JP7025729B2 - Resin composition for printed wiring boards, prepregs, resin sheets, laminated boards, metal foil-clad laminated boards, printed wiring boards, and multilayer printed wiring boards. - Google Patents
Resin composition for printed wiring boards, prepregs, resin sheets, laminated boards, metal foil-clad laminated boards, printed wiring boards, and multilayer printed wiring boards. Download PDFInfo
- Publication number
- JP7025729B2 JP7025729B2 JP2018559565A JP2018559565A JP7025729B2 JP 7025729 B2 JP7025729 B2 JP 7025729B2 JP 2018559565 A JP2018559565 A JP 2018559565A JP 2018559565 A JP2018559565 A JP 2018559565A JP 7025729 B2 JP7025729 B2 JP 7025729B2
- Authority
- JP
- Japan
- Prior art keywords
- printed wiring
- wiring board
- resin composition
- resin
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MBXWATXXGDGWFD-POHAHGRESA-N CC/C=C(/C=CC=C1)\C1=C Chemical compound CC/C=C(/C=CC=C1)\C1=C MBXWATXXGDGWFD-POHAHGRESA-N 0.000 description 2
- 0 CC(C)*(*)c1ccc([C-](*)*)cc1 Chemical compound CC(C)*(*)c1ccc([C-](*)*)cc1 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/02—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
- B32B17/04—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4028—Isocyanates; Thioisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/02—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板に関する。 The present invention relates to a resin composition for a printed wiring board, a prepreg, a resin sheet, a laminated board, a metal foil-clad laminated board, a printed wiring board, and a multilayer printed wiring board.
近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体パッケージの高機能化、小型化が進むに従い、半導体パッケージ用の各部品の高集積化や高密度実装化が近年益々加速している。これに伴い、半導体パッケージ用のプリント配線板に求められる諸特性はますます厳しいものとなっている。かかるプリント配線板に求められる特性としては、例えば、低吸水性、吸湿耐熱性、難燃性、低誘電率、低誘電正接、低熱膨張率、耐熱性、耐薬品性、高めっきピール強度等が挙げられる。また、それらに加えて、プリント配線板、特に、多層コアレス基板の反りを抑制する(低反りを達成する)ことが、近時、重要な課題となっており、様々な対策が講じられてきている。 In recent years, as semiconductor packages widely used in electronic devices, communication devices, personal computers, etc. have become more sophisticated and smaller, the high integration and high-density mounting of each component for semiconductor packages has accelerated in recent years. ing. Along with this, various characteristics required for printed wiring boards for semiconductor packages are becoming more and more severe. The characteristics required for such a printed wiring board include, for example, low water absorption, moisture absorption heat resistance, flame retardancy, low dielectric constant, low dielectric loss tangent, low thermal expansion factor, heat resistance, chemical resistance, high plating peel strength and the like. Can be mentioned. In addition to these, suppressing the warpage of printed wiring boards, especially multilayer coreless boards (achieving low warpage) has recently become an important issue, and various measures have been taken. There is.
その対策の一つとして、プリント配線板に用いられる絶縁層の低熱膨張化が挙げられる。これは、プリント配線板の熱膨張率を半導体素子の熱膨張率に近づけることで反りを抑制する手法であり、現在盛んに取り組まれている(例えば、特許文献1~3参照)。
One of the countermeasures is to reduce the thermal expansion of the insulating layer used for the printed wiring board. This is a method of suppressing warpage by making the thermal expansion rate of a printed wiring board close to the thermal expansion rate of a semiconductor element, and is currently being actively pursued (see, for example,
半導体プラスチックパッケージの反りを抑制する手法としては、プリント配線板の低熱膨張化以外にも、積層板の剛性を高くすること(高剛性化)や積層板のガラス転移温度を高くすること(高Tg化)が検討されている(例えば、特許文献4及び5参照)。 As a method for suppressing the warp of the semiconductor plastic package, in addition to the low thermal expansion of the printed wiring board, the rigidity of the laminated board is increased (high rigidity) and the glass transition temperature of the laminated board is increased (high Tg). (See, for example, Patent Documents 4 and 5).
しかしながら、本発明者らの詳細な検討によれば、上記従来の技術をもってしても、プリント配線板、特に、多層コアレス基板の反りを未だ十分に低減することはできず、更なる改良が望まれている。 However, according to the detailed examination by the present inventors, even with the above-mentioned conventional technique, the warp of the printed wiring board, particularly the multilayer coreless substrate cannot be sufficiently reduced, and further improvement is desired. It is rare.
すなわち、本発明は、明確なガラス転移温度が存在せず(いわゆるTgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することができるプリント配線板用樹脂組成物、並びに、該プリント配線板用樹脂組成物を用いた、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板を提供することを目的とする。 That is, in the present invention, there is no clear glass transition temperature (so-called Tg-less), and the warpage of the printed wiring board, particularly the multilayer coreless substrate, can be sufficiently reduced (low warpage is achieved). It is an object of the present invention to provide a resin composition for a board, and a prepreg, a resin sheet, a laminated board, a metal foil-clad laminated board, a printed wiring board, and a multilayer printed wiring board using the resin composition for a printed wiring board. do.
本発明者らは、上記課題を解決するために鋭意検討を行った結果、従来、半導体プラスチックパッケージ用のプリント配線板の反り挙動に関しては、プリプレグの硬化物において、より大きな熱時貯蔵弾性率、及びより高い弾性率維持率を実現し得る樹脂組成物が有効であると考えられてきたものの、必ずしもそうとは限らないことが判明してきた。さらに、本発明者らは、鋭意研究を進めた結果、アリルフェノール化合物及びマレイミド化合物に加え、シアン酸エステル化合物及び/又はエポキシ化合物を用いることにより、上記問題点を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have conventionally obtained a larger thermal storage elastic modulus in a cured prepreg with respect to the warp behavior of a printed wiring board for a semiconductor plastic package. And although it has been considered that a resin composition capable of achieving a higher elastic modulus maintenance rate is effective, it has been found that this is not always the case. Furthermore, as a result of diligent research, the present inventors have found that the above problems can be solved by using a cyanic acid ester compound and / or an epoxy compound in addition to the allylphenol compound and the maleimide compound, and the present invention has been developed. It came to be completed.
すなわち、本発明は、以下のとおりである。
〔1〕
アリルフェノール化合物(A)と、
マレイミド化合物(B)と、
シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)と、を含有するプリント配線板用樹脂組成物であって、
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記アリルフェノール化合物(A)の含有量が、10~50質量部であり、
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記マレイミド化合物(B)の含有量が、40~80質量部である、
プリント配線板用樹脂組成物。That is, the present invention is as follows.
[1]
Allylphenol compound (A) and
Maleimide compound (B) and
A resin composition for a printed wiring board containing a cyanic acid ester compound (C) and / or an epoxy compound (D).
The content of the allylphenol compound (A) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 10 to 50 parts by mass.
The content of the maleimide compound (B) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 40 to 80 parts by mass.
Resin composition for printed wiring boards.
〔2〕
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)及び前記エポキシ化合物(D)の合計含有量が、5~45質量部である、
〔1〕に記載のプリント配線板用樹脂組成物。[2]
The total content of the cyanic acid ester compound (C) and the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 5 to 45 parts by mass.
The resin composition for a printed wiring board according to [1].
〔3〕
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)の含有量が、0~25質量部である、
〔1〕又は〔2〕に記載のプリント配線板用樹脂組成物。[3]
The content of the cyanic acid ester compound (C) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 0 to 25 parts by mass.
The resin composition for a printed wiring board according to [1] or [2].
〔4〕
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記エポキシ化合物(D)の含有量が、0~25質量部である、
〔1〕又は〔2〕に記載のプリント配線板用樹脂組成物。[4]
The content of the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 0 to 25 parts by mass.
The resin composition for a printed wiring board according to [1] or [2].
〔5〕
充填材(E)を更に含有する、
〔1〕~〔4〕のいずれかに記載のプリント配線板用樹脂組成物。[5]
Further containing the filler (E),
The resin composition for a printed wiring board according to any one of [1] to [4].
〔6〕
前記充填材(E)が、シリカ、アルミナ、及びベーマイトからなる群より選択される少なくとも1種である、
〔5〕に記載のプリント配線板用樹脂組成物。[6]
The filler (E) is at least one selected from the group consisting of silica, alumina, and boehmite.
The resin composition for a printed wiring board according to [5].
〔7〕
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記充填材(E)の含有量が、120~250質量部である、
〔5〕又は〔6〕に記載のプリント配線板用樹脂組成物。[7]
The content of the filler (E) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 120 to 250 parts by mass.
The resin composition for a printed wiring board according to [5] or [6].
〔8〕
前記アリルフェノール化合物(A)が、下記式(I)~(III)のいずれかで表される化合物を含む、
〔1〕~〔7〕のいずれかに記載のプリント配線板用樹脂組成物。[8]
The allyl phenol compound (A) contains a compound represented by any of the following formulas (I) to (III).
The resin composition for a printed wiring board according to any one of [1] to [7].
(式(I)中、R1及びR2は、各々独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、又はフェニル基を示す。)In formula (I), R 1 and R 2 are independently hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-. Indicates a butyl group, a t-butyl group, or a phenyl group.)
〔9〕
前記マレイミド化合物(B)が、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン及び下記式(1)で表されるマレイミド化合物からなる群より選択される少なくとも1種を含む、
〔1〕~〔8〕のいずれかに記載のプリント配線板用樹脂組成物。[9]
The maleimide compound (B) is bis (4-maleimidephenyl) methane, 2,2-bis {4- (4-maleimidephenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidephenyl). ) Containing at least one selected from the group consisting of methane and a maleimide compound represented by the following formula (1).
The resin composition for a printed wiring board according to any one of [1] to [8].
(式(1)中、R5は、各々独立して、水素原子又はメチル基を示し、n1は、1以上の整数を表す。)(In formula (1), R 5 independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.)
〔10〕
前記シアン酸エステル化合物(C)が、下記式(2)及び/又は(3)で表される化合物を含む、
〔1〕~〔9〕のいずれか1項に記載のプリント配線板用樹脂組成物。[10]
The cyanate ester compound (C) contains a compound represented by the following formulas (2) and / or (3).
The resin composition for a printed wiring board according to any one of [1] to [9].
(式(2)中、R6は、各々独立して、水素原子又はメチル基を示し、n2は、1以上の整数を表す。)(In formula (2), R 6 independently represents a hydrogen atom or a methyl group, and n 2 represents an integer of 1 or more.)
(式(3)中、R7は、各々独立して、水素原子又はメチル基を示し、n3は、1以上の整数を表す。)(In formula (3), R 7 independently represents a hydrogen atom or a methyl group, and n 3 represents an integer of 1 or more.)
〔11〕
前記プリント配線板用樹脂組成物と、基材と、を含有するプリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物が、下記式(4)~(8);
E’(200℃)/E’(30℃)≦0.90 …(4)
E’(260℃)/E’(30℃)≦0.85 …(5)
E’(330℃)/E’(30℃)≦0.80 …(6)
E’’max/E’(30℃)≦3.0% …(7)
E’’min/E’(30℃)≧0.5% …(8)
(各式中、E’は、括弧内に示す温度における前記硬化物の貯蔵弾性率を示し、E’’maxは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最大値を示し、E’’minは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最小値を示す。)
で表される機械特性に関する物性パラメータの数値範囲を満たす、
〔1〕~〔10〕のいずれか1項に記載のプリント配線板用樹脂組成物。[11]
The cured product obtained by thermally curing the prepreg containing the resin composition for a printed wiring board and the base material at 230 ° C. for 100 minutes is the following formulas (4) to (8);
E'(200 ° C) / E'(30 ° C) ≤ 0.90 ... (4)
E'(260 ° C) / E'(30 ° C) ≤ 0.85 ... (5)
E'(330 ° C) / E'(30 ° C) ≤ 0.80 ... (6)
E''max / E'(30 ° C) ≤ 3.0% ... (7)
E''min / E'(30 ° C) ≧ 0.5%… (8)
(In each formula, E'indicates the storage elastic modulus of the cured product at the temperature shown in parentheses, and E''max is the maximum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C to 330 ° C. E''min indicates the minimum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C to 330 ° C.)
Satisfy the numerical range of physical property parameters related to mechanical properties represented by
The resin composition for a printed wiring board according to any one of [1] to [10].
〔12〕
基材と、
該基材に含浸又は塗布された〔1〕~〔11〕のいずれか1項に記載のプリント配線板用樹脂組成物と、
を有するプリプレグ。[12]
With the base material
The resin composition for a printed wiring board according to any one of [1] to [11] impregnated or applied to the substrate, and the resin composition for a printed wiring board.
A prepreg with.
〔13〕
前記基材が、Eガラス繊維、Dガラス繊維、Sガラス繊維、Tガラス繊維、Qガラス繊維、Lガラス繊維、NEガラス繊維、HMEガラス繊維、及び有機繊維からなる群より選択される1種以上の繊維で構成されたものである、
〔12〕に記載のプリプレグ。[13]
One or more of the base materials selected from the group consisting of E glass fiber, D glass fiber, S glass fiber, T glass fiber, Q glass fiber, L glass fiber, NE glass fiber, HME glass fiber, and organic fiber. It is composed of the fibers of
The prepreg according to [12].
〔14〕
支持体と、
該支持体の片面又は両面に積層された〔1〕~〔11〕のいずれか1項に記載のプリント配線板用樹脂組成物と、
を有するレジンシート。[14]
With the support,
The resin composition for a printed wiring board according to any one of [1] to [11] laminated on one side or both sides of the support.
Resin sheet with.
〔15〕
少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種を有する、
積層板。[15]
It has at least one selected from the group consisting of the prepregs described in [12] and [13], and the resin sheet described in [14], in which at least one sheet is laminated.
Laminated board.
〔16〕
少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種と、
前記プリプレグ及び前記レジンシートからなる群より選択される少なくとも1種の片面又は両面に配された金属箔と、
を有する金属箔張積層板。[16]
At least one selected from the group consisting of at least one laminated prepreg according to [12] and [13], and the resin sheet according to [14].
At least one kind of metal foil arranged on one side or both sides selected from the group consisting of the prepreg and the resin sheet, and
Metal leaf-clad laminate with.
〔17〕
絶縁層と、
該絶縁層の表面に形成された導体層と、
を有し、
前記絶縁層が、〔1〕~〔11〕いずれか1項に記載のプリント配線板用樹脂組成物を含む、
プリント配線板。[17]
Insulation layer and
A conductor layer formed on the surface of the insulating layer and
Have,
The insulating layer contains the resin composition for a printed wiring board according to any one of [1] to [11].
Printed wiring board.
〔18〕
少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種で形成された第1の絶縁層、及び、前記第1の絶縁層の片面方向に少なくとも1枚以上積層された〔12〕及び〔13〕に記載のプリプレグ、並びに〔14〕に記載のレジンシートからなる群より選択される少なくとも1種で形成された第2の絶縁層からなる複数の絶縁層と、
前記複数の絶縁層の各々の間に配置された第1の導体層、及び、前記複数の絶縁層の最外層の表面に配置された第2の導体層からなる複数の導体層と、
を有する多層プリント配線板。[18]
A first insulating layer formed of at least one selected from the group consisting of at least one laminated prepreg according to [12] and [13], and the resin sheet according to [14], and Formed by at least one selected from the group consisting of the prepregs described in [12] and [13] and the resin sheet described in [14], in which at least one or more sheets of the first insulating layer are laminated in one side direction. A plurality of insulating layers composed of the second insulating layer formed on the resin,
A plurality of conductor layers composed of a first conductor layer arranged between each of the plurality of insulating layers and a second conductor layer arranged on the surface of the outermost layer of the plurality of insulating layers.
Multi-layer printed wiring board with.
本発明によれば、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することができるプリント配線板用樹脂組成物、並びに、並びに、該プリント配線板用樹脂組成物を用いた、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板を提供することができる。 According to the present invention, there is no clear glass transition temperature (Tg-less), and the warpage of the printed wiring board, particularly the multilayer coreless substrate, can be sufficiently reduced (low warpage is achieved). It is possible to provide a prepreg, a resin sheet, a laminated board, a metal foil-clad laminated board, a printed wiring board, and a multilayer printed wiring board using the resin composition for printing and the resin composition for printed wiring boards. ..
以下、本発明を実施するための形態(以下「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、プリント配線板用樹脂組成物における、溶剤、及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、プリント配線板用樹脂組成物における溶剤、及び充填材を除いた成分の合計が100質量部であることをいうものとする。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited thereto, and various modifications may be made without departing from the gist thereof. It is possible. In the present embodiment, the "resin solid content" refers to a component of the resin composition for a printed wiring board excluding the solvent and the filler, unless otherwise specified, and is "100 parts by mass of the resin solid content". It means that the total of the components excluding the solvent and the filler in the resin composition for the printed wiring board is 100 parts by mass.
〔プリント配線板用樹脂組成物〕
本実施形態のプリント配線板用樹脂組成物は、アリルフェノール化合物(A)と、マレイミド化合物(B)と、シアン酸エステル化合物(C)及び/又はエポキシ樹脂(D)とを含有する。プリント配線板用樹脂組成物が、このような組成を含有することで、例えば、プリプレグを硬化させた硬化物において、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)できる傾向にある。[Resin composition for printed wiring board]
The resin composition for a printed wiring board of the present embodiment contains an allylphenol compound (A), a maleimide compound (B), a cyanic acid ester compound (C) and / or an epoxy resin (D). By containing such a composition in the resin composition for a printed wiring board, for example, in a cured product obtained by curing a prepreg, a clear glass transition temperature does not exist (Tg-less), and the printed wiring board, In particular, there is a tendency that the warp of the multilayer coreless substrate can be sufficiently reduced (low warpage is achieved).
〔アリルフェノール化合物(A)〕
アリルフェノール化合物(A)としては、芳香環に少なくともアリル基とヒドロキシル基がそれぞれ1個以上直接結合している化合物であれば、特に限定されないが、例えば、芳香環の水素原子がアリル基で置換されたビスフェノールが挙げられる。かかるビスフェノールとしては、特に限定されないが、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールZが挙げられる。このなかでも、ビスフェノールAが好ましく、アリルフェノール化合物(A)としては、ジアリルビスフェノールAがより好ましく、下記式(I)又は式(II)で表される化合物が更に好ましい。このようなアリルフェノール化合物(A)を用いることにより、曲げ強度、曲げ弾性率、熱膨張率、熱伝導率、及び銅箔ピール強度がより向上する傾向にある。[Allylphenol compound (A)]
The allylphenol compound (A) is not particularly limited as long as it is a compound in which at least one allyl group and one or more hydroxyl groups are directly bonded to the aromatic ring, but for example, the hydrogen atom of the aromatic ring is substituted with the allyl group. The bisphenol that has been used can be mentioned. The bisphenol is not particularly limited, but for example, bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P. , Bisphenol PH, Bisphenol TMC, Bisphenol Z. Among these, bisphenol A is preferable, as the allylphenol compound (A), diallylbisphenol A is more preferable, and the compound represented by the following formula (I) or formula (II) is further preferable. By using such an allylphenol compound (A), the bending strength, the bending elastic modulus, the thermal expansion coefficient, the thermal conductivity, and the copper foil peel strength tend to be further improved.
ここで、式(I)中、R1及びR2は、各々独立して、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、又はフェニル基を示す。Here, in the formula (I), R 1 and R 2 are independently hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, respectively. Indicates a sec-butyl group, a t-butyl group, or a phenyl group.
ここで、式(I)乃至(III)中、アリル基及び水酸基は、ベンゼン環のBis結合部を除く位置に、それぞれ一つずつ独立して結合する。 Here, in the formulas (I) to (III), the allyl group and the hydroxyl group are independently bonded to the positions of the benzene ring excluding the Bis bond portion, one by one.
また、アリルフェノール化合物(A)は、アリル基及びヒドロキシル基以外の反応性官能基を更に有してもよい。また、芳香環に直接結合したヒドロキシル基が、アリル基及びヒドロキシル基以外の反応性官能基に変性された化合物であってもよい。アリル基及びヒドロキシル基以外の反応性官能基としては、特に限定されないが、例えば、シアネート基(シアン酸エステル基)、エポキシ基、アミン基、イソシアネート基、グリシジル基、及びリン酸基が挙げられる。これらを有することにより、曲げ強度、曲げ弾性率、熱膨張率、及び熱伝導率がより一層向上する傾向にある。アリルフェノール化合物(A)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。2種類以上を併用する場合は、アリル基及びヒドロキシル基以外の反応性官能基は同一であってもよく、異なっていてもよい。 Further, the allylphenol compound (A) may further have a reactive functional group other than the allyl group and the hydroxyl group. Further, the hydroxyl group directly bonded to the aromatic ring may be a compound modified to a reactive functional group other than the allyl group and the hydroxyl group. The reactive functional group other than the allyl group and the hydroxyl group is not particularly limited, and examples thereof include a cyanate group (cyanic acid ester group), an epoxy group, an amine group, an isocyanate group, a glycidyl group, and a phosphoric acid group. By having these, the bending strength, the bending elastic modulus, the thermal expansion coefficient, and the thermal conductivity tend to be further improved. As the allylphenol compound (A), one type may be used alone, or two or more types may be used in combination. When two or more kinds are used in combination, the reactive functional groups other than the allyl group and the hydroxyl group may be the same or different.
アリルフェノール化合物(A)1分子中のアリル基の基数は、好ましくは1~5であり、より好ましくは2~4であり、更に好ましくは2である。アリルフェノール化合物(A)1分子中のアリル基の基数が上記範囲内であることにより、曲げ強度、曲げ弾性率、及び銅箔ピール強度がより向上し、熱膨張係数が低く、熱伝導率に優れる傾向にある。 The number of allyl groups in one molecule of the allylphenol compound (A) is preferably 1 to 5, more preferably 2 to 4, and even more preferably 2. Allylphenol compound (A) When the number of allyl groups in one molecule is within the above range, the bending strength, flexural modulus, and copper foil peel strength are further improved, the thermal expansion coefficient is low, and the thermal conductivity is increased. It tends to be excellent.
アリルフェノール化合物(A)が、芳香環に直接結合したヒドロキシル基を有する場合、アリルフェノール化合物(A)1分子中の当該ヒドロキシル基の基数は、好ましくは1~5であり、より好ましくは2~4であり、更に好ましくは2である。アリルフェノール化合物(A)1分子中の当該ヒドロキシル基の基数が上記範囲内であることにより、曲げ強度、曲げ弾性率、及び銅箔ピール強度がより向上し、熱膨張係数が低く、熱伝導率に優れる傾向にある。 When the allylphenol compound (A) has a hydroxyl group directly bonded to the aromatic ring, the number of groups of the hydroxyl group in one molecule of the allylphenol compound (A) is preferably 1 to 5, and more preferably 2 to 2. It is 4, and more preferably 2. When the number of groups of the hydroxyl group in one molecule of the allylphenol compound (A) is within the above range, the bending strength, the bending elastic modulus, and the copper foil peel strength are further improved, the thermal expansion coefficient is low, and the thermal conductivity is low. Tends to be excellent.
アリルフェノール化合物(A)が、上述したアリル基及びヒドロキシル基以外の反応性官能基を有する場合、アリルフェノール化合物(A)1分子中のアリル基及びヒドロキシル基以外の反応性官能基数は、好ましくは1~5であり、より好ましくは2~4であり、更に好ましくは2である。アリルフェノール化合物(A)1分子中のアリル基及びヒドロキシル基以外の反応性官能基数が上記範囲内であることにより、曲げ強度、曲げ弾性率、及び銅箔ピール強度がより向上し、熱膨張係数が低く、熱伝導率に優れる傾向にある。 When the allyl phenol compound (A) has a reactive functional group other than the allyl group and the hydroxyl group described above, the number of reactive functional groups other than the allyl group and the hydroxyl group in one molecule of the allyl phenol compound (A) is preferable. It is 1 to 5, more preferably 2 to 4, and even more preferably 2. When the number of reactive functional groups other than the allyl group and the hydroxyl group in one molecule of the allylphenol compound (A) is within the above range, the bending strength, the bending elastic modulus, and the copper foil peel strength are further improved, and the thermal expansion coefficient is increased. Is low and tends to have excellent thermal conductivity.
アリルフェノール化合物(A)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して10~50質量部であり、好ましくは10~35質量部であり、より好ましくは15~30質量部である。アリルフェノール化合物(A)の含有量が上記範囲内であることにより、得られる硬化物の柔軟性、曲げ強度、曲げ弾性率、熱膨張率、熱伝導率、及び銅箔ピール強度がより一層向上する傾向にある。 The content of the allylphenol compound (A) is 10 to 50 parts by mass, preferably 10 to 35 parts by mass, and more preferably 10 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. It is 15 to 30 parts by mass. When the content of the allylphenol compound (A) is within the above range, the flexibility, bending strength, flexural modulus, thermal expansion rate, thermal conductivity, and copper foil peel strength of the obtained cured product are further improved. Tend to do.
〔マレイミド化合物(B)〕
マレイミド化合物(B)としては、分子中に1個以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、下記式(1)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマーが挙げられる。このなかでも、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、及び下記式(1)で表されるマレイミド化合物からなる群より選択される少なくとも1種が好ましく、明確なガラス転移温度が存在しない(Tgレス)樹脂組成物を得やすい点から、下記式(1)で表されるマレイミド化合物が特に好ましい。上述したマレイミド化合物(B)を含むことにより、得られる硬化物の熱膨張率がより低下し、耐熱性、ガラス転移温度(Tg)がより向上する傾向にある。マレイミド化合物(B)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。[Maleimide compound (B)]
The maleimide compound (B) is not particularly limited as long as it is a compound having one or more maleimide groups in the molecule, and for example, N-phenylmaleimide, N-hydroxyphenylmaleimide, bis (4-maleimidephenyl) methane, and the like. 2,2-Bis {4- (4-maleimidephenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidephenyl) methane, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane , Bis (3,5-diethyl-4-maleimidephenyl) methane, maleimide compounds represented by the following formula (1), prepolymers of these maleimide compounds, or prepolymers of maleimide compounds and amine compounds. Among these, bis (4-maleimidephenyl) methane, 2,2-bis {4- (4-maleimidephenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane, and At least one selected from the group consisting of the maleimide compound represented by the following formula (1) is preferable, and a resin composition having no clear glass transition temperature (Tg-less) can be easily obtained, and thus the following formula (1). The maleimide compound represented by is particularly preferable. By containing the above-mentioned maleimide compound (B), the thermal expansion rate of the obtained cured product tends to be further lowered, and the heat resistance and the glass transition temperature (Tg) tend to be further improved. The maleimide compound (B) may be used alone or in combination of two or more.
ここで、式(1)中、R5は、各々独立して、水素原子又はメチル基を示し、好ましくは水素原子を示す。また、式(1)中、n1は、1以上の整数を表し、好ましくは10以下の整数であり、より好ましくは7以下の整数である。Here, in the formula (1), R 5 independently represents a hydrogen atom or a methyl group, preferably a hydrogen atom. Further, in the equation (1), n 1 represents an integer of 1 or more, preferably an integer of 10 or less, and more preferably an integer of 7 or less.
マレイミド化合物(B)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して40~80質量部であり、好ましくは40~70質量部であり、より好ましくは45~65質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。 The content of the maleimide compound (B) is 40 to 80 parts by mass, preferably 40 to 70 parts by mass, and more preferably 45 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. It is ~ 65 parts by mass. When the content of the maleimide compound (B) is within the above range, the coefficient of thermal expansion of the obtained cured product tends to be further lowered, and the heat resistance tends to be further improved.
〔シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)〕
本実施形態のプリント配線板用樹脂組成物は、シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)を含有する。シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)を、上述したアリルフェノール化合物(A)、マレイミド化合物(B)とともに用いることで、例えば、プリプレグを硬化させた硬化物において、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)できる樹脂組成物となる傾向にある。[Cyanic acid ester compound (C) and / or epoxy compound (D)]
The resin composition for a printed wiring board of this embodiment contains a cyanic acid ester compound (C) and / or an epoxy compound (D). By using the cyanate ester compound (C) and / or the epoxy compound (D) together with the allylphenol compound (A) and the maleimide compound (B) described above, for example, in a cured product obtained by curing a prepreg, a clear glass is used. There is a tendency for the resin composition to have no transition temperature (Tg-less) and to sufficiently reduce the warpage of the printed wiring board, particularly the multilayer coreless substrate (achieve low warpage).
(シアン酸エステル化合物(C))
シアン酸エステル化合物(C)としては、特に限定されないが、例えば、下記式(2)で示されるナフトールアラルキル型シアン酸エステル、下記式(3)で示されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5-ジメチル4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2、2’-ビス(4-シアナトフェニル)プロパン;これらシアン酸エステルのプレポリマー等が挙げられる。これらのシアン酸エステル化合物(C)は、1種単独で、又は2種以上を組み合わせて使用してもよい。(Cyanic acid ester compound (C))
The cyanate ester compound (C) is not particularly limited, but for example, a naphthalal aralkyl type cyanate ester represented by the following formula (2), a novolak type cyanate ester represented by the following formula (3), and a biphenyl aralkyl type cyanide. Acid ester, bis (3,5-dimethyl4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-disyanatobenzene, 1,4-disyanatobenzene, 1,3,5- Tricianatobenzene, 1,3-disianatonaphthalene, 1,4-disyanatnaphthalene, 1,6-disianatonaphthalene, 1,8-disyanatnaphthalene, 2,6-disyanatnaphthalene, 2,7-disyanat Naphthalene, 1,3,6-trisianatonaphthalene, 4,4'-disyanatobiphenyl, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone , And 2,2'-bis (4-cyanatophenyl) propane; prepolymers of these cyanate esters and the like. These cyanate ester compounds (C) may be used alone or in combination of two or more.
式(2)中、R6は、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(2)中、n2は、1以上の整数を表す。n2の上限値は、通常は10であり、好ましくは6である。In the formula (2), R 6 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. Further, in the equation (2), n 2 represents an integer of 1 or more. The upper limit of n 2 is usually 10, preferably 6.
式(3)中、R7は、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(3)中、n3は、1以上の整数を表す。n3の上限値は、通常は10であり、好ましくは7である。In the formula (3), R 7 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. Further, in the equation (3), n 3 represents an integer of 1 or more. The upper limit of n 3 is usually 10, preferably 7.
これらのなかでも、シアン酸エステル化合物(C)が、式(2)で示されるナフトールアラルキル型シアン酸エステル、式(3)で示されるノボラック型シアン酸エステル、及びビフェニルアラルキル型シアン酸エステルからなる群より選択される1種以上を含むことが好ましく、式(2)で示されるナフトールアラルキル型シアン酸エステル及び式(3)で示されるノボラック型シアン酸エステルからなる群より選択される1種以上を含むことがより好ましい。このようなシアン酸エステル化合物(C)を用いることにより、難燃性により優れ、硬化性がより高く、かつ熱膨張係数がより低い硬化物が得られる傾向にある。 Among these, the cyanic acid ester compound (C) is composed of a naphthol aralkyl-type cyanate ester represented by the formula (2), a novolak-type cyanate ester represented by the formula (3), and a biphenyl aralkyl-type cyanate ester. It is preferable to include one or more selected from the group, and one or more selected from the group consisting of the naphthol aralkyl type cyanate ester represented by the formula (2) and the novolak type cyanate ester represented by the formula (3). It is more preferable to include. By using such a cyanate ester compound (C), there is a tendency to obtain a cured product having better flame retardancy, higher curability, and a lower coefficient of thermal expansion.
これらのシアン酸エステル化合物(C)の製造方法としては、特に限定されず、シアン酸エステル化合物の合成方法として公知の方法を用いることができる。公知の方法としては、特に限定されないが、例えば、フェノール樹脂とハロゲン化シアンとを不活性有機溶媒中で、塩基性化合物存在下反応させる方法、フェノール樹脂と塩基性化合物との塩を、水を含有する溶液中にて形成させ、その後、得られた塩とハロゲン化シアンとを2相系界面反応させる方法が挙げられる。 The method for producing the cyanic acid ester compound (C) is not particularly limited, and a known method can be used as a method for synthesizing the cyanic acid ester compound. The known method is not particularly limited, but for example, a method of reacting a phenol resin and cyanogen halide in the presence of a basic compound in an inert organic solvent, a salt of the phenol resin and the basic compound, and water. Examples thereof include a method of forming the mixture in the contained solution and then allowing the obtained salt and cyanogen halide to undergo a two-phase interfacial reaction.
これらのシアン酸エステル化合物(C)の原料となるフェノール樹脂としては、特に限定されないが、例えば、下記式(9)で示されるナフトールアラルキル型フェノール樹脂、ノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂が挙げられる。 The phenol resin used as a raw material for these cyanate ester compounds (C) is not particularly limited, and for example, a naphthol aralkyl type phenol resin represented by the following formula (9), a novolak type phenol resin, and a biphenyl aralkyl type phenol resin can be used. Can be mentioned.
式(9)中、R8は、各々独立して、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式(9)中、n4は、1以上の整数を示す。n4の上限値は、通常は10であり、好ましくは6である。In formula (9), R 8 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. Further, in the equation (9), n 4 represents an integer of 1 or more. The upper limit of n 4 is usually 10, preferably 6.
式(9)で示されるナフトールアラルキル型フェノール樹脂は、ナフトールアラルキル樹脂とシアン酸とを縮合させて得ることができる。ナフトールアラルキル型フェノール樹脂としては、特に限定されないが、例えば、α-ナフトール及びβ-ナフトール等のナフトール類と、p-キシリレングリコール、α,α’-ジメトキシ-p-キシレン、及び1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等のベンゼン類と、の反応により得られるものが挙げられる。ナフトールアラルキル型シアン酸エステルは、上記のようにして得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものから選択することができる。 The naphthol aralkyl type phenol resin represented by the formula (9) can be obtained by condensing a naphthol aralkyl resin with cyanic acid. The naphthol aralkyl-type phenol resin is not particularly limited, and is, for example, naphthols such as α-naphthol and β-naphthol, p-xylylene glycol, α, α'-dimethoxy-p-xylene, and 1,4-. Examples thereof include those obtained by reaction with benzenes such as di (2-hydroxy-2-propyl) benzene. The naphthol aralkyl type cyanic acid ester can be selected from those obtained by condensing the naphthol aralkyl resin obtained as described above with cyanic acid.
シアン酸エステル化合物(C)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~25質量部であり、より好ましくは0~20質量部である。シアン酸エステル化合物の含有量が上記範囲内であることにより、得られる硬化物の耐熱性と耐薬品性がより向上する傾向にある。 The content of the cyanic acid ester compound (C) is preferably 0 to 25 parts by mass, and more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. be. When the content of the cyanate ester compound is within the above range, the heat resistance and chemical resistance of the obtained cured product tend to be further improved.
(エポキシ化合物(D))
エポキシ化合物(D)としては、1分子中に2つ以上のエポキシ基を有する化合物であれば特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリオール型エポキシ樹脂、イソシアヌレート環含有エポキシ樹脂、或いはこれらのハロゲン化物が挙げられる。また、エポキシ化合物(D)としては、非ハロゲン化エポキシ化合物(非ハロゲン含有エポキシ化合物、ハロゲン不含有エポキシ化合物)がより好ましい。なお、アリルフェノール化合物(A)がエポキシ基を有する場合、エポキシ化合物(D)は、エポキシ基を有するアリルフェノール化合物(A)以外のものである。(Epoxy compound (D))
The epoxy compound (D) is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule, and for example, a bisphenol A type epoxy resin, a bisphenol E type epoxy resin, a bisphenol F type epoxy resin, and a bisphenol. S-type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type Epoxy resin, glycidyl ester type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, aralkyl novolac type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, polyol type epoxy resin, isocyanurate ring-containing epoxy Examples thereof include resins and epoxies thereof. Further, as the epoxy compound (D), a non-halogenated epoxy compound (non-halogen-containing epoxy compound, halogen-free epoxy compound) is more preferable. When the allylphenol compound (A) has an epoxy group, the epoxy compound (D) is other than the allylphenol compound (A) having an epoxy group.
エポキシ化合物(D)の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して好ましくは0~25質量部であり、より好ましくは0~20質量部である。エポキシ化合物(D)の含有量が上記範囲内であることにより、得られる硬化物の柔軟性、銅箔ピール強度、耐薬品性、及び耐デスミア性がより向上する傾向にある。 The content of the epoxy compound (D) is preferably 0 to 25 parts by mass, and more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. When the content of the epoxy compound (D) is within the above range, the flexibility of the obtained cured product, the copper foil peel strength, the chemical resistance, and the desmear resistance tend to be further improved.
なお、上述の如く、本実施形態のプリント配線板用樹脂組成物は、シアン酸エステル化合物(C)及び/又はエポキシ化合物(D)を含有するところ、シアン酸エステル化合物(C)及びエポキシ化合物(D)の両方を含有する場合、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対するシアン酸エステル化合物(C)及びエポキシ化合物(D)の合計含有量は、好ましくは5~45質量部であり、一層好ましくは5~40質量部であり、より好ましくは10~30質量部である。シアン酸エステル化合物(C)及びエポキシ化合物(D)の合計含有量が上記範囲内であることにより、得られる硬化物の柔軟性、銅箔ピール強度、耐熱性、耐薬品性、及び耐デスミア性がより向上する傾向にある。また、シアン酸エステル化合物(C)及びエポキシ化合物(D)の合計含有量が上記範囲内であることにより、例えば、プリプレグを硬化させた硬化物において、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りをより低減(低反りを達成)できる樹脂組成物となる傾向にある。 As described above, the resin composition for the printed wiring board of the present embodiment contains the cyanate ester compound (C) and / or the epoxy compound (D), and the cyanate ester compound (C) and the epoxy compound ( When both of D) are contained, the total content of the cyanate ester compound (C) and the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is preferably 5 to 45 mass by mass. It is a part, more preferably 5 to 40 parts by mass, and more preferably 10 to 30 parts by mass. When the total content of the cyanic acid ester compound (C) and the epoxy compound (D) is within the above range, the obtained cured product has flexibility, copper foil peel strength, heat resistance, chemical resistance, and desmear resistance. Tends to improve. Further, since the total content of the cyanate ester compound (C) and the epoxy compound (D) is within the above range, for example, in the cured product obtained by curing the prepreg, there is no clear glass transition temperature (Tg). There is a tendency for the resin composition to be able to further reduce the warpage (achieve low warpage) of the printed wiring board, particularly the multilayer coreless substrate.
〔充填材(E)〕
本実施形態のプリント配線板用樹脂組成物は、充填材(E)を更に含有することが好ましい。充填材(E)としては、特に限定されないが、例えば、無機充填材及び有機充填材が挙げられ、両者のうち無機充填材を含有していることが好ましく、有機充填材は無機充填材とともに用いることが好適である。無機充填材としては、特に限定されないが、例えば、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類;ホワイトカーボン等のケイ素化合物;チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の金属酸化物;窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム等の金属窒化物;硫酸バリウム等の金属硫酸化物;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物;酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛等の亜鉛化合物;アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラス等が挙げられる。また、有機充填材としては、特に限定されないが、例えば、スチレン型パウダー、ブタジエン型パウダー、アクリル型パウダー等のゴムパウダー;コアシェル型ゴムパウダー;シリコーンレジンパウダー;シリコーンゴムパウダー;シリコーン複合パウダー等が挙げられる。充填材(E)は、1種を単独で用いても、2種以上を併用してもよい。[Filler (E)]
The resin composition for a printed wiring board of the present embodiment preferably further contains a filler (E). The filler (E) is not particularly limited, and examples thereof include an inorganic filler and an organic filler, and it is preferable that the filler (E) contains an inorganic filler, and the organic filler is used together with the inorganic filler. Is preferable. The inorganic filler is not particularly limited, but for example, silicas such as natural silica, molten silica, synthetic silica, amorphous silica, aerodil and hollow silica; silicon compounds such as white carbon; titanium white, zinc oxide, magnesium oxide, etc. Metal oxides such as zirconium oxide; metal nitrides such as boron nitride, coagulated boron nitride, silicon nitride and aluminum nitride; metal sulfates such as barium sulfate; aluminum hydroxide and aluminum hydroxide heat-treated products (heating aluminum hydroxide) Metal hydrate such as treated and reduced part of crystalline water), boehmite, metal hydrate such as magnesium hydroxide; molybdenum compound such as molybdenum oxide and zinc molybdenum; zinc compound such as zinc borate and zinc tintate; alumina , Clay, kaolin, talc, fired clay, fired kaolin, fired talc, mica, E-glass, A-glass, NE-glass, C-glass, L-glass, D-glass, S-glass, M-glass G20. , Glass short fibers (including fine glass powders such as E glass, T glass, D glass, S glass, and Q glass), hollow glass, spherical glass, and the like. The organic filler is not particularly limited, and examples thereof include rubber powders such as styrene type powder, butadiene type powder, and acrylic type powder; core shell type rubber powder; silicone resin powder; silicone rubber powder; and silicone composite powder. Be done. As the filler (E), one type may be used alone, or two or more types may be used in combination.
このなかでも、無機充填材である、シリカ、アルミナ、酸化マグネシウム、水酸化アルミニウム、ベーマイト、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、及び窒化アルミニウムからなる群より選択される少なくとも1種を含むことが好ましく、シリカ、アルミナ、及びベーマイトからなる群より選択される少なくとも1種を含むことがより好ましい。このような充填材(E)を用いることにより、得られる硬化物の高剛性化、低反り化がより向上する傾向にある。 Among these, at least one selected from the group consisting of silica, alumina, magnesium oxide, aluminum hydroxide, boehmite, boron nitride, aggregated boron nitride, silicon nitride, and aluminum nitride, which are inorganic fillers, may be contained. It is preferable to contain at least one selected from the group consisting of silica, alumina, and boramite. By using such a filler (E), the obtained cured product tends to have higher rigidity and lower warpage.
プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する充填材(E)(特に無機充填材)の含有量は、好ましくは120~250質量部であり、より好ましくは150~230質量部であり、更に好ましくは180~220質量部である。充填材(E)の含有量が上記範囲内であることにより、得られる硬化物の高剛性化、低反り化がより一層向上する傾向にある。 The content of the filler (E) (particularly the inorganic filler) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is preferably 120 to 250 parts by mass, and more preferably 150 to 230 parts by mass. It is more preferably 180 to 220 parts by mass. When the content of the filler (E) is within the above range, the obtained cured product tends to have higher rigidity and lower warpage.
〔シランカップリング剤及び湿潤分散剤〕
本実施形態のプリント配線板用樹脂組成物は、シランカップリング剤や湿潤分散剤を更に含有してもよい。シランカップリング剤や湿潤分散剤を含むことにより、上記充填材(E)の分散性、樹脂成分、充填材(E)、及び後述する基材の接着強度がより向上する傾向にある。[Silane coupling agent and wet dispersant]
The resin composition for a printed wiring board of the present embodiment may further contain a silane coupling agent and a wet dispersant. By including the silane coupling agent and the wet dispersant, the dispersibility of the filler (E), the resin component, the filler (E), and the adhesive strength of the substrate described later tend to be further improved.
シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されないが、例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系化合物;γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系化合物;γ-アクリロキシプロピルトリメトキシシラン等のアクリルシラン系化合物;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系化合物;フェニルシラン系化合物等が挙げられる。シランカップリング剤は、1種を単独で用いても、2種以上を併用してもよい。 The silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances, but for example, γ-aminopropyltriethoxysilane and N-β- (aminoethyl) -γ. -Aminosilane-based compounds such as aminopropyltrimethoxysilane; epoxysilane-based compounds such as γ-glycidoxypropyltrimethoxysilane; acrylicsilane-based compounds such as γ-acryloxypropyltrimethoxysilane; N-β- (N-). Vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane Hydrochloride and other cationic silane compounds; phenylsilane compounds and the like can be mentioned. The silane coupling agent may be used alone or in combination of two or more.
湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されないが、例えば、ビッグケミー・ジャパン(株)製のDISPERBYK-110、111、118、180、161、BYK-W996、W9010、W903等が挙げられる。 The wet dispersant is not particularly limited as long as it is a dispersion stabilizer used for paints, but for example, DISPERBYK-110, 111, 118, 180, 161 and BYK-W996 manufactured by Big Chemy Japan Co., Ltd. , W9010, W903 and the like.
〔その他の樹脂等〕
本実施形態のプリント配線板用樹脂組成物は、必要に応じて、上述したアリルフェノール化合物(A)以外の、アリル基含有化合物(以下、「その他のアリル基含有化合物」ともいう)、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される1種又は2種以上を更に含有してもよい。このようなその他の樹脂等を含むことにより、得られる硬化物の銅箔ピール強度、曲げ強度、及び曲げ弾性率等がより向上する傾向にある。[Other resins, etc.]
The resin composition for a printed wiring board of the present embodiment is, if necessary, an allyl group-containing compound (hereinafter, also referred to as “other allyl group-containing compound”) and a phenol resin other than the above-mentioned allylphenol compound (A). , Oxetane resin, benzoxazine compound, and one or more selected from the group consisting of a compound having a polymerizable unsaturated group. By including such other resins and the like, the copper foil peel strength, bending strength, bending elastic modulus and the like of the obtained cured product tend to be further improved.
〔その他のアリル基含有化合物〕
その他のアリル基含有化合物としては、特に限定されないが、例えば、アリルクロライド、酢酸アリル、アリルエーテル、プロピレン、トリアリルシアヌレート、トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリル、マレイン酸ジアリル等が挙げられる。[Other allyl group-containing compounds]
The other allyl group-containing compound is not particularly limited, and examples thereof include allyl chloride, allyl acetate, allyl ether, propylene, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl isophthalate, diallyl maleate and the like. Can be mentioned.
その他のアリル基含有化合物の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~50質量部であり、一層好ましくは10~45質量部であり、より好ましくは15~45質量部であり、更に好ましくは20~35質量部である。その他のアリル基含有化合物の含有量が上記範囲内であることにより、得られる硬化物の曲げ強度、曲げ弾性率、耐熱性、耐薬品性がより向上する傾向にある。 The content of the other allyl group-containing compound is preferably 0 to 50 parts by mass, and more preferably 10 to 45 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. , More preferably 15 to 45 parts by mass, still more preferably 20 to 35 parts by mass. When the content of the other allyl group-containing compound is within the above range, the bending strength, flexural modulus, heat resistance, and chemical resistance of the obtained cured product tend to be further improved.
〔フェノール樹脂〕
フェノール樹脂としては、1分子中に2個以上のヒドロキシ基を有するフェノール樹脂であれば、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。このようなフェノール樹脂を含むことにより、得られる硬化物の接着性や可撓性等により優れる傾向にある。[Phenol resin]
As the phenol resin, a generally known phenol resin can be used as long as it is a phenol resin having two or more hydroxy groups in one molecule, and the type thereof is not particularly limited. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolak type phenol resin, glycidyl ester type phenol resin, and aralkylnovolac type. Phenol resin, biphenyl aralkyl type phenol resin, cresol novolak type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolak type phenol resin, phenol aralkyl type phenol resin , Naftor aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin, alicyclic phenol resin, polyol type phenol resin, phosphorus-containing phenol resin, hydroxyl-containing silicone resin, etc., but are particularly limited. It's not a thing. These phenol resins can be used alone or in combination of two or more. By containing such a phenol resin, the obtained cured product tends to be more excellent in adhesiveness and flexibility.
フェノール樹脂の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。フェノール樹脂の含有量が上記範囲内であることにより、得られる硬化物の接着性や可撓性等により一層優れる傾向にある。 The content of the phenol resin is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and further preferably 1 part by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. It is 3 to 80 parts by mass. When the content of the phenol resin is within the above range, the adhesiveness and flexibility of the obtained cured product tend to be further improved.
〔オキセタン樹脂〕
オキセタン樹脂としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製商品名)、OXT-121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は、1種又は2種以上を組み合わせて用いることができる。このようなオキセタン樹脂を含むことにより、得られる硬化物の接着性や可撓性等により優れる傾向にある。[Oxetane resin]
As the oxetane resin, generally known ones can be used, and the type thereof is not particularly limited. Specific examples thereof include alkyloxetane such as oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, and 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3'. -Di (trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, biphenyl-type oxetane, OXT-101 (trade name manufactured by Toa Synthetic), OXT-121 (manufactured by Toa Synthetic) Product name) and the like. These oxetane resins can be used alone or in combination of two or more. By including such an oxetane resin, the obtained cured product tends to be more excellent in adhesiveness and flexibility.
オキセタン樹脂の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。オキセタン樹脂の含有量が上記範囲内であることにより、得られる硬化物の密着性や可撓性等により一層優れる傾向にある。 The content of the oxetane resin is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and further preferably 3 with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. ~ 80 parts by mass. When the content of the oxetane resin is within the above range, the adhesiveness and flexibility of the obtained cured product tend to be further improved.
〔ベンゾオキサジン化合物〕
ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができ、その種類は特に限定されない。その具体例としては、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物は、1種又は2種以上混合して用いることができる。このようなベンゾオキサジン化合物を含むことにより、得られる硬化物の難燃性、耐熱性、低吸水性、低誘電等により優れる傾向にある。[Benzoxazine compound]
As the benzoxazine compound, a generally known compound can be used as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule, and the type thereof is not particularly limited. Specific examples thereof include bisphenol A type benzoxazine BA-BXZ (trade name manufactured by Konishi Chemicals), bisphenol F type benzoxazine BF-BXZ (trade name manufactured by Konishi Chemicals), and bisphenol S type benzoxazine BS-BXZ (trade name manufactured by Konishi Chemicals). First name) and so on. These benzoxazine compounds can be used alone or in admixture of two or more. By containing such a benzoxazine compound, the obtained cured product tends to be more excellent in flame retardancy, heat resistance, low water absorption, low dielectric and the like.
ベンゾオキサジン化合物の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。ベンゾオキサジン化合物の含有量が上記範囲内であることにより、得られる硬化物の耐熱性等により一層優れる傾向にある。 The content of the benzoxazine compound is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and further preferably 1 part by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. Is 3 to 80 parts by mass. When the content of the benzoxazine compound is within the above range, the heat resistance of the obtained cured product tends to be further improved.
〔重合可能な不飽和基を有する化合物〕
重合可能な不飽和基を有する化合物としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂;(ビス)マレイミド樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。このような重合可能な不飽和基を有する化合物を含むことにより、得られる硬化物の耐熱性や靱性等により優れる傾向にある。[Compound having a polymerizable unsaturated group]
As the compound having a polymerizable unsaturated group, generally known compounds can be used, and the type thereof is not particularly limited. Specific examples thereof include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and polypropylene glycol di ( (Meta) of monovalent or polyhydric alcohols such as trimethylolpropane di (meth) acrylate, trimethylol propanedi (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Examples thereof include acrylates; epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy (meth) acrylate; benzocyclobutene resin; (bis) maleimide resin and the like. These compounds having a polymerizable unsaturated group can be used alone or in admixture of two or more. By containing such a compound having a polymerizable unsaturated group, the obtained cured product tends to be more excellent in heat resistance and toughness.
重合可能な不飽和基を有する化合物の含有量は、プリント配線板用樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、更に好ましくは3~80質量部である。重合可能な不飽和基を有する化合物の含有量が上記範囲内であることにより、得られる硬化物の耐熱性や靱性等により一層優れる傾向にある。 The content of the compound having a polymerizable unsaturated group is preferably 0 to 99 parts by mass, and more preferably 1 to 90 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board. Parts, more preferably 3 to 80 parts by mass. When the content of the compound having a polymerizable unsaturated group is within the above range, the obtained cured product tends to be more excellent in heat resistance and toughness.
〔硬化促進剤〕
本実施形態のプリント配線板用樹脂組成物は、硬化促進剤を更に含有してもよい。硬化促進剤としては、特に限定されないが、例えば、トリフェニルイミダゾール等のイミダゾール類;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等の有機過酸化物;アゾビスニトリル等のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、N,N-ジメチルピリジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジン等の第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコール等のフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄等の有機金属塩;これら有機金属塩をフェノール、ビスフェノール等の水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウム等の無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイド等の有機錫化合物等が挙げられる。これらのなかでも、トリフェニルイミダゾールが硬化反応を促進し、熱膨張率が優れる傾向にあるため、特に好ましい。 [Curing accelerator]
The resin composition for a printed wiring board of the present embodiment may further contain a curing accelerator. The curing accelerator is not particularly limited, and is, for example, imidazoles such as triphenylimidazole; benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate and the like. Organic peroxides; azo compounds such as azobisnitrile; N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, N, N-dimethylpyridine, 2-N-ethylanilino Tertiary amines such as ethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine; phenol, xylenol, cresol, resorcin, catechol Phenols such as: lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate, dibutyltin malate, manganese naphthenate, cobalt naphthenate, organic metal salts such as acetylacetone iron; Those dissolved in hydroxyl group-containing compounds such as phenol and bisphenol; inorganic metal salts such as tin chloride, zinc chloride and aluminum chloride; dioctyl tin oxide and other organic tin compounds such as alkyl tin and alkyl tin oxide can be mentioned. .. Among these, triphenylimidazole is particularly preferable because it promotes the curing reaction and tends to have an excellent thermal expansion rate.
〔溶剤〕
本実施形態のプリント配線板用樹脂組成物は、溶剤を更に含有してもよい。溶剤を含むことにより、プリント配線板用樹脂組成物の調製時における粘度が下がり、ハンドリング性がより向上するとともに後述する基材への含浸性がより向上する傾向にある。 〔solvent〕
The resin composition for a printed wiring board of the present embodiment may further contain a solvent. By containing a solvent, the viscosity of the resin composition for a printed wiring board at the time of preparation is lowered, the handleability is further improved, and the impregnation property into a substrate, which will be described later, tends to be further improved.
溶剤としては、プリント配線板用樹脂組成物中の樹脂成分の一部又は全部を溶解可能なものであれば、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブ等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド等のアミド類;プロピレングリコールモノメチルエーテル及びそのアセテート等が挙げられる。溶剤は、1種を単独で用いても、2種以上を併用してもよい。 The solvent is not particularly limited as long as it can dissolve a part or all of the resin components in the resin composition for printed wiring boards, but for example, ketones such as acetone, methyl ethyl ketone and methyl cell solve; toluene, Examples include aromatic hydrocarbons such as xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and acetate thereof. As the solvent, one type may be used alone, or two or more types may be used in combination.
〔プリント配線板用樹脂組成物の製造方法〕
本実施形態のプリント配線板用樹脂組成物の製造方法は、特に限定されないが、例えば、各成分を順次溶剤に配合し、十分に攪拌する方法が挙げられる。この際、各成分を均一に溶解或いは分散させるため、攪拌、混合、混練処理等の公知の処理を行うことができる。具体的には、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、プリント配線板用樹脂組成物に対する充填材(E)の分散性を向上させることができる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。[Manufacturing method of resin composition for printed wiring board]
The method for producing the resin composition for a printed wiring board of the present embodiment is not particularly limited, and examples thereof include a method in which each component is sequentially mixed with a solvent and sufficiently stirred. At this time, in order to uniformly dissolve or disperse each component, known treatments such as stirring, mixing, and kneading can be performed. Specifically, the dispersibility of the filler (E) in the resin composition for a printed wiring board can be improved by performing the stirring and dispersing treatment using a stirring tank equipped with a stirring machine having an appropriate stirring ability. .. The above-mentioned stirring, mixing, and kneading treatment can be appropriately performed using, for example, an apparatus for mixing such as a ball mill or a bead mill, or a known apparatus such as a revolving or rotating type mixing apparatus.
また、本実施形態のプリント配線板用樹脂組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、プリント配線板用樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上述したとおりである。 Further, when preparing the resin composition for a printed wiring board of the present embodiment, an organic solvent can be used if necessary. The type of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition for a printed wiring board. Specific examples thereof are as described above.
〔プリント配線板用樹脂組成物の特性〕
本実施形態のプリント配線板用樹脂組成物は、それと基材とを含有するプリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物が、下記式(4)~(8)で表される機械特性に関する物性パラメータの数値範囲を満たすものであると好ましく、下記式(4A)~(8A)で表される機械特性に関する物性パラメータの数値範囲を満たすとより好ましい。[Characteristics of resin composition for printed wiring board]
The resin composition for a printed wiring board of the present embodiment is a cured product obtained by thermally curing a prepreg containing the prepreg containing the substrate at 230 ° C. for 100 minutes according to the following formulas (4) to (8). It is preferable that the numerical range of the physical property parameter relating to the represented mechanical property is satisfied, and it is more preferable that the numerical range of the physical property parameter relating to the mechanical property represented by the following formulas (4A) to (8A) is satisfied.
E’(200℃)/E’(30℃)≦0.90 …(4)
E’(260℃)/E’(30℃)≦0.85 …(5)
E’(330℃)/E’(30℃)≦0.80 …(6)
E’’max/E’(30℃)≦3.0% …(7)
E’’min/E’(30℃)≧0.5% …(8)
0.40≦E’(200℃)/E’(30℃)≦0.90 …(4A)
0.40≦E’(260℃)/E’(30℃)≦0.85 …(5A)
0.40≦E’(330℃)/E’(30℃)≦0.80 …(6A)
0.5%≦E’’max/E’(30℃)≦3.0% …(7A)
3.0%≧E’’min/E’(30℃)≧0.5% …(8A)E'(200 ° C) / E'(30 ° C) ≤ 0.90 ... (4)
E'(260 ° C) / E'(30 ° C) ≤ 0.85 ... (5)
E'(330 ° C) / E'(30 ° C) ≤ 0.80 ... (6)
E''max / E'(30 ° C) ≤ 3.0% ... (7)
E''min / E'(30 ° C) ≧ 0.5%… (8)
0.40 ≤ E'(200 ° C) / E'(30 ° C) ≤ 0.90 ... (4A)
0.40 ≤ E'(260 ° C) / E'(30 ° C) ≤ 0.85 ... (5A)
0.40 ≤ E'(330 ° C) / E'(30 ° C) ≤ 0.80 ... (6A)
0.5% ≤ E''max / E'(30 ° C) ≤ 3.0% ... (7A)
3.0% ≧ E''min / E'(30 ℃) ≧ 0.5%… (8A)
ここで、各式中、E’は、括弧内に示す温度における硬化物の貯蔵弾性率を示し、E’’maxは、30℃から330℃の温度範囲における硬化物の損失弾性率の最大値を示し、E’’minは、30℃から330℃の温度範囲における硬化物の損失弾性率の最小値を示す(E’’は、硬化物の損失弾性率を示す。)。 Here, in each equation, E'indicates the storage elastic modulus of the cured product at the temperature shown in parentheses, and E''max is the maximum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C. to 330 ° C. E''min indicates the minimum value of the elastic modulus of loss of the cured product in the temperature range of 30 ° C. to 330 ° C. (E'' indicates the elastic modulus of loss of the cured product).
従来、プリント配線板の反り挙動に関しては、プリプレグの硬化物において、より大きな熱時貯蔵弾性率、及びより高い弾性率維持率を実現し得る樹脂組成物が有効であると考えられてきたが、必ずしもそうとは限らず、プリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物の機械特性に関する物性パラメータの数値が上記式(4)~(8)好ましくは式(4A)~(8A)の範囲内であることにより、ガラス転移温度(Tg)を十分に高めることができ、かつ、積層板、金属箔張り積層板、プリント配線板、特に多層コアレス基板自体の反り量を十分に低減することが可能となる。 Conventionally, regarding the warp behavior of the printed wiring board, it has been considered that a resin composition capable of achieving a larger thermal storage elastic modulus and a higher elastic modulus maintenance rate is effective in the cured product of the prepreg. This is not always the case, and the numerical values of the physical property parameters related to the mechanical properties of the cured product obtained by thermally curing the prepreg at 230 ° C. and 100 minutes are the above formulas (4) to (8), preferably the formulas (4A) to. Within the range of (8A), the glass transition temperature (Tg) can be sufficiently increased, and the amount of warpage of the laminated board, the metal foil-covered laminated board, the printed wiring board, particularly the multilayer coreless substrate itself is sufficient. Can be reduced to.
換言すれば、プリプレグを230℃及び100分の条件で熱硬化させて得られる硬化物の機械特性に関する物性パラメータの数値が上記式(4)~(8)好ましくは式(4A)~(8A)の範囲内であることにより、好適に、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板(特に、多層コアレス基板)の反りを十分に低減(低反りを達成)することが可能となる。すなわち、損失弾性率に係る式(7)及び(8)好ましくは式(7A)及び(8A)を満たすことは、明確なガラス転移温度が存在しないこと(Tgレス)と同義といえるところ、硬化物が式(7)及び(8)好ましくは式(7A)及び(8A)のみを満たし、式(4)~(6)好ましくは式(4A)~(6A)を満たさないものは、損失弾性率自体は小さくて伸び難いものの、プリント配線板としたときに、その伸び難さが災いして、低反りを達成することが困難となる。これに対し、硬化物が式(7)及び(8)好ましくは式(7A)及び(8A)のみならず、式(4)~(8)好ましくは式(4A)及び(8A)をも満たすものは、Tgレスにより伸び難く、かつ、プリント配線板の低反りを達成し易くなる傾向にある。 In other words, the numerical values of the physical property parameters related to the mechanical properties of the cured product obtained by thermally curing the prepreg at 230 ° C. and 100 minutes are the above formulas (4) to (8), preferably the formulas (4A) to (8A). By being within the range of, preferably, there is no clear glass transition temperature (Tg-less), and the warp of the printed wiring board (particularly, the multilayer coreless substrate) is sufficiently reduced (low warpage is achieved). It becomes possible. That is, satisfying the formulas (7) and (8), preferably the formulas (7A) and (8A) relating to the loss elastic modulus can be said to be synonymous with the absence of a clear glass transition temperature (Tgless). If the object satisfies only the formulas (7) and (8) preferably only the formulas (7A) and (8A), and does not satisfy the formulas (4) to (6) preferably the formulas (4A) to (6A), the loss modulus Although the rate itself is small and difficult to stretch, when it is used as a printed wiring board, the difficulty in stretching is a disaster and it becomes difficult to achieve low warpage. On the other hand, the cured product satisfies not only the formulas (7) and (8) preferably the formulas (7A) and (8A) but also the formulas (4) to (8) preferably the formulas (4A) and (8A). Those are difficult to stretch due to Tg-less, and tend to easily achieve low warpage of the printed wiring board.
プリプレグの硬化物の機械特性(貯蔵弾性率E’及び損失弾性率E’’)の測定方法は、特に限定されず、例えば、以下の方法により測定することができる。すなわち、プリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度230℃で100分間の積層成形(熱硬化)を行い、所定の絶縁層厚さの銅箔張積層板を得る。次いで、得られた銅箔張積層板をダイシングソーでサイズ5.0mm×20mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得る。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法により、機械特性(貯蔵弾性率E’及び損失弾性率E’’)を測定することができる。このとき、n=3の平均値を求めてもよい。The method for measuring the mechanical properties (storage elastic modulus E'and loss elastic modulus E'') of the cured product of the prepreg is not particularly limited, and can be measured by, for example, the following method. That is, copper foil (3EC-VLP, manufactured by Mitsui Metal Mining Co., Ltd., thickness 12 μm) is placed on both the upper and lower surfaces of one prepreg, and laminated molding (thermosetting) is performed at a pressure of 30 kgf / cm 2 and a temperature of 230 ° C. for 100 minutes. ) To obtain a copper foil-clad laminate with a predetermined insulating layer thickness. Next, the obtained copper foil-clad laminate is cut into a size of 5.0 mm × 20 mm with a dicing saw, and the copper foil on the surface is removed by etching to obtain a sample for measurement. Using this measurement sample, the mechanical properties (storage elastic modulus E'and loss elastic modulus E'') are measured by the DMA method with a dynamic viscoelastic analyzer (manufactured by TA Instruments) in accordance with JIS C6481. be able to. At this time, the average value of n = 3 may be obtained.
〔用途〕
本実施形態のプリント配線板用樹脂組成物は、プリプレグ、レジンシート、絶縁層、積層板、金属箔張積層板、プリント配線板、又は多層プリント配線板として好適に用いることができる。以下、プリプレグ、レジンシート、積層板、金属箔張積層板、及びプリント配線板(多層プリント配線板を含む。)について説明する。[Use]
The resin composition for a printed wiring board of the present embodiment can be suitably used as a prepreg, a resin sheet, an insulating layer, a laminated board, a metal foil-clad laminated board, a printed wiring board, or a multilayer printed wiring board. Hereinafter, the prepreg, the resin sheet, the laminated board, the metal foil-covered laminated board, and the printed wiring board (including the multi-layer printed wiring board) will be described.
〔プリプレグ〕
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布されたプリント配線板用樹脂組成物と、を含有する。プリプレグの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、本実施形態におけるプリント配線板用樹脂組成物を基材に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱する等して半硬化(Bステ-ジ化)させることで、本実施形態のプリプレグを作製することができる。 [Prepreg]
The prepreg of the present embodiment contains a base material and a resin composition for a printed wiring board impregnated or coated on the base material. The method for producing the prepreg can be carried out according to a conventional method, and is not particularly limited. For example, after impregnating or coating the substrate with the resin composition for a printed wiring board according to the present embodiment, it is semi-cured (B stage) by heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes. ), The prepreg of the present embodiment can be produced.
本実施形態のプリプレグにおけるプリント配線板用樹脂組成物(充填材(E)を含む。)の含有量は、プリプレグの総量に対して、好ましくは30~90体積%であり、より好ましくは35~85体積%であり、更に好ましくは40~80体積%である。樹脂組成物の含有量が上記範囲内であることにより、成形性がより向上する傾向にある。 The content of the resin composition for a printed wiring board (including the filler (E)) in the prepreg of the present embodiment is preferably 30 to 90% by volume, more preferably 35 to 90% by volume, based on the total amount of the prepreg. It is 85% by volume, more preferably 40 to 80% by volume. When the content of the resin composition is within the above range, the moldability tends to be further improved.
基材としては、特に限定されず、各種プリント配線板材料に用いられている公知のものを、目的とする用途や性能により適宜選択して使用することができる。基材としては、例えば、ガラス基材、ガラス以外の無機基材、有機基材等が挙げられ、これらのなかでは、高剛性、及び加熱寸法安定性の観点から、ガラス基材が殊に好ましい。これらの基材を構成する繊維の具体例としては、特に限定されず、ガラス基材では、例えば、Eガラス、Dガラス、Sガラス、Tガラス、Qガラス、Lガラス、NEガラス、HMEガラスからなる群より選択される1種以上のガラスの繊維が挙げられる。また、ガラス以外の無機基材では、クォーツ等のガラス以外の無機繊維が挙げられる。さらに、有機基材では、ポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン株式会社製)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド(テクノーラ(登録商標)、帝人テクノプロダクツ株式会社製)等の全芳香族ポリアミド;2,6-ヒドロキシナフトエ酸・パラヒドロキシ安息香酸(ベクトラン(登録商標)、株式会社クラレ製)、ゼクシオン(登録商標、KBセーレン製)等のポリエステル;ポリパラフェニレンベンズオキサゾール(ザイロン(登録商標)、東洋紡績株式会社製)、ポリイミド等の有機繊維が挙げられる。これら基材は、1種を単独で用いても、2種以上を併用してもよい。
The base material is not particularly limited, and known materials used for various printed wiring board materials can be appropriately selected and used depending on the intended use and performance. Examples of the base material include a glass base material, an inorganic base material other than glass, an organic base material, and the like, and among these, a glass base material is particularly preferable from the viewpoint of high rigidity and thermal dimensional stability. .. Specific examples of the fibers constituting these substrates are not particularly limited, and the glass substrate includes, for example, E glass, D glass, S glass, T glass, Q glass, L glass, NE glass, and HME glass. Examples include one or more glass fibers selected from the group. Inorganic base materials other than glass include inorganic fibers other than glass such as quartz. Furthermore, in the case of organic substrates, polyparaphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont Co., Ltd.),
基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が挙げられる。織布の織り方としては、特に限定されないが、例えば、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、これらを開繊処理したものやシランカップリング剤等で表面処理したガラス織布が好適に使用される。基材の厚さや質量は、特に限定されないが、通常は0.01~0.3mm程度のものが好適に用いられる。とりわけ、強度と吸水性との観点から、基材は、厚み200μm以下、質量250g/m2以下のガラス織布が好ましく、Eガラス、Sガラス、及びTガラスのガラス繊維からなるガラス織布がより好ましい。The shape of the base material is not particularly limited, and examples thereof include woven fabrics, non-woven fabrics, rovings, chopped strand mats, and surfaced mats. The weaving method of the woven fabric is not particularly limited, but for example, plain weave, Nanako weave, twill weave and the like are known, and can be appropriately selected from these known ones according to the intended use and performance. .. Further, a glass woven fabric obtained by opening the fibers or surface-treating with a silane coupling agent or the like is preferably used. The thickness and mass of the base material are not particularly limited, but usually those having a thickness of about 0.01 to 0.3 mm are preferably used. In particular, from the viewpoint of strength and water absorption, the base material is preferably a glass woven fabric having a thickness of 200 μm or less and a mass of 250 g / m 2 or less, and a glass woven fabric made of glass fibers of E glass, S glass, and T glass is preferable. More preferred.
また、上述したとおり、本実施形態のプリプレグは、それを230℃及び100分の条件で熱硬化させて得られる硬化物が、上記式(4)~(8)好ましくは式(4A)~(8A)で表される機械特性に関する物性パラメータの数値範囲を満たすものであると、積層板、金属箔張積層板、プリント配線板、又は多層プリント配線板が、明確なガラス転移温度が存在せず(Tgレス)、かつ、反りを十分に低減(低反りを達成)できる傾向にあるので好ましい。 Further, as described above, in the prepreg of the present embodiment, the cured product obtained by thermally curing the prepreg at 230 ° C. and 100 minutes is preferably the formulas (4) to (8), preferably the formulas (4A) to (4A). When the numerical range of the physical property parameters related to the mechanical properties represented by 8A) is satisfied, the laminated board, the metal foil-clad laminated board, the printed wiring board, or the multilayer printed wiring board does not have a clear glass transition temperature. It is preferable because it is (Tg-less) and tends to sufficiently reduce warpage (achieve low warpage).
〔レジンシート〕
本実施形態のレジンシートは、シート基材(支持体)と、該シート基材の片面又は両面に積層された、上記プリント配線板用樹脂組成物と、を有する。レジンシートとは、薄葉化の1つの手段として用いられるもので、例えば、金属箔やフィルム等の支持体に、直接、プリプレグ等に用いられる熱硬化性樹脂(充填材(E)を含む)を塗布及び乾燥して製造することができる。[Resin sheet]
The resin sheet of the present embodiment has a sheet base material (support) and the resin composition for a printed wiring board laminated on one side or both sides of the sheet base material. The resin sheet is used as one means of thinning leaves. For example, a thermosetting resin (including a filler (E)) used for a prepreg or the like is directly applied to a support such as a metal foil or a film. It can be coated and dried to produce.
シート基材としては、特に限定されないが、各種プリント配線板材料に用いられている公知の物もの使用することができる。例えばポリイミドフィルム、ポリアミドフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、アルミニウム箔、銅箔、金箔等が挙げられる。その中でも電解銅箔、PETフィルムが好ましい。 The sheet base material is not particularly limited, but known materials used for various printed wiring board materials can be used. Examples thereof include a polyimide film, a polyamide film, a polyester film, a polyethylene terephthalate (PET) film, a polybutylene terephthalate (PBT) film, a polypropylene (PP) film, a polyethylene (PE) film, an aluminum foil, a copper foil, and a gold foil. Among them, electrolytic copper foil and PET film are preferable.
塗布方法としては、例えば、本実施形態のプリント配線板用樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等でシート基材上に塗布する方法が挙げられる。 Examples of the coating method include a method in which a solution obtained by dissolving the resin composition for a printed wiring board of the present embodiment in a solvent is applied onto a sheet substrate with a bar coater, a die coater, a doctor blade, a baker applicator, or the like. Be done.
レジンシートは、上記プリント配線板用樹脂組成物をシート基材に塗布後、半硬化(Bステージ化)させたものであることが好ましい。具体的には、例えば、上記プリント配線板用樹脂組成物を銅箔等のシート基材に塗布した後、100~200℃の乾燥機中で、1~60分加熱させる方法等により半硬化させ、レジンシートを製造する方法等が挙げられる。シート基材に対するプリント配線板用樹脂組成物の付着量は、レジンシートの樹脂厚で1~300μmの範囲が好ましい。 The resin sheet is preferably one in which the resin composition for a printed wiring board is applied to a sheet base material and then semi-cured (B-staged). Specifically, for example, the resin composition for a printed wiring board is applied to a sheet base material such as a copper foil, and then semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes. , A method of manufacturing a resin sheet and the like. The amount of the resin composition for a printed wiring board adhered to the sheet substrate is preferably in the range of 1 to 300 μm in terms of the resin thickness of the resin sheet.
〔積層板及び金属箔張積層板〕
本実施形態の積層板は、少なくとも1枚以上積層された、本実施形態の上記プリプレグ及び/又は本実施形態の上記レジンシートを有するものである。また、本実施形態の金属箔張積層板は、本実施形態の積層板(すなわち、少なくとも1枚以上積層された、本実施形態の上記プリプレグ及び/又は本実施形態の上記レジンシート)と、その積層板の片面又は両面に配された金属箔(導体層)とを有するものである。[Laminated board and metal leaf-clad laminated board]
The laminated board of the present embodiment has at least one laminated plate of the prepreg of the present embodiment and / or the resin sheet of the present embodiment. Further, the metal leaf-clad laminate of the present embodiment includes the laminate of the present embodiment (that is, the prepreg of the present embodiment and / or the resin sheet of the present embodiment in which at least one is laminated) and the same. It has a metal foil (conductor layer) arranged on one side or both sides of the laminated plate.
導体層は、銅やアルミニウム等の金属箔とすることができる。ここで使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されないが、圧延銅箔や電解銅箔等の公知の銅箔が好ましい。また、導体層の厚みは、特に限定されないが、1~70μmが好ましく、より好ましくは1.5~35μmである。 The conductor layer can be a metal foil such as copper or aluminum. The metal foil used here is not particularly limited as long as it is used as a material for a printed wiring board, but a known copper foil such as a rolled copper foil or an electrolytic copper foil is preferable. The thickness of the conductor layer is not particularly limited, but is preferably 1 to 70 μm, more preferably 1.5 to 35 μm.
積層板又は金属箔張積層板の成形方法及びその成形条件は、特に限定されず、一般的なプリント配線板用積層板及び多層板の手法及び条件を適用することができる。例えば、瀬積層板又は金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を用いることができる。また、積層板又は金属箔張積層板の成形(積層成形)において、温度は100~300℃、圧力は面圧2~100kgf/cm2、加熱時間は0.05~5時間の範囲が一般的である。さらに、必要に応じて、150~300℃の温度で後硬化を行うこともできる。特に多段プレス機を用いた場合は、プリプレグ及び/又はレジンシートの硬化を十分に促進させる観点から、温度200℃~250℃、圧力10~40kgf/cm2、加熱時間80分~130分が好ましく、温度215℃~235℃、圧力25~35kgf/cm2、加熱時間90分~120分がより好ましい。また、上述のプリプレグ及び/又はレジンシートと、別途作成した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることも可能である。 The molding method of the laminated board or the metal foil-clad laminated board and the molding conditions thereof are not particularly limited, and general methods and conditions of the laminated board for printed wiring boards and the multilayer board can be applied. For example, a multi-stage press machine, a multi-stage vacuum press machine, a continuous forming machine, an autoclave forming machine, or the like can be used at the time of forming a set laminated board or a metal leaf-clad laminated board. Further, in the molding of a laminated board or a metal leaf-clad laminated board (laminated molding), the temperature is generally in the range of 100 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is generally in the range of 0.05 to 5 hours. Is. Further, if necessary, post-curing can be performed at a temperature of 150 to 300 ° C. In particular, when a multi-stage press machine is used, the temperature is preferably 200 ° C. to 250 ° C., the pressure is 10 to 40 kgf / cm 2 , and the heating time is 80 minutes to 130 minutes from the viewpoint of sufficiently promoting the curing of the prepreg and / or the resin sheet. , The temperature is 215 ° C. to 235 ° C., the pressure is 25 to 35 kgf / cm 2 , and the heating time is 90 minutes to 120 minutes. Further, it is also possible to form a multilayer board by laminating and molding the above-mentioned prepreg and / or resin sheet in combination with a wiring board for an inner layer separately prepared.
〔プリント配線板〕
本実施形態のプリント配線板は、絶縁層と、該絶縁層の表面に形成された導体層とを有するプリント配線板であって、絶縁層が、上記プリント配線板用樹脂組成物を含む。例えば、上述した金属箔張積層板に、所定の配線パターンを形成することにより、プリント配線板として好適に用いることができる。そして、本実施形態のプリント配線板用樹脂組成物を用いた金属箔張積層板は、明確なガラス転移温度が存在せず(Tgレス)、かつ、反りを十分に低減(低反りを達成)できる傾向にあるので、そのような性能が要求されるプリント配線板として、殊に有効に用いることができる。[Printed wiring board]
The printed wiring board of the present embodiment is a printed wiring board having an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition for a printed wiring board. For example, by forming a predetermined wiring pattern on the above-mentioned metal foil-clad laminate, it can be suitably used as a printed wiring board. The metal foil-clad laminate using the resin composition for the printed wiring board of the present embodiment does not have a clear glass transition temperature (Tg-less) and sufficiently reduces warpage (achieves low warpage). Since there is a tendency to be able to do so, it can be particularly effectively used as a printed wiring board that requires such performance.
本実施形態のプリント配線板は、具体的には、例えば、以下の方法により製造することができる。まず、上述の金属箔張積層板(銅張積層板等)を用意する。金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作成する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いで、その内層回路表面に上述のプリプレグ及び/又はレジンシートを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形(積層成形)する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。積層成形の方法及びその成形条件は、上述した積層板又は金属箔張積層板と同様である。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、硬化物層に含まれている樹脂成分に由来する樹脂の残渣であるスミアを除去するためデスミア処理が行われる。その後この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成し、プリント配線板が製造される。 Specifically, the printed wiring board of the present embodiment can be manufactured by, for example, the following method. First, the above-mentioned metal foil-clad laminate (copper-clad laminate, etc.) is prepared. The surface of the metal foil-clad laminate is etched to form an inner layer circuit, and an inner layer substrate is created. The inner layer circuit surface of this inner layer substrate is surface-treated to increase the adhesive strength as necessary, then the above-mentioned prepreg and / or resin sheet is laminated on the inner layer circuit surface in a required number, and the outer layer circuit is further outside. Metal leaf is laminated and heated and pressed for integral molding (laminated molding). In this way, a multi-layer laminated board in which an insulating layer made of a base material and a cured product of a thermosetting resin composition is formed between an inner layer circuit and a metal foil for an outer layer circuit is manufactured. The method of laminating and molding and the molding conditions thereof are the same as those of the above-mentioned laminated board or metal leaf-clad laminated board. Next, after drilling holes for through holes and via holes in this multilayer laminated board, desmear treatment is performed to remove smear, which is a resin residue derived from the resin component contained in the cured product layer. .. After that, a plated metal film that conducts the inner layer circuit and the metal foil for the outer layer circuit is formed on the wall surface of this hole, and the metal foil for the outer layer circuit is further etched to form the outer layer circuit, and the printed wiring board is manufactured. Will be done.
例えば、上述のプリプレグ(基材及びこれに添着された上述のプリント配線板用樹脂組成物)、金属箔張積層板の樹脂組成物層(上述のプリント配線板用樹脂組成物からなる層)が、上述のプリント配線板用樹脂組成物を含む絶縁層を構成することになる。 For example, the above-mentioned prepreg (the base material and the above-mentioned resin composition for a printed wiring board attached thereto) and the resin composition layer of the metal foil-covered laminated board (the layer consisting of the above-mentioned resin composition for a printed wiring board) , The insulating layer containing the above-mentioned resin composition for a printed wiring board will be formed.
また、金属箔張積層板を用いない場合には、上記プリプレグ又は上記プリント配線板用樹脂組成物からなるものに、回路となる導体層を形成しプリント配線板を作製してもよい。この際、導体層の形成に無電解めっきの手法を用いることもできる。 When the metal foil-clad laminate is not used, a conductor layer to be a circuit may be formed on the prepreg or the resin composition for a printed wiring board to produce a printed wiring board. At this time, an electroless plating method can also be used to form the conductor layer.
さらに、本実施形態のプリント配線板は、図9に示す如く、少なくとも1枚以上積層された上述のプリプレグ及びレジンシートからなる群より選択される少なくとも1種で形成された第1の絶縁層(1)、及び、その第1の絶縁層(1)の片面方向(図示下面方向)に少なくとも1枚以上積層された上述のプリプレグ及びレジンシートからなる群より選択される少なくとも1種で形成された第2の絶縁層(2)からなる複数の絶縁層と、それらの複数の絶縁層(1,2)の各々の間に配置された第1の導体層(3)、及び、それらの複数の絶縁層(1,2)の最外層に配置された第2の導体層(3)からなる複数の導体層を有すると好適である。 Further, as shown in FIG. 9, the printed wiring board of the present embodiment is a first insulating layer formed of at least one selected from the group consisting of the above-mentioned prepreg and resin sheet in which at least one laminated sheet is laminated. It was formed of 1) and at least one selected from the group consisting of the above-mentioned prepreg and resin sheet laminated at least one sheet in one side direction (lower surface direction in the drawing) of the first insulating layer (1). A plurality of insulating layers composed of a second insulating layer (2), a first conductor layer (3) arranged between each of the plurality of insulating layers (1, 2), and a plurality of them. It is preferable to have a plurality of conductor layers composed of a second conductor layer (3) arranged on the outermost layer of the insulating layers (1, 2).
本発明者らの知見によれば、通常の積層板では、例えば一のコア基板であるプリプレグ及びレジンシートからなる群より選択される少なくとも1種の両面方向に別のプリプレグ及びレジンシートからなる群より選択される少なくとも1種を積層することで多層プリント配線板を形成することが行われるが、本実施形態のプリプレグ及びレジンシートからなる群より選択される少なくとも1種は、第1の絶縁層(1)を形成する一のプリプレグ及びレジンシートからなる群より選択される少なくとも1種の片面方向にのみ、第2の絶縁層(2)を形成する別のプリプレグ及びレジンシートからなる群より選択される少なくとも1種を積層することにより製造されるコアレスタイプの多層プリント配線板(多層コアレス基板)に特に有効であることが確認された。 According to the findings of the present inventors, in a normal laminated board, for example, a group consisting of at least one kind of prepreg and another prepreg and a resin sheet selected from the group consisting of a prepreg and a resin sheet which are one core substrate in both sides. A multilayer printed wiring board is formed by laminating at least one selected from the above, and at least one selected from the group consisting of the prepreg and the resin sheet of the present embodiment is the first insulating layer. Selected from the group consisting of one prepreg and resin sheet forming (1) Select from the group consisting of another prepreg and resin sheet forming the second insulating layer (2) only in at least one one-sided direction. It has been confirmed that it is particularly effective for a coreless type multilayer printed wiring board (multilayer coreless substrate) manufactured by laminating at least one of these.
換言すれば、本実施形態のプリプレグ、レジンシート、及びプリント配線板用樹脂組成物は、プリント配線板に用いた場合に、その反り量を有効に低減することができ、特に限定するものではないが、プリント配線板のなかでも多層コアレス基板において特に有効である。すなわち、通常のプリント配線板は、一般に両面対称の構成となるため反り難い傾向にあるのに対し、多層コアレス基板は、両面非対称の構成となり易いため、通常のプリント配線板に比して反り易い傾向にある。従って、本実施形態のプリプレグ、レジンシート、及びプリント配線板用樹脂組成物を使用することにより、従来反り易い傾向にあった多層コアレス基板の反り量を特に有効に低減することができる。 In other words, the prepreg, the resin sheet, and the resin composition for a printed wiring board of the present embodiment can effectively reduce the amount of warpage when used for a printed wiring board, and are not particularly limited. However, it is particularly effective for a multilayer coreless board among printed wiring boards. That is, while a normal printed wiring board generally has a double-sided symmetrical structure and tends to be difficult to warp, a multilayer coreless board tends to have a double-sided asymmetrical structure and is therefore more likely to warp than a normal printed wiring board. There is a tendency. Therefore, by using the prepreg, the resin sheet, and the resin composition for the printed wiring board of the present embodiment, it is possible to particularly effectively reduce the amount of warpage of the multilayer coreless substrate, which has tended to be easily warped in the past.
なお、図9においては、1枚の第1の絶縁層(1)に第2の絶縁層(2)が2枚積層されている構成(つまり、複数の絶縁層が3層である構成)を示したが、第2の絶縁層(2)は1枚でも2枚以上であってもよい。従って、第1の導体層(3)も1層でも2層以上であってもよい。 In FIG. 9, a configuration in which two second insulating layers (2) are laminated on one first insulating layer (1) (that is, a configuration in which a plurality of insulating layers are three layers) is provided. As shown, the second insulating layer (2) may be one or two or more. Therefore, the first conductor layer (3) may be one layer or two or more layers.
このとおり、上述した構成を有する本実施形態のプリント配線板は、上述した本実施形態のプリント配線板用樹脂組成物が、例えば、プリプレグを硬化させた硬化物において、熱時貯蔵弾性率や損失弾性率等の機械特性を低反りに好適な特定の範囲に制御することができることにより、明確なガラス転移温度が存在せず(Tgレス)、かつ、プリント配線板、特に、多層コアレス基板の反りを十分に低減(低反りを達成)することから、半導体パッケージ用プリント配線板及び多層コアレス基板として、殊に有効に用いることができる。 As described above, in the printed wiring board of the present embodiment having the above-described configuration, the resin composition for the printed wiring board of the above-described embodiment is, for example, a cured product obtained by curing a prepreg, and has a thermal storage elasticity and loss. By controlling mechanical properties such as elasticity to a specific range suitable for low warpage, there is no clear glass transition temperature (Tg-less), and warpage of printed wiring boards, especially multilayer coreless boards. Can be particularly effectively used as a printed wiring board for a semiconductor package and a multilayer coreless substrate, because the warpage is sufficiently reduced (low warpage is achieved).
以下、本発明を実施例及び比較例を用いてより具体的に説明する。ただし、本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.
〔合成例1〕α-ナフトールアラルキル型シアン酸エステル化合物(SN495VCN)の合成
反応器内で、α-ナフトールアラルキル樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製:ナフトールアラルキルの繰り返し単位数nは1~5のものが含まれる。)0.47モル(OH基換算)を、クロロホルム500mlに溶解させ、この溶液にトリエチルアミン0.7モルを添加した。温度を-10℃に保ちながら反応器内に0.93モルの塩化シアンのクロロホルム溶液300gを1.5時間かけて滴下し、滴下終了後、30分撹拌した。その後さらに、0.1モルのトリエチルアミンとクロロホルム30gの混合溶液を反応器内に滴下し、30分撹拌して反応を完結させた。副生したトリエチルアミンの塩酸塩を反応液から濾別した後、得られた濾液を0.1N塩酸500mlで洗浄した後、水500mlでの洗浄を4回繰り返した。これを硫酸ナトリウムにより乾燥した後、75℃でエバポレートし、さらに90℃で減圧脱気することにより、褐色固形の上記式(2)で表されるα-ナフトールアラルキル型シアン酸エステル化合物(式中のR6はすべて水素原子である。)を得た。得られたα-ナフトールアラルキル型シアン酸エステル化合物を赤外吸収スペクトルにより分析したところ、2264cm-1付近にシアン酸エステル基の吸収が確認された。[Synthesis Example 1] Synthesis of α-naphthol aralkyl type cyanate ester compound (SN495VCN) In a reactor, α-naphthol aralkyl resin (SN495V, OH group equivalent: 236 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd .: The number of repeating units n of naphthol aralkyl includes 1 to 5.) 0.47 mol (in terms of OH group) was dissolved in 500 ml of chloroform, and 0.7 mol of triethylamine was added to this solution. While maintaining the temperature at −10 ° C., 300 g of a 0.93 mol cyanogen chloride chloroform solution was added dropwise over 1.5 hours, and the mixture was stirred for 30 minutes after the addition was completed. After that, a mixed solution of 0.1 mol of triethylamine and 30 g of chloroform was further added dropwise to the reactor, and the mixture was stirred for 30 minutes to complete the reaction. The by-produced triethylamine hydrochloride was filtered off from the reaction solution, the obtained filtrate was washed with 500 ml of 0.1N hydrochloric acid, and then washed with 500 ml of water was repeated 4 times. This is dried over sodium sulfate, evaporated at 75 ° C., and degassed under reduced pressure at 90 ° C. to obtain a brown solid α-naphthol aralkyl-type cyanate ester compound represented by the above formula (2) (in the formula). R 6 is all hydrogen atoms.) When the obtained α-naphthol aralkyl type cyanate ester compound was analyzed by infrared absorption spectrum, absorption of cyanate ester group was confirmed in the vicinity of 2264 cm -1 .
〔参考例1〕
アリルフェノール化合物(A)であるジアリルビスフェノールA(DABPA、大和化成工業(株)製、ヒドロキシル基当量:154g/eq.)24.1質量部、マレイミド化合物(B)(BMI-2300、大和化成工業(株)製、マレイミド当量:186g/eq.)60.9質量部、シアン酸エステル化合物(C)である合成例1のα-ナフトールアラルキル型シアン酸エステル化合物(SN495VCN、シアネート当量:261g/eq.)5.0質量部、エポキシ化合物(D)(NC-3000FH、日本化薬(株)製、エポキシ当量:328g/eq.)10.0質量部、充填材(E)であるスラリーシリカ(SC-2050MB、アドマテックス(株)製)200質量部及び同シリコーン複合パウダー(KMP-605M、信越化学工業(株)製)25質量部、シランカップリング剤(KBM-403、信越化学工業(株)製)5質量部、並びに硬化促進剤であるトリフェニルイミダゾール(東京化成工業(株)製)0.5質量部を混合し、メチルエチルケトンで希釈することでワニスを得た。このワニスをEガラス織布に含浸塗工し、160℃で3分間加熱乾燥して、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
[ Reference Example 1]
Dialyl bisphenol A (DABPA, manufactured by Daiwa Kasei Kogyo Co., Ltd., hydroxyl group equivalent: 154 g / eq.), Which is an allyl phenol compound (A), 24.1 parts by mass, maleimide compound (B) (BMI-2300, Daiwa Kasei Kogyo Co., Ltd.) Maleimide Equivalent: 186 g / eq. Co., Ltd., 60.9 parts by mass, α-naphthol aralkyl type cyanate ester compound (SN495VCN, cyanate equivalent: 261 g / eq) of Synthesis Example 1 which is a cyanate ester compound (C). .) 5.0 parts by mass, epoxy compound (D) (NC-3000FH, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 328 g / eq.) 10.0 parts by mass, slurry silica as filler (E) ( SC-2050MB, 200 parts by mass of Admatex Co., Ltd. and 25 parts by mass of the same silicone composite powder (KMP-605M, manufactured by Shin-Etsu Chemical Industry Co., Ltd.), silane coupling agent (KBM-403, Shin-Etsu Chemical Industry Co., Ltd.) ), And 0.5 parts by mass of triphenylimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.), which is a curing accelerator, were mixed and diluted with methyl ethyl ketone to obtain a varnish. This varnish was impregnated and coated on an E-glass woven fabric and dried by heating at 160 ° C. for 3 minutes to obtain a prepreg having a resin composition content for a printed wiring board of 73% by volume.
〔参考例2〕
アリルフェノール化合物(A)(DABPA)を19.9質量部としたこと、マレイミド化合物(B)(BMI-2300)を50.1質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を10.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を20.0質量部としたこと以外は、参考例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。
[ Reference Example 2]
The allylphenol compound (A) (DABPA) was 19.9 parts by mass, the maleimide compound (B) (BMI-2300) was 50.1 parts by mass, and the cyanate ester compound (C) (SN495VCN) was used. The content of the resin composition for a printed wiring board was set to 10.0 parts by mass and the epoxy compound (D) (NC-3000FH) was set to 20.0 parts by mass by the same method as in Reference Example 1. 73% by weight prepreg was obtained.
〔参考例3〕
シアン酸エステル化合物(C)(SN495VCN)を用いなかったこと、及びエポキシ化合物(D)(NC-3000FH)を15.0質量部としたこと以外は、参考例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。なお、本明細書における以下の文中及び表中において、「実施例1」、「実施例2」、及び「実施例3」とあるのは、それぞれ、「参考例1」、「参考例2」、及び「参考例3」と読み替えるものとする。
[Reference Example 3 ]
Printed wiring by the same method as in Reference Example 1 except that the cyanic acid ester compound (C) (SN495VCN) was not used and the epoxy compound (D) (NC-3000FH) was 15.0 parts by volume. A prepreg having a resin composition content for plates of 73% by volume was obtained. In the following sentences and tables in the present specification , "Example 1", "Example 2", and "Example 3" are "Reference Example 1" and "Reference Example 2", respectively. , And "Reference Example 3 ".
〔実施例4〕
シアン酸エステル化合物(C)(SN495VCN)を15.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を用いなかったこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。 [Example 4]
Printed wiring by the same method as in Example 1 except that the cyanic acid ester compound (C) (SN495VCN) was 15.0 parts by volume and the epoxy compound (D) (NC-3000FH) was not used. A prepreg having a resin composition content for plates of 73% by volume was obtained.
〔比較例1〕
アリルフェノール化合物(A)(DABPA)を28.4質量部としたこと、マレイミド化合物(B)(BMI-2300)を71.6質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を用いなかったこと、及びエポキシ化合物(D)(NC-3000FH)を用いなかったこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。[Comparative Example 1]
The allylphenol compound (A) (DABPA) was 28.4 parts by mass, the maleimide compound (B) (BMI-2300) was 71.6 parts by mass, and the cyanate ester compound (C) (SN495VCN) was used. A prepreg having a resin composition content for a printed wiring board of 73% by volume was obtained by the same method as in Example 1 except that the epoxy compound (D) (NC-3000FH) was not used. ..
〔比較例2〕
アリルフェノール化合物(A)(DABPA)を60.0質量部としたこと、マレイミド化合物(B)(BMI-2300)を32.1質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を2.6質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を5.3質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。[Comparative Example 2]
The allylphenol compound (A) (DABPA) was 60.0 parts by mass, the maleimide compound (B) (BMI-2300) was 32.1 parts by mass, and the cyanate ester compound (C) (SN495VCN) was used. The content of the resin composition for a printed wiring board was set to 2.6 parts by mass and the epoxy compound (D) (NC-3000FH) was set to 5.3 parts by mass by the same method as in Example 1. 73% by weight prepreg was obtained.
〔比較例3〕
アリルフェノール化合物(A)(DABPA)を12.7質量部としたこと、マレイミド化合物(B)(BMI-2300)を32.1質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を50.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を5.2質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。 [Comparative Example 3]
The allylphenol compound (A) (DABPA) was 12.7 parts by mass, the maleimide compound (B) (BMI-2300) was 32.1 parts by mass, and the cyanate ester compound (C) (SN495VCN) was used. The content of the resin composition for a printed wiring board was set to 50.0 parts by mass and the epoxy compound (D) (NC-3000FH) was set to 5.2 parts by mass by the same method as in Example 1. 73% by weight prepreg was obtained.
〔比較例4〕
アリルフェノール化合物(A)(DABPA)を5.0質量部としたこと、マレイミド化合物(B)(BMI-2300)を85.0質量部としたこと、シアン酸エステル化合物(C)(SN495VCN)を5.0質量部としたこと、及びエポキシ化合物(D)(NC-3000FH)を5.0質量部としたこと以外は、実施例1と同様の方法により、プリント配線板用樹脂組成物含有量73体積%のプリプレグを得た。[Comparative Example 4]
The allylphenol compound (A) (DABPA) was 5.0 parts by mass, the maleimide compound (B) (BMI-2300) was 85.0 parts by mass, and the cyanate ester compound (C) (SN495VCN) was used. The content of the resin composition for a printed wiring board was set to 5.0 parts by mass and the epoxy compound (D) (NC-3000FH) was set to 5.0 parts by mass by the same method as in Example 1. 73% by weight prepreg was obtained.
〔物性測定評価〕
実施例1~4及び比較例1~4で得られたプリプレグを用い、以下の各項目に示す手順により物性測定評価用のサンプルを作製し、機械特性(貯蔵弾性率、及び損失弾性率)、式(4)~(8)及び式(4A)~(8A)における機械特性に関する物性パラメータ、ガラス転移温度(Tg)、並びに反り量(3種類)を測定評価した。実施例の結果をまとめて表1に、比較例の結果をまとめて表2に示す。[Measurement and evaluation of physical properties]
Using the prepregs obtained in Examples 1 to 4 and Comparative Examples 1 to 4, a sample for physical property measurement and evaluation was prepared by the procedure shown in each of the following items, and the mechanical properties (storage elastic modulus and loss elastic modulus) were determined. Physical property parameters related to mechanical properties, glass transition temperature (Tg), and warpage amount (3 types) in the formulas (4) to (8) and formulas (4A) to (8A) were measured and evaluated. The results of the examples are summarized in Table 1, and the results of the comparative examples are summarized in Table 2.
〔機械特性〕
実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度230℃で100分間の積層成形(熱硬化)を行い、絶縁層厚さ0.1mmの銅箔張積層板を得た。得られた銅箔張積層板をダイシングソーでサイズ20mm×5mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法により、機械特性(貯蔵弾性率E’及び損失弾性率E’’)を測定した(n=3の平均値)。[Mechanical characteristics]
Copper foil (3EC-VLP, manufactured by Mitsui Metal Mining Co., Ltd., thickness 12 μm) was placed on both the upper and lower surfaces of one prepreg obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the pressure was 30 kgf / cm 2 . , Lamination molding (thermosetting) was performed at a temperature of 230 ° C. for 100 minutes to obtain a copper foil-clad laminate having an insulating layer thickness of 0.1 mm. The obtained copper foil-clad laminate was cut into a size of 20 mm × 5 mm with a dicing saw, and then the copper foil on the surface was removed by etching to obtain a sample for measurement. Using this measurement sample, the mechanical properties (storage elastic modulus E'and loss elastic modulus E'') were measured by the DMA method with a dynamic viscoelastic analyzer (manufactured by TA Instruments) in accordance with JIS C6481. (Mean value of n = 3).
〔ガラス転移温度(Tg)〕
実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度230℃で100分間の積層成形を行い、絶縁層厚さ0.1mmの銅箔張積層板を得た。得られた銅箔張積層板をダイシングソーでサイズ12.7×2.5mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法によりガラス転移温度(Tg)を測定した(n=3の平均値)。[Glass transition temperature (Tg)]
Copper foil (3EC-VLP, manufactured by Mitsui Metal Mining Co., Ltd., thickness 12 μm) was placed on both the upper and lower surfaces of one prepreg obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the pressure was 30 kgf / cm 2 . A copper foil-clad laminate having an insulating layer thickness of 0.1 mm was obtained by laminating and molding at a temperature of 230 ° C. for 100 minutes. The obtained copper foil-clad laminate was cut to a size of 12.7 × 2.5 mm with a dicing saw, and the copper foil on the surface was removed by etching to obtain a sample for measurement. Using this measurement sample, the glass transition temperature (Tg) was measured by the DMA method with a dynamic viscoelastic analyzer (manufactured by TA Instruments) in accordance with JIS C6481 (mean value of n = 3).
〔反り量:バイメタル法〕
まず、実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度220℃で120分間の積層成形型を行い、銅箔張積層板を得た。次に、得られた銅箔張積層板から上記銅箔を除去した。次いで、銅箔を除去した積層板の片面に、実施例1~4及び比較例1~4で得られたプリプレグ1枚を更に配置し、その上下両面に、上記銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度220℃で120分間の積層成形を行い、再び銅箔張積層板を得た。さらに、得られた銅箔張積層板から上記銅箔を除去し、積層板を得た。そして、得られた積層板から20mm×200mmの短冊状板を切りだし、2枚目に積層したプリプレグの面を上にして、長尺方向両端の反り量の最大値を金尺にて測定し、その平均値をバイメタル法による「反り量」とした。[Amount of warp: Bimetal method]
First, copper foil (3EC-VLP, manufactured by Mitsui Metal Mining Co., Ltd., thickness 12 μm) was placed on both the upper and lower surfaces of one prepreg obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the pressure was 30 kgf /. A laminating mold was carried out at cm 2 at a temperature of 220 ° C. for 120 minutes to obtain a copper foil-clad laminate. Next, the copper foil was removed from the obtained copper foil-clad laminate. Next, one prepreg obtained in Examples 1 to 4 and Comparative Examples 1 to 4 was further arranged on one side of the laminated plate from which the copper foil was removed, and the copper foil (3EC-VLP, Mitsui) was placed on both upper and lower surfaces thereof. Metal Mining Co., Ltd. (thickness 12 μm) was placed, and laminating molding was performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a copper foil-clad laminate again. Further, the copper foil was removed from the obtained copper foil-clad laminate to obtain a laminate. Then, a strip-shaped plate of 20 mm × 200 mm was cut out from the obtained laminated plate, and the maximum value of the amount of warpage at both ends in the long direction was measured with a metal scale with the surface of the second laminated prepreg facing up. , The average value was taken as the "warp amount" by the bimetal method.
〔反り量:多層コアレス基板〕
まず、図1に示す如く、支持体(a)となるプリプレグの両面に、キャリア付極薄銅箔(b1)(MT18Ex、三井金属鉱業(株)製、厚み5μm)のキャリア銅箔面をプリプレグ側に向けて配置し、その上に実施例1~4及び比較例1~4で得られたプリプレグ(c1)を更に配置、その上に銅箔(d)(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度220℃で120分間の積層成形を行って図2に示す銅箔張積層板を得た。[Amount of warpage: Multilayer coreless substrate]
First, as shown in FIG. 1, the carrier copper foil surfaces of the ultrathin copper foil (b1) with a carrier (MT18Ex, manufactured by Mitsui Metal Mining Co., Ltd., thickness 5 μm) are prepreged on both sides of the prepreg serving as the support (a). Arranged toward the side, the prepregs (c1) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were further arranged on the copper foil (d) (3EC-VLP, Mitsui Metal Mining Co., Ltd.). A copper foil-clad laminate shown in FIG. 2 was obtained by arranging a copper foil-clad laminate manufactured by Co., Ltd. and having a thickness of 12 μm) at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes.
次いで、得られた図2に示す銅箔張積層板の上記銅箔(d)を、例えば図3に示すように所定の配線パターンにエッチングして導体層(d’)を形成した。次に、導体層(d’)が形成された図3に示す積層板の上に、図4に示すとおり、実施例1~4及び比較例1~4で得られたプリプレグ(c2)を配置し、その上にさらに、キャリア付極薄銅箔(b2)(MT18Ex、三井金属鉱業(株)製、厚み5μm)を配置し、圧力30kgf/cm2、温度220℃で120分間の積層成形を行って図5に示す銅箔張積層板を得た。Next, the copper foil (d) of the obtained copper foil-clad laminate shown in FIG. 2 was etched into a predetermined wiring pattern as shown in FIG. 3, for example, to form a conductor layer (d'). Next, as shown in FIG. 4, the prepregs (c2) obtained in Examples 1 to 4 and Comparative Examples 1 to 4 are arranged on the laminated plate shown in FIG. 3 on which the conductor layer (d') is formed. Then, an ultrathin copper foil with a carrier (b2) (MT18Ex, manufactured by Mitsui Metal Mining Co., Ltd., thickness 5 μm) is further placed on it, and laminated molding is performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes. Then, the copper foil-clad laminate shown in FIG. 5 was obtained.
次いで、図5に示す銅箔張積層板において、支持体(a)(硬化した支持体用プリプレグ)に配置したキャリア付極薄銅箔(b1)のキャリア銅箔と極薄銅箔を剥離することにより、図6に示すとおり、支持体(a)から2枚の積層板を剥離し、さらに、それらの各積層板における上部のキャリア付極薄銅箔(b2)からキャリア銅箔を剥離した。次に、得られた各積層板の上下の極薄銅箔上にレーザー加工機による加工を行い、図7に示すとおり、化学銅メッキにて所定のビア(v)を形成した。それから、例えば図8に示すように、所定の配線パターンにエッチングして導体層を形成し、多層コアレス基板のパネル(サイズ:500mm×400mm)を得た。そして、得られたパネルの4つ角及び4辺中央部分の合計8箇所における反り量を金尺にて測定し、その平均値を多層コアレス基板のパネルの「反り量」とした。 Next, in the copper foil-clad laminate shown in FIG. 5, the carrier copper foil and the ultrathin copper foil of the carrier-attached ultrathin copper foil (b1) arranged on the support (a) (cured support prepreg) are peeled off. As a result, as shown in FIG. 6, the two laminated plates were peeled off from the support (a), and further, the carrier copper foil was peeled off from the upper ultrathin copper foil with carrier (b2) in each of the laminated plates. .. Next, processing was performed on the upper and lower ultrathin copper foils of each of the obtained laminated plates by a laser processing machine, and as shown in FIG. 7, a predetermined via (v) was formed by chemical copper plating. Then, for example, as shown in FIG. 8, a conductor layer was formed by etching into a predetermined wiring pattern to obtain a panel (size: 500 mm × 400 mm) of a multilayer coreless substrate. Then, the amount of warpage at the four corners of the obtained panel and the central portion of the four sides was measured with a metal scale, and the average value was taken as the "warp amount" of the panel of the multilayer coreless substrate.
〔リフロー工程前後基板収縮率〕
実施例1~4及び比較例1~4で得られたプリプレグ1枚の上下両面に、銅箔(3EC-VLP、三井金属鉱業(株)製、厚み12μm)を配置し、圧力30kgf/cm2、温度220℃で120分間の積層成形を行って、銅箔張積層板を得た。次に、得られた銅箔張積層板にドリルにて格子状均等に9点の穴あけ加工を実施した後、上記銅箔を除去した。[Substrate shrinkage before and after reflow process]
Copper foil (3EC-VLP, manufactured by Mitsui Metal Mining Co., Ltd., thickness 12 μm) was placed on both the upper and lower surfaces of one prepreg obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the pressure was 30 kgf / cm 2 . , A copper foil-clad laminate was obtained by laminating and molding at a temperature of 220 ° C. for 120 minutes. Next, the obtained copper foil-clad laminate was drilled evenly at 9 points in a grid pattern, and then the copper foil was removed.
それから、まず、銅箔が除去された積層板における穴間の距離を測定した(距離イ)。次に、その積層板に対し、サラマンダーリフロー装置にて260℃を最高温度としてリフロー処理を実施した。その後、積層板における穴間の距離を再度測定した(距離ロ)。そして、測定された距離イと距離ロを下記式(I)に代入し、リフロー処理における基板の寸法変化率を求め、その値をリフロー工程前後基板収縮率とした。
((距離イ)-(距離ロ))/距離イ×100 …式(I)Then, first, the distance between the holes in the laminated board from which the copper foil was removed was measured (distance a). Next, the laminated board was reflowed by a salamander reflow device with a maximum temperature of 260 ° C. After that, the distance between the holes in the laminated board was measured again (distance b). Then, the measured distance a and distance b were substituted into the following formula (I) to obtain the dimensional change rate of the substrate in the reflow process, and the value was taken as the substrate shrinkage rate before and after the reflow process.
((Distance a)-(Distance b)) / Distance a x 100 ... Equation (I)
本実施形態のプリント配線板用樹脂組成物は、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、又は多層プリント配線板の材料として産業上の利用可能性を有する。なお、本出願は、2016年12月28日に出願された日本特許出願番号2016-255272に基づくものであり、ここにその記載内容を援用する。 The resin composition for a printed wiring board of the present embodiment has industrial applicability as a material for a prepreg, a resin sheet, a laminated board, a metal foil-clad laminated board, a printed wiring board, or a multilayer printed wiring board. This application is based on Japanese Patent Application No. 2016-255272 filed on December 28, 2016, and the description thereof is incorporated herein by reference.
Claims (17)
マレイミド化合物(B)と、
シアン酸エステル化合物(C)、又は、シアン酸エステル化合物(C)及びエポキシ化合物(D)と、を含有するプリント配線板用樹脂組成物であって、
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記アリルフェノール化合物(A)の含有量が、10~50質量部であり、
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記マレイミド化合物(B)の含有量が、40~70質量部であり、
前記プリント配線板用樹脂組成物中の樹脂固形分100質量部に対する前記シアン酸エステル化合物(C)の含有量が、14.2~25質量部であり、
前記プリント配線板用樹脂組成物の硬化物において、明確なガラス転移温度が存在せず、前記ガラス転移温度が、JIS C6481に準拠して動的粘弾性分析装置でDMA法により測定したものである、
プリント配線板用樹脂組成物。 Allylphenol compound (A) and
Maleimide compound (B) and
A resin composition for a printed wiring board containing a cyanic acid ester compound (C), or a cyanic acid ester compound (C) and an epoxy compound (D).
The content of the allylphenol compound (A) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 10 to 50 parts by mass.
The content of the maleimide compound (B) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 40 to 70 parts by mass.
The content of the cyanic acid ester compound (C) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 14.2 to 25 parts by mass .
In the cured product of the resin composition for printed wiring board, there is no clear glass transition temperature, and the glass transition temperature is measured by the DMA method with a dynamic viscoelastic analyzer in accordance with JIS C6481. ,
Resin composition for printed wiring boards.
請求項1に記載のプリント配線板用樹脂組成物。 The total content of the cyanic acid ester compound (C) and the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 14.2 to 45 parts by mass.
The resin composition for a printed wiring board according to claim 1.
請求項1又は2に記載のプリント配線板用樹脂組成物。 The content of the epoxy compound (D) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 0 to 25 parts by mass.
The resin composition for a printed wiring board according to claim 1 or 2.
請求項1~3のいずれか1項に記載のプリント配線板用樹脂組成物。 Further containing the filler (E),
The resin composition for a printed wiring board according to any one of claims 1 to 3.
請求項4に記載のプリント配線板用樹脂組成物。 The filler (E) is at least one selected from the group consisting of silica, alumina, and boehmite.
The resin composition for a printed wiring board according to claim 4.
請求項4又は5に記載のプリント配線板用樹脂組成物。 The content of the filler (E) with respect to 100 parts by mass of the resin solid content in the resin composition for a printed wiring board is 120 to 250 parts by mass.
The resin composition for a printed wiring board according to claim 4 or 5.
請求項1~6のいずれか1項に記載のプリント配線板用樹脂組成物。
The resin composition for a printed wiring board according to any one of claims 1 to 6.
請求項1~7のいずれか1項に記載のプリント配線板用樹脂組成物。
The resin composition for a printed wiring board according to any one of claims 1 to 7.
請求項1~8のいずれか1項に記載のプリント配線板用樹脂組成物。
The resin composition for a printed wiring board according to any one of claims 1 to 8.
E’(200℃)/E’(30℃)≦0.90 …(4)
E’(260℃)/E’(30℃)≦0.85 …(5)
E’(330℃)/E’(30℃)≦0.80 …(6)
E’’max/E’(30℃)≦3.0% …(7)
E’’min/E’(30℃)≧0.5% …(8)
(各式中、E’は、括弧内に示す温度における前記硬化物の貯蔵弾性率を示し、E’’maxは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最大値を示し、E’’minは、30℃から330℃の温度範囲における前記硬化物の損失弾性率の最小値を示す。)
で表される機械特性に関する物性パラメータの数値範囲を満たす、
請求項1~9のいずれか1項に記載のプリント配線板用樹脂組成物。 The cured product obtained by thermally curing the prepreg containing the resin composition for a printed wiring board and the base material at 230 ° C. for 100 minutes is the following formulas (4) to (8);
E'(200 ° C) / E'(30 ° C) ≤ 0.90 ... (4)
E'(260 ° C) / E'(30 ° C) ≤ 0.85 ... (5)
E'(330 ° C) / E'(30 ° C) ≤ 0.80 ... (6)
E''max / E'(30 ° C) ≤ 3.0% ... (7)
E''min / E'(30 ° C) ≧ 0.5%… (8)
(In each formula, E'indicates the storage elastic modulus of the cured product at the temperature shown in parentheses, and E''max is the maximum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C to 330 ° C. E''min indicates the minimum value of the loss elastic modulus of the cured product in the temperature range of 30 ° C to 330 ° C.)
Satisfy the numerical range of physical property parameters related to mechanical properties represented by
The resin composition for a printed wiring board according to any one of claims 1 to 9.
該基材に含浸又は塗布された請求項1~10のいずれか1項に記載のプリント配線板用樹脂組成物と、
を有するプリプレグ。 With the base material
The resin composition for a printed wiring board according to any one of claims 1 to 10 impregnated or applied to the substrate, and the resin composition for a printed wiring board.
A prepreg with.
請求項11に記載のプリプレグ。 One or more of the base materials selected from the group consisting of E glass fiber, D glass fiber, S glass fiber, T glass fiber, Q glass fiber, L glass fiber, NE glass fiber, HME glass fiber, and organic fiber. It is composed of the fibers of
The prepreg according to claim 11.
該支持体の片面又は両面に積層された請求項1~10のいずれか1項に記載のプリント配線板用樹脂組成物と、
を有するレジンシート。 With the support,
The resin composition for a printed wiring board according to any one of claims 1 to 10, which is laminated on one side or both sides of the support.
Resin sheet with.
積層板。 It has at least one selected from the group consisting of the prepreg according to claim 11 and 12 in which at least one sheet is laminated, and the resin sheet according to claim 13.
Laminated board.
前記プリプレグ及び前記レジンシートからなる群より選択される少なくとも1種の片面又は両面に配された金属箔と、
を有する金属箔張積層板。 At least one selected from the group consisting of the prepreg according to claim 11 and 12 and the resin sheet according to claim 13 in which at least one sheet is laminated.
At least one kind of metal foil arranged on one side or both sides selected from the group consisting of the prepreg and the resin sheet, and
Metal leaf-clad laminate with.
該絶縁層の表面に形成された導体層と、
を有し、
前記絶縁層が、請求項1~10のいずれか1項に記載のプリント配線板用樹脂組成物を含む、
プリント配線板。 Insulation layer and
A conductor layer formed on the surface of the insulating layer and
Have,
The insulating layer contains the resin composition for a printed wiring board according to any one of claims 1 to 10.
Printed wiring board.
前記複数の絶縁層の各々の間に配置された第1の導体層、及び、前記複数の絶縁層の最外層の表面に配置された第2の導体層からなる複数の導体層と、
を有する多層プリント配線板。 The first insulating layer formed of at least one selected from the group consisting of the prepreg according to claim 11 and 12 and the resin sheet according to claim 13 in which at least one sheet is laminated, and the first insulating layer. A second formed by at least one selected from the group consisting of the prepreg according to claims 11 and 12 and the resin sheet according to claim 13, wherein at least one insulating layer is laminated in one side direction. Insulation layer consisting of multiple insulation layers of
A plurality of conductor layers composed of a first conductor layer arranged between each of the plurality of insulating layers and a second conductor layer arranged on the surface of the outermost layer of the plurality of insulating layers.
Multi-layer printed wiring board with.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016255272 | 2016-12-28 | ||
JP2016255272 | 2016-12-28 | ||
PCT/JP2017/046843 WO2018124161A1 (en) | 2016-12-28 | 2017-12-27 | Printed wiring board resin composition, prepreg, resin sheet, laminated plate, metal foil-clad laminated plate, printed wiring board, and multilayer printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018124161A1 JPWO2018124161A1 (en) | 2019-10-31 |
JP7025729B2 true JP7025729B2 (en) | 2022-02-25 |
Family
ID=62708139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018559565A Active JP7025729B2 (en) | 2016-12-28 | 2017-12-27 | Resin composition for printed wiring boards, prepregs, resin sheets, laminated boards, metal foil-clad laminated boards, printed wiring boards, and multilayer printed wiring boards. |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7025729B2 (en) |
KR (1) | KR102431012B1 (en) |
CN (1) | CN110121531B (en) |
TW (1) | TWI798194B (en) |
WO (1) | WO2018124161A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114127205B (en) * | 2019-06-26 | 2022-10-25 | 三菱瓦斯化学株式会社 | Resin sheet, metal foil-clad laminate, and printed wiring board |
WO2021125121A1 (en) * | 2019-12-17 | 2021-06-24 | 三菱瓦斯化学株式会社 | Resin sheet and printed wiring board |
CN111019346B (en) * | 2019-12-26 | 2022-08-12 | 艾蒙特成都新材料科技有限公司 | Flame-retardant high-heat-resistance resin composition, copper-clad plate and preparation method thereof |
WO2021157680A1 (en) * | 2020-02-07 | 2021-08-12 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, layered board, metal foil–clad layered board, and printed wiring board |
JPWO2021261308A1 (en) * | 2020-06-24 | 2021-12-30 | ||
WO2023013710A1 (en) * | 2021-08-05 | 2023-02-09 | 三菱瓦斯化学株式会社 | Prepreg, metal foil-clad laminate and printed wiring board |
KR102725378B1 (en) * | 2021-08-05 | 2024-11-04 | 미츠비시 가스 가가쿠 가부시키가이샤 | Curable composition, prepreg, metal foil-clad laminate, and printed wiring board |
KR20240040056A (en) * | 2021-08-05 | 2024-03-27 | 미츠비시 가스 가가쿠 가부시키가이샤 | Thermosetting resin compositions, prepregs and printed wiring boards |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643543A (en) | 2011-02-18 | 2012-08-22 | 中国科学院深圳先进技术研究院 | Composite dielectric material, copper-clad foil prepreg manufactured and copper-clad foil laminated board by using composite dielectric material |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3022668B2 (en) * | 1991-11-18 | 2000-03-21 | 東亞合成株式会社 | Curable resin composition |
JPH07278268A (en) * | 1994-04-06 | 1995-10-24 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition |
JP5024205B2 (en) | 2007-07-12 | 2012-09-12 | 三菱瓦斯化学株式会社 | Prepreg and laminate |
TW201204548A (en) | 2010-02-05 | 2012-02-01 | Sumitomo Bakelite Co | Prepreg, laminate, printed wiring board, and semiconductor device |
CN102115600B (en) * | 2010-11-26 | 2013-05-01 | 苏州生益科技有限公司 | Thermosetting resin composition, prepreg and laminated board |
JP2013001807A (en) | 2011-06-16 | 2013-01-07 | Panasonic Corp | Resin composition for electronic circuit board material, prepreg and laminated plate |
CN102276837B (en) * | 2011-08-19 | 2013-01-02 | 慧智科技(中国)有限公司 | Halogen-free phosphorus-containing flame retardant polyimide resin composite and preparation method thereof |
JP3173332U (en) | 2011-11-17 | 2012-02-02 | 奇▲こう▼科技股▲ふん▼有限公司 | Oil-impregnated bearing fan structure |
JP2013216884A (en) | 2012-03-14 | 2013-10-24 | Hitachi Chemical Co Ltd | Thermosetting resin composition, prepreg and laminated plate |
KR102075187B1 (en) * | 2012-10-19 | 2020-02-07 | 미츠비시 가스 가가쿠 가부시키가이샤 | Resin composition, prepreg, laminate, and printed wiring board |
EP3006503B1 (en) * | 2013-06-03 | 2019-05-08 | Mitsubishi Gas Chemical Company, Inc. | Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same |
SG11201604511UA (en) * | 2014-01-07 | 2016-07-28 | Mitsubishi Gas Chemical Co | Insulating layer for printed circuit board and printed circuit board |
KR101755323B1 (en) * | 2014-02-19 | 2017-07-20 | 한국생산기술연구원 | New epoxy compound, mixture, composition, cured product thereof, preparing method thereof, and use thereof |
CN104164087B (en) * | 2014-07-10 | 2017-02-15 | 腾辉电子(苏州)有限公司 | Low resin fluidity prepreg and preparation method thereof |
JP6602016B2 (en) * | 2015-01-30 | 2019-11-06 | 三菱瓦斯化学株式会社 | Cyanate ester compound, curable resin composition containing the compound, and cured product thereof |
-
2017
- 2017-12-27 KR KR1020197016461A patent/KR102431012B1/en active Active
- 2017-12-27 JP JP2018559565A patent/JP7025729B2/en active Active
- 2017-12-27 WO PCT/JP2017/046843 patent/WO2018124161A1/en active Application Filing
- 2017-12-27 TW TW106146093A patent/TWI798194B/en active
- 2017-12-27 CN CN201780081388.4A patent/CN110121531B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102643543A (en) | 2011-02-18 | 2012-08-22 | 中国科学院深圳先进技术研究院 | Composite dielectric material, copper-clad foil prepreg manufactured and copper-clad foil laminated board by using composite dielectric material |
Also Published As
Publication number | Publication date |
---|---|
WO2018124161A1 (en) | 2018-07-05 |
TWI798194B (en) | 2023-04-11 |
JPWO2018124161A1 (en) | 2019-10-31 |
KR102431012B1 (en) | 2022-08-10 |
TW201840675A (en) | 2018-11-16 |
CN110121531A (en) | 2019-08-13 |
KR20190095923A (en) | 2019-08-16 |
CN110121531B (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7121354B2 (en) | Resin composition, prepreg, resin sheet, laminated resin sheet, laminate, metal foil-clad laminate, and printed wiring board | |
JP7025729B2 (en) | Resin composition for printed wiring boards, prepregs, resin sheets, laminated boards, metal foil-clad laminated boards, printed wiring boards, and multilayer printed wiring boards. | |
JP2022009445A (en) | Resin composition, prepreg, metal foil-clad laminate, and printed circuit board | |
JP6388147B1 (en) | Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board | |
JP2022046517A (en) | Resin composition for electronic material | |
JP6788808B2 (en) | Resin composition, prepreg, metal foil-clad laminate, and printed wiring board | |
JP6910590B2 (en) | Resin composition for printed wiring board, prepreg, metal foil-clad laminate, laminated resin sheet, resin sheet, and printed wiring board | |
WO2015105109A1 (en) | Insulating layer for printed wire board, and printed wire board | |
JP7116370B2 (en) | Resin composition, prepreg, resin sheet, laminate, and printed wiring board | |
JP6452083B2 (en) | Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board | |
JP2020176267A (en) | Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board | |
JP6681052B2 (en) | Prepreg, laminated board, metal foil clad laminated board, printed wiring board, and multilayer printed wiring board | |
JP6819886B2 (en) | Resin composition, prepreg or resin sheet using the resin composition, laminated board and printed wiring board using them | |
JP2020117714A (en) | Resin composition, prepreg, laminate sheet, metal foil clad laminate sheet, printed wiring board and multilayer printed wiring board | |
JP6823807B2 (en) | Resin composition, prepreg, metal foil laminated board, resin sheet, and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190625 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211007 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211217 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20211217 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20211224 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20211227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220127 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7025729 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |