JP7028364B2 - 高炉の操業方法および高炉附帯設備 - Google Patents
高炉の操業方法および高炉附帯設備 Download PDFInfo
- Publication number
- JP7028364B2 JP7028364B2 JP2021512958A JP2021512958A JP7028364B2 JP 7028364 B2 JP7028364 B2 JP 7028364B2 JP 2021512958 A JP2021512958 A JP 2021512958A JP 2021512958 A JP2021512958 A JP 2021512958A JP 7028364 B2 JP7028364 B2 JP 7028364B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- blast furnace
- water
- methane
- methane gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 57
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 453
- 239000007789 gas Substances 0.000 claims description 336
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 82
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 77
- 229910001882 dioxygen Inorganic materials 0.000 claims description 77
- 239000003638 chemical reducing agent Substances 0.000 claims description 70
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 61
- 238000007664 blowing Methods 0.000 claims description 59
- 238000005868 electrolysis reaction Methods 0.000 claims description 57
- 239000006227 byproduct Substances 0.000 claims description 53
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 238000010248 power generation Methods 0.000 claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 13
- 239000010959 steel Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000446 fuel Substances 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 62
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 35
- 229910002091 carbon monoxide Inorganic materials 0.000 description 35
- 239000001569 carbon dioxide Substances 0.000 description 31
- 229910002092 carbon dioxide Inorganic materials 0.000 description 31
- 229910052739 hydrogen Inorganic materials 0.000 description 23
- 239000001257 hydrogen Substances 0.000 description 22
- 150000001721 carbon Chemical group 0.000 description 19
- 239000003245 coal Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000571 coke Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 230000005611 electricity Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000002803 fossil fuel Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000011017 operating method Methods 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 that is Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/002—Evacuating and treating of exhaust gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
- C01B3/586—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/06—Making pig-iron in the blast furnace using top gas in the blast furnace process
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
- C25B15/081—Supplying products to non-electrochemical reactors that are combined with the electrochemical cell, e.g. Sabatier reactor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories or equipment specially adapted for furnaces of these types
- F27B1/16—Arrangements of tuyeres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/20—Arrangements for treatment or cleaning of waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/30—Arrangements for extraction or collection of waste gases; Hoods therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
- C21B2005/005—Selection or treatment of the reducing gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/26—Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/28—Increasing the gas reduction potential of recycled exhaust gases by separation
- C21B2100/282—Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/40—Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
- C21B2100/44—Removing particles, e.g. by scrubbing, dedusting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/134—Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Description
なお、送風ガスは、羽口から高炉内に吹き込まれるガスである。送風ガスは、高炉内において微粉炭やコークスをガス化する役割も果たすものである。
「CO2及び/又はCOを含む混合ガスからCO2及び/又はCOを分離回収する工程(A)と、該工程(A)で分離回収されたCO2及び/又はCOに水素を添加し、CO2及び/又はCOをCH4に変換する工程(B)と、該工程(B)を経たガスからH2Oを分離除去する工程(C)と、該工程(C)を経たガスを高炉内に吹き込む工程(D)を有することを特徴とする高炉の操業方法。」
が開示されている。
「高炉ガスを燃料の一部または全部として使用する燃焼炉の排ガスからCO2を分離し、分離したCO2をメタンに改質して得られた還元ガスを高炉に吹込むことを特徴とする高炉操業方法。」
が開示されている。
そのため、安定した操業の下、高炉からの二酸化炭素の排出量の一層の削減が可能な高炉の操業方法の開発が求められている。
また、本発明は、上記の高炉の操業方法に用いる高炉附帯設備を提供することを目的とする。
まず、発明者らは、特許文献1および2の技術において、還元材として高炉に吹込むメタンの量を一定以上とした場合に、操業トラブルが発生する原因について検討した。
その結果、以下の知見を得た。
還元材として高炉に吹込むメタンの量を一定以上にすると、羽口の出口近傍に生じる燃焼領域(レースウェイ)において吹込み還元材およびコークスが燃焼して生じる火炎の温度(以下、羽口先温度ともいう)が大幅に低下する。そして、この羽口先温度の低下が、高炉下部の着熱不足や圧損上昇、出滓不良などの操業トラブルの発生原因となる。
C+0.5O2=CO+110.5kJ/mol
一方、羽口から高炉内に還元材としてメタンを吹込む場合、レースウェイでは以下のような反応が起こる。
CH4+0.5O2=CO+2H2+35.7kJ/mol
当該反応時に発生する熱量を、COおよびH2の合計量の1モルあたりに換算すると、11.9kJ/molとなる。
高炉の安定操業のためには、羽口先温度を2000℃~2400℃の範囲に制御する必要がある。しかし、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記の反応熱の差により、羽口先温度が低下する。その結果、羽口先温度を上記範囲内に制御することができなくなって、種々の操業トラブルが発生する。
その結果、送風ガスとして、熱風(1200℃程度に加熱した空気)ではなく、酸素ガスを使用することにより、高炉内に吹込む還元材に多量のメタンを用いても、羽口先温度の低下を有効に防止されることを知見した。そして、メタンを高炉から排出される副生ガス(以下、高炉ガスともいう)から再生し、この再生したメタン(再生メタンガス)を還元材として高炉内に再度吹込むことによって、高炉からの二酸化炭素の排出量を一層削減しつつ、安定した高炉の操業が可能になるとの知見を得た。
また、送風ガスとして、特に酸素濃度の高い酸素ガスを使用することにより、高炉ガスに含まれる窒素の量が大幅に低減される。その結果、当該高炉ガスから一酸化炭素や二酸化炭素を分離する工程が不要となり、設備のコンパクト化の点でも極めて有利になるとの知見を得た。
すなわち、送風ガスとして、熱風(1200℃程度に加熱した空気)を使用する場合、燃焼ガス中に燃焼反応に寄与しない50体積%程度の窒素が含まれるため、レースウェイにおける火炎の温度は高温となり難い。そのため、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記した微粉炭-酸素の反応における反応熱と、メタンガス-酸素の反応における反応熱との差によって、羽口先温度が低下し、ひいては、羽口先温度が適正温度の下限である2000℃を下回ってしまう。
一方、送風ガスとして、酸素ガスを使用することにより、燃焼反応に寄与しない窒素ガスの混入を抑制できるので、羽口先温度を十分な温度まで昇温することが可能となる。すなわち、レースウェイにおける火炎の温度を、熱風を使用する場合と比べて高温とすることができるため、羽口から還元材として多量のメタンを吹込む場合にも、羽口先温度を適正範囲である2000℃~2400℃の範囲に制御することが可能となる。
しかし、日本において主流である5,000m3級の大型高炉から発生する高炉ガスの全量を、メタンとして再生するには、60,000m3/h程度の水素が必要である。しかし、このような大量の水素を、製鉄所外部から調達することは極めて困難である。
すなわち、水の電気分解により水素を発生させることにより、水の電気分解で使用する水に、再生メタンガスを生成する工程において副次的に生成する水(以下、副生水ともいう)を使用することが可能となる。また、水の電気分解において副次的に生成する酸素ガス(以下、副生酸素ガスともいう)を、送風ガスとして用いる酸素ガスに使用することが可能となる。そのため、水の電気分解により水素を発生させることと、上記した高炉の操業条件(送風ガスとして酸素ガスを用い、かつ、還元材として再生メタンガスを用いる条件)とを組み合わせることにより、極めて高効率な資源循環システムを構築することが可能となる。また、操業柔軟性も向上する。
本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
1.高炉の操業方法であって、
水の電気分解により水素ガスを生成する工程と、
前記高炉から排出される副生ガスおよび前記水素ガスを用いて、再生メタンガスを生成する工程と、
前記高炉の羽口から前記高炉内に送風ガスおよび還元材を吹込む工程と、を有し、
前記送風ガスとして酸素ガスを用い、かつ、前記還元材の少なくとも一部に前記再生メタンガスを用いる、高炉の操業方法。
前記水の電気分解において生成する副生酸素ガスの全量を、前記酸素ガスに使用する、前記1または2に記載の高炉の操業方法。
ここで、循環炭素原子の原単位とは、溶銑1tを製造する際に還元材として高炉内に吹込まれる再生メタンガスの炭素換算質量であり、次式により求める。
[循環炭素原子の原単位(kg/t)]=[還元材として高炉内に吹込まれる再生メタンガス中のメタンの質量(kg)]×(12/16)÷[溶銑製造量(t)]
前記水の電気分解により前記水素ガスを生成する、水の電気分解装置と、
前記副生ガスから前記再生メタンガスを生成する、メタンガス生成装置と、
前記再生メタンガスを前記高炉の羽口に導入するメタンガス供給部、および、前記酸素ガスを前記高炉の羽口に導入する酸素ガス供給部を有する、ガス吹込装置と、
をそなえる、高炉附帯設備。
また、高炉から排出される副生ガス中の窒素の量が大幅に低減されるので、当該副生ガスから一酸化炭素や二酸化炭素を分離する工程、換言すれば、巨大なPSA(圧力変動吸着法)分離装置等が不要となり、設備のコンパクト化の点でも極めて有利になる。
さらに、水の電気分解で使用する電力を、再生可能エネルギー由来の電力や製鉄所内の発電設備で発電した電力にすることにより、二酸化炭素(CO2)の排出量をさらに削減したり、メタンガスの生成に必要な用役の自給率を向上させることが可能となる。
本発明の一実施形態は、高炉の操業方法であって、
水の電気分解により水素ガスを発生させる工程と、
前記高炉から排出される副生ガスおよび前記水素ガスを用いて、再生メタンガスを生成する工程と、
前記高炉の羽口から前記高炉内に送風ガスおよび還元材を吹込む工程と、を有し、
前記送風ガスとして酸素ガスを用い、かつ、前記還元材の少なくとも一部に前記再生メタンガスを用いる、というものである。
図中、符号1は高炉、2は羽口、3はメタンガス生成装置、3-1は水の電気分解装置、4はガス吹込装置、5は第1の脱水装置、6は第2の脱水装置、7はバーナー、7-1は高炉の炉頂圧発電設備、7-2は高炉ガスを燃料とする発電設備である。
なお、ここでいう高炉には、シャフト型還元炉なども含むものとする。
本発明の一実施形態に従う高炉の操業方法では、高炉の炉頂部から高炉内へ原料となる焼結鉱や塊鉱石、ペレット(以下、鉱石原料ともいう)やコークスなどが装入される(図示せず)。また、高炉下部に設置された羽口2から高炉1内へ、送風ガスと還元材とが吹込まれる。なお、羽口2から高炉1内へ吹込む還元材を、コークスと区別するため、吹込み還元材ともいう。
そして、送風ガスと還元材の反応により生じた一酸化炭素ガスや水素ガスによって、高炉1内に装入した鉱石原料が還元される。この鉱石原料の還元反応において、二酸化炭素が発生する。そして、この二酸化炭素は、鉱石原料と反応しなかった一酸化炭素や水素などとともに、副生ガスとして、高炉の炉頂部から排出される。高炉の炉頂部は2.5気圧程度の高圧条件となっている。そのため、この高炉の炉頂部から排出される副生ガス(高炉ガス)が、常圧に戻る際の膨張冷却により、水蒸気が凝縮する。そして、第1の脱水装置5において、その凝縮水が除去される。
なお、再生メタンガスの生成に使用する水素ガスは、水素濃度:100体積%のガスでなくてもよいが、再生メタンガスのメタン濃度を高濃度とするため、水素濃度が高いガス、具体的には、水素濃度が80体積%以上の水素ガスを用いることが好ましい。水素濃度は、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。水素濃度は100体積%であってもよい。水素以外の残部ガスとしては、例えば、COやCO2、H2S、CH4、N2などが挙げられる。
これにより、水の電気分解で使用する水に、再生メタンガスを生成する工程において副次的に生成する副生水を使用することが可能となる。また、水の電気分解において副次的に生成する副生酸素ガスを、送風ガスとして用いる酸素ガスに使用することが可能となる。そのため、水の電気分解により水素を発生させることと、本発明の一実施形態に従う高炉の操業条件(送風ガスとして酸素ガスを用い、かつ、還元材として再生メタンガスを用いる条件)とを組み合わせることにより、極めて高効率な資源循環システムを構築することが可能となる。また、操業柔軟性も向上する。
さらに、副生酸素ガスは、全量、送風ガスとして用いる酸素ガスとして使用することが好適である。また、副生酸素ガスの供給量に応じて、副生酸素ガスの一部を別の酸素使用設備(例えば、転炉や電気炉、燃焼機器(加熱炉バーナーや焼結点火バーナー)など)に供給してもよい。
製鉄所内の水素ガスの供給源としては、例えば、コークス炉ガス(コークス炉から排出される副生ガス)などが挙げられる。コークス炉ガスから水素ガスを供給する場合、コークス炉ガス中の水素をPSA(物理吸着)などで分離回収する方法や、コークス炉ガス中の炭化水素を改質(部分酸化)し、この改質ガスから、水素をPSA(物理吸着)などで分離回収する方法、などが挙げられる。
また、外部から供給される水素ガスとしては、例えば、天然ガスなどの炭化水素を水蒸気改質などによって改質することで製造される水素ガスや、液化水素を気化させて得られる水素ガス、有機ハイドライドを脱水素して製造される水素ガスなどが挙げられる。
再生可能エネルギー由来の電力を使用する場合、二酸化炭素の排出量の一層の削減が可能となる。ここで、再生可能エネルギーとは、自然界に定常的に存在するエネルギーであり、例えば、太陽光や風力、水力、地熱、バイオマスなどが挙げられる。
また、製鉄所内の発電設備で発電した電力を使用する場合、より高効率な資源循環システムを構築することが可能となる。ここで、製鉄所内の発電設備としては、例えば、高炉の炉頂圧発電設備7-1や、高炉ガスを燃料(熱源)とする発電設備7-2が挙げられる。なお、高炉ガスを燃料(熱源)とする発電設備7-2では、高炉の操業状態に合わせて、コークス炉ガスや転炉ガス(転炉から排出される副生ガス)、都市ガスを燃料に用いることができる。
また、その他の吹込み還元材、例えば、微粉炭や廃プラスチック、水素ガスや一酸化炭素ガス等の還元ガスを一緒に使用してもよい。なお、その他の吹込み還元材の高炉内への吹込み量は、合計で150kg/t以下とすることが好適である。ここで、「kg/t」という単位は、溶銑1tを製造する際に高炉内へ吹込むその他の吹込み還元材の量である。
その他の吹込み還元材を使用する場合、メタンガス供給部に、その他の吹込み還元材も一緒に導入してもよい。また、その他の吹込み還元材として微粉炭や廃プラスチックを用いる場合には、メタンガス供給部とは別に、微粉炭や廃プラスチックを流通させる別の還元材供給部(路)を設けることが好ましい。この場合、ガス吹込装置3は、例えば、図2(b)に示すように、中心管4-1および外管4-3に加え、中心管4-1と外管4-3の間に内管4-2を設けた同軸多重管により構成される。そして、別の還元材供給部となる中心管内路から微粉炭や廃プラスチックなどのその他の吹込み還元材が導入される。また、メタンガス供給部となる中心管4-1と外管4-3との間の環状管路からメタンガスが導入され、酸素ガス供給部となる内管4-2と外管4-3との間の環状管路から酸素が導入される。
なお、送風ガスに常温の酸素ガスを用いると着火性が悪くなるので、ガス吹込装置4の酸素ガス供給部を構成する外管の吐出部を多孔構造とし、酸素ガスと吹込み還元材の混合を促進することが好ましい。
なお、外部メタンガスとしては、例えば、化石燃料由来のメタンガスなどが挙げられる。
すなわち、送風ガスとして、熱風(1200℃程度に加熱した空気)を使用する場合、燃焼ガス中に燃焼反応に寄与しない50体積%程度の窒素が含まれるため、レースウェイにおける火炎の温度は高温となり難い。そのため、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記した微粉炭-酸素の反応における反応熱と、メタンガス-酸素の反応における反応熱との差によって、羽口先温度が低下して、羽口先温度が適正温度の下限である2000℃を下回ってしまう。その結果、高炉下部の着熱不足や圧損上昇、出滓不良などの操業トラブルを招く。また、高炉ガスに窒素が多量に含まれるようになるので、高炉ガスからメタンガスを生成する工程の前工程で、窒素と、一酸化炭素および二酸化炭素とを分離する工程が必要となる。
一方、送風ガスとして、酸素ガスを使用することにより、燃焼反応に寄与しない窒素ガスの混入を抑制できるので、羽口先温度を十分な温度まで昇温することが可能となる。すなわち、レースウェイにおける火炎の温度を、熱風を使用する場合と比べて高温とすることができる。そのため、羽口から還元材として多量のメタンを吹込む場合にも、羽口先温度を適正範囲である2000℃~2400℃の範囲に制御することが可能となる。
そのため、本発明の一実施形態に係る高炉の操業方法では、送風ガスとして、酸素ガスを使用することが重要となる。
また、上述したように、水の電気分解において、副次的に生成する副生酸素ガスを、送風ガスとして用いる酸素ガスとして使用することが好適である。これによって、高効率な資源循環システムを構築することが可能となる。なお、副生酸素ガス以外の酸素ガスは、例えば、深冷式空気分離装置により製造することができる。
図6に示したように、熱風送風条件では、循環炭素原子の原単位が52kg/t以上(すなわち、再生メタンの吹き込み量が97Nm3/t以上)になると、羽口先温度が適正温度の下限である2000℃を下回ってしまうことがわかる。このように、一般的に用いられている熱風送風条件では、循環炭素原子の原単位を、55kg/t以上、特には、60kg/t以上にすると、羽口先温度の低下を招き、安定した操業を行うことができない。
一方、酸素ガス送風条件では、循環炭素原子の原単位を55kg/t以上、さらには、60kg/t以上としても、羽口先温度を2000℃以上に保つことが可能であることがわかる。
なお、図6の酸素ガス送風条件では、循環炭素原子の原単位が55kg/t~80kg/tの範囲で羽口先温度が適正温度の上限である2400℃を超えている。これは、吹込み還元材に、全量、再生メタンを使用しているためであり、吹込み還元材の一部に外部メタンガスを使用する場合には、循環炭素原子の原単位が55kg/t~80kg/tの範囲においても羽口先温度を2000℃~2400℃の範囲に制御することが可能である。また、吹込み還元材に、全量、再生メタンを使用する場合にも、酸素ガスの酸素濃度を調整することによって、羽口先温度を2000℃~2400℃の範囲に制御することが可能である。
なお、酸素ガス中の酸素以外の残部ガスとしては、例えば、窒素や二酸化炭素、アルゴン等が含まれていてもよい。
すなわち、吹込みメタンガス中のメタン濃度が低いと、高炉内への吹込むガス量、ひいては、高炉の圧力損失が増大して、生産性が低下するおそれがある。また、上記したガス循環を繰り返す間に、再生メタンガス中のメタン濃度が相対的に低下する。そのため、吹込みメタンガスのメタン濃度は、80体積%以上とすることが好ましい。吹込みメタンガスのメタン濃度は、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。吹込みメタンガスのメタン濃度は100体積%であってもよい。
同様の理由から、再生メタンガスおよび外部メタンガスのメタン濃度もそれぞれ、80体積%以上とすることが好ましい。再生メタンガスおよび外部メタンガスのメタン濃度はそれぞれ、より好ましくは90体積%以上、さらに好ましくは95体積%以上である。再生メタンガスおよび外部メタンガスのメタン濃度はそれぞれ100体積%であってもよい。
なお、吹込みメタンガス、再生メタンガスおよび外部メタンガス中のメタン以外の残部ガスとしては、例えば、一酸化炭素、二酸化炭素、水素および炭化水素、ならびに、窒素などの不純物ガスが含まれていてもよい。
また、再生メタンガスのメタン濃度が低下した場合には、例えば、吹込みメタンガスにおける再生メタンガスの割合を低下させる一方、メタン濃度の高い外部メタンガスの割合を増加させることによって、吹込みメタンガス中のメタン濃度を高く保つことが可能である。
ここで、循環炭素原子の原単位とは、溶銑1tを製造する際に還元材として高炉内に吹込まれる再生メタンガスの炭素換算質量であり、次式により求める。
[循環炭素原子の原単位(kg/t)]=[還元材として高炉内に吹込まれる再生メタンガス中のメタンの質量(kg)]×(12/16)÷[溶銑製造量(t)]
なお、還元材における循環炭素原子の原単位は、吹込み還元材における再生メタンガスの羽口への吹き込み量を調整することにより、制御することができる。
特に、吹込みメタンガスにおける再生メタンガスの割合を80体積%以上、好ましくは90体積%以上とすることにより、高い二酸化炭素の排出量削減効果が得られる。
本発明の一実施形態に従う高炉附帯設備は、上記の高炉の操業方法に用いる高炉附帯設備であって、
前記水の電気分解により前記水素ガスを発生させる、水の電気分解装置と、
前記副生ガスから前記再生メタンガスを生成する、メタンガス生成装置と、
前記再生メタンガスを前記高炉の羽口に導入するメタンガス供給部、および、前記酸素ガスを前記高炉の羽口に導入する酸素ガス供給部を有する、ガス吹込装置と、
をそなえる、高炉附帯設備である。
また、その他の吹込み還元材、例えば、微粉炭や廃プラスチック、水素ガスや一酸化炭素ガス等の還元ガスを一緒に使用してもよい。
その他の吹込み還元材を使用する場合、メタンガス供給部に、その他の吹込み還元材も一緒に導入してもよい。また、その他の吹込み還元材として微粉炭や廃プラスチックを用いる場合には、メタンガス供給部とは別に、微粉炭や廃プラスチックを流通させる別の還元材供給部(路)を設けることが好ましい。この場合、ガス吹込装置は、例えば、図2(b)に示すように、中心管4-1および外管4-3に加え、中心管4-1と外管4-3の間に内管4-2を設けた同軸多重管により構成される。そして、別の還元材供給部となる中心管内路から微粉炭や廃プラスチックなどのその他の吹込み還元材が導入される。また、メタンガス供給部となる中心管4-1と外管4-3との間の環状管路からメタンガスが導入され、酸素ガス供給部となる内管4-2と外管4-3との間の環状管路から酸素が導入される。
なお、図3~5中、符号9は熱風炉、10はガス分離装置、11は熱風炉排ガス用脱水装置である。
発明例2では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの一部から再生メタンガスを生成し、高炉ガスの余剰分を製鉄所内に供給した。また、吹込み還元材には、全量、再生メタンガスを使用し、再生メタンガスの余剰分が発生しないように、再生メタンガスの生成量を調整した。また、実施例1と同様、メタンガス生成工程に使用する水素ガスの全量を、水の電気分解により生成した。この水の電気分解の際に生成する副生酸素ガスを、高炉の送風ガスとして用いた。また、発生した副生酸素ガスの余剰分を、製鉄所の別の設備(転炉や電気炉など)に供給した。
発明例3では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの全量から再生メタンガスを生成した。また、吹込み還元材には、全量、再生メタンガスを使用し、再生メタンガスの余剰分を、製鉄所内に供給した。また、実施例1と同様、メタンガス生成工程に使用する水素ガスの全量を、水の電気分解により生成した。この水の電気分解の際に生成する副生酸素ガスを、高炉の送風ガスとして用いた。また、発生した副生酸素ガスの余剰分を、製鉄所の別の設備(転炉や電気炉など)に供給した。
発明例3-1および3-2では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの全量から再生メタンガスを生成した。また、吹込み還元材には、全量、再生メタンガスを使用し、再生メタンガスの余剰分を、製鉄所内に供給した。また、メタンガス生成工程に使用する水素ガスの半分を、水の電気分解により生成した。残りの半分については、外部からの水素ガスを使用した。水の電気分解の際に生成する副生酸素ガスを、高炉の送風ガスとして用いた。また、発生した副生酸素ガスの余剰分を、製鉄所の別の設備(転炉や電気炉など)に供給した。そして、発明例3-1および3-2では、水の電気分解に必要な電力の一部に製鉄所内の発電設備で発電した電力を使用し、その割合を変化させた。
発明例3-3では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの全量から再生メタンガスを生成した。また、吹込み還元材には、全量、再生メタンガスを使用し、再生メタンガスの余剰分を、製鉄所内に供給した。また、メタンガス生成工程に使用する水素ガスの半分を、水の電気分解により生成した。残りの半分については、外部からの水素ガスを使用した。この水の電気分解の際に生成する副生酸素ガスを、高炉の送風ガスとして用いた。また、発生した副生酸素ガスの余剰分を、製鉄所の別の設備(転炉や電気炉など)に供給した。さらに、水の電気分解に必要な電力に、全量、再生可能エネルギー由来の電力および外部電力を使用した。
発明例4および5では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの一部から再生メタンガスを生成し、高炉ガスの余剰分を製鉄所内に供給した。また、吹込み還元材には、再生メタンガスに加え、一部、化石燃料由来の外部メタンガスを使用した。また、高炉の送風ガスの一部に、水の電気分解の際に生成する副生酸素ガスを使用し、残りは、製鉄所の深冷分離装置等から製造した酸素ガスを使用した。
比較例2では、図4に模式的に示した高炉および高炉附帯設備を用いた。ここでは、送風ガスとして、熱風(1200℃程度に加熱した空気(酸素濃度:21~25体積%程度))を、吹込み還元材として再生メタンガスをそれぞれ使用した。また、再生メタンガスの生成前に、高炉ガスから一酸化炭素および二酸化炭素を分離し、分離した一酸化炭素および二酸化炭素から、再生メタンガスを生成した。
比較例3では、図5に模式的に示した高炉および高炉附帯設備を用いた。ここでは、送風ガスとして、熱風(1200℃程度に加熱した空気(酸素濃度:21~25体積%程度))を、吹込み還元材として再生メタンガスをそれぞれ使用した。また、再生メタンガスの生成では、高炉ガスではなく、熱風炉の副生ガス(以下、熱風炉排ガスともいう)を使用した。そして、熱風炉排ガスから二酸化炭素を分離し、分離した二酸化炭素から、再生メタンガスを生成した。
比較例4では、図1に模式的に示した高炉および高炉附帯設備を用い、高炉ガスの一部から再生メタンガスを生成し、高炉ガスの余剰分を製鉄所内に供給した。また、吹込み還元材には、再生メタンガスに加え、一部、化石燃料由来の外部メタンガスを使用した。
比較例5では、比較例2と同様、図4に模式的に示した高炉および高炉附帯設備を用いた。なお、比較例5は、吹込みメタンガス比を増加させたこと以外は、比較例2と同じ条件である。
なお、「kcal/t」という単位は、溶銑1tを製造する際に発生するヒートロス量(kcal)を意味するものである。同様に、コークス比などで使用する「kg/t」という単位は、溶銑1tを製造する際に使用されるコークスの量(kg)などを意味するものである。また、吹込みメタン比などに使用する「Nm3/t」という単位も、溶銑1tを製造する際に高炉内に吹込まれる吹込みメタンガス中のメタン量(Nm3)などを意味するものである(なお、吹込みメタン比は、再生メタン比および外部メタン比の和であるが、再生メタンガスには、メタン以外の微量の残部ガスが含まれている。また、表1中に表示している再生メタン比および外部メタン比の値は、いずれもメタン以外の微量の残部ガスを除いたメタン量であり、小数点以下第1位を四捨五入した値である。そのため、表1中の吹込みメタン比と、再生メタン比および外部メタン比の和が一致しない場合がある。また、表1中の他の数値についても、同様の場合がある。)。
また、表1中の「高炉InputC」は、溶銑1tを製造する際に使用する外部由来の(具体的には、コークス、微粉炭および外部メタンガスに含まれる)炭素原子の質量(kg)を意味するものである。
一方、比較例1~4では、十分な二酸化炭素量の削減効果が得られなかった。また、比較例5では、吹込みメタンガス量の増加により、羽口先温度が2000℃未満になったため、安定した高炉の操業を行うことができなかった。
2:羽口
3:メタンガス生成装置
3-1:水の電気分解装置
4:ガス吹込装置
4-1:中心管
4-2:内管
4-3:外管
5:第1の脱水装置
6:第2の脱水装置
7:バーナー
7-1:高炉の炉頂圧発電設備
7-2:高炉ガスを燃料とする発電設備
8:レースウェイ
9:熱風炉
10:ガス分離装置
11:熱風炉排ガス用脱水装置
Claims (12)
- 高炉の操業方法であって、
水の電気分解により水素ガスを生成する工程と、
前記高炉から排出される副生ガスおよび前記水素ガスを用いて、再生メタンガスを生成する工程と、
前記高炉の羽口から前記高炉内に送風ガスおよび還元材を吹込む工程と、を有し、
前記送風ガスとして酸素ガスを用い、かつ、前記還元材の少なくとも一部に前記再生メタンガスを用い、
溶銑1tを製造する際に還元材として高炉内に吹込まれる再生メタンガスの炭素換算質量である循環炭素原子の原単位が55kg/t以上である、高炉の操業方法。 - 前記水の電気分解で使用する水の少なくとも一部に、前記再生メタンガスを生成する工程において生成する副生水を使用する、請求項1に記載の高炉の操業方法。
- 前記酸素ガスの少なくとも一部に、前記水の電気分解において生成する副生酸素ガスを使用する、請求項1または2に記載の高炉の操業方法。
- 前記水の電気分解において生成する水素ガスの全量を、前記再生メタンガスを生成する工程で使用し、かつ、
前記水の電気分解において生成する副生酸素ガスの全量を、前記酸素ガスに使用する、請求項1または2に記載の高炉の操業方法。 - 前記還元材における循環炭素原子の原単位が60kg/t以上である、請求項1~4のいずれかに記載の高炉の操業方法。
ここで、循環炭素原子の原単位は、次式により求める。
[循環炭素原子の原単位(kg/t)]=[還元材として高炉内に吹込まれる再生メタンガス中のメタンの質量(kg)]×(12/16)÷[溶銑製造量(t)] - 前記酸素ガスの酸素濃度が80体積%以上である、請求項1~5のいずれかに記載の高炉の操業方法。
- 前記副生ガスの一部から前記再生メタンガスを生成し、前記副生ガスの余剰分を製鉄所内に供給する、請求項1~6のいずれかに記載の高炉の操業方法。
- 前記再生メタンガスの余剰分を製鉄所内に供給する、請求項1~7のいずれかに記載の高炉の操業方法。
- 前記水の電気分解で使用する電力の少なくとも一部が、再生可能エネルギー由来の電力である、請求項1~8のいずれかに記載の高炉の操業方法。
- 前記水の電気分解で使用する電力の少なくとも一部が、製鉄所内の発電設備で発電した電力である、請求項1~9のいずれかに記載の高炉の操業方法。
- 前記製鉄所内の発電設備が、前記高炉の炉頂圧発電設備、および/または、前記副生ガスを燃料とする発電設備である、請求項10に記載の高炉の操業方法。
- 請求項1~11のいずれかに記載の高炉の操業方法に用いる高炉附帯設備であって、
前記水の電気分解により前記水素ガスを生成する、水の電気分解装置と、
前記副生ガスから前記再生メタンガスを生成する、メタンガス生成装置と、
前記再生メタンガスを前記高炉の羽口に導入するメタンガス供給部、および、前記酸素ガスを前記高炉の羽口に導入する酸素ガス供給部を有する、ガス吹込装置と、
をそなえる、高炉附帯設備。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019216965 | 2019-11-29 | ||
JP2019216965 | 2019-11-29 | ||
PCT/JP2020/042145 WO2021106579A1 (ja) | 2019-11-29 | 2020-11-11 | 高炉の操業方法および高炉附帯設備 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021106579A1 JPWO2021106579A1 (ja) | 2021-12-02 |
JP7028364B2 true JP7028364B2 (ja) | 2022-03-02 |
Family
ID=76130200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021512958A Active JP7028364B2 (ja) | 2019-11-29 | 2020-11-11 | 高炉の操業方法および高炉附帯設備 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4067509A4 (ja) |
JP (1) | JP7028364B2 (ja) |
KR (1) | KR102719155B1 (ja) |
CN (1) | CN114729406A (ja) |
TW (1) | TWI778450B (ja) |
WO (1) | WO2021106579A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4350011A4 (en) * | 2021-06-14 | 2024-10-16 | JFE Steel Corporation | Method for producing reduced iron |
JP7075530B1 (ja) * | 2021-06-30 | 2022-05-25 | Jfe条鋼株式会社 | 情報処理方法 |
JP7544015B2 (ja) * | 2021-10-29 | 2024-09-03 | Jfeスチール株式会社 | メタンガス生成装置の操業方法、高炉の操業方法、メタンガスの製造方法、溶銑の製造方法およびメタンガス生成装置 |
CN115505658A (zh) * | 2022-09-01 | 2022-12-23 | 中冶南方工程技术有限公司 | 一种高炉低碳冶炼系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261095A (ja) | 2009-05-03 | 2010-11-18 | Npo Seitetsu Carbon Offset Gijutsu Kenkyukai | 高炉およびその操業方法 |
JP2011225969A (ja) | 2010-03-29 | 2011-11-10 | Jfe Steel Corp | 高炉又は製鉄所の操業方法 |
JP2014005510A (ja) | 2012-06-26 | 2014-01-16 | Jfe Steel Corp | 高炉操業方法 |
JP2015196619A (ja) | 2014-04-01 | 2015-11-09 | 株式会社Ihi | 二酸化炭素固定システム |
JP2016531973A (ja) | 2013-07-09 | 2016-10-13 | ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー | メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3547624A (en) * | 1966-12-16 | 1970-12-15 | Air Reduction | Method of processing metal-bearing charge in a furnace having oxy-fuel burners in furnace tuyeres |
JPS63171804A (ja) * | 1987-01-09 | 1988-07-15 | Nkk Corp | 酸素高炉ガスの利用方法 |
US5431709A (en) * | 1993-09-21 | 1995-07-11 | Gas Research Institute | Accretion controlling tuyere |
CN1216154C (zh) * | 2003-06-23 | 2005-08-24 | 安徽工业大学 | 一种高效低co2排放富氢燃气纯氧高炉炼铁工艺 |
TWI277654B (en) * | 2005-01-31 | 2007-04-01 | Jfe Steel Corp | Method for operating blast furnace |
AT505401B1 (de) * | 2008-02-15 | 2009-01-15 | Siemens Vai Metals Tech Gmbh | Verfahren zum erschmelzen von roheisen unter rückführung von gichtgas unter zusatz von kohlenwasserstoffen |
LU91559B1 (en) * | 2009-04-28 | 2010-10-29 | Wurth Paul Sa | Method for feeding a burden to a blast furnace |
JP5565150B2 (ja) * | 2010-07-02 | 2014-08-06 | Jfeスチール株式会社 | 高炉操業方法 |
CN101906501A (zh) * | 2010-08-03 | 2010-12-08 | 莱芜钢铁集团有限公司 | 一种用粉矿和煤氧直接炼钢工艺 |
CN102010920A (zh) * | 2010-12-24 | 2011-04-13 | 宝钢集团新疆八一钢铁有限公司 | 一种无钟炉顶高炉高比例球团矿炉料结构冶炼方法 |
CN203360479U (zh) * | 2013-05-28 | 2013-12-25 | 宝山钢铁股份有限公司 | 降低熔融还原炼铁工艺中纯氧鼓风风口燃烧温度的装置 |
JP6229863B2 (ja) * | 2014-03-26 | 2017-11-15 | Jfeスチール株式会社 | 酸素高炉の操業方法 |
CN107245549B (zh) * | 2017-06-15 | 2018-12-18 | 王强 | 一种电解铝厂铝灰的高效利用工艺 |
-
2020
- 2020-11-11 KR KR1020227012644A patent/KR102719155B1/ko active Active
- 2020-11-11 EP EP20893163.4A patent/EP4067509A4/en active Pending
- 2020-11-11 WO PCT/JP2020/042145 patent/WO2021106579A1/ja unknown
- 2020-11-11 CN CN202080079859.XA patent/CN114729406A/zh active Pending
- 2020-11-11 JP JP2021512958A patent/JP7028364B2/ja active Active
- 2020-11-19 TW TW109140425A patent/TWI778450B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261095A (ja) | 2009-05-03 | 2010-11-18 | Npo Seitetsu Carbon Offset Gijutsu Kenkyukai | 高炉およびその操業方法 |
JP2011225969A (ja) | 2010-03-29 | 2011-11-10 | Jfe Steel Corp | 高炉又は製鉄所の操業方法 |
JP2014005510A (ja) | 2012-06-26 | 2014-01-16 | Jfe Steel Corp | 高炉操業方法 |
JP2016531973A (ja) | 2013-07-09 | 2016-10-13 | ミツビシ ヒタチ パワー システムズ ヨーロッパ ゲーエムベーハー | メタネーション方法および電力プラント煙道ガスの二酸化炭素メタネーションを備える電力プラント |
JP2015196619A (ja) | 2014-04-01 | 2015-11-09 | 株式会社Ihi | 二酸化炭素固定システム |
Also Published As
Publication number | Publication date |
---|---|
KR102719155B1 (ko) | 2024-10-17 |
WO2021106579A1 (ja) | 2021-06-03 |
EP4067509A1 (en) | 2022-10-05 |
KR20220062628A (ko) | 2022-05-17 |
TWI778450B (zh) | 2022-09-21 |
CN114729406A (zh) | 2022-07-08 |
TW202126819A (zh) | 2021-07-16 |
JPWO2021106579A1 (ja) | 2021-12-02 |
EP4067509A4 (en) | 2023-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7028364B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7028373B1 (ja) | 製鉄設備および還元鉄の製造方法 | |
JP7131694B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7028363B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7028367B1 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7192901B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP2021152211A (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131698B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131697B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
RU2802303C1 (ru) | Способ эксплуатации доменной печи и вспомогательное оборудование для доменной печи | |
JP7192845B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
WO2023162344A1 (ja) | 高炉の操業方法、溶銑の製造方法及び高炉付帯設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7028364 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |