength conversion material to form a wavelength conversion unit. It is preferable that the light emitting module includes a plurality of wavelength converters separated from each other. As a result, the wavelength conversion material can be reduced. Further, it is preferable that one wavelength conversion unit is provided for each light emitting element. As a result, it is possible to reduce luminance unevenness and color unevenness by making the light from the light emitting element uniform in the wavelength conversion unit.

凹部に波長変換材料を充填して形成される波長変換部は、例えば、ポッティング、印刷、スプレー等の方法で形成することができる。導光板の凹部内に波長変換材料を配置して波長変換部を形成する場合には、例えば、液状の波長変換材料を導光板の第2主面に載せた後、スキージ等で複数の凹部内にすり込むことで、量産性良く波長変換部を形成することができる。 The wavelength conversion unit formed by filling the concave portion with the wavelength conversion material can be formed by, for example, a method such as potting, printing, or spraying. When arranging the wavelength conversion material in the recess of the light guide plate to form the wavelength conversion unit, for example, after placing the liquid wavelength conversion material on the second main surface of the light guide plate, the inside of the plurality of recesses is squeezed or the like. By rubbing into, a wavelength conversion unit can be formed with good mass productivity.

また、凹部に充填される波長変換部は、あらかじめ成形されたものを準備し、その成形品を導光板の凹部内、又は、導光板の第2主面上に配置してもよい。波長変換部の成形品の形成方法は、例えば、板状又はシート状の波長変換材料を、切断、パンチング等によって個片化する方法が挙げられる。あるいは、金型等を用いて射出成形、トランスファーモールド法、圧縮成形などの方法によって小片の波長変換部の成形品を形成することができる。波長変換部の成形品は、接着剤等を用いて凹部内、又は、導光板の第2主面上に接着することができる。 Further, the wavelength conversion unit to be filled in the concave portion may be prepared in advance and the molded product may be arranged in the concave portion of the light guide plate or on the second main surface of the light guide plate. Examples of the method for forming the molded product of the wavelength conversion unit include a method of individualizing a plate-shaped or sheet-shaped wavelength conversion material by cutting, punching, or the like. Alternatively, a molded product of the wavelength conversion part of the small piece can be formed by a method such as injection molding, transfer molding, or compression molding using a mold or the like. The molded product of the wavelength conversion unit can be adhered to the inside of the recess or the second main surface of the light guide plate by using an adhesive or the like.

波長変換部12の大きさや形状は、例えば、上述の凹部1bと同等程度とすることができる。波長変換部12の高さは、凹部1bの深さと同程度とすることが好ましい。 The size and shape of the wavelength conversion unit 12 can be, for example, about the same as the recess 1b described above. The height of the wavelength conversion unit 12 is preferably about the same as the depth of the recess 1b.

なお、導光板1の第1主面2cは、光学機能部2以外の部分に光拡散、反射等をさせる加工を有していてもよい。例えば、光学機能部2から離間した部分に微細な凹凸を設ける、または粗面とすることで、さらに光を拡散させ、輝度ムラを低減するようにすることができる。 The first main surface 2c of the light guide plate 1 may have a process for causing light diffusion, reflection, or the like to a portion other than the optical functional unit 2. For example, by providing a fine unevenness or a rough surface in a portion separated from the optical function unit 2, it is possible to further diffuse light and reduce luminance unevenness.

波長変換部12は、例えば、母材の材料として、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、または、ガラスなどの透光性材料を用いることができる。波長変換部12の耐光性および成形容易性の観点からは、波長変換部12の母材としてシリコーン樹脂を選択すると有益である。波長変換部12の母材としては、導光板1の材料よりも高い屈折率を有する材料が好ましい。 The wavelength conversion unit 12 can use, for example, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass as the material of the base material. From the viewpoint of light resistance and moldability of the wavelength conversion unit 12, it is beneficial to select a silicone resin as the base material of the wavelength conversion unit 12. As the base material of the wavelength conversion unit 12, a material having a higher refractive index than the material of the light guide plate 1 is preferable.

波長変換部12が含有する波長変換部材としては、YAG蛍光体、βサイアロン蛍光体またはKSF系蛍光体等のフッ化物系蛍光体などが挙げられる。特に、複数種類の波長変換部材を1つの波長変換部12において用いること、より好ましくは、波長変換部12が緑色系の発光をするβサイアロン蛍光体と赤色系の発光をするKSF系蛍光体等のフッ化物系蛍光体とを含むことにより、発光モジュールの色再現範囲を広げることができる。また、例えば、青色系の光を出射する発光素子11を用いた際に、赤色系の光を得ることができるように、波長変換部12にKSF系蛍光体(赤色蛍光体)を60重量%以上、好ましくは90重量%以上含有させてもよい。つまり、特定の色の光を出射する波長変換部材を波長変換部12に含有させることで、特定の色の光を出射するようにしてもよい。また、波長変換部材は量子ドットであってもよい。
波長変換部12内において、波長変換部材はどのように配置されていてもよい。例えば、略均一に分布していてもよく、一部に偏在してもよい。また、波長変換部材をそれぞれ含有する複数の層が積層されて設けられていてもよい。
Examples of the wavelength conversion member contained in the wavelength conversion unit 12 include a fluoride-based phosphor such as a YAG phosphor, a β-sialon phosphor, and a KSF-based phosphor. In particular, it is preferable to use a plurality of types of wavelength conversion members in one wavelength conversion unit 12, more preferably a β-sialon phosphor that emits green light and a KSF-based phosphor that emits red light. By including the fluoride-based phosphor of the above, the color reproduction range of the light emitting module can be expanded. Further, for example, 60% by weight of a KSF-based phosphor (red phosphor) is added to the wavelength conversion unit 12 so that red-based light can be obtained when the light emitting element 11 that emits blue-based light is used. As mentioned above, preferably 90% by weight or more may be contained. That is, the wavelength conversion unit 12 may include a wavelength conversion member that emits light of a specific color so that light of a specific color is emitted. Further, the wavelength conversion member may be a quantum dot.
The wavelength conversion member may be arranged in any way in the wavelength conversion unit 12. For example, it may be distributed substantially uniformly, or it may be unevenly distributed in a part. Further, a plurality of layers containing each wavelength conversion member may be laminated and provided.

波長変換部12は、例えば上述した樹脂材料にSiOやTiO等の微粒子を含有させて、発光素子11の光を散乱させる層とすることもができる。 For example, the wavelength conversion unit 12 may include fine particles such as SiO 2 and TiO 2 in the above-mentioned resin material to form a layer that scatters the light of the light emitting element 11.

(発光素子11)
発光素子11は、発光モジュール100の光源である。導光板1は、複数の発光素子11を配置している。
(Light emitting element 11)
The light emitting element 11 is a light source of the light emitting module 100. The light guide plate 1 has a plurality of light emitting elements 11 arranged.

発光素子11は、主に発光を取り出す主発光面11cと、主発光面11cと反対側にあって、一対の電極11bを有する電極形成面11dとを有する。一対の電極11bは配線基板20と対向して配置され、任意に配線15等を介して、適宜配線基板20の基板配線と電気的に接続される。 The light emitting element 11 has a main light emitting surface 11c that mainly extracts light, and an electrode forming surface 11d that is on the opposite side of the main light emitting surface 11c and has a pair of electrodes 11b. The pair of electrodes 11b are arranged to face the wiring board 20, and are optionally electrically connected to the board wiring of the wiring board 20 via the wiring 15 or the like.

発光素子11は、例えば、サファイア等の透光性基板と、透光性基板の上に積層された半導体積層構造とを有する。半導体積層構造は、発光層と、発光層を挟むn型半導体層およびp型半導体層とを含み、n型半導体層およびp型半導体層にn側電極およびp側電極がそれぞれ電気的に接続される。発光素子11は、例えば透光性基板を備える主発光面11cが導光板1と対向して配置され、主発光面11cと反対側の電極形成面11dに一対の電極11bを有する。発光素子11は、波長変換部材を効率良く励起できる短波長の光を出射することが可能な窒化物半導体(InAlGa1-x-yN、0≦X、0≦Y、X+Y≦1)を備えることが好ましい。 The light emitting element 11 has, for example, a translucent substrate such as sapphire and a semiconductor laminated structure laminated on the translucent substrate. The semiconductor laminated structure includes a light emitting layer, an n-type semiconductor layer and a p-type semiconductor layer sandwiching the light emitting layer, and the n-side electrode and the p-side electrode are electrically connected to the n-type semiconductor layer and the p-type semiconductor layer, respectively. To. In the light emitting element 11, for example, the main light emitting surface 11c provided with the translucent substrate is arranged so as to face the light guide plate 1, and the light emitting element 11 has a pair of electrodes 11b on the electrode forming surface 11d opposite to the main light emitting surface 11c. The light emitting device 11 is a nitride semiconductor (In x Aly Ga 1-xy N , 0 ≦ X, 0 ≦ Y, X + Y ≦) capable of emitting short wavelength light capable of efficiently exciting a wavelength conversion member. It is preferable to provide 1).

発光素子11としては、縦、横および高さの寸法に特に制限は無い。発光素子11は、好ましくは平面視において縦および横の寸法が1000μm以下の半導体発光素子を用い、より好ましくは縦および横の寸法が500μm以下であり、さらに好ましくは、縦および横の寸法が200μm以下の発光素子を用いる。このような発光素子を用いると、液晶ディスプレイ装置のローカルディミングを行った際に、高精細な映像を実現することができる。また、縦および横の寸法が500μm以下の発光素子11を用いると、発光素子11を安価に調達することができるため、発光モジュール100を安価にすることができる。なお、縦および横の寸法の両方が250μm以下である発光素子は、発光素子の上面の面積が小さくなるため、相対的に発光素子の側面からの光の出射量が多くなる。つまり、このような発光素子は発光がバットウィング形状になりやすくなるため、発光素子11が導光板1に接合され、発光素子11と導光板1との距離がごく短い本実施形態の発光モジュール100に好ましく用いられる。 The light emitting element 11 is not particularly limited in vertical, horizontal and height dimensions. The light emitting device 11 preferably uses a semiconductor light emitting device having a vertical and horizontal dimension of 1000 μm or less in a plan view, more preferably a vertical and horizontal dimension of 500 μm or less, and further preferably a vertical and horizontal dimension of 200 μm. The following light emitting elements are used. When such a light emitting element is used, a high-definition image can be realized when the liquid crystal display device is locally dimmed. Further, if the light emitting element 11 having a vertical and horizontal dimension of 500 μm or less is used, the light emitting element 11 can be procured at low cost, so that the light emitting module 100 can be made cheap. In a light emitting element having both vertical and horizontal dimensions of 250 μm or less, the area of the upper surface of the light emitting element is small, so that the amount of light emitted from the side surface of the light emitting element is relatively large. That is, since such a light emitting element tends to emit light in a butt wing shape, the light emitting element 11 is bonded to the light guide plate 1, and the distance between the light emitting element 11 and the light guide plate 1 is very short. It is preferably used for.

さらに、発光モジュールは、導光板1にレンズ等の反射や拡散機能を有する光学機能部2を設けて、発光素子11からの光を側方に広げ、導光板1の面内における発光強度を平均化させることが好ましい。しかし、導光板1の複数の発光素子11と対応する位置に複数の光学機能部2を配置する構造は、小さい発光素子11と光学機能部2の位置決めが難しくなる場合がある。
また、発光素子11や光学機能部2の位置ずれが発生すると、光学機能部2と発光素子11との相対的な位置が設計からずれて、光学機能部2によって光を十分に広げることができず、明るさが面内において部分的に低下するなどして、輝度ムラになるという問題がある。
Further, the light emitting module is provided with an optical function unit 2 having a reflecting or diffusing function such as a lens on the light guide plate 1, spreads the light from the light emitting element 11 laterally, and averages the light emitting intensity in the plane of the light guide plate 1. It is preferable to make it. However, in the structure in which the plurality of optical function units 2 are arranged at the positions corresponding to the plurality of light emitting elements 11 of the light guide plate 1, it may be difficult to position the small light emitting element 11 and the optical function unit 2.
Further, when the position of the light emitting element 11 or the optical function unit 2 is displaced, the relative position of the optical function unit 2 and the light emitting element 11 is displaced from the design, and the optical function unit 2 can sufficiently spread the light. However, there is a problem that the brightness becomes uneven due to the partial decrease in brightness in the plane.

そこで、本実施形態における発光モジュール100は、導光板1に予め設けられた複数の位置決め部(特に、凹部1b)もしくは光学機能部2を目印として、導光板1上に複数の発光素子ユニット10を実装することで、このような発光素子11の位置決めを容易に行うことができる。このことにより、発光素子11からの光を精度よく均一化させ、輝度ムラや色ムラの少ない良質なバックライト用光源とすることができる。 Therefore, the light emitting module 100 in the present embodiment has a plurality of light emitting element units 10 on the light guide plate 1 with a plurality of positioning portions (particularly, recesses 1b) or optical function units 2 provided in advance in the light guide plate 1 as markers. By mounting, such positioning of the light emitting element 11 can be easily performed. As a result, the light from the light emitting element 11 can be made uniform with high accuracy, and a high-quality backlight light source with less luminance unevenness and color unevenness can be obtained.

また、上述のように、光学機能部2が設けられた面の反対側の面において光学機能部2と対応した、つまり平面透視において光学機能部2と重なる位置に、発光素子11を位置決め可能な位置決め部を設けることが好ましい。なかでも、位置決め部として凹部1bを形成し、この凹部1bに発光素子ユニット10の波長変換部12を接合することで、発光素子11と光学機能部2との位置決めをより容易に行うことができる。
また、発光素子を発光素子ユニットとして凹部に配置することなく、導光板に設けた凹部に波長変換材料を充填して波長変換部を設けて、この波長変換部に発光素子を接合する構造においては、位置決め部として形成された凹部の内部に導光板1の部材とは異なる部材であって、製造装置の位置認識に利用可能な波長変換部を形成することで、発光素子と光学機能部との位置決めをより容易に行うことができる。
Further, as described above, the light emitting element 11 can be positioned at a position corresponding to the optical function unit 2 on the surface opposite to the surface provided with the optical function unit 2, that is, overlapping with the optical function unit 2 in planar fluoroscopy. It is preferable to provide a positioning portion. Above all, by forming the concave portion 1b as the positioning portion and joining the wavelength conversion portion 12 of the light emitting element unit 10 to the concave portion 1b, the positioning of the light emitting element 11 and the optical function unit 2 can be performed more easily. ..
Further, in a structure in which the concave portion provided in the light guide plate is filled with a wavelength conversion material to provide a wavelength conversion unit and the light emitting element is bonded to the wavelength conversion unit, instead of arranging the light emitting element as a light emitting element unit in the concave portion. By forming a wavelength conversion unit that is different from the member of the light guide plate 1 and can be used for position recognition of the manufacturing apparatus inside the recess formed as the positioning unit, the light emitting element and the optical function unit can be connected to each other. Positioning can be performed more easily.

また、発光素子11の側面を光反射性部材16で被覆して発光の方向を限定し、また発光素子11の主発光面11cと対向する凹部1bの内部に波長変換部12を配置し、この波長変換部12から主に光を取り出すことで、発光を内部で拡散させることが可能な波長変換部12を発光部とみなすことができる。これにより、波長変換部12と対向してはいるものの、平面視の範囲内において発生する発光素子11の位置ずれの影響をより低減することができる。 Further, the side surface of the light emitting element 11 is covered with the light reflecting member 16 to limit the direction of light emission, and the wavelength conversion unit 12 is arranged inside the recess 1b facing the main light emitting surface 11c of the light emitting element 11. By mainly extracting light from the wavelength conversion unit 12, the wavelength conversion unit 12 capable of diffusing light emission internally can be regarded as a light emitting unit. As a result, it is possible to further reduce the influence of the positional deviation of the light emitting element 11 that occurs within the range of the plan view, although it faces the wavelength conversion unit 12.

発光素子11としては、平面視において方形状の発光素子を用いることが好ましい。さらに、発光素子11はその上面形状が長手と短手を有する長方形とすることが好ましい。高精細な液晶ディスプレイ装置の場合、使用する発光素子11の数は数千個以上となり、発光素子11の実装工程は重要な工程となる。発光素子11の実装工程において、複数の発光素子の一部の発光素子に回転ずれ(例えば±90度方向のずれ)が発生したとしても、平面視において長方形の発光素子を用いることで目視での確認が容易となる。また、p型電極とn型電極の距離を離して形成することができるため、後述する配線15の形成を容易に行うことができる。
一方、平面視において正方形の発光素子を用いる場合は、小さい発光素子を量産性良く製造することができる。
発光素子11の密度(配列ピッチ)は、発光素子11間の距離は、例えば、0.05mm~20mm程度とすることができ、1mm~10mm程度が好ましい。
As the light emitting element 11, it is preferable to use a rectangular light emitting element in a plan view. Further, it is preferable that the upper surface shape of the light emitting element 11 is a rectangle having a long side and a short side. In the case of a high-definition liquid crystal display device, the number of light emitting elements 11 used is several thousand or more, and the mounting process of the light emitting elements 11 is an important process. Even if a rotational deviation (for example, a deviation in the ± 90 degree direction) occurs in some of the light emitting elements of the plurality of light emitting elements in the mounting process of the light emitting element 11, the rectangular light emitting element is used in a plan view to visually check the light emitting element. Confirmation is easy. Further, since the p-type electrode and the n-type electrode can be formed at a distance from each other, the wiring 15 described later can be easily formed.
On the other hand, when a square light emitting element is used in a plan view, a small light emitting element can be manufactured with good mass productivity.
Regarding the density (arrangement pitch) of the light emitting elements 11, the distance between the light emitting elements 11 can be, for example, about 0.05 mm to 20 mm, and is preferably about 1 mm to 10 mm.

複数の発光素子11は、導光板1の平面視において、多段多列に配列される。好ましくは、複数の発光素子11は、図2Aに示すように、直交する二方向、つまり、x方向およびy方向に沿って所定のピッチで配列される。複数の発光素子11のx方向の配列ピッチpx、及びy方向の配列ピッチpyは、図2Aの例に示すように、x方向およびy方向の間でピッチが同じであってもよいし、異なっていてもよい。配列の二方向が直交していなくてもよい。また、x方向またはy方向の配列ピッチは等間隔に限られず、不等間隔であってもよい。例えば、導光板1の中央から周辺に向かって間隔が広くなるように発光素子11が配列されていてもよい。なお、発光素子11間のピッチとは、発光素子11の光軸間の距離である。 The plurality of light emitting elements 11 are arranged in multiple stages in a plan view of the light guide plate 1. Preferably, the plurality of light emitting elements 11 are arranged at predetermined pitches along two orthogonal directions, that is, the x direction and the y direction, as shown in FIG. 2A. As shown in the example of FIG. 2A, the array pitch px in the x direction and the array pitch py in the y direction of the plurality of light emitting elements 11 may have the same pitch or differ between the x direction and the y direction. May be. The two directions of the array do not have to be orthogonal. Further, the arrangement pitches in the x-direction or the y-direction are not limited to equal intervals, and may be unequal intervals. For example, the light emitting elements 11 may be arranged so that the distance from the center of the light guide plate 1 becomes wider toward the periphery. The pitch between the light emitting elements 11 is the distance between the optical axes of the light emitting elements 11.

発光素子11には、公知の半導体発光素子を利用することができる。本実施形態においては、発光素子11として発光ダイオードを例示する。発光素子11は、例えば、青色光を出射する。また、発光素子11として、白色光を出射する光源を用いてもよい。また、複数の発光素子11として異なる色の光を発する発光素子を用いてもよい。例えば、発光モジュール100が、赤、青、緑の光を出射する発光素子を含み、赤、青、緑の光が混合されることにより白色光が出射されてもよい。 A known semiconductor light emitting device can be used as the light emitting device 11. In this embodiment, a light emitting diode is exemplified as the light emitting element 11. The light emitting element 11 emits blue light, for example. Further, as the light emitting element 11, a light source that emits white light may be used. Further, as the plurality of light emitting elements 11, light emitting elements that emit light of different colors may be used. For example, the light emitting module 100 may include a light emitting element that emits red, blue, and green light, and white light may be emitted by mixing red, blue, and green light.

発光素子11として、任意の波長の光を出射する素子を選択することができる。例えば、青色、緑色の光を出射する素子としては、窒化物系半導体(InAlGa1-x-yN、0≦X、0≦Y、X+Y≦1)またはGaPを用いた発光素子を用いることができる。また、赤色の光を出射する素子としては、GaAlAs、AlInGaPなどの半導体を含む発光素子を用いることができる。さらに、これら以外の材料からなる半導体発光素子を用いることもできる。半導体層の材料およびその混晶度によって発光波長を種々選択することができる。用いる発光素子の組成、発光色、大きさ、個数などは、目的に応じて適宜選択すればよい。 As the light emitting element 11, an element that emits light having an arbitrary wavelength can be selected. For example, as an element that emits blue or green light, a nitride-based semiconductor (In x Aly Ga 1-xy N , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) or a light emitting device using GaP is used. Can be used. Further, as the element that emits red light, a light emitting element containing a semiconductor such as GaAlAs or AlInGaP can be used. Further, a semiconductor light emitting device made of a material other than these can also be used. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the mixed crystalliteity thereof. The composition, emission color, size, number, etc. of the light emitting element to be used may be appropriately selected according to the purpose.

(透光性接着部材17)
透光性接着部材17は、波長変換部12の表面と発光素子11の主発光面11cとを接合している。さらに、透光性接着部材17は、図3に示すように、発光素子11の側面の一部および波長変換部12の一部も被覆している。なお、透光性接着部材17の外側面は、発光素子11の側面から波長変換部12に向かって広がる傾斜面であることが好ましく、発光素子11側に凸状の曲面であることがより好ましい。
さらに、透光性接着部材17は、導光板1の第1主面1c側から見た平面視において、波長変換部12の外縁より内側の範囲に限定して配置されることが好ましい。これにより、発光素子11の側面から出る光を波長変換部12により効率的に入光させることができるため、光取り出し効率を高めることができる。
また、発光素子11の主発光面11cと波長変換部12の間には、透光性接着部材17を有してもよい。これにより、例えば、透光性接着部材17に拡散剤等を含有することで発光素子11の主発光面11cから出る光が、透光性接着部材17で拡散され、波長変換部12に入ることで輝度ムラを少なくできる。
透光性接着部材17は、後述する透光性接合部材14と同じ部材を使用することができる。
(Translucent adhesive member 17)
The translucent adhesive member 17 joins the surface of the wavelength conversion unit 12 and the main light emitting surface 11c of the light emitting element 11. Further, as shown in FIG. 3, the translucent adhesive member 17 also covers a part of the side surface of the light emitting element 11 and a part of the wavelength conversion unit 12. The outer surface of the translucent adhesive member 17 is preferably an inclined surface extending from the side surface of the light emitting element 11 toward the wavelength conversion unit 12, and more preferably a curved surface convex toward the light emitting element 11. ..
Further, it is preferable that the translucent adhesive member 17 is arranged only in a range inside the outer edge of the wavelength conversion unit 12 in a plan view seen from the first main surface 1c side of the light guide plate 1. As a result, the light emitted from the side surface of the light emitting element 11 can be efficiently input by the wavelength conversion unit 12, so that the light extraction efficiency can be improved.
Further, a translucent adhesive member 17 may be provided between the main light emitting surface 11c of the light emitting element 11 and the wavelength conversion unit 12. As a result, for example, the light emitted from the main light emitting surface 11c of the light emitting element 11 by containing a diffuser or the like in the translucent adhesive member 17 is diffused by the translucent adhesive member 17 and enters the wavelength conversion unit 12. Can reduce uneven brightness.
As the translucent adhesive member 17, the same member as the translucent bonding member 14 described later can be used.

(光反射性部材16)
さらに、発光素子ユニット10は、発光素子11に波長変換部12を設けた状態で、発光素子11の側面を光反射性部材16で被覆している。詳細には、透光性接着部材17で覆われていない発光素子11の側面および透光性接着部材17の外側面を光反射性部材16で被覆している。
光反射性部材16は、光反射性に優れた材質で、好ましくは、光を反射する添加物である白色粉末等を透明樹脂に添加している白色樹脂である。発光素子ユニット10は、発光素子11の主発光面11cを除く他の面をこの光反射性部材16で被覆することにより、主発光面11c以外の方向への光の漏れを抑制している。すなわち、光反射性部材16は、発光素子11の側面や電極形成面11dから出射される光を反射して、発光素子11の発光を有効に導光板1の第1主面1cから外部に放射させて、発光モジュール100の光取り出し効率を高めることができる。
(Light reflective member 16)
Further, in the light emitting element unit 10, the side surface of the light emitting element 11 is covered with the light reflecting member 16 in a state where the wavelength conversion unit 12 is provided in the light emitting element 11. Specifically, the side surface of the light emitting element 11 not covered by the translucent adhesive member 17 and the outer surface of the translucent adhesive member 17 are covered with the light reflective member 16.
The light-reflecting member 16 is a material having excellent light-reflecting properties, and is preferably a white resin obtained by adding white powder or the like, which is an additive for reflecting light, to a transparent resin. The light emitting element unit 10 suppresses light leakage in directions other than the main light emitting surface 11c by covering the other surfaces of the light emitting element 11 other than the main light emitting surface 11c with the light reflecting member 16. That is, the light reflecting member 16 reflects the light emitted from the side surface of the light emitting element 11 and the electrode forming surface 11d, and effectively radiates the light emitted from the light emitting element 11 from the first main surface 1c of the light guide plate 1 to the outside. Therefore, the light extraction efficiency of the light emitting module 100 can be improved.

光反射性部材16は、発光素子11から出射される光に対して60%以上の反射率を有し、好ましくは90%以上の反射率を有する白色樹脂が適している。この光反射性部材16は、白色粉末等の白色の顔料を含有させた樹脂であることが好ましい。特に、酸化チタン等の無機白色粉末を含有させたシリコーン樹脂が好ましい。 As the light reflecting member 16, a white resin having a reflectance of 60% or more with respect to the light emitted from the light emitting element 11 and preferably a reflectance of 90% or more is suitable. The light-reflecting member 16 is preferably a resin containing a white pigment such as white powder. In particular, a silicone resin containing an inorganic white powder such as titanium oxide is preferable.

光反射性部材16は、発光素子11の側面の少なくとも一部に接しており、発光素子11の周囲にあって発光素子11を埋設して、発光素子11の電極11bを表面に露出させている。光反射性部材16は、波長変換部12と接しており、光反射性部材16の外側面と波長変換部12の外側面は同一平面である。光反射性部材16は、発光素子11と波長変換部12と一体構造に接合された発光素子ユニット10を介して導光板1に配置される。 The light reflecting member 16 is in contact with at least a part of the side surface of the light emitting element 11, and the light emitting element 11 is embedded around the light emitting element 11 to expose the electrode 11b of the light emitting element 11 to the surface. .. The light-reflecting member 16 is in contact with the wavelength conversion unit 12, and the outer surface of the light-reflecting member 16 and the outer surface of the wavelength conversion unit 12 are flush with each other. The light reflecting member 16 is arranged on the light guide plate 1 via a light emitting element unit 10 integrally bonded to the light emitting element 11 and the wavelength conversion unit 12.

(透光性接合部材14)
発光素子ユニット10は、透光性接合部材14によって導光板1に接合することができる。本実施形態においては、透光性接合部材14は、凹部1bの内側面および発光素子ユニット10の外側面と接している。また、透光性接合部材14は、凹部1bの外側に位置する光反射性部材16の一部と接するように、言い換えると、波長変換部12の外側面から光反射性部材16の外側面に跨がる領域を被覆するように配置されている。これにより、発光素子ユニット10の側面方向に出射された光を透光性接合部材14内に効率的に取り出し、発光モジュール100の発光効率を高めることができる。透光性接合部材14が発光素子ユニット10の側面を被覆する場合には、図2Bに示すように、導光板1の方向に向かって断面視において広がる形状に形成することが好ましい。さらに、透光性接合部材14の外側面は傾斜面としており、光反射性部材16の外側面との間でなす傾斜角が鋭角となるようにしている。これにより、発光素子11の側面方向に出射された光を効率的に導光板1の方向に取り出すことができる。
また透光性接合部材14は、波長変換部12と凹部1bの底面の間に配置されてもよい。
(Translucent joint member 14)
The light emitting element unit 10 can be bonded to the light guide plate 1 by the translucent bonding member 14. In the present embodiment, the translucent joining member 14 is in contact with the inner surface of the recess 1b and the outer surface of the light emitting element unit 10. Further, the translucent joining member 14 is in contact with a part of the light reflecting member 16 located outside the recess 1b, in other words, from the outer surface of the wavelength conversion unit 12 to the outer surface of the light reflecting member 16. It is arranged so as to cover the straddling area. As a result, the light emitted in the side surface direction of the light emitting element unit 10 can be efficiently taken out into the translucent bonding member 14, and the light emitting efficiency of the light emitting module 100 can be improved. When the translucent joining member 14 covers the side surface of the light emitting element unit 10, it is preferable to form the transparent joining member 14 in a shape that expands in a cross-sectional view toward the light guide plate 1 as shown in FIG. 2B. Further, the outer surface of the translucent joining member 14 is an inclined surface, and the inclination angle formed with the outer surface of the light reflecting member 16 is an acute angle. As a result, the light emitted in the side surface direction of the light emitting element 11 can be efficiently taken out in the direction of the light guide plate 1.
Further, the translucent bonding member 14 may be arranged between the wavelength conversion unit 12 and the bottom surface of the recess 1b.

さらに、図3に示すように、透光性接合部材14は、導光板1の第2主面1dと接している。これにより、傾斜面が形成される領域を広くして、多くの光を反射できるようになり、輝度ムラを低減できるようにしている。
また、図3に示すように、透光性接合部材14は、断面視において傾斜面を有している。この形状は、透光性接合部材14を透過して傾斜面に入射する光を一様な状態で発光面側に反射できる。
Further, as shown in FIG. 3, the translucent joining member 14 is in contact with the second main surface 1d of the light guide plate 1. As a result, the area where the inclined surface is formed is widened so that a large amount of light can be reflected and uneven brightness can be reduced.
Further, as shown in FIG. 3, the translucent joining member 14 has an inclined surface in a cross-sectional view. This shape can reflect the light transmitted through the translucent joining member 14 and incident on the inclined surface to the light emitting surface side in a uniform state.

透光性接合部材14として、エポキシ樹脂、シリコーン樹脂等の透光性の熱硬化性の樹脂材料等を用いることができる。また、透光性接合部材14は、光の透過率を60%以上とし、好ましくは90%以上とする。さらに、透光性接合部材14は、拡散材等を含み、あるいは光を反射する添加物である白色粉末等を含んでもよいし、拡散材や白色粉末等を含まない透光性の樹脂材料のみで構成されてもよい。 As the translucent bonding member 14, a translucent thermosetting resin material such as an epoxy resin or a silicone resin can be used. Further, the translucent bonding member 14 has a light transmittance of 60% or more, preferably 90% or more. Further, the translucent joining member 14 may contain a diffusing material or the like, or may contain a white powder or the like which is an additive for reflecting light, or only a translucent resin material containing no diffusing material or the white powder or the like. It may be composed of.

透光性接合部材14は、発光素子11が透光性基板を備える場合、その透光性基板の少なくとも側面の一部を被覆することが好ましい。これにより、発光層から出射される光のうち透光性基板内を伝播して横方向に出射される光を、上方に取り出すことができる。透光性接合部材14は、高さ方向において透光性基板の側面の半分以上を被覆することが好ましく、発光素子11の側面と電極形成面11dとがなす辺に接触するように形成することがさらに好ましい。 When the light emitting element 11 includes a translucent substrate, the translucent bonding member 14 preferably covers at least a part of the side surface of the translucent substrate. As a result, among the light emitted from the light emitting layer, the light propagating in the translucent substrate and emitted in the lateral direction can be taken out upward. The translucent bonding member 14 preferably covers more than half of the side surface of the translucent substrate in the height direction, and is formed so as to be in contact with the side formed by the side surface of the light emitting element 11 and the electrode forming surface 11d. Is even more preferable.

(封止部材13)
封止部材13は、複数の発光素子ユニット10の側面と導光板1の第2主面1dと透光性接合部材14の側面とを封止している。これにより、発光素子ユニット10と導光板1を補強することができる。また、この封止部材13を光反射性部材とすることで、発光素子11からの発光を導光板1に効率よく取り入れることができる。また、封止部材13が、発光素子ユニット10を保護する部材と導光板1の出射面と反対側の面に設けられる反射部材とを兼ねることにより、発光モジュール100の薄型化を図ることができる。
(Sealing member 13)
The sealing member 13 seals the side surfaces of the plurality of light emitting element units 10, the second main surface 1d of the light guide plate 1, and the side surfaces of the translucent bonding member 14. Thereby, the light emitting element unit 10 and the light guide plate 1 can be reinforced. Further, by using the sealing member 13 as a light reflecting member, light emitted from the light emitting element 11 can be efficiently taken into the light guide plate 1. Further, the sealing member 13 also serves as a member for protecting the light emitting element unit 10 and a reflecting member provided on the surface opposite to the emission surface of the light guide plate 1, so that the light emitting module 100 can be made thinner. ..

封止部材13は、光反射性部材であることが好ましい。
光反射性部材の封止部材13は、発光素子11から出射される光に対して60%以上の反射率を有し、好ましくは90%以上の反射率を有する。
光反射性部材の封止部材13の材料は、白色の顔料等を含有させた樹脂であることが好ましい。特に、酸化チタンを含有させたシリコーン樹脂が好ましい。これにより、導光板1の一面を被覆するために比較的大量に用いられる材料として酸化チタンのような安価な原材料を多く用いることで、発光モジュール100を安価にすることができる。
The sealing member 13 is preferably a light-reflecting member.
The sealing member 13 of the light-reflecting member has a reflectance of 60% or more, preferably 90% or more, with respect to the light emitted from the light emitting element 11.
The material of the sealing member 13 of the light-reflecting member is preferably a resin containing a white pigment or the like. In particular, a silicone resin containing titanium oxide is preferable. As a result, the light emitting module 100 can be made inexpensive by using a large amount of inexpensive raw materials such as titanium oxide as a material used in a relatively large amount to cover one surface of the light guide plate 1.

(配線15)
発光モジュール100には、複数の発光素子11の電極11bと電気的に接続される配線15が設けられていてもよい。配線15は、封止部材13等の表面であって、導光板1の第1主面1cと反対側の面に形成することができる。配線15を設けることにより、例えば複数の発光素子11同士を電気的に接続することができ、液晶ディスプレイ装置3000のローカルディミング等に必要な回路を容易に形成することができる。
配線15は、例えば、図4G~図4Hに示すように、発光素子11の正負の電極11bを封止部材13の表面に露出させ、発光素子11の電極11b及び封止部材13の表面の略全面に金属膜15aを形成し、この金属膜15aをレーザ等で一部除去してパターンニングすることにより、配線15を形成することができる。
(Wiring 15)
The light emitting module 100 may be provided with wiring 15 that is electrically connected to the electrodes 11b of the plurality of light emitting elements 11. The wiring 15 is the surface of the sealing member 13 and the like, and can be formed on the surface of the light guide plate 1 opposite to the first main surface 1c. By providing the wiring 15, for example, a plurality of light emitting elements 11 can be electrically connected to each other, and a circuit necessary for local dimming of the liquid crystal display device 3000 can be easily formed.
In the wiring 15, for example, as shown in FIGS. 4G to 4H, the positive and negative electrodes 11b of the light emitting element 11 are exposed on the surface of the sealing member 13, and the surface of the electrode 11b of the light emitting element 11 and the surface of the sealing member 13 are abbreviated. The wiring 15 can be formed by forming a metal film 15a on the entire surface and partially removing the metal film 15a with a laser or the like for patterning.

(配線基板20)
本開示の発光モジュール100は、図4Iに示すように、配線基板20を有していてもよい。これにより、ローカルディミング等に必要な複雑な配線を容易に形成することができる。この配線基板20は、発光素子11を導光板1に実装し、任意に封止部材13及び配線15を形成した後に、別途配線層20bを備える配線基板20を発光素子の電極11bないし配線15と接合することで形成することができる。また、発光素子11と接続する配線15を設ける際、配線15を発光素子11の電極11bの平面形状よりも大きい形状とすることで、この配線基板20と発光素子11等との電気的な接合を容易に行うことができる。
(Wiring board 20)
The light emitting module 100 of the present disclosure may have a wiring board 20 as shown in FIG. 4I. This makes it possible to easily form complicated wiring required for local dimming and the like. In this wiring board 20, after the light emitting element 11 is mounted on the light guide plate 1 and the sealing member 13 and the wiring 15 are arbitrarily formed, the wiring board 20 separately provided with the wiring layer 20b is attached to the electrodes 11b to 15 of the light emitting element. It can be formed by joining. Further, when the wiring 15 to be connected to the light emitting element 11 is provided, the wiring 15 has a shape larger than the planar shape of the electrode 11b of the light emitting element 11, so that the wiring board 20 and the light emitting element 11 or the like are electrically joined. Can be easily performed.

配線基板20は、絶縁性の基材20aと、複数の発光素子11と電気的に接続される配線層20b等を備える基板である。配線基板20は、例えば、絶縁性の基材20aに設けられた複数のビアホール内に充填された導電性部材20cと、基材20aの両面側において導電性部材20cと電気的に接続された配線層20bが形成されている。 The wiring board 20 is a board including an insulating base material 20a, a wiring layer 20b electrically connected to a plurality of light emitting elements 11, and the like. The wiring board 20 is, for example, a wiring electrically connected to a conductive member 20c filled in a plurality of via holes provided in the insulating base material 20a and to the conductive member 20c on both side surfaces of the base material 20a. The layer 20b is formed.

配線基板20の材料としては、どのようなものであってもよい。例えば、セラミックスおよび樹脂を用いることができる。低コストおよび成形容易性の点から、樹脂を基材20aの材料として選択してもよい。樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)、不飽和ポリエステル、ガラスエポキシ等の複合材料等を挙げることができる。また、リジッド基板であってもよく、フレキシブル基板であってもよい。本実施形態の発光モジュール100においては、発光素子11と導光板1との位置関係が予め定められているため、配線基板20の材料としては、熱等で反りが発生したり、伸びたりするような材料を基材20aに用いる場合であっても、発光素子11と導光板1との位置ずれの問題が発生しづらいため、ガラスエポキシ等の安価な材料や厚みの薄い基板を適宜用いることができる。 Any material may be used for the wiring board 20. For example, ceramics and resins can be used. A resin may be selected as the material of the base material 20a from the viewpoint of low cost and ease of molding. Examples of the resin include composite materials such as phenol resin, epoxy resin, polyimide resin, BT resin, polyphthalamide (PPA), polyethylene terephthalate (PET), unsaturated polyester, and glass epoxy. Further, it may be a rigid substrate or a flexible substrate. In the light emitting module 100 of the present embodiment, since the positional relationship between the light emitting element 11 and the light guide plate 1 is predetermined, the material of the wiring board 20 is such that warpage occurs or stretches due to heat or the like. Even when a different material is used for the base material 20a, the problem of misalignment between the light emitting element 11 and the light guide plate 1 is unlikely to occur. Therefore, an inexpensive material such as glass epoxy or a thin substrate may be appropriately used. can.

配線層20bは、例えば、基材20a上に設けられた導電箔(導体層)であり、複数の発光素子11と電気的に接続される。配線層20bの材料は、高い熱伝導性を有していることが好ましい。このような材料として、例えば銅などの導電材料が挙げられる。また、配線層20bは、メッキや導電性ペーストの塗布、印刷などで形成することができ、配線層20bの厚みは、例えば、5~50μm程度である。 The wiring layer 20b is, for example, a conductive foil (conductor layer) provided on the base material 20a, and is electrically connected to a plurality of light emitting elements 11. The material of the wiring layer 20b preferably has high thermal conductivity. Examples of such a material include a conductive material such as copper. Further, the wiring layer 20b can be formed by plating, coating with a conductive paste, printing, or the like, and the thickness of the wiring layer 20b is, for example, about 5 to 50 μm.

配線基板20は、どのような方法で導光板1等と接合されていてもよい。例えば、シート状の接着シートを、導光板1の反対側に設けられた封止部材13の表面と、配線基板20の表面との間に配置し、圧着することで、接合することができる。また、配線基板20の配線層20bと発光素子11との電気的接続はどのような方法で行われてもよい。例えば、ビアホール内に埋め込んだ金属である導電性部材20cを加圧と加熱により溶かして配線15と接合することができる。 The wiring board 20 may be joined to the light guide plate 1 or the like by any method. For example, a sheet-shaped adhesive sheet can be bonded by arranging it between the surface of the sealing member 13 provided on the opposite side of the light guide plate 1 and the surface of the wiring board 20 and crimping them. Further, the wiring layer 20b of the wiring board 20 and the light emitting element 11 may be electrically connected by any method. For example, the conductive member 20c, which is a metal embedded in the via hole, can be melted by pressurization and heating and joined to the wiring 15.

なお、配線基板20は、積層構造を有していてもよい。例えば、配線基板20として、表面に絶縁層が設けられた金属板を用いてもよい。また、配線基板20は複数のTFT(Thin-Film Transistor)を有するTFT基板であってもよい。 The wiring board 20 may have a laminated structure. For example, as the wiring board 20, a metal plate having an insulating layer on its surface may be used. Further, the wiring board 20 may be a TFT board having a plurality of TFTs (Thin-Film Transistors).

(発光モジュール100の製造工程)
以下、本実施形態の発光モジュールの製造方法の一例を示す。
まず、発光素子ユニット10を準備する。図3は、発光素子ユニット10の製造工程の一例を示している。
図3(a)に示す工程で、発光素子11の主発光面11cを覆う波長変換部12を形成する。この工程では、ベースシート41の表面に均一な厚さで波長変換部12を形成し、このベースシート41をプレート42に剥離できるように配置する。
(Manufacturing process of light emitting module 100)
Hereinafter, an example of the method for manufacturing the light emitting module of the present embodiment will be shown.
First, the light emitting element unit 10 is prepared. FIG. 3 shows an example of a manufacturing process of the light emitting element unit 10.
In the process shown in FIG. 3A, the wavelength conversion unit 12 that covers the main light emitting surface 11c of the light emitting element 11 is formed. In this step, the wavelength conversion unit 12 is formed on the surface of the base sheet 41 with a uniform thickness, and the base sheet 41 is arranged on the plate 42 so that it can be peeled off.

図3(b)に示す工程で、波長変換部12に発光素子11が接合される。発光素子11は、主発光面11c側を波長変換部12に接合する。発光素子11は、波長変換部12に所定の間隔で接合される。
発光素子11は、透光性接着部材17を介して波長変換部12に接合する。透光性接着部材17は、波長変換部12上および/または発光素子11の主発光面11c上に塗布されて、発光素子11と波長変換部12を接合する。この時、図3(b)に示すように、塗布された透光性接着部材17が発光素子11の側面に這い上がり、発光素子11の側面の一部を透光性接着部材17が被覆する。また、波長変換部12と発光素子11の主発光面11cの間にも透光性接着部材17を配置してもよい。
発光素子11の間隔は、図3(e)で示すように、発光素子11の間を切断して、波長変換部12の外形が所定の大きさとなる寸法に設定される。発光素子11の間隔が、波長変換部12の外形を特定するからである。
In the process shown in FIG. 3B, the light emitting element 11 is bonded to the wavelength conversion unit 12. The light emitting element 11 joins the main light emitting surface 11c side to the wavelength conversion unit 12. The light emitting element 11 is joined to the wavelength conversion unit 12 at a predetermined interval.
The light emitting element 11 is bonded to the wavelength conversion unit 12 via the translucent adhesive member 17. The translucent adhesive member 17 is applied on the wavelength conversion unit 12 and / or on the main light emitting surface 11c of the light emitting element 11 to join the light emitting element 11 and the wavelength conversion unit 12. At this time, as shown in FIG. 3B, the applied translucent adhesive member 17 crawls up to the side surface of the light emitting element 11, and the translucent adhesive member 17 covers a part of the side surface of the light emitting element 11. .. Further, the translucent adhesive member 17 may be arranged between the wavelength conversion unit 12 and the main light emitting surface 11c of the light emitting element 11.
As shown in FIG. 3E, the distance between the light emitting elements 11 is set to a dimension in which the outer shape of the wavelength conversion unit 12 becomes a predetermined size by cutting between the light emitting elements 11. This is because the distance between the light emitting elements 11 specifies the outer shape of the wavelength conversion unit 12.

図3(c)に示す工程で、発光素子11を埋設するように、光反射性部材16を形成する。光反射性部材16は、好ましくは白色樹脂である。光反射性部材16は、波長変換部12上に配置され、発光素子11を埋設する状態で硬化する。光反射性部材16は、発光素子11を完全に埋設する厚さ、図3(c)にあっては発光素子11の電極11bを埋設する厚さに配置される。光反射性部材16は、圧縮成形、トランスファー成形または塗布等で成形することができる。 In the step shown in FIG. 3C, the light reflecting member 16 is formed so as to embed the light emitting element 11. The light reflective member 16 is preferably a white resin. The light reflecting member 16 is arranged on the wavelength conversion unit 12 and is cured in a state where the light emitting element 11 is embedded. The light reflecting member 16 is arranged to have a thickness in which the light emitting element 11 is completely embedded, or in FIG. 3C, a thickness in which the electrode 11b of the light emitting element 11 is embedded. The light reflective member 16 can be molded by compression molding, transfer molding, coating or the like.

図3(d)に示す工程で、硬化した光反射性部材16の一部を除去して発光素子11の電極11bを露出させる。 In the step shown in FIG. 3D, a part of the cured light-reflecting member 16 is removed to expose the electrode 11b of the light emitting element 11.

図3(e)に示す工程で、光反射性部材16と、波長変換部12を裁断して発光素子ユニット10に個片化する。個片化された発光素子ユニット10は、波長変換部12に発光素子11が接合され、発光素子11の周囲には光反射性部材16が設けられて、電極11bを光反射性部材16の表面に露出させている。
以上、発光素子ユニットの準備について、上述の全ての工程を行ってもよいし、一部の工程を行ってもよい。あるいは、発光素子ユニットを購入によって準備してもよい。
In the step shown in FIG. 3 (e), the light-reflecting member 16 and the wavelength conversion unit 12 are cut into individual pieces into a light emitting element unit 10. In the individualized light emitting element unit 10, the light emitting element 11 is bonded to the wavelength conversion unit 12, a light reflecting member 16 is provided around the light emitting element 11, and the electrode 11b is attached to the surface of the light reflecting member 16. It is exposed to.
As described above, regarding the preparation of the light emitting element unit, all the above-mentioned steps may be performed or a part of the steps may be performed. Alternatively, the light emitting element unit may be prepared by purchase.

以上の工程で製造された発光素子ユニット10は、図4A~図4Cに示す工程で、導光板1の凹部1bに接合される。 The light emitting element unit 10 manufactured in the above steps is joined to the recess 1b of the light guide plate 1 in the steps shown in FIGS. 4A to 4C.

まず、図4Aに示すように、導光板1を準備する。導光板1は、材料としては例えばポリカーボネートを用い、第1主面1cに凹部1aの光学機能部2を設け、第2主面1dには発光素子ユニット10の波長変換部12を定位置に配置するために、開口部を略四角形とする凹部1bと、V溝の区画凹部1eを設ける。区画凹部1eは、隣接して配置してなる発光素子11の間に線状に設ける。区画凹部1eは、第2主面1dに連続する複数の傾斜面を有している。平面視において、光学機能部2は、発光素子11が光を導光板1に入射する発光素子の発光面11aよりも大きく、導光板1に設けた区画凹部1eで囲まれる領域よりも小さくする。図2Bの発光モジュール100は、発光素子11の光を波長変換部12を介して導光板1に入射するので、平面視において、光学機能部2の外形は、発光素子の発光面11aとなる波長変換部12よりも大きくする。光学機能部2は導光板1に設けた中空の凹部1aで実現し、凹部1aの内周面には傾斜面1xを設ける。傾斜面1xは、凹部1aの中央に向かって発光素子11に接近する方向に傾斜し、かつ中央部に向かって傾斜角(α)が次第に大きくなる形状として、凹部1aの底部には平面部1yを設ける。平面部1yは、光学機能部2を構成する凹部1aの中央部にあって、発光素子の発光面11aと平行な面とする。光学機能部2の凹部1aに平面部1yを設ける導光板1は、最も薄くなる凹部1aと波長変換部12との間を厚くして、導光板1の強度を高くできる。光学機能部2は、平面部1yを発光素子11の光軸上に配置する。導光板1は、光学機能部2の凹部1aと、波長変換部12の凹部1bの中心を発光素子11の光軸上に配置して、光学機能部2の凹部1aを波長変換部12の中心、すなわち発光素子11の光軸上に配置できる。平面視において、光学機能部2の外形を導光板1に設けた区画凹部1eで囲まれる領域よりも小さくすることにより、光学機能部2によって導光板1の面方向に広げた光を、上方に効率良く取り出すことができる。 First, as shown in FIG. 4A, the light guide plate 1 is prepared. For the light guide plate 1, for example, polycarbonate is used as the material, the optical functional unit 2 of the recess 1a is provided on the first main surface 1c, and the wavelength conversion unit 12 of the light emitting element unit 10 is arranged at a fixed position on the second main surface 1d. In order to do so, a recess 1b having a substantially quadrangular opening and a partition recess 1e of the V groove are provided. The partition recesses 1e are linearly provided between the light emitting elements 11 arranged adjacent to each other. The partition recess 1e has a plurality of inclined surfaces continuous with the second main surface 1d. In a plan view, the optical functional unit 2 makes the light emitting element 11 larger than the light emitting surface 11a of the light emitting element incident on the light guide plate 1 and smaller than the region surrounded by the partition recess 1e provided in the light guide plate 1. In the light emitting module 100 of FIG. 2B, the light of the light emitting element 11 is incident on the light guide plate 1 via the wavelength conversion unit 12, so that the outer shape of the optical function unit 2 is the wavelength of the light emitting surface 11a of the light emitting element in a plan view. Make it larger than the conversion unit 12. The optical functional unit 2 is realized by a hollow recess 1a provided in the light guide plate 1, and an inclined surface 1x is provided on the inner peripheral surface of the recess 1a. The inclined surface 1x is inclined toward the center of the recess 1a in a direction approaching the light emitting element 11, and the inclination angle (α) is gradually increased toward the center. Is provided. The flat surface portion 1y is located in the central portion of the recess 1a constituting the optical function portion 2 and is a plane parallel to the light emitting surface 11a of the light emitting element. The light guide plate 1 in which the flat surface portion 1y is provided in the concave portion 1a of the optical function unit 2 can increase the strength of the light guide plate 1 by thickening the space between the thinnest recess 1a and the wavelength conversion unit 12. The optical function unit 2 arranges the flat surface unit 1y on the optical axis of the light emitting element 11. In the light guide plate 1, the center of the recess 1a of the optical function unit 2 and the center of the recess 1b of the wavelength conversion unit 12 are arranged on the optical axis of the light emitting element 11, and the recess 1a of the optical function unit 2 is centered on the wavelength conversion unit 12. That is, it can be arranged on the optical axis of the light emitting element 11. In a plan view, the outer shape of the optical function unit 2 is made smaller than the area surrounded by the partition recess 1e provided in the light guide plate 1, so that the light spread in the plane direction of the light guide plate 1 by the optical function unit 2 is upward. It can be taken out efficiently.

以上の導光板1の凹部1bに、発光素子ユニット10が接合される。発光素子ユニット10は、図4Bに示すように、液状である透光性接合部材の材料14aを塗布した凹部1b内に、発光素子ユニット10の一部を配置する。詳細には、発光素子ユニット10の波長変換部12が、凹部1bの底面に対向するように配置する。また、光反射性部材16の一部は、凹部1bの外に位置する。
発光素子ユニット10は、平面視において、波長変換部12の中心と凹部1bの中心が一致するように配置し、透光性接合部材14を硬化させて導光板1に接合される。
The light emitting element unit 10 is joined to the recess 1b of the light guide plate 1. As shown in FIG. 4B, the light emitting element unit 10 arranges a part of the light emitting element unit 10 in the recess 1b coated with the liquid translucent bonding member material 14a. Specifically, the wavelength conversion unit 12 of the light emitting element unit 10 is arranged so as to face the bottom surface of the recess 1b. Further, a part of the light reflecting member 16 is located outside the recess 1b.
The light emitting element unit 10 is arranged so that the center of the wavelength conversion unit 12 and the center of the recess 1b coincide with each other in a plan view, and the translucent bonding member 14 is cured and bonded to the light guide plate 1.

ここで、平面視において、凹部1bの内側面は、発光素子ユニット10の外側面より大きく、凹部1b内に発光素子ユニット10の一部を配置した際、凹部1bの内側面と発光素子ユニット10の外側面との間にスペースが形成される。このスペースは、凹部1bに塗布される未硬化状態の透光性接合部材14で充填される。 Here, in a plan view, the inner surface of the recess 1b is larger than the outer surface of the light emitting element unit 10, and when a part of the light emitting element unit 10 is arranged in the recess 1b, the inner surface of the recess 1b and the light emitting element unit 10 are arranged. A space is formed between the outer surface and the outer surface of the. This space is filled with the uncured translucent bonding member 14 applied to the recess 1b.

また、凹部1b内に塗布する透光性接合部材の材料14aの塗布量を調整することで、凹部1bの内側面と発光素子ユニット10の外側面との間のスペースから凹部1bの外側まで透光性接合部材14が押し出される。凹部1bから押し出される透光性接合部材14は、図4C及び図2Bに示すように、光反射性部材16の一部と接する位置まで這い上がって光反射性部材16の一部を被覆する。さらに、透光性接合部材14は、第2主面1dと接する位置まで広がって、第2主面1dの一部を被覆するこの状態で、透光性接合部材14の上面は、垂直断面視において、発光素子ユニット10の上端部から外側に向かって傾斜面が形成される。透光性接合部材14の傾斜面は、光反射性部材16の外側面との間でなす角を鋭角とし、好ましくは傾斜角が5°~85°、より好ましくは5°~50°となるように形成される。 Further, by adjusting the coating amount of the material 14a of the translucent bonding member to be applied into the recess 1b, the space between the inner surface of the recess 1b and the outer surface of the light emitting element unit 10 is transparent to the outside of the recess 1b. The optical joining member 14 is extruded. As shown in FIGS. 4C and 2B, the translucent joining member 14 extruded from the recess 1b crawls up to a position where it comes into contact with a part of the light reflecting member 16 and covers a part of the light reflecting member 16. Further, in this state where the translucent joining member 14 extends to a position in contact with the second main surface 1d and covers a part of the second main surface 1d, the upper surface of the translucent joining member 14 is viewed in a vertical cross section. In, an inclined surface is formed from the upper end portion of the light emitting element unit 10 toward the outside. The inclined surface of the translucent joining member 14 has an acute angle formed between the inclined surface and the outer surface of the light reflecting member 16, preferably an inclined angle of 5 ° to 85 °, and more preferably 5 ° to 50 °. Is formed like this.

凹部1bに塗布する透光性接合部材の材料14aの塗布量は、発光素子ユニット10を凹部1bに接合する状態で、発光素子ユニット10の外側面を被覆する透光性接合部材14が導光板1の第2主面1dよりも高くなる量、すなわち凹部1bから外側に溢れるような量とすることができる。 The amount of the material 14a of the translucent bonding member to be applied to the recess 1b is such that the translucent bonding member 14 covering the outer surface of the light emitting element unit 10 is a light guide plate in a state where the light emitting element unit 10 is bonded to the recess 1b. The amount may be higher than the second main surface 1d of 1, that is, the amount may be such that the concave portion 1b overflows to the outside.

次に、図4Dに示すように、導光板1の第2主面1dと複数の発光素子ユニット10と複数の透光性接合部材14を埋め込むように、封止部材の材料13aを形成する。封止部材の材料13aは、酸化チタンとシリコーン樹脂が混合された光反射性の部材である。封止部材の材料13aは、例えばトランスファーモールド、ポッティング、印刷、スプレー等の方法で形成する。この時、発光素子11の電極11bの上面(導光板1と反対側の面)を完全に被覆するように封止部材の材料13aを厚く形成する。次に、図4Eに示すように、封止部材の材料13aの一部を除去し、発光素子11の電極11bを露出させ、封止部材13を形成する。封止部材の材料13aを除去する方法としては、砥石による研削、ブラスト等を用いることができる。 Next, as shown in FIG. 4D, the material 13a of the sealing member is formed so as to embed the second main surface 1d of the light guide plate 1, the plurality of light emitting element units 10, and the plurality of translucent bonding members 14. The material 13a of the sealing member is a light-reflecting member in which titanium oxide and a silicone resin are mixed. The material 13a of the sealing member is formed by, for example, transfer molding, potting, printing, spraying, or the like. At this time, the material 13a of the sealing member is thickly formed so as to completely cover the upper surface (the surface opposite to the light guide plate 1) of the electrode 11b of the light emitting element 11. Next, as shown in FIG. 4E, a part of the material 13a of the sealing member is removed to expose the electrode 11b of the light emitting element 11 to form the sealing member 13. As a method for removing the material 13a of the sealing member, grinding with a grindstone, blasting, or the like can be used.

次に、図4Fに示すように、発光素子11の電極11bと封止部材13上の略全面に、導光板1側からCu/Ni/Auの金属膜15aをスパッタ等で形成する。 Next, as shown in FIG. 4F, a Cu / Ni / Au metal film 15a is formed from the light guide plate 1 side on substantially the entire surface of the electrode 11b of the light emitting element 11 and the sealing member 13 by sputtering or the like.

次に、図4Gに示すように、金属膜15aをレーザアブレーションによってパターニングし、配線15を形成する。 Next, as shown in FIG. 4G, the metal film 15a is patterned by laser ablation to form the wiring 15.

次に、図4Hに示すように、この配線15と別途準備した配線基板20の配線層20bと接着シートを間に介して圧着して接合する。この時、配線層20bの一部(例えばビア)内に充填された導電性材料を加圧と加熱によって一部溶解させることで、配線15と配線層20bとを電気的に接続する。 Next, as shown in FIG. 4H, the wiring 15 and the wiring layer 20b of the wiring board 20 prepared separately are pressure-bonded and joined with the adhesive sheet interposed therebetween. At this time, the wiring 15 and the wiring layer 20b are electrically connected by partially melting the conductive material filled in a part (for example, via) of the wiring layer 20b by pressurization and heating.

図4Iに示すように、導光板1に設けた光学機能部2の対向位置に遮光散乱層3を設ける。遮光散乱層3は、透光性シート4の表面に接合し、透光性シート4を導光板1に積層して、光学機能部2を覆う位置に配置する。透光性シート4は導光板1の外形にほぼ等しい外形、たとえば、方形状の導光板1に方形状の透光性シート4を積層して定位置に積層する。透光性シート4は、外周縁の一部を導光板1に接合して、導光板1の定位置に積層する。方形状の透光性シート4は、方形状の1辺を導光板1に接合して、導光板1の定位置に積層する。外周縁の一部を導光板1に接合して定位置に積層した透光性シート4は、温度変化による熱変形でシワなどが発生せず、平面状を保持して導光板1の表面に配置できる。ただ、透光性シート4は、外周縁の全体を、あるいは局部的に複数カ所を導光板1に接合して、導光板1の定位置に積層することもできる。 As shown in FIG. 4I, a light-shielding scattering layer 3 is provided at a position facing the optical functional unit 2 provided on the light guide plate 1. The light-shielding scattering layer 3 is bonded to the surface of the translucent sheet 4, the translucent sheet 4 is laminated on the light guide plate 1, and is arranged at a position covering the optical functional unit 2. The translucent sheet 4 has an outer shape substantially equal to the outer shape of the light guide plate 1, for example, the rectangular light guide plate 1 is laminated with the square translucent sheet 4 at a fixed position. A part of the outer peripheral edge of the translucent sheet 4 is joined to the light guide plate 1 and laminated at a fixed position of the light guide plate 1. In the rectangular translucent sheet 4, one side of the rectangular shape is joined to the light guide plate 1 and laminated at a fixed position of the light guide plate 1. The translucent sheet 4 in which a part of the outer peripheral edge is joined to the light guide plate 1 and laminated in a fixed position does not generate wrinkles due to thermal deformation due to a temperature change, and maintains a flat shape on the surface of the light guide plate 1. Can be placed. However, the translucent sheet 4 can be laminated at a fixed position of the light guide plate 1 by joining the entire outer peripheral edge or locally at a plurality of places to the light guide plate 1.

透光性シート4は、PET等の透光性樹脂シートに白色粉末として酸化チタン粉末等の白色粉末を混合した散乱シートが好ましい。散乱シートを介して遮光散乱層3を導光板1の光学機能部2との対向面に配置する発光モジュール100は、好ましくは、図4Iに示すように、遮光散乱層3を導光板1との対向面に積層する。この発光モジュール100は、導光板1から放射される発光を遮光散乱層3で散乱し遮光することで、発光素子11のある中央部に輝度が集中するのを緩和し、さらに散乱シートで発光モジュール100から外部に放射する発光を均等化して輝度ムラをより効果的に抑制できるからである。遮光散乱層3は、シリコーン樹脂に60重量%以下の酸化チタン粉末を混合して膜厚を、好ましくは10μm以上であって100μm以下、より好ましくし10μm以上であって50μm以下、最適には約20μmとする層が好ましい。 The translucent sheet 4 is preferably a scattering sheet in which a translucent resin sheet such as PET is mixed with a white powder such as titanium oxide powder as a white powder. The light emitting module 100 in which the light-shielding scattering layer 3 is arranged on the surface facing the optical function unit 2 of the light guide plate 1 via the scattering sheet preferably has the light-shielding scattering layer 3 with the light guide plate 1 as shown in FIG. 4I. Laminate on the facing surface. The light emitting module 100 scatters the light emitted from the light guide plate 1 by the light-shielding scattering layer 3 to block light, thereby alleviating the concentration of luminance in the central portion where the light-emitting element 11 is located, and further, the light-emitting module using a scattering sheet. This is because the light emission emitted from 100 to the outside can be equalized and the uneven brightness can be suppressed more effectively. The light-shielding scattering layer 3 is formed by mixing 60% by weight or less of titanium oxide powder with a silicone resin to increase the film thickness, preferably 10 μm or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less, and optimally about. A layer having a thickness of 20 μm is preferable.

遮光散乱層3は、好ましくは、平面視において、外形を光学機能部2の外形よりも大きくする。光学機能部2の平面部1yよりも大きい遮光散乱層3は、光学機能部2の透過光を散乱、遮光し、輝度集中を緩和して、輝度ムラを抑制する。 The light-shielding scattering layer 3 preferably has an outer shape larger than the outer shape of the optical functional unit 2 in a plan view. The light-shielding scattering layer 3 larger than the flat surface portion 1y of the optical function unit 2 scatters and shields the transmitted light of the optical function unit 2, alleviates the luminance concentration, and suppresses the luminance unevenness.

複数の発光素子11は、それぞれが独立で駆動するように配線されてもよい。また、導光板1を複数の範囲に分割し、1つの範囲内に実装された複数の発光素子11を1つのグループとし、該1つのグループ内の複数の発光素子11同士を直列又は並列に電気的に接続することで同じ回路に接続し、このような発光素子グループを複数備えるようにしてもよい。このようなグループ分けを行うことで、ローカルディミング可能な発光モジュールとすることができる。 The plurality of light emitting elements 11 may be wired so as to be driven independently of each other. Further, the light guide plate 1 is divided into a plurality of ranges, and a plurality of light emitting elements 11 mounted in one range are grouped into one group, and the plurality of light emitting elements 11 in the one group are electrically connected in series or in parallel. It may be connected to the same circuit by being connected to the same circuit, and a plurality of such light emitting element groups may be provided. By performing such grouping, it is possible to obtain a light emitting module capable of local dimming.

このような発光素子グループの例を図6A及び図6Bに示す。この例では、図6Aに示すように、導光板1を4列×4行の16個の領域Rに分割している。この1つの領域Rには、それぞれ4列×4行に並べられた16個の発光素子が備えられている。この16個の発光素子11は、例えば、図6Bに示すような4並列4直列の回路に組まれて電気的に接続されている。 Examples of such a light emitting device group are shown in FIGS. 6A and 6B. In this example, as shown in FIG. 6A, the light guide plate 1 is divided into 16 regions R of 4 columns × 4 rows. This one region R is provided with 16 light emitting elements arranged in 4 columns × 4 rows, respectively. The 16 light emitting elements 11 are assembled in a circuit of 4 parallels and 4 series as shown in FIG. 6B and electrically connected, for example.

本実施形態の発光モジュール100は、1つが1つの液晶ディスプレイ装置3000のバックライトとして用いられてもよい。また、複数の発光モジュール100が並べられて1つの液晶ディスプレイ装置3000のバックライトとして用いられてもよい。小さい発光モジュール100を複数作り、それぞれ検査等を行うことで、大きく実装される発光素子11の数が多い発光モジュール100を作成する場合と比べて、歩留まりを向上させることができる。 One of the light emitting modules 100 of the present embodiment may be used as a backlight of one liquid crystal display device 3000. Further, a plurality of light emitting modules 100 may be arranged side by side and used as a backlight of one liquid crystal display device 3000. By making a plurality of small light emitting modules 100 and inspecting each of them, the yield can be improved as compared with the case of making a light emitting module 100 having a large number of light emitting elements 11 mounted large.

1つの発光モジュール100は1つの配線基板20に接合されてもよい。また、複数の発光モジュール100が、1つの配線基板20に接合されてもよい。これにより、外部との電気的な接続端子(例えばコネクタ20e)を集約できる(つまり、発光モジュール1つごとに用意する必要がない)ため、液晶ディスプレイ装置3000の構造を簡易にすることができる。 One light emitting module 100 may be bonded to one wiring board 20. Further, a plurality of light emitting modules 100 may be joined to one wiring board 20. As a result, the electrical connection terminals (for example, the connector 20e) to the outside can be integrated (that is, it is not necessary to prepare each light emitting module), so that the structure of the liquid crystal display device 3000 can be simplified.

また、この複数の発光モジュール100が接合された1つの配線基板20を複数並べて一つの液晶ディスプレイ装置3000のバックライトとしてもよい。この時、例えば、複数の配線基板20をフレーム等に載置し、それぞれコネクタ20e等を用いて外部の電源と接続することができる。 Further, a plurality of wiring boards 20 to which the plurality of light emitting modules 100 are joined may be arranged side by side to form a backlight of one liquid crystal display device 3000. At this time, for example, a plurality of wiring boards 20 can be placed on a frame or the like and connected to an external power source by using a connector 20e or the like.

このような複数の発光モジュール100を備える液晶ディスプレイ装置の例を図6に示す。
この例では、2つの発光モジュール100が接合された、コネクタ20eを備える配線基板20が4つ備えられ、フレーム30に載置されている。つまり、8つの発光モジュール100が2行×4列に並べられている。このようにすることで、大面積の液晶ディスプレイ装置のバックライトを安価に製造することができる。
FIG. 6 shows an example of a liquid crystal display device including such a plurality of light emitting modules 100.
In this example, four wiring boards 20 having a connector 20e to which two light emitting modules 100 are joined are provided and mounted on a frame 30. That is, eight light emitting modules 100 are arranged in 2 rows × 4 columns. By doing so, it is possible to inexpensively manufacture a backlight for a large-area liquid crystal display device.

なお、導光板1上には、拡散等の機能を有する透光性の部材をさらに積層してもよい。その場合、光学機能部2が凹みである場合には、凹みの開口(つまり、導光板1の第1主面1cに近い部分)を塞ぐが、凹みを埋めないように、透光性の部材を設けることが好ましい。これにより、光学機能部2の凹み内に空気の層を設けることができ、発光素子11からの光を良好に広げることができる。 A translucent member having a function such as diffusion may be further laminated on the light guide plate 1. In that case, when the optical functional unit 2 is a dent, the opening of the dent (that is, the portion close to the first main surface 1c of the light guide plate 1) is closed, but a translucent member is used so as not to fill the dent. It is preferable to provide. As a result, an air layer can be provided in the recess of the optical function unit 2, and the light from the light emitting element 11 can be satisfactorily spread.

1-1.実施形態1の変形例1
図8Aは、変形例1に係る発光モジュール300の拡大断面図である。図8Bは、発光モジュール300に用いられる導光板1の平面図、縦断面図、横断面図、底面図をそれぞれ示す。これ等の図において、光学機能部2を覆うように配置する遮光散乱層303は、外形を光学機能部2の外形に実質的に等しくしている。変形例1の発光モジュール300は、第1主面1cに設けられる光学機能部2の凹部1aを、傾斜面の傾斜角(α)を外周から中央に向かって次第に大きくする円錐台状としている。この形状の光学機能部2は、傾斜面1xの外周部が、光学機能部2を設けない導光板1の第1主面1cの平面部に接近するので、光学機能部2の外周部に近づくにしたがって輝度集中を緩和できる。したがって、光学機能部2と遮光散乱層303の外形を実質的に同じとしながら、輝度ムラを抑制できる。
1-1. Modification 1 of Embodiment 1
FIG. 8A is an enlarged cross-sectional view of the light emitting module 300 according to the first modification. FIG. 8B shows a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view of the light guide plate 1 used in the light emitting module 300, respectively. In these figures, the light-shielding scattering layer 303 arranged so as to cover the optical function unit 2 has an outer shape substantially equal to the outer shape of the optical function unit 2. The light emitting module 300 of the first modification has a concave portion 1a of the optical function portion 2 provided on the first main surface 1c in a truncated cone shape in which the inclination angle (α) of the inclined surface is gradually increased from the outer circumference toward the center. In the optical function unit 2 having this shape, the outer peripheral portion of the inclined surface 1x approaches the flat surface portion of the first main surface 1c of the light guide plate 1 without the optical function unit 2, and thus approaches the outer peripheral portion of the optical function unit 2. The brightness concentration can be alleviated accordingly. Therefore, it is possible to suppress the luminance unevenness while making the outer shapes of the optical function unit 2 and the light-shielding scattering layer 303 substantially the same.

1-2.実施形態1の変形例2
図9Aは、変形例2に係る発光モジュール400の拡大断面図である。図9Bは、発光モジュール400に用いられる導光板1の平面図、縦断面図、横断面図、底面図をそれぞれ示す。変形例2では、遮光散乱層403の外形を、光学機能部2の平面部1yよりも大きく、光学機能部2の外形よりも小さくしている。このような形状とすることで、光学機能部2の平面部1yを透過した光の輝度集中を遮光散乱層403で散乱し、遮光することで、輝度ムラを抑制できる。また、光学機能部2の平面部1yが、光学機能部2と発光素子11や波長変換部12との相対的な位置ずれによる輝度ムラをも解消しながら、光学機能部2に平面部1yを設けることで、平面部1yにおける輝度集中を遮光散乱層403で緩和しながら、発光モジュール400としての輝度ムラを抑制できる特徴も実現する。
1-2. Modification 2 of the first embodiment
FIG. 9A is an enlarged cross-sectional view of the light emitting module 400 according to the second modification. FIG. 9B shows a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view of the light guide plate 1 used in the light emitting module 400, respectively. In the second modification, the outer shape of the light-shielding scattering layer 403 is larger than the flat surface portion 1y of the optical function unit 2 and smaller than the outer shape of the optical function unit 2. With such a shape, the luminance concentration of the light transmitted through the flat surface portion 1y of the optical function unit 2 is scattered by the light-shielding scattering layer 403, and the light is shielded, so that the luminance unevenness can be suppressed. Further, the flat surface portion 1y of the optical function unit 2 provides the flat surface portion 1y to the optical function unit 2 while eliminating the luminance unevenness due to the relative positional deviation between the optical function unit 2 and the light emitting element 11 and the wavelength conversion unit 12. By providing the light-shielding scattering layer 403, the light-shielding scattering layer 403 relaxes the luminance concentration in the flat surface portion 1y, and also realizes a feature that the luminance unevenness of the light emitting module 400 can be suppressed.

1-3.実施形態1の変形例3
図10Aは、変形例3に係る発光モジュール500の拡大断面図である。図10Bは、発光モジュール500に用いられる導光板501の平面図、縦断面図、横断面図、底面図をそれぞれ示す。図10Bは、光学機能部2の凹部501aが、傾斜面501xの傾斜角(α)を、外周部から中央部に向かって一定とし、中央部に平面部501yを設けた円錐台状として、遮光散乱層3の外形を光学機能部2の外形よりも大きくしている。この発光モジュール500は、光学機能部2の透過光の輝度集中を、光学機能部2よりも大きい遮光散乱層3で緩和して輝度ムラを抑制できる。また、遮光散乱層3が光学機能部2よりも大きいので、遮光散乱層3と光学機能部2との相対的な位置ずれによる輝度ムラの低下を阻止できる特徴も実現する。
1-3. Modification 3 of the first embodiment
FIG. 10A is an enlarged cross-sectional view of the light emitting module 500 according to the modified example 3. FIG. 10B shows a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view of the light guide plate 501 used in the light emitting module 500, respectively. In FIG. 10B, the recess 501a of the optical function unit 2 has a truncated cone shape in which the inclination angle (α) of the inclined surface 501x is constant from the outer peripheral portion toward the central portion and the flat portion 501y is provided in the central portion, and light is shielded. The outer shape of the scattering layer 3 is made larger than the outer shape of the optical function unit 2. In this light emitting module 500, the luminance concentration of the transmitted light of the optical function unit 2 can be alleviated by the light-shielding scattering layer 3 larger than the optical function unit 2, and the luminance unevenness can be suppressed. Further, since the light-shielding scattering layer 3 is larger than the optical function unit 2, it is possible to prevent a decrease in luminance unevenness due to a relative positional deviation between the light-shielding scattering layer 3 and the optical function unit 2.

1-4.実施形態1の変形例4
図11Aは、変形例4に係る発光モジュール600の拡大断面図である。図11Bは、発光モジュール600に用いられる導光板601の平面図、縦断面図、横断面図、底面図をそれぞれ示す。図11Aは、光学機能部2の凹部601aが、傾斜面601xの傾斜角(α)を、外周部から中央部に向かって傾斜角(α)を一定とし、中央部に平面部を設けない円錐状として、遮光散乱層3の外形を光学機能部2の外形よりも大きくしている。この発光モジュール600は、光学機能部2の透過光の輝度集中を、光学機能部2よりも大きい遮光散乱層3で緩和して輝度ムラを抑制できる。また、遮光散乱層3が光学機能部2よりも大きいので、遮光散乱層3と光学機能部2との相対的な位置ずれによる輝度ムラの低下を阻止できる特徴も実現する。
1-4. Modification 4 of Embodiment 1
FIG. 11A is an enlarged cross-sectional view of the light emitting module 600 according to the modified example 4. FIG. 11B shows a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view of the light guide plate 601 used in the light emitting module 600, respectively. In FIG. 11A, the recess 601a of the optical functional unit 2 has a constant inclination angle (α) of the inclined surface 601x from the outer peripheral portion toward the central portion, and a flat surface portion is not provided in the central portion. As a form, the outer shape of the light-shielding scattering layer 3 is made larger than the outer shape of the optical function unit 2. In this light emitting module 600, the luminance concentration of the transmitted light of the optical function unit 2 can be alleviated by the light-shielding scattering layer 3 larger than the optical function unit 2, and the luminance unevenness can be suppressed. Further, since the light-shielding scattering layer 3 is larger than the optical function unit 2, it is possible to prevent a decrease in luminance unevenness due to a relative positional deviation between the light-shielding scattering layer 3 and the optical function unit 2.

1-5.実施形態1の変形例5
図12は、変形例5に係る発光モジュール700の拡大断面図である。図12の発光モジュール700は、光学機能部2の凹部1aを、中央部に平面部1yを設けた円錐台状とし、その開口部に中央部と外周部とで透過率が異なる遮光散乱層703を設けている。遮光散乱層703は、中央部の膜厚を外周部よりも厚くして、中央部の透過率を外周部よりも低くし、光学機能部2の中央部の輝度集中を緩和して、発光モジュール700の輝度ムラを抑制している。この遮光散乱層703は、透光性シート4の表面にドットプリンタで白色粉末を含む顔料インクを塗布して設けることができる。
1-5. Modification 5 of the first embodiment
FIG. 12 is an enlarged cross-sectional view of the light emitting module 700 according to the modified example 5. In the light emitting module 700 of FIG. 12, the concave portion 1a of the optical functional unit 2 has a truncated cone shape having a flat surface portion 1y in the central portion, and the light-shielding scattering layer 703 has a different transmittance between the central portion and the outer peripheral portion in the opening portion. Is provided. In the light-shielding scattering layer 703, the film thickness of the central portion is made thicker than that of the outer peripheral portion, the transmittance of the central portion is made lower than that of the outer peripheral portion, the luminance concentration in the central portion of the optical function portion 2 is relaxed, and the light emitting module is used. The brightness unevenness of 700 is suppressed. The light-shielding scattering layer 703 can be provided by applying a pigment ink containing white powder to the surface of the translucent sheet 4 with a dot printer.

1-6.実施形態1の変形例6
図13は、変形例6に係る発光モジュール800の拡大断面図である。図13の発光モジュール800は、光学機能部2の凹部1aを、中央部に平面部1yを設けた円錐台状とし、遮光散乱層803を透光性シート804と一体構造として光学機能部2を覆う位置に配置している。この透光性シート804は、透光性シート804に添加する酸化チタンなどの白色粉末の混合率を、遮光散乱層803の領域で透光性シート804の領域よりも高くして透過率を透光性シート804よりも低くして、透光性シート804の特定領域、すなわち光学機能部2を覆う領域を遮光散乱層803としている。この発光モジュール800は、導光板1との対向面を平滑面とする透光性シート804を導光板1に積層して、光学機能部2を覆う位置に遮光散乱層803を設けることができる。
1-6. Modification 6 of Embodiment 1
FIG. 13 is an enlarged cross-sectional view of the light emitting module 800 according to the modified example 6. In the light emitting module 800 of FIG. 13, the concave portion 1a of the optical functional unit 2 has a truncated cone shape having a flat surface portion 1y in the central portion, and the light-shielding scattering layer 803 is integrated with the translucent sheet 804 to form the optical functional unit 2. It is placed in a position to cover it. In this translucent sheet 804, the mixing ratio of white powder such as titanium oxide added to the translucent sheet 804 is made higher in the region of the light-shielding scattering layer 803 than in the region of the translucent sheet 804 to transmit the transmittance. The specific region of the translucent sheet 804, that is, the region covering the optical functional unit 2, is set as the light-shielding scattering layer 803, which is lower than the optical sheet 804. In the light emitting module 800, a translucent sheet 804 having a smooth surface facing the light guide plate 1 can be laminated on the light guide plate 1, and a light-shielding scattering layer 803 can be provided at a position covering the optical functional unit 2.

1-7.実施形態1の変形例7
図14は、変形例7に係る発光モジュール900の拡大断面図である。図14の発光モジュール900は、光学機能部2の凹部1aを、中央部に平面部1yを設けた円錐台状とし、遮光散乱層903を透光性シート904と一体構造として光学機能部2を覆う位置に配置している。この透光性シート904は、透光性シート904に添加する酸化チタンなどの白色粉末の混合率を、遮光散乱層903の領域で透光性シート904の領域よりも高くして透過率を透光性シート4よりも低くして、透光性シート904の特定領域に遮光散乱層903を設け、さらに遮光散乱層903は、平面部1yを覆う中央部の白色粉末の混合率を外周部よりも多くして、中央部の透過率を外周部よりも低くして、光学機能部2の中央部の輝度集中を緩和して、より好ましい状態で輝度ムラを抑制している。
1-7. Modification 7 of Embodiment 1
FIG. 14 is an enlarged cross-sectional view of the light emitting module 900 according to the modified example 7. In the light emitting module 900 of FIG. 14, the concave portion 1a of the optical functional unit 2 is formed into a truncated cone shape having a flat surface portion 1y in the central portion, and the light-shielding scattering layer 903 is integrated with the translucent sheet 904 to form the optical functional unit 2. It is placed in a position to cover it. In this translucent sheet 904, the mixing ratio of white powder such as titanium oxide added to the translucent sheet 904 is set higher in the region of the light-shielding scattering layer 903 than in the region of the translucent sheet 904 to transmit the transmittance. The light-shielding scattering layer 903 is provided in a specific region of the light-transmitting sheet 904 so as to be lower than the light-transmitting sheet 4, and the light-shielding scattering layer 903 sets the mixing ratio of the white powder in the central portion covering the flat surface portion 1y from the outer peripheral portion. The transmittance of the central portion is made lower than that of the outer peripheral portion, the brightness concentration in the central portion of the optical functional portion 2 is alleviated, and the brightness unevenness is suppressed in a more preferable state.

2.実施形態2
図15Aは、実施形態2に係る発光モジュール1000の拡大断面図である。図15Bは、発光モジュール1000に用いられる導光板1001の平面図、縦断面図、横断面図、底面図をそれぞれ示す。実施形態2に係る発光モジュール1000の導光板1001は、第2主面1001dに光反射凹部1001gを備える。光反射凹部1001gは、発光素子11側に向いており、発光素子11からの光を反射させる光反射面1001hを備える。光反射面1001hは曲面であり、2つの凹部1001bの中間において最も深くなっている。実施形態2では、凹部1001b以外の第2主面1001dの略全域が曲面になっている例を示しており、これにより、発光素子11からの光を効率よく反射させることができる。ただし、これに限らず、平坦な面を有していても構わない。図15Aでは、光反射凹部1001gの深さは、凹部1001bよりも深い例を図示している。これにより、発光素子11からの光を効率よく反射することができ、均一な面発光とすることができる。
2. 2. Embodiment 2
FIG. 15A is an enlarged cross-sectional view of the light emitting module 1000 according to the second embodiment. FIG. 15B shows a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view of the light guide plate 1001 used in the light emitting module 1000, respectively. The light guide plate 1001 of the light emitting module 1000 according to the second embodiment includes a light reflection recess 1001 g on the second main surface 1001d. The light reflecting recess 1001g faces the light emitting element 11 side, and includes a light reflecting surface 1001h that reflects light from the light emitting element 11. The light reflecting surface 1001h is a curved surface, and is the deepest in the middle between the two recesses 1001b. In the second embodiment, an example is shown in which substantially the entire area of the second main surface 1001d other than the recess 1001b is a curved surface, whereby the light from the light emitting element 11 can be efficiently reflected. However, the present invention is not limited to this, and a flat surface may be provided. FIG. 15A illustrates an example in which the depth of the light reflecting recess 1001g is deeper than that of the recess 1001b. As a result, the light from the light emitting element 11 can be efficiently reflected, and uniform surface light emission can be achieved.

さらに、図15Aに示す発光モジュール1000は、光学機能部1002の凹部1001aを、傾斜面1001xの傾斜角(α)が外周から中央に向かって次第に大きくする形状として、中央部に平面部1001yを設けた円錐台状としている。また、発光モジュール1000は、遮光散乱層3の外形を光学機能部1002の外形よりも大きくしており、光学機能部1002と遮光散乱層3との相対的な位置ずれによる輝度ムラを低減している。この発光モジュール1000は、光学機能部1002の透過光の輝度集中を、光学機能部1002よりも大きい遮光散乱層3で緩和して輝度ムラを抑制できる。 Further, the light emitting module 1000 shown in FIG. 15A is provided with a flat surface portion 1001y in the central portion of the concave portion 1001a of the optical functional portion 1002 so that the inclination angle (α) of the inclined surface 1001x gradually increases from the outer circumference toward the center. It has a truncated cone shape. Further, in the light emitting module 1000, the outer shape of the light-shielding scattering layer 3 is larger than the outer shape of the optical function unit 1002, and the luminance unevenness due to the relative positional deviation between the optical function unit 1002 and the light-shielding scattering layer 3 is reduced. There is. In this light emitting module 1000, the luminance concentration of the transmitted light of the optical function unit 1002 can be alleviated by the light-shielding scattering layer 3 larger than the optical function unit 1002, and the luminance unevenness can be suppressed.

3.実施形態3
図16Aは、実施形態3に係る発光モジュール1100の拡大断面図である。図16Bは、発光モジュール1100に用いられる導光板1101の平面図、縦断面図、横断面図、底面図をそれぞれ示す。また、図16Cは、図16Aに示す導光板1101の破線で囲まれた領域を拡大した図である。実施形態3に係る発光モジュール1100の導光板1101は、1つの発光素子11に対して1つの光学機能部1102を備えており、光反射凹部1101gが、1つの発光素子11に対して複数備えられている。光反射凹部1101gは、発光素子11側に向いており、発光素子11からの光を反射させる光反射面1101hを備える。導光板1101として、ここでは第1~第4の4つの光反射凹部1101gを備える例を示している。光反射凹部1101gの数は、これに限らず2以上の複数個備えることができる。各光反射凹部1101g内には、封止部材13が配置される。
3. 3. Embodiment 3
FIG. 16A is an enlarged cross-sectional view of the light emitting module 1100 according to the third embodiment. FIG. 16B shows a plan view, a vertical sectional view, a horizontal sectional view, and a bottom view of the light guide plate 1101 used in the light emitting module 1100, respectively. Further, FIG. 16C is an enlarged view of the region surrounded by the broken line of the light guide plate 1101 shown in FIG. 16A. The light guide plate 1101 of the light emitting module 1100 according to the third embodiment is provided with one optical functional unit 1102 for one light emitting element 11, and a plurality of light reflecting recesses 1101 g are provided for one light emitting element 11. ing. The light reflecting recess 1101g faces the light emitting element 11 side, and includes a light reflecting surface 1101h that reflects light from the light emitting element 11. As the light guide plate 1101, an example including the first to fourth light reflection recesses 1101 g is shown here. The number of the light reflecting recesses 1101 g is not limited to this, and a plurality of two or more may be provided. A sealing member 13 is arranged in each light reflection recess 1101 g.

図16Bに示すように、導光板1101の2つの凹部1101bの中間に、第2主面1101dからの深さが最も大きい第1光反射凹部1101gaを備える。第1光反射凹部1101gaは、上面視において凹部1101bを囲むように四角環状に設けられている。その第1光反射凹部1101gaの内側に、第2光反射凹部1101gbが配置される。さらにその内側に第3光反射凹部1101gcが配置される。さらにその内側であって、発光素子11に最も近い位置に第4光反射凹部1101gdが配置されている。第1~第4光反射凹部は、それぞれ、発光素子11側に向いた光反射面1101ha、1101hb、1101hc、1101hdを備えており、これらの光反射面1101hによって発光素子11からの光は導光板1101の第1主面1101c側に向けて反射される。第1光反射凹部1101gaは、それを挟む位置に配置される2つの発光素子11からの光を反射するために、2つの光反射面1101haを備える。第2~第4光反射凹部は、発光素子11から遠い側に配置される光反射補助面1101ib、1101ic、1101idを備える。これらの光反射補助面1101iは、対向する位置に配置される光反射面1101hによって反射された光を反射することが可能な面である。 As shown in FIG. 16B, a first light reflection recess 1101ga having the largest depth from the second main surface 1101d is provided between the two recesses 1101b of the light guide plate 1101. The first light reflection recess 1101ga is provided in a square ring shape so as to surround the recess 1101b in a top view. A second light reflection recess 1101gb is arranged inside the first light reflection recess 1101ga. Further, a third light reflection recess 1101 gc is arranged inside the third light reflection recess 1101 gc. Further, a fourth light reflection recess 1101 gd is arranged inside the light emitting element 11 at a position closest to the light emitting element 11. The first to fourth light reflecting recesses each have a light reflecting surface 1101ha, 1101hb, 1101hc, 1101hd facing toward the light emitting element 11, and the light from the light emitting element 11 is transmitted by these light reflecting surfaces 1101h. It is reflected toward the first main surface 1101c side of 1101. The first light reflection recess 1101ga includes two light reflection surfaces 1101ha in order to reflect light from the two light emitting elements 11 arranged at positions sandwiching the first light reflection recess 1101ga. The second to fourth light reflection recesses include light reflection auxiliary surfaces 1101ib, 1101ic, and 1101id arranged on the side far from the light emitting element 11. These light reflection auxiliary surfaces 1101i are surfaces capable of reflecting the light reflected by the light reflection surfaces 1101h arranged at opposite positions.

発光素子11から最も離れた位置に配置される第1光反射凹部1101gaは、その内側の第2光反射凹部1101gbよりも深さが深い。これにより、発光素子11からの光のうち、第2~第4光反射凹部の光反射面に遮られない光を反射することができる。このように、発光素子11に近い側に配置される光反射凹部1101gほど、深さを浅くすることで、各光反射凹部1101gの光反射面1101hを有効に利用することができる。第1光反射凹部1101gaの深さは、凹部1101bの深さよりも深いことが好ましい。これにより、発光素子11からの光を効率よく反射して、均一な面発光とすることができる。 The first light reflection recess 1101ga arranged at the position farthest from the light emitting element 11 is deeper than the second light reflection recess 1101gb inside the first light reflection recess 1101ga. As a result, among the light from the light emitting element 11, the light that is not blocked by the light reflecting surface of the second to fourth light reflecting recesses can be reflected. As described above, by making the depth of the light reflecting recess 1101 g arranged closer to the light emitting element 11 shallower, the light reflecting surface 1101h of each light reflecting recess 1101 g can be effectively used. The depth of the first light reflecting recess 1101ga is preferably deeper than the depth of the recess 1101b. As a result, the light from the light emitting element 11 can be efficiently reflected to obtain uniform surface light emission.

各光反射凹部1101gの光反射面1101hの角度は、目的や用途、更に発光素子11の配光特性や導光板1101の厚み等、種々の要因に応じて設計することができる。一例として、厚みが1.1mmのポリカーボネート製の導光板1101を用いる例を示す。凹部1101bは平面視が0.5mm×0.5mmの正方形であり、深さが0.1mmである。隣接する凹部1101b同士の距離は0.8mmである。 The angle of the light reflecting surface 1101h of each light reflecting recess 1101g can be designed according to various factors such as the purpose and application, the light distribution characteristics of the light emitting element 11, and the thickness of the light guide plate 1101. As an example, an example using a light guide plate 1101 made of polycarbonate having a thickness of 1.1 mm is shown. The recess 1101b is a square having a plan view of 0.5 mm × 0.5 mm and a depth of 0.1 mm. The distance between the adjacent recesses 1101b is 0.8 mm.

第1光反射凹部1101gaは深さ0.80mmであり、光反射面1101haは、第2主面1101dに対して16度傾斜している。第2光反射凹部1101gbは深さ0.50mmであり、光反射面1101hbは、第2主面1101dに対して32度傾斜している。第3光反射凹部1101gcは深さ0.31mmであり、光反射面1101hcは第2主面1101dに対して45度傾斜している。第4光反射凹部1101gdは深さ0.15mmであり、光反射面1101hdは第2主面1101dに対して58度傾斜している。 The first light reflecting recess 1101ga has a depth of 0.80 mm, and the light reflecting surface 1101ha is inclined 16 degrees with respect to the second main surface 1101d. The second light reflecting recess 1101 gb has a depth of 0.50 mm, and the light reflecting surface 1101 hb is inclined by 32 degrees with respect to the second main surface 1101 d. The third light reflecting recess 1101 gc has a depth of 0.31 mm, and the light reflecting surface 1101 hc is inclined by 45 degrees with respect to the second main surface 1101d. The fourth light reflecting recess 1101 gd has a depth of 0.15 mm, and the light reflecting surface 1101 hd is inclined by 58 degrees with respect to the second main surface 1101 d.

さらに、図16Aに示す発光モジュール1100は、光学機能部1102の凹部1101aを、開口部が四角形で、傾斜面1101xの傾斜角(α)が外周から中央に向かって次第に大きくなる形状であって、中央部に平面部1101yを設けた四角錐台形状としている。さらに、開口部の四角形の角部と、発光素子11を含む光源部の角部とが、光軸に対して45度ずれた位置に配置されている。また、発光モジュール1100は、遮光散乱層3の外形を光学機能部1102の外形よりも大きくしており、光学機能部1102と遮光散乱層3との相対的な位置ずれによる輝度ムラを低減している。この発光モジュール1100は、光学機能部1102の透過光の輝度集中を、光学機能部1102よりも大きい遮光散乱層3で緩和して輝度ムラを抑制できる。 Further, the light emitting module 1100 shown in FIG. 16A has a shape in which the recess 1101a of the optical function unit 1102 has a rectangular opening and the inclination angle (α) of the inclined surface 1101x gradually increases from the outer periphery toward the center. It has a quadrangular pyramid shape with a flat surface portion 1101y provided in the center. Further, the square corner portion of the opening portion and the corner portion of the light source portion including the light emitting element 11 are arranged at positions shifted by 45 degrees with respect to the optical axis. Further, in the light emitting module 1100, the outer shape of the light-shielding scattering layer 3 is larger than the outer shape of the optical function unit 1102, and the luminance unevenness due to the relative positional deviation between the optical function unit 1102 and the light-shielding scattering layer 3 is reduced. There is. In this light emitting module 1100, the luminance concentration of the transmitted light of the optical functional unit 1102 can be alleviated by the light-shielding scattering layer 3 larger than the optical functional unit 1102, and the luminance unevenness can be suppressed.

4.実施形態4
図17は、実施形態4に係る発光モジュール1200の拡大断面図である。この図に示す発光モジュール1200は、光学機能部1202が、導光板1の凹部1aの表面に、光反射性の材料からなる光反射層19を備えている。このような光反射性の材料として、例えば白色の樹脂が使用できる。図17に示す光学機能部1202は、導光板1に設けた凹部1aの表面であって、傾斜面1xの中央部(図において上端部)から平面部1yの領域に、光反射性の材料を所定の厚さで設けて光反射層19としている。ただ、光反射層は、凹部の全体に設けることも、平面部のみに設けることもできる。また、図に示す光反射層は、全体の厚さを均一にしているが、凹部の外周部から中央部に向かって次第に厚くすることもできる。光反射層は、例えば、平面部と対向する領域の厚さを一定としながら、傾斜面と対向する領域においては、外周部に向かって次第に薄く形成することもできる。
以上のように、凹部1aの表面に光反射層19を備える発光モジュール1200は、光学機能部1202の中央部に光反射層19を設けることと、この光学機能部1202を覆う遮光散乱層3との相乗効果により、中央部に輝度が集中するのをさらに緩和して輝度ムラを低減できる特長が実現できる。
4. Embodiment 4
FIG. 17 is an enlarged cross-sectional view of the light emitting module 1200 according to the fourth embodiment. In the light emitting module 1200 shown in this figure, the optical functional unit 1202 includes a light reflecting layer 19 made of a light reflecting material on the surface of the recess 1a of the light guide plate 1. As such a light-reflecting material, for example, a white resin can be used. The optical function unit 1202 shown in FIG. 17 is a surface of a recess 1a provided in the light guide plate 1, and a light-reflecting material is applied to a region from the central portion (upper end portion in the figure) of the inclined surface 1x to the flat surface portion 1y. The light reflecting layer 19 is provided with a predetermined thickness. However, the light reflecting layer may be provided on the entire recess or only on the flat surface. Further, although the light reflecting layer shown in the figure has a uniform overall thickness, it can be gradually increased from the outer peripheral portion to the central portion of the recess. For example, the light reflecting layer may be formed gradually thinner toward the outer peripheral portion in the region facing the inclined surface while keeping the thickness of the region facing the flat surface portion constant.
As described above, in the light emitting module 1200 provided with the light reflecting layer 19 on the surface of the recess 1a, the light reflecting layer 19 is provided in the central portion of the optical functional unit 1202, and the light-shielding scattering layer 3 covering the optical functional unit 1202 is provided. Due to the synergistic effect of, it is possible to realize the feature that the concentration of brightness in the central part can be further alleviated and the unevenness of brightness can be reduced.

以上、本発明に係るいくつかの実施形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。
本明細書の開示内容は、以下の態様を含み得る。
(態様)
外部に光を放射する発光面となる第1主面と、第1主面と反対側にある第2主面と、を有する透光性の導光板と、
導光板の第2主面に配置されて、導光板に向かって光を照射する発光素子とを備える発光モジュールであって、
導光板は、第1主面であって発光素子から照射される光の光軸に、発光素子の発光面よりも大きい光学機能部を配置しており、
導光板の第1主面側であって発光素子の光軸には遮光散乱層が配置されており、
平面視において、遮光散乱層が光学機能部を覆っていることを特徴とする発光モジュール。
(態様2)
態様1に記載する発光モジュールであって、
導光板が、隣接して配置してなる発光素子の間であって、第2主面に区画凹部を配置しており、区画凹部は第2主面に連続する複数の傾斜面を有し、
平面視において、光学機能部の外形が区画凹部で囲まれた領域よりも小さいことを特徴とする発光モジュール。
(態様3)
態様1又は2に記載する発光モジュールであって、
発光素子と導光板との間に、発光素子の光を波長変換して前記導光板に入射する波長変換部を配置しており、
平面視において、光学機能部の外形が、波長変換部の外形よりも大きいことを特徴とする発光モジュール。
(態様4)
態様1ないし3のいずれかに記載する発光モジュールであって、
光学機能部が凹部であって、光学機能部の内周面が中央部に向かって発光素子に接近する傾斜面を含むことを特徴とする発光モジュール。
(態様5)
態様4に記載する発光モジュールであって、
光学機能部の傾斜面が、中央部に向かって次第に傾斜角(α)が大きくなる形状であることを特徴とする発光モジュール。
(態様6)
態様4又は5に記載する発光モジュールであって、
光学機能部が底部に平面部を有することを特徴とする発光モジュール。
(態様7)
態様6に記載する発光モジュールであって、
光学機能部の平面部が、発光素子の光軸上に配置されてなることを特徴とする発光モジュール。
(態様8)
態様1ないし7のいずれかに記載する発光モジュールであって、
導光板の第1主面に積層してなる透光性シートを有し、
透光性シートに遮光散乱層が設けられてなることを特徴とする発光モジュール。
(態様9)
態様8に記載する発光モジュールであって、
透光性シートが、透過光を散乱して透過させる散乱シートであることを特徴とする発光モジュール。
(態様10)
態様9に記載する発光モジュールであって、
遮光散乱層が透光性シートの導光板との対向面に接合されてなることを特徴とする発光モジュール。
(態様11)
態様6又は7に記載する発光モジュールであって、
平面視において、遮光散乱層の外形が、光学機能部に設けてなる平面部の外形よりも大きいことを特徴とする発光モジュール。
(態様12)
態様1ないし11のいずれかに記載する発光モジュールであって、
平面視において、遮光散乱層の外形が、光学機能部の外形よりも大きいことを特徴とする発光モジュール。
Although some embodiments of the present invention have been exemplified above, it is needless to say that the present invention is not limited to the above-described embodiments and can be arbitrary as long as it does not deviate from the gist of the present invention. ..
The disclosure of the present specification may include the following aspects.
(Aspect)
A translucent light guide plate having a first main surface that is a light emitting surface that radiates light to the outside and a second main surface that is opposite to the first main surface.
A light emitting module provided with a light emitting element arranged on the second main surface of the light guide plate and irradiating light toward the light guide plate.
The light guide plate has an optical functional unit that is larger than the light emitting surface of the light emitting element and is arranged on the optical axis of the light emitted from the light emitting element, which is the first main surface.
A light-shielding scattering layer is arranged on the optical axis of the light emitting element on the first main surface side of the light guide plate.
A light emitting module characterized in that a light-shielding scattering layer covers an optical function portion in a plan view.
(Aspect 2)
The light emitting module according to the first aspect.
The light guide plate is between the light emitting elements arranged adjacent to each other, and the partition recess is arranged on the second main surface, and the partition recess has a plurality of inclined surfaces continuous with the second main surface.
A light emitting module characterized in that the outer shape of the optical function unit is smaller than the area surrounded by the partition recesses in a plan view.
(Aspect 3)
The light emitting module according to the first or second aspect.
A wavelength conversion unit that converts the light of the light emitting element into wavelength and incidents on the light guide plate is arranged between the light emitting element and the light guide plate.
A light emitting module characterized in that the outer shape of the optical function unit is larger than the outer shape of the wavelength conversion unit in a plan view.
(Aspect 4)
The light emitting module according to any one of aspects 1 to 3.
A light emitting module characterized in that the optical functional part is a concave portion, and the inner peripheral surface of the optical functional part includes an inclined surface that approaches the light emitting element toward the central part.
(Aspect 5)
The light emitting module according to the fourth aspect.
A light emitting module characterized in that the inclined surface of the optical function portion has a shape in which the inclination angle (α) gradually increases toward the central portion.
(Aspect 6)
The light emitting module according to the fourth or fifth aspect.
A light emitting module characterized in that the optical function portion has a flat portion at the bottom.
(Aspect 7)
The light emitting module according to the sixth aspect.
A light emitting module characterized in that a flat portion of an optical function unit is arranged on the optical axis of a light emitting element.
(Aspect 8)
The light emitting module according to any one of aspects 1 to 7.
It has a translucent sheet laminated on the first main surface of the light guide plate, and has.
A light emitting module characterized in that a light-shielding scattering layer is provided on a translucent sheet.
(Aspect 9)
The light emitting module according to the eighth aspect.
A light emitting module characterized in that the translucent sheet is a scattering sheet that scatters and transmits transmitted light.
(Aspect 10)
The light emitting module according to the ninth aspect.
A light emitting module characterized in that a light-shielding scattering layer is joined to a surface facing a light guide plate of a translucent sheet.
(Aspect 11)
The light emitting module according to the sixth or seventh aspect.
A light emitting module characterized in that the outer shape of the light-shielding scattering layer is larger than the outer shape of the flat surface portion provided in the optical function portion in a plan view.
(Aspect 12)
The light emitting module according to any one of aspects 1 to 11.
A light emitting module characterized in that the outer shape of the light-shielding scattering layer is larger than the outer shape of the optical function unit in a plan view.

本開示に係る発光モジュールは、例えば、液晶ディスプレイ装置のバックライトとして利用することができる。 The light emitting module according to the present disclosure can be used, for example, as a backlight of a liquid crystal display device.

3000…液晶ディスプレイ装置
100、200、300、400、500、600、700、800、900、
1000、1100、1200…発光モジュール
110a…レンズシート
110b…レンズシート
110c…拡散シート
120…液晶パネル
1、201、501、601、1001、1101…導光板
1a、501a、601a、1001a、1101a…凹部
1b、1001b、1101b…凹部
1c、1001c、1101c…第1主面
1d、201d、1001d、1101d…第2主面
1e…区画凹部
1001g、1101g…光反射凹部
1101ga…第1光反射凹部
1101gb…第2光反射凹部
1101gc…第3光反射凹部
1101gd…第4光反射凹部
1001h、1101h…光反射面
1101ha、1101hb、1101hc、1101hd…光反射面
1101i、1101ib、1101ic、1101id…光反射補助面
1x、501x、601x、1001x、1101x…傾斜面
1y、501y、601y、1001y、1101y…平面部
2、502、602、1002、1102、1202…光学機能部
3、303、403、703、803、903…遮光散乱層
4、804、904…透光性シート
10…発光素子ユニット
11…発光素子
11a…発光面
11b…電極
11c…主発光面
11d…電極形成面
12…波長変換部
13…封止部材
13a…封止部材の材料
14…透光性接合部材
14a…透光性接合部材の材料
15…配線
15a…金属膜
16…光反射性部材
17…透光性接着部材
19…光反射層
20…配線基板
20a…基材
20b…配線層
20c…導電性部材
20e…コネクタ
30…フレーム
41…ベースシート
42…プレート
3000 ... Liquid crystal display device 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1100, 1200 ... Light emitting module 110a ... Lens sheet 110b ... Lens sheet 110c ... Diffusion sheet 120 ... Liquid crystal panel 1, 201, 501, 601, 1001, 1101 ... Light guide plate 1a, 501a, 601a, 1001a, 1101a ... Recess 1b , 1001b, 1101b ... Recesses 1c, 1001c, 1101c ... First main surface 1d, 201d, 1001d, 1101d ... Second main surface 1e ... Sectional recesses 1001g, 1101g ... Light reflection recesses 1101ga ... First light reflection recesses 1101gb ... Second Light reflection recess 1101gc ... Third light reflection recess 1101gd ... Fourth light reflection recess 1001h, 1101h ... Light reflection surface 1101ha, 1101hb, 1101hc, 1101hd ... Light reflection surface 1101i, 1101ib, 1101ic, 1101id ... Light reflection auxiliary surface 1x, 501x , 601x, 1001x, 1101x ... Inclined surface 1y, 501y, 601y, 1001y, 1101y ... Flat surface portion 2, 502, 602, 1002, 1102, 1202 ... Optical function unit 3, 303, 403, 703, 803, 903 ... Light-shielding scattering Layers 4, 804, 904 ... Translucent sheet 10 ... Light emitting element unit 11 ... Light emitting element 11a ... Light emitting surface 11b ... Electrode 11c ... Main light emitting surface 11d ... Electrode forming surface 12 ... Wavelength conversion unit 13 ... Sealing member 13a ... Sealing Material 14 of the stop member ... Translucent joining member 14a ... Material of the translucent joining member 15 ... Wiring 15a ... Metal film 16 ... Light-reflecting member 17 ... Translucent adhesive member 19 ... Light-reflecting layer 20 ... Wiring substrate 20a ... Base material 20b ... Wiring layer 20c ... Conductive member 20e ... Connector 30 ... Frame 41 ... Base sheet 42 ... Plate

Claims (8)

配線基板と、
外部に光を放射する発光面となる第1主面と、前記第1主面と反対側にある第2主面と、を有する透光性の導光板と、
前記配線基板上に配置されて、前記導光板に向かって光を照射する発光素子とを備える発光モジュールであって、
前記導光板は、前記第1主面であって前記発光素子から照射される光の光軸に、前記発光素子の発光面よりも大きい、前記導光板に入射される光を面内に広げる機能を有する光学機能部を配置しており、
前記光学機能部が凹部であって、前記光学機能部の内周面が中央部に向かって前記発光素子に接近する傾斜面を含んでおり、
前記光学機能部が底部に平面部を有しており、
前記導光板の第1主面に積層してなる透光性シートを有し、
前記透光性シートが、透過光を散乱して透過させる散乱シートであり、
前記導光板の第1主面側であって前記発光素子の光軸には遮光散乱層が配置されており、
前記遮光散乱層が厚さの一様な平板状で、前記透光性シートの前記導光板との対向面に接合されており、
平面視において、前記遮光散乱層の外形が、前記光学機能部に設けてなる前記平面部の外形よりも大きく、前記遮光散乱層が前記光学機能部を覆っている発光モジュール。
Wiring board and
A translucent light guide plate having a first main surface that is a light emitting surface that radiates light to the outside and a second main surface that is opposite to the first main surface.
A light emitting module provided with a light emitting element arranged on the wiring board and irradiating light toward the light guide plate.
The light guide plate has a function of spreading light incident on the light guide plate, which is larger than the light emitting surface of the light emitting element, in the optical axis of the light emitted from the light emitting element, which is the first main surface. The optical function unit with
The optical functional portion is a concave portion, and the inner peripheral surface of the optical functional portion includes an inclined surface that approaches the light emitting element toward the central portion.
The optical functional portion has a flat portion at the bottom, and the optical functional portion has a flat portion.
It has a translucent sheet laminated on the first main surface of the light guide plate, and has a translucent sheet.
The translucent sheet is a scattering sheet that scatters and transmits transmitted light.
A light-shielding scattering layer is arranged on the optical axis of the light emitting element on the first main surface side of the light guide plate.
The light-shielding scattering layer is in the shape of a flat plate having a uniform thickness, and is joined to the surface of the translucent sheet facing the light guide plate.
A light emitting module in which the outer shape of the light-shielding scattering layer is larger than the outer shape of the flat surface portion provided in the optical functional portion in a plan view, and the light-shielding scattering layer covers the optical functional portion.
請求項1に記載する発光モジュールであって、
前記導光板が、隣接して配置してなる前記発光素子の間であって、前記第2主面に区画凹部を配置しており、前記区画凹部は前記第2主面に連続する複数の傾斜面を有し、
平面視において、前記光学機能部の外形が前記区画凹部で囲まれた領域よりも小さい発光モジュール。
The light emitting module according to claim 1.
The light guide plate is located between the light emitting elements arranged adjacent to each other, and a partition recess is arranged on the second main surface, and the partition recess has a plurality of inclinations continuous with the second main surface. Has a face,
A light emitting module in which the outer shape of the optical functional unit is smaller than the area surrounded by the compartment recess in a plan view.
請求項1又は2に記載する発光モジュールであって、
前記発光素子と前記導光板との間に、前記発光素子の光を波長変換して前記導光板に入射する波長変換部を配置しており、
平面視において、前記光学機能部の外形が、前記波長変換部の外形よりも大きい発光モジュール。
The light emitting module according to claim 1 or 2.
A wavelength conversion unit that converts the light of the light emitting element into wavelength and incidents on the light guide plate is arranged between the light emitting element and the light guide plate.
A light emitting module in which the outer shape of the optical function unit is larger than the outer shape of the wavelength conversion unit in a plan view.
請求項1ないし3のいずれかに記載する発光モジュールであって、
前記光学機能部の傾斜面と前記導光板の第1主面とがなす傾斜角度αが、中央部に向かって次第に大きくなる形状である発光モジュール。
The light emitting module according to any one of claims 1 to 3.
A light emitting module having a shape in which the inclination angle α formed by the inclined surface of the optical function portion and the first main surface of the light guide plate gradually increases toward the central portion.
請求項4に記載する発光モジュールであって、
前記光学機能部の前記平面部が、前記発光素子の光軸上に配置されてなる発光モジュール。
The light emitting module according to claim 4.
A light emitting module in which the flat surface portion of the optical functional portion is arranged on the optical axis of the light emitting element.
請求項1ないし5のいずれかに記載する発光モジュールであって、
前記透光性シートが、透過光を散乱して透過させる散乱シートである発光モジュール。
The light emitting module according to any one of claims 1 to 5.
A light emitting module in which the translucent sheet is a scattering sheet that scatters and transmits transmitted light.
請求項1ないし6のいずれかに記載する発光モジュールであって、
前記遮光散乱層の厚さが50μm以上500μm以下の一様な平板状である発光モジュール。
The light emitting module according to any one of claims 1 to 6.
A uniform flat light emitting module having a light-shielding scattering layer having a thickness of 50 μm or more and 500 μm or less .
請求項1ないし7のいずれかに記載する発光モジュールであって、
平面視において、前記遮光散乱層の外形が、前記光学機能部の外形よりも大きい発光モジュール。
The light emitting module according to any one of claims 1 to 7.
A light emitting module in which the outer shape of the light-shielding scattering layer is larger than the outer shape of the optical functional unit in a plan view.
JP2020139622A 2020-08-20 2020-08-20 Luminous module Active JP7029091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139622A JP7029091B2 (en) 2020-08-20 2020-08-20 Luminous module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139622A JP7029091B2 (en) 2020-08-20 2020-08-20 Luminous module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018225897A Division JP6753452B2 (en) 2018-11-30 2018-11-30 Luminous module

Publications (2)

Publication Number Publication Date
JP2020188029A JP2020188029A (en) 2020-11-19
JP7029091B2 true JP7029091B2 (en) 2022-03-03

Family

ID=73222046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139622A Active JP7029091B2 (en) 2020-08-20 2020-08-20 Luminous module

Country Status (1)

Country Link
JP (1) JP7029091B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220207A (en) 2013-05-10 2014-11-20 市光工業株式会社 Vehicular lighting fixture
JP2018101521A (en) 2016-12-20 2018-06-28 オムロン株式会社 Light guiding plate, surface light source device, display device, and electronic apparatus
JP2018106826A (en) 2016-12-22 2018-07-05 オムロン株式会社 Light guide plate, surface light source device, display device, and electronic device
JP2018133304A (en) 2017-02-17 2018-08-23 日亜化学工業株式会社 Manufacturing method of light emitting module and light emitting module
US20180335559A1 (en) 2017-05-17 2018-11-22 Seohan Litek Co., Ltd. Backlight unit and luminous flux control member for local dimming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220207A (en) 2013-05-10 2014-11-20 市光工業株式会社 Vehicular lighting fixture
JP2018101521A (en) 2016-12-20 2018-06-28 オムロン株式会社 Light guiding plate, surface light source device, display device, and electronic apparatus
JP2018106826A (en) 2016-12-22 2018-07-05 オムロン株式会社 Light guide plate, surface light source device, display device, and electronic device
JP2018133304A (en) 2017-02-17 2018-08-23 日亜化学工業株式会社 Manufacturing method of light emitting module and light emitting module
US20180335559A1 (en) 2017-05-17 2018-11-22 Seohan Litek Co., Ltd. Backlight unit and luminous flux control member for local dimming

Also Published As

Publication number Publication date
JP2020188029A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6753452B2 (en) Luminous module
US11143807B2 (en) Method of manufacturing light emitting module and light emitting module
JP6753458B2 (en) Luminous module
JP6790899B2 (en) Light emitting module manufacturing method and light emitting module
TWI750466B (en) Method of manufacturing light emitting module, and light emitting module
US11616169B2 (en) Light emitting module with concave surface light guide plate
JP7007591B2 (en) Luminous module
JP6928289B2 (en) Luminous module
JP2020174043A (en) Manufacturing method of light emitting module
KR102111200B1 (en) Manufacturing method for light emitting module and light emitting module
US11181772B2 (en) Light-emitting module, method for manufacturing the same, and liquid-crystal display device
JP7029091B2 (en) Luminous module
JP7037092B2 (en) Luminous module
JP7068594B2 (en) Light emitting module manufacturing method and light emitting module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7029091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250