[go: up one dir, main page]

JP7025201B2 - Rubber composition for tires and pneumatic tires using them - Google Patents

Rubber composition for tires and pneumatic tires using them Download PDF

Info

Publication number
JP7025201B2
JP7025201B2 JP2017248082A JP2017248082A JP7025201B2 JP 7025201 B2 JP7025201 B2 JP 7025201B2 JP 2017248082 A JP2017248082 A JP 2017248082A JP 2017248082 A JP2017248082 A JP 2017248082A JP 7025201 B2 JP7025201 B2 JP 7025201B2
Authority
JP
Japan
Prior art keywords
acrylate
polymer particles
formula
meth
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248082A
Other languages
Japanese (ja)
Other versions
JP2019112559A (en
Inventor
智史 福西
拓也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2017248082A priority Critical patent/JP7025201B2/en
Publication of JP2019112559A publication Critical patent/JP2019112559A/en
Application granted granted Critical
Publication of JP7025201B2 publication Critical patent/JP7025201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤに関するものである。 The present invention relates to a rubber composition for a tire and a pneumatic tire using the same.

従来、タイヤに用いられるゴム組成物においては、湿潤路面におけるグリップ性能(ウエットグリップ性能)と低燃費性に寄与する転がり抵抗性能を高次元でバランスさせることが求められている。しかし、これらは背反特性であるため、同時に改良することは容易ではない。 Conventionally, in a rubber composition used for a tire, it is required to have a high-level balance between grip performance (wet grip performance) on a wet road surface and rolling resistance performance that contributes to low fuel consumption. However, since these are contradictory characteristics, it is not easy to improve them at the same time.

このような問題に対して、特許文献1には、ジエン系ゴムからなるゴム成分100質量部に対し、所定の構成単位を有しかつ反応性シリル基を持たない(メタ)アクリレート系重合体からなる、ガラス転移点が-70~0℃かつ平均粒径が10nm以上100nm未満の微粒子を、1~100質量部含有するゴム組成物が開示されている。 In response to such a problem, Patent Document 1 describes from a (meth) acrylate-based polymer having a predetermined structural unit and having no reactive silyl group with respect to 100 parts by mass of a rubber component made of a diene-based rubber. A rubber composition containing 1 to 100 parts by mass of fine particles having a glass transition point of −70 to 0 ° C. and an average particle size of 10 nm or more and less than 100 nm is disclosed.

特開2017-110069号公報Japanese Unexamined Patent Publication No. 2017-110069

しかしながら、このような粒子は、その合成方法によっては、乳化剤などの不純物が含まれることがあり、乳化剤などに含まれている金属元素が組成物中に存在すると発熱の要因となるため、低燃費性についてさらなる改善の余地があった。 However, such particles may contain impurities such as emulsifiers depending on the synthesis method, and the presence of metal elements contained in the emulsifiers or the like causes heat generation in the composition, resulting in low fuel consumption. There was room for further improvement in sexuality.

本発明は、以上の点に鑑み、タイヤのウエットグリップ性能及び低燃費性を改善することができる、タイヤ用ゴム組成物を提供することを目的とする。 In view of the above points, it is an object of the present invention to provide a rubber composition for a tire capable of improving the wet grip performance and the fuel efficiency of the tire.

本発明に係るタイヤ用ゴム組成物は、ジエン系ゴムからなるゴム成分100質量部に対して、式(1)で表されるアルキル(メタ)アクリレート単位を構成単位として有し、ナトリウム濃度及びカリウム濃度の合計量が2000ppm以下であるポリマー粒子を1~100質量部含有し、上記ポリマー粒子中のナトリウム又はカリウムが、脂肪酸塩又は過硫酸塩として存在するものとする。
The rubber composition for a tire according to the present invention has an alkyl (meth) acrylate unit represented by the formula (1) as a constituent unit with respect to 100 parts by mass of a rubber component made of a diene rubber, and has a sodium concentration and potassium. It is assumed that the polymer particles having a total concentration of 2000 ppm or less are contained in an amount of 1 to 100 parts by mass, and sodium or potassium in the polymer particles is present as a fatty acid salt or a persulfate .

Figure 0007025201000001
Figure 0007025201000001

式中、Rは水素原子又はメチル基であり、同一分子中のRは同一でも異なっていてもよく、Rは炭素数4~18のアルキル基であり、同一分子中のRは同一でも異なっていてもよい。 In the formula, R 1 is a hydrogen atom or a methyl group, R 1 in the same molecule may be the same or different, R 2 is an alkyl group having 4 to 18 carbon atoms, and R 2 in the same molecule is. It may be the same or different.

上記ポリマー粒子のガラス転移温度は、-70~0℃であるものとすることができる。 The glass transition temperature of the polymer particles can be set to −70 to 0 ° C.

本発明に係る空気入りタイヤは、上記タイヤ用ゴム組成物を用いて作製されたものとする。 The pneumatic tire according to the present invention shall be manufactured by using the rubber composition for a tire.

本発明のタイヤ用ゴム組成物によれば、タイヤのウエットグリップ性能及び低燃費性を改善することができる。 According to the rubber composition for a tire of the present invention, the wet grip performance and the fuel efficiency of the tire can be improved.

以下、本発明の実施に関連する事項について詳細に説明する。 Hereinafter, matters related to the practice of the present invention will be described in detail.

本実施形態に係るタイヤ用ゴム組成物は、ジエン系ゴムからなるゴム成分に、特定の(メタ)アクリレート系重合体からなるポリマー粒子を配合してなるものである。 The rubber composition for a tire according to the present embodiment is formed by blending a rubber component made of a diene-based rubber with polymer particles made of a specific (meth) acrylate-based polymer.

ゴム成分としてのジエン系ゴムとしては、例えば、天然ゴム(NR)、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、スチレン-イソプレン共重合体ゴム、ブタジエン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム等が挙げられ、これらはいずれか1種単独で又は2種以上組み合わせて用いることができる。これらの中でも、NR、BR及びSBRからなる群から選択された少なくとも1種であることが好ましい。 Examples of the diene rubber as a rubber component include natural rubber (NR), synthetic isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NBR), and chloroprene rubber (CR). Examples thereof include butyl rubber (IIR), styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, etc., and these are used alone or in combination of two or more. be able to. Among these, at least one selected from the group consisting of NR, BR and SBR is preferable.

上記で列挙した各ジエン系ゴムの具体例には、その分子末端又は分子鎖中において、水酸基、アミノ基、カルボキシル基、アルコキシ基、アルコキシシリル基、及びエポキシ基からなる群から選択された少なくとも1種の官能基が導入されることで、当該官能基により変性された変性ジエン系ゴムも含まれる。変性ジエン系ゴムとしては、変性SBR及び/又は変性BRが好ましい。一実施形態において、ジエン系ゴムは、変性ジエン系ゴム単独でもよく、変性ジエン系ゴムと未変性のジエン系ゴムとのブレンドでもよい。一実施形態において、ジエン系ゴム100質量部中、変性SBRを30質量部以上含んでもよく、変性SBRを50~90質量部と未変性ジエン系ゴム(例えば、BR及び/又はNR)を50~10質量部含むものでもよい。 Specific examples of each diene rubber listed above include at least one selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an alkoxy group, an alkoxysilyl group, and an epoxy group at the molecular end or in the molecular chain. By introducing the functional group of the seed, the modified diene rubber modified by the functional group is also included. As the modified diene rubber, modified SBR and / or modified BR are preferable. In one embodiment, the diene-based rubber may be the modified diene-based rubber alone or a blend of the modified diene-based rubber and the unmodified diene-based rubber. In one embodiment, 30 parts by mass or more of the modified SBR may be contained in 100 parts by mass of the diene rubber, 50 to 90 parts by mass of the modified SBR and 50 to 50 parts by mass of the unmodified diene rubber (for example, BR and / or NR). It may contain 10 parts by mass.

上記ポリマー粒子としては、下記一般式(1)で表されるアルキル(メタ)アクリレート単位を構成単位(繰り返し単位とも称される。)として有する(メタ)アクリレート系重合体からなるものであって、ポリマー粒子中のナトリウム濃度及びカリウム濃度の合計量が2000ppm以下であるものが用いられる。ナトリウム濃度及びカリウム濃度の合計量は、低いほど好ましく、より好ましくは1800ppm以下であるが、コストの観点から100ppm以上であってもよい。ここで、ナトリウム濃度及びカリウム濃度は、誘電結合プラズマ発光分析(ICP-OES)を用いて測定された値とする。なお、ナトリウムやカリウムは、ポリマー粒子中において、脂肪酸塩や過硫酸塩として存在するものを含む。 The polymer particles are composed of a (meth) acrylate-based polymer having an alkyl (meth) acrylate unit represented by the following general formula (1) as a constituent unit (also referred to as a repeating unit). Those having a total amount of sodium concentration and potassium concentration in the polymer particles of 2000 ppm or less are used. The total amount of the sodium concentration and the potassium concentration is preferably as low as possible, more preferably 1800 ppm or less, but may be 100 ppm or more from the viewpoint of cost. Here, the sodium concentration and the potassium concentration are values measured by inductively coupled plasma emission spectrometry (ICP-OES). In addition, sodium and potassium include those existing as fatty acid salts and persulfates in the polymer particles.

Figure 0007025201000002
Figure 0007025201000002

式中、Rは水素原子又はメチル基であり、同一分子中のRは同一でも異なっていてもよく、Rは炭素数4~18のアルキル基であり、同一分子中のRは同一でも異なっていてもよい。Rのアルキル基は直鎖でも分岐していてもよい。Rは、炭素数6~16のアルキル基であることが好ましく、より好ましくは炭素数8~15のアルキル基である。 In the formula, R 1 is a hydrogen atom or a methyl group, R 1 in the same molecule may be the same or different, R 2 is an alkyl group having 4 to 18 carbon atoms, and R 2 in the same molecule is. It may be the same or different. The alkyl group of R 2 may be linear or branched. R2 is preferably an alkyl group having 6 to 16 carbon atoms, and more preferably an alkyl group having 8 to 15 carbon atoms.

(メタ)アクリレート系重合体は、1種又は2種以上のアルキル(メタ)アクリレートを含むモノマーを重合してなるものである。ここで、(メタ)アクリレートとは、アクリレート及びメタクリレートのうちの一方又は両方を意味する。また、(メタ)アクリル酸は、アクリル酸及びメタクリル酸のうちの一方又は両方を意味する。 The (meth) acrylate-based polymer is obtained by polymerizing a monomer containing one kind or two or more kinds of alkyl (meth) acrylates. Here, (meth) acrylate means one or both of acrylate and methacrylate. Further, (meth) acrylic acid means one or both of acrylic acid and methacrylic acid.

アルキル(メタ)アクリレートとしては、例えば、アクリル酸n-ブチル、アクリル酸n-ペンチル、アクリル酸n-ヘキシル、アクリル酸n-ヘプチル、アクリル酸n-オクチル、アクリル酸n-ノニル、アクリル酸n-デシル、アクリル酸n-ウンデシル、アクリル酸n-ドデシル、アクリル酸n-トリデシル、メタクリル酸n-ブチル、メタクリル酸n-ペンチル、メタクリル酸n-ヘキシル、メタクリル酸n-ヘプチル、メタクリル酸n-オクチル、メタクリル酸n-ノニル、メタクリル酸n-デシル、メタクリル酸n-ウンデシル、及びメタクリル酸n-ドデシル等の(メタ)アクリル酸n-アルキル;アクリル酸イソブチル、アクリル酸イソペンチル、アクリル酸イソヘキシル、アクリル酸イソヘプチル、アクリル酸イソオクチル、アクリル酸イソノニル、アクリル酸イソデシル、アクリル酸イソウンデシル、アクリル酸イソドデシル、アクリル酸イソトリデシル、アクリル酸イソテトラデシル、メタクリル酸イソブチル、メタクリル酸イソペンチル、メタクリル酸イソヘキシル、メタクリル酸イソヘプチル、メタクリル酸イソオクチル、メタクリル酸イソノニル、メタクリル酸イソデシル、メタクリル酸イソウンデシル、メタクリル酸イソドデシル、メタクリル酸イソトリデシル、及びメタクリル酸イソテトラデシル等の(メタ)アクリル酸イソアルキル;アクリル酸2-メチルブチル、アクリル酸2-エチルペンチル、アクリル酸2-メチルヘキシル、アクリル酸2-エチルヘキシル、アクリル酸2-エチルヘプチル、メタクリル酸2-メチルペンチル、メタクリル酸2-メチルヘキシル、メタクリル酸2-エチルヘキシル、及びメタクリル酸2-エチルヘプチルなどが挙げられる。これらはいずれか1種又は2種以上組み合わせて用いることができる。 Examples of the alkyl (meth) acrylate include n-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-nonyl acrylate, and n-acrylic acid. Decyl, n-undecyl acrylate, n-dodecyl acrylate, n-tridecyl acrylate, n-butyl methacrylate, n-pentyl methacrylate, n-hexyl methacrylate, n-heptyl methacrylate, n-octyl methacrylate, N-alkyl (meth) acrylates such as n-nonyl methacrylate, n-decyl methacrylate, n-undecyl methacrylate, and n-dodecyl methacrylate; isobutyl acrylate, isopentyl acrylate, isohexyl acrylate, isoheptyl acrylate. , Isooctyl acrylate, Isononyl acrylate, Isodecyl acrylate, Isoundecyl acrylate, Isododecyl acrylate, Isotridecyl acrylate, Isotetradecyl acrylate, Isobutyl methacrylate, Isopentyl methacrylate, Isohexyl methacrylate, Isoheptyl methacrylate, Isooctyl methacrylate , Isoalkyl (meth) acrylates such as isononyl methacrylate, isodecyl methacrylate, isoundesyl methacrylate, isododecyl methacrylate, isotridecyl methacrylate, and isotetradecyl methacrylate; 2-methylbutyl acrylate, 2-ethylpentyl acrylate, acrylic. Examples thereof include 2-methylhexyl acrylate, 2-ethylhexyl acrylate, 2-ethylheptyl acrylate, 2-methylpentyl methacrylate, 2-methylhexyl methacrylate, 2-ethylhexyl methacrylate, 2-ethylheptyl methacrylate and the like. .. These can be used alone or in combination of two or more.

ここで、イソアルキルとは、アルキル鎖端から2番目の炭素原子にメチル側鎖を有するアルキル基をいう。例えば、イソデシルとは、鎖端から2番目の炭素原子にメチル側鎖を持つ炭素数10のアルキル基をいい、8-メチルノニル基だけでなく、2,4,6-トリメチルヘプチル基も含まれる概念である。 Here, isoalkyl means an alkyl group having a methyl side chain at the second carbon atom from the end of the alkyl chain. For example, isodecyl refers to an alkyl group having 10 carbon atoms having a methyl side chain at the second carbon atom from the chain end, and is a concept including not only an 8-methylnonyl group but also a 2,4,6-trimethylheptyl group. Is.

一実施形態として、(メタ)アクリレート系重合体は、式(1)で表される構成単位として下記一般式(2)で表される構成単位を有する重合体であることが好ましい。 As one embodiment, the (meth) acrylate-based polymer is preferably a polymer having a structural unit represented by the following general formula (2) as a structural unit represented by the formula (1).

Figure 0007025201000003
Figure 0007025201000003

式(2)中、Rは、水素原子又はメチル基であり(好ましくはメチル基)、同一分子中のRは同一でも異なってもよい。Zは、炭素数1~15のアルキレン基であり、同一分子中のZは同一でも異なってもよい。Zは直鎖でも分岐していてもよい。 In formula (2), R 3 is a hydrogen atom or a methyl group (preferably a methyl group), and R 3 in the same molecule may be the same or different. Z is an alkylene group having 1 to 15 carbon atoms, and Z in the same molecule may be the same or different. Z may be linear or branched.

式(2)の構成単位は、式(1)中のRが下記一般式(2A)で表される場合である。 The structural unit of the formula (2) is a case where R 2 in the formula (1) is represented by the following general formula (2A).

Figure 0007025201000004
Figure 0007025201000004

式(2A)中のZは、式(2)のZと同じである。 Z in the formula (2A) is the same as Z in the formula (2).

このような構成単位を生じる(メタ)アクリレートとしては、上記の(メタ)アクリル酸イソアルキルが挙げられる。かかるイソアルキル基を有する(メタ)アクリレート(好ましくは、メタクリレート)を用いる場合、本実施形態による効果を高めやすい。式(2)及び(2A)中のZは、炭素数5~12のアルキレン基であることが好ましく、より好ましくは炭素数6~10のアルキレン基である。特に好ましくは、炭素数7のアルキレン基であり、一例として、(メタ)アクリレート系重合体は、メタクリル酸イソデシルを含むモノマーの重合体であることが好ましい。 Examples of the (meth) acrylate that produces such a structural unit include the above-mentioned isoalkyl (meth) acrylate. When a (meth) acrylate having such an isoalkyl group (preferably methacrylate) is used, the effect of this embodiment can be easily enhanced. Z in the formulas (2) and (2A) is preferably an alkylene group having 5 to 12 carbon atoms, and more preferably an alkylene group having 6 to 10 carbon atoms. Particularly preferably, it is an alkylene group having 7 carbon atoms, and as an example, the (meth) acrylate-based polymer is preferably a polymer of a monomer containing isodecyl methacrylate.

他の実施形態において、上記(メタ)アクリレート系重合体は、式(1)で表される構成単位として、下記一般式(3)で表される構成単位を有する重合体でもよく、あるいはまた、式(2)で表される構成単位と式(3)で表される構成単位を有する重合体でもよい。後者の場合、両構成単位の付加形態は、ランダム付加でもブロック付加でもよく、好ましくはランダム付加である。 In another embodiment, the (meth) acrylate-based polymer may be a polymer having a structural unit represented by the following general formula (3) as the structural unit represented by the formula (1), or may also be used. A polymer having a structural unit represented by the formula (2) and a structural unit represented by the formula (3) may be used. In the latter case, the addition form of both structural units may be random addition or block addition, and is preferably random addition.

Figure 0007025201000005
Figure 0007025201000005

式(3)中、Rは、水素原子又はメチル基であり(好ましくはメチル基)、同一分子中のRは同一でも異なってもよい。Qは、炭素数1~6(好ましくは1~3)のアルキレン基であり、直鎖でも分岐でもよく(好ましくは直鎖)、同一分子中のQは同一でも異なってもよい。Qは、メチル基又はエチル基であり(好ましくはエチル基)、同一分子中のQは同一でも異なっていてもよい。 In formula (3), R 4 is a hydrogen atom or a methyl group (preferably a methyl group), and R 4 in the same molecule may be the same or different. Q 1 is an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), may be linear or branched (preferably linear), and Q 1 in the same molecule may be the same or different. Q2 is a methyl group or an ethyl group (preferably an ethyl group), and Q2 in the same molecule may be the same or different.

式(3)の構成単位は、式(1)中のRが下記一般式(3A)で表される場合である。 The structural unit of the formula (3) is a case where R 2 in the formula (1) is represented by the following general formula (3A).

Figure 0007025201000006
Figure 0007025201000006

式(3A)中、Q及びQは、それぞれ式(3)のQ及びQと同じである。 In formula (3A), Q1 and Q2 are the same as Q1 and Q2 in formula (3), respectively.

(メタ)アクリレート系重合体が、このような式(2)の構成単位と式(3)の構成単位との共重合体である場合、優れたウエットグリップ性能と転がり抵抗性能が得られやすい。また、常温でのゴム組成物の硬度低下を抑えやすく、優れた操縦安定性が得られやすい。また、低温でのゴム組成物の弾性率の上昇を抑えやすく、優れたグリップ性能が得られやすい。 When the (meth) acrylate-based polymer is a copolymer of such a structural unit of the formula (2) and a structural unit of the formula (3), excellent wet grip performance and rolling resistance performance can be easily obtained. In addition, it is easy to suppress the decrease in hardness of the rubber composition at room temperature, and it is easy to obtain excellent steering stability. In addition, it is easy to suppress an increase in the elastic modulus of the rubber composition at a low temperature, and it is easy to obtain excellent grip performance.

ここで、該共重合体において、式(2)の構成単位を生じる(メタ)アクリレートの具体例としては、上記の(メタ)アクリル酸イソアルキルが挙げられ、特に好ましくは、メタクリル酸イソデシルである。また、式(3)の構成単位を生じる(メタ)アクリレートの具体例としては、上記列挙のアルキル(メタ)アクリレートのうち、(メタ)アクリル酸n-アルキルおよび(メタ)アクリル酸イソアルキルを除くものが挙げられ、特に好ましくは、メタクリル酸2-エチルヘキシルである。 Here, specific examples of the (meth) acrylate that produces the structural unit of the formula (2) in the copolymer include the above-mentioned isoalkyl (meth) acrylate, and particularly preferably isodecyl methacrylate. Further, as a specific example of the (meth) acrylate that produces the structural unit of the formula (3), among the alkyl (meth) acrylates listed above, those excluding n-alkyl (meth) acrylate and isoalkyl (meth) acrylate. , And particularly preferably 2-ethylhexyl methacrylate.

このような共重合体の場合、式(2)の構成単位と式(3)の構成単位の比率(共重合比)は、特に限定されない。例えば、式(2)の構成単位/式(3)の構成単位のモル比で、30/70~90/10でもよく、40/60~85/15でもよい。 In the case of such a copolymer, the ratio (copolymerization ratio) of the structural unit of the formula (2) to the structural unit of the formula (3) is not particularly limited. For example, the molar ratio of the structural unit of the formula (2) / the structural unit of the formula (3) may be 30/70 to 90/10 or 40/60 to 85/15.

本実施形態に係るポリマー粒子を構成する(メタ)アクリレート系重合体は、上記のアルキル(メタ)アクリレートの単独重合体でもよいが、より好ましい実施形態によれば、アルキル(メタ)アクリレートを、多官能ビニルモノマーの存在によって架橋してなる架橋構造の重合体である。すなわち、好ましい実施形態において、(メタ)アクリレート系重合体は、式(1)で表される構成単位とともに、多官能ビニルモノマーに由来する構成単位を含み、該多官能ビニルモノマーに由来する構成単位を架橋点とする架橋構造を有する。 The (meth) acrylate-based polymer constituting the polymer particles according to the present embodiment may be a homopolymer of the above-mentioned alkyl (meth) acrylate, but according to a more preferable embodiment, a large amount of alkyl (meth) acrylate is used. It is a polymer having a crosslinked structure that is crosslinked by the presence of a functional vinyl monomer. That is, in a preferred embodiment, the (meth) acrylate-based polymer contains a structural unit derived from the polyfunctional vinyl monomer together with the structural unit represented by the formula (1), and the structural unit derived from the polyfunctional vinyl monomer. It has a cross-linking structure having a cross-linking point.

多官能ビニルモノマーとしては、フリーラジカル重合によって重合可能な少なくとも2個のビニル基を有する化合物が挙げられ、例えば、ジオールまたはトリオール(例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、トリメチロールプロパンなど)のジ(メタ)アクリレートまたはトリ(メタ)アクリレート;メチレンビス-アクリルアミドなどのアルキレンジ(メタ)アクリルアミド;ジイソプロペニルベンゼン、ジビニルベンゼン、トリビニルベンゼンなどの少なくとも2個のビニル基を持つビニル芳香族化合物などが挙げられ、これらはいずれか1種又は2種以上組み合わせて用いることができる。 Examples of the polyfunctional vinyl monomer include compounds having at least two vinyl groups that can be polymerized by free radical polymerization, and examples thereof include diols or triols (eg, ethylene glycol, propylene glycol, 1,4-butanediol, 1,4). Di (meth) acrylate or tri (meth) acrylate of 6-hexanediol, trimerol propane, etc.; alkylene di (meth) acrylamide such as methylenebis-acrylamide; at least 2 such as diisopropenylbenzene, divinylbenzene, trivinylbenzene, etc. Examples thereof include vinyl aromatic compounds having a vinyl group, and these can be used alone or in combination of two or more.

(メタ)アクリレート系重合体は、特に限定するものではないが、(メタ)アクリレート系重合体を構成する全構成単位(全繰り返し単位)に対する式(1)の構成単位のモル比が50モル%以上であることが好ましく、より好ましくは80モル%以上であり、更に好ましくは90モル%以上である。式(1)の構成単位のモル比の上限は、特に限定しないが、例えば上記の多官能ビニルモノマーを添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。多官能ビニルモノマーに基づく構成単位のモル比は、0.5~20モル%でもよく、1~10モル%でもよく、1~5モル%でもよい。 The (meth) acrylate-based polymer is not particularly limited, but the molar ratio of the constituent units of the formula (1) to all the constituent units (all repeating units) constituting the (meth) acrylate-based polymer is 50 mol%. The above is preferable, more preferably 80 mol% or more, still more preferably 90 mol% or more. The upper limit of the molar ratio of the structural unit of the formula (1) is not particularly limited, but for example, when the above-mentioned polyfunctional vinyl monomer is added, it may be 99.5 mol% or less, or 99 mol% or less. The molar ratio of the constituent units based on the polyfunctional vinyl monomer may be 0.5 to 20 mol%, 1 to 10 mol%, or 1 to 5 mol%.

一実施形態において、(メタ)アクリレート系重合体が式(2)の構成単位を有する重合体である場合、当該重合体の全構成単位に対する式(2)の構成単位のモル比は25モル%以上であることが好ましく、より好ましくは35モル%以上であり、50モル%以上でもよく、80モル%以上でもよい。当該モル比の上限は、特に限定しないが、例えば多官能ビニルモノマーを上記のモル比で添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。 In one embodiment, when the (meth) acrylate-based polymer is a polymer having the structural unit of the formula (2), the molar ratio of the structural unit of the formula (2) to all the structural units of the polymer is 25 mol%. The above is preferable, and more preferably 35 mol% or more, 50 mol% or more, or 80 mol% or more may be used. The upper limit of the molar ratio is not particularly limited, but for example, when a polyfunctional vinyl monomer is added at the above molar ratio, it may be 99.5 mol% or less, or 99 mol% or less.

一実施形態において、(メタ)アクリレート系重合体が式(3)の構成単位を有する重合体である場合、当該重合体の全構成単位に対する式(3)の構成単位のモル比は25モル%以上であることが好ましく、より好ましくは35モル%以上であり、50モル%以上でもよく、80モル%以上でもよい。当該モル比の上限は、特に限定しないが、例えば多官能ビニルモノマーを上記のモル比で添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。 In one embodiment, when the (meth) acrylate-based polymer is a polymer having the structural unit of the formula (3), the molar ratio of the structural unit of the formula (3) to all the structural units of the polymer is 25 mol%. The above is preferable, and more preferably 35 mol% or more, 50 mol% or more, or 80 mol% or more may be used. The upper limit of the molar ratio is not particularly limited, but for example, when a polyfunctional vinyl monomer is added at the above molar ratio, it may be 99.5 mol% or less, or 99 mol% or less.

また、他の実施形態において、(メタ)アクリレート系重合体が式(2)の構成単位と式(3)の構成単位の共重合体である場合、当該共重合体の全構成単位に対する式(2)の構成単位のモル比が25~90モル%で、式(3)の構成単位のモル比が5~60モル%でもよく、式(2)の構成単位のモル比が35~85モル%で、式(3)の構成単位のモル比が8~55モル%でもよい。また、式(2)の構成単位と式(3)の構成単位のモル比の合計で80モル%以上でもよく、90モル%以上でもよく、またその上限は、例えば多官能ビニルモノマーを上記のモル比で添加する場合、99.5モル%以下でもよく、99モル%以下でもよい。 Further, in another embodiment, when the (meth) acrylate-based polymer is a copolymer of the structural unit of the formula (2) and the structural unit of the formula (3), the formula (for all the structural units of the copolymer) The molar ratio of the constituent units of 2) may be 25 to 90 mol%, the molar ratio of the constituent units of the formula (3) may be 5 to 60 mol%, and the molar ratio of the constituent units of the formula (2) may be 35 to 85 mol%. In%, the molar ratio of the constituent units of the formula (3) may be 8 to 55 mol%. Further, the total molar ratio of the structural unit of the formula (2) and the structural unit of the formula (3) may be 80 mol% or more, 90 mol% or more, and the upper limit thereof is, for example, a polyfunctional vinyl monomer as described above. When added in a molar ratio, it may be 99.5 mol% or less, or 99 mol% or less.

本実施形態では、上記(メタ)アクリレート系重合体として、反応性シリル基を持たないものであることが好ましい。すなわち、本実施形態において、ポリマー粒子はシリカに代わる補強性充填剤として配合するものではないので、該ポリマー粒子を構成する(メタ)アクリレート系重合体の分子末端又は分子鎖中に反応性シリル基を有していないものであることが好ましい。これにより、優れたウエットグリップ性能と転がり抵抗性能が得られやすい。また、常温でのゴム組成物の硬度低下を抑えやすく、優れた操縦安定性が得られやすい。また、低温でのゴム組成物の弾性率の上昇を抑えやすく、優れたグリップ性能が得られやすい。ここで、反応性シリル基とは、式:≡Si-Xで表される官能基(式中、Xはヒドロキシルまたは加水分解可能な基である。)であり、1~3個のヒドロキシル基又は加水分解可能な1価の基が4価のケイ素原子に結合した構造を有する基である。Xとしては、ヒドロキシル基、アルコキシ基、及びハロゲン原子が挙げられる。 In the present embodiment, the (meth) acrylate-based polymer preferably does not have a reactive silyl group. That is, in the present embodiment, since the polymer particles are not blended as a reinforcing filler in place of silica, the reactive silyl group is formed at the molecular end or the molecular chain of the (meth) acrylate-based polymer constituting the polymer particles. It is preferable that the particles do not have. This makes it easy to obtain excellent wet grip performance and rolling resistance performance. In addition, it is easy to suppress the decrease in hardness of the rubber composition at room temperature, and it is easy to obtain excellent steering stability. In addition, it is easy to suppress an increase in the elastic modulus of the rubber composition at a low temperature, and it is easy to obtain excellent grip performance. Here, the reactive silyl group is a functional group represented by the formula: ≡Si—X (in the formula, X is a hydroxyl group or a hydrolyzable group), and 1 to 3 hydroxyl groups or It is a group having a structure in which a hydrolyzable monovalent group is bonded to a tetravalent silicon atom. Examples of X include a hydroxyl group, an alkoxy group, and a halogen atom.

本実施形態において、上記(メタ)アクリレート系重合体からなるポリマー粒子のガラス転移温度(Tg)は、特に限定されないが、-70~0℃であることが好ましく、-50~-10℃であることがより好ましく、さらに好ましくは-40~-20℃である。ガラス転移温度の設定は、(メタ)アクリレート系重合体を構成するモノマー組成等により行うことができる。ガラス転移温度が0℃以下である場合、低温性能の悪化をより効果的に抑えやすい。また、ガラス転移温度が-70℃以上である場合、ウエットグリップ性能の改善効果を高めやすい。ここで、ガラス転移温度とは、JIS K7121に準拠して示差走査熱量測定(DSC)法により、昇温速度:20℃/分(測定温度範囲:-150℃~150℃)にて測定される値である。 In the present embodiment, the glass transition temperature (Tg) of the polymer particles made of the (meth) acrylate-based polymer is not particularly limited, but is preferably −70 to 0 ° C., preferably −50 to −10 ° C. More preferably, it is more preferably −40 to −20 ° C. The glass transition temperature can be set by the monomer composition or the like constituting the (meth) acrylate-based polymer. When the glass transition temperature is 0 ° C. or lower, it is easy to more effectively suppress the deterioration of low temperature performance. Further, when the glass transition temperature is −70 ° C. or higher, it is easy to enhance the effect of improving the wet grip performance. Here, the glass transition temperature is measured at a heating rate of 20 ° C./min (measurement temperature range: −150 ° C. to 150 ° C.) by a differential scanning calorimetry (DSC) method in accordance with JIS K7121. The value.

本実施形態において、上記ポリマー粒子の平均粒径は、特に限定されないが、10nm~100nmであることが好ましく、より好ましくは20~90nmであり、更に好ましくは30~80nmである。上記特定の構成単位を含む(メタ)アクリレート系重合体を、このような微細な粒子としてジエン系ゴム中に添加する場合、優れたウエットグリップ性能と転がり抵抗性能が得られやすい。また、常温でのゴム組成物の硬度低下を抑えやすく、優れた操縦安定性が得られやすい。また、低温でのゴム組成物の弾性率の上昇を抑えやすく、優れたグリップ性能が得られやすい。ここで、本明細書において、「平均粒径」とは、キュムラント法により求めた値とする。具体的には、動的光散乱法(DLS)により測定される粒度分布における積算値50%での粒径(50%径:D50)であり、光子相関法(JIS Z8826準拠)により測定し(入射光と検出器との角度90°)、得られた自己相関関数からキュムラント法により求めた値である。 In the present embodiment, the average particle size of the polymer particles is not particularly limited, but is preferably 10 nm to 100 nm, more preferably 20 to 90 nm, and further preferably 30 to 80 nm. When the (meth) acrylate-based polymer containing the specific structural unit is added to the diene-based rubber as such fine particles, excellent wet grip performance and rolling resistance performance can be easily obtained. In addition, it is easy to suppress the decrease in hardness of the rubber composition at room temperature, and it is easy to obtain excellent steering stability. In addition, it is easy to suppress an increase in the elastic modulus of the rubber composition at a low temperature, and it is easy to obtain excellent grip performance. Here, in the present specification, the "average particle size" is a value obtained by the cumulant method. Specifically, it is the particle size (50% diameter: D50) at an integrated value of 50% in the particle size distribution measured by the dynamic light scattering method (DLS), and is measured by the photon correlation method (JIS Z8826 compliant) (based on JIS Z8826). The angle between the incident light and the detector is 90 °), and it is a value obtained by the cumulant method from the obtained autocorrelation function.

上記ポリマー粒子の製造方法は、特に限定されず、例えば、公知の乳化重合を利用して合成することができる。好ましい一例を挙げれば次の通りである。すなわち、(メタ)アクリレートを、架橋剤としての多官能ビニルモノマーとともに、乳化剤を溶解した水等の水性媒体に分散させ、得られたエマルションに水溶性のラジカル重合開始剤(例えば、過硫酸カリウムなどの過酸化物)を添加してラジカル重合させることにより、水性媒体中に(メタ)アクリレート系重合体からなるポリマー粒子が生成されるので、該水性媒体と分離することでポリマー粒子が得られる。その他のポリマー粒子の製造方法として、公知の懸濁重合や分散重合、沈殿重合、ミニエマルション重合、ソープフリー乳化重合(無乳化剤乳化重合)およびマイクロエマルション重合などの重合方法を利用することができる。 The method for producing the polymer particles is not particularly limited, and for example, it can be synthesized by using a known emulsion polymerization. A preferred example is as follows. That is, the (meth) acrylate is dispersed in an aqueous medium such as water in which an emulsifier is dissolved together with a polyfunctional vinyl monomer as a cross-linking agent, and a water-soluble radical polymerization initiator (for example, potassium persulfate) is added to the obtained emulsion. By adding (peroxide) of As other methods for producing polymer particles, known polymerization methods such as suspension polymerization, dispersion polymerization, precipitation polymerization, mini-emulsion polymerization, soap-free emulsion polymerization (emulsion-free emulsion polymerization) and microemulsion polymerization can be used.

上記製造方法により得られたポリマー粒子、特に、乳化重合や、乳化剤を用いた懸濁重合などの重合方法を利用して製造したポリマー粒子は、必要に応じて、sp値が8~11の有機溶媒で再分散処理を行った後、凝固剤を添加し、再凝固処理を行うことにより、ナトリウム濃度及びカリウム濃度の合計量が2000ppm以下となるようにポリマー粒子を調製してもよい。 The polymer particles obtained by the above production method, particularly the polymer particles produced by using a polymerization method such as emulsion polymerization or suspension polymerization using an emulsifier, are organic having an sp value of 8 to 11 as required. After the redispersion treatment with a solvent, a coagulant may be added and the recoagulation treatment may be carried out to prepare the polymer particles so that the total amount of the sodium concentration and the potassium concentration is 2000 ppm or less.

sp値が8~11である有機溶媒としては、特に限定されないが、例えば、テトラヒドロフラン(THF)、アセトン、トルエン、メチルエチルケトン(MEK)、キシレン、メチルイソプロピルケトン、メチルプロピルケトン、エチルベンゼン、ピリジンなどが挙げられる。なお、本明細書でいうsp値(溶解パラメータ)とは、例えば、向井淳二、金城徳幸著「技術者のための実学高分子」(講談社、1981年10月1日発行)の71~77頁に記載のFedorsの式により算出される25℃における値δ[(cal/cm1/2]であり、1(cal/cm1/2=2.05(MJ/m1/2であり、そのため、SP値が10(cal/cm1/2以下とは20.5(MJ/m1/2以下を意味する。
Fedorsの式:
SP値(δ)=(E/v)1/2=(ΣΔe/ΣΔv1/2
:蒸発エネルギー
v:モル体積
Δe:各成分の原子又は原子団の蒸発エネルギー
Δv:各原子又は原子団のモル体積
上記の式の計算に使用する各原子又は原子団の蒸発エネルギー、モル体積は、F.Fedors, Polym. Eng. Sci., 14, 147 (1974)を参照することができる。
The organic solvent having an sp value of 8 to 11 is not particularly limited, and examples thereof include tetrahydrofuran (THF), acetone, toluene, methyl ethyl ketone (MEK), xylene, methyl isopropyl ketone, methyl propyl ketone, ethyl benzene, and pyridine. Be done. The sp value (solubility parameter) referred to in the present specification is, for example, "Practical Polymer for Engineers" by Junji Mukai and Noriyuki Kaneshiro (Kodansha, published on October 1, 1981), pp. 71-77. The value δ [(cal / cm 3 ) 1/2 ] at 25 ° C. calculated by the Fedors equation described in 1 (cal / cm 3 ) 1/2 = 2.05 (MJ / m 3 ) 1 Therefore, an SP value of 10 (cal / cm 3 ) 1/2 or less means 20.5 (MJ / m 3 ) 1/2 or less.
Fedors formula:
SP value (δ) = (E v / v) 1/2 = (ΣΔe i / ΣΔv i ) 1/2
E v : Evaporation energy v: Molar volume Δe i : Evaporation energy of atoms or atomic groups of each component Δv i : Molar volume of each atom or atomic group
For the evaporation energy and molar volume of each atom or group used in the calculation of the above equation, refer to F. Fedors, Polym. Eng. Sci., 14, 147 (1974).

本実施形態に係るゴム組成物において、上記(メタ)アクリレート系重合体からなるポリマー粒子の含有量は、ジエン系ゴムからなるゴム成分100質量部に対して1~100質量部であり、好ましくは2~50質量部であり、より好ましくは3~30質量部である。 In the rubber composition according to the present embodiment, the content of the polymer particles made of the (meth) acrylate-based polymer is 1 to 100 parts by mass, preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component made of diene-based rubber. It is 2 to 50 parts by mass, more preferably 3 to 30 parts by mass.

本実施形態に係るゴム組成物には、上記(メタ)アクリレート系重合体からなるポリマー粒子の他に、補強性充填剤、シランカップリング剤、オイル、亜鉛華、ステアリン酸、老化防止剤、ワックス、加硫剤、加硫促進剤など、ゴム組成物において一般に使用される各種添加剤を配合することができる。 In the rubber composition according to the present embodiment, in addition to the polymer particles made of the (meth) acrylate-based polymer, a reinforcing filler, a silane coupling agent, an oil, zinc oxide, stearic acid, an antiaging agent, and a wax are included. , Vulcanization agents, vulcanization accelerators, and various other additives generally used in rubber compositions can be blended.

補強性充填剤としては、例えば、湿式シリカ(含水ケイ酸)等のシリカやカーボンブラックが用いられる。好ましくは、転がり抵抗性能とウエットグリップ性能のバランスを向上するために、シリカ単独使用又はシリカとカーボンブラックの併用が好ましい。補強性充填剤の含有量は、特に限定されず、例えば、ゴム成分100質量部に対して20~150質量部でもよく、30~100質量部でもよい。シリカの含有量も特に限定されず、例えば、ゴム成分100質量部に対して20~150質量部でもよく、30~100質量部でもよい。 As the reinforcing filler, for example, silica such as wet silica (hydrous silicic acid) or carbon black is used. Preferably, silica alone or a combination of silica and carbon black is preferable in order to improve the balance between rolling resistance performance and wet grip performance. The content of the reinforcing filler is not particularly limited, and may be, for example, 20 to 150 parts by mass or 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. The content of silica is also not particularly limited, and may be, for example, 20 to 150 parts by mass or 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component.

シリカを配合する場合、シランカップリング剤を併用することが好ましく、その場合、シランカップリング剤の含有量は、シリカ質量の2~20質量%であることが好ましく、より好ましくは4~15質量%である。 When silica is blended, it is preferable to use a silane coupling agent in combination, in which case the content of the silane coupling agent is preferably 2 to 20% by mass, more preferably 4 to 15% by mass of the silica mass. %.

上記加硫剤としては、硫黄が好ましく用いられる。加硫剤の含有量は、特に限定するものではないが、ゴム成分100質量部に対して0.1~10質量部であることが好ましく、より好ましくは0.5~5質量部である。また、上記加硫促進剤としては、例えば、スルフェンアミド系、チウラム系、チアゾール系、及びグアニジン系などの各種加硫促進剤が挙げられ、いずれか1種単独で又は2種以上組み合わせて用いることができる。加硫促進剤の含有量は、特に限定するものではないが、ゴム成分100質量部に対して0.1~7質量部であることが好ましく、より好ましくは0.5~5質量部である。 Sulfur is preferably used as the vulcanizing agent. The content of the vulcanizing agent is not particularly limited, but is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the rubber component. Examples of the vulcanization accelerator include various vulcanization accelerators such as sulfenamide-based, thiuram-based, thiazole-based, and guanidine-based, and any one of them may be used alone or in combination of two or more. be able to. The content of the vulcanization accelerator is not particularly limited, but is preferably 0.1 to 7 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the rubber component. ..

本実施形態に係るゴム組成物は、通常用いられるバンバリーミキサーやニーダー、ロール等の混合機を用いて、常法に従い混練し作製することができる。すなわち、例えば、第一混合段階で、ジエン系ゴムに対し、上記ポリマー粒子とともに、加硫剤及び加硫促進剤を除く他の添加剤を添加混合し、次いで、得られた混合物に、最終混合段階で加硫剤及び加硫促進剤を添加混合してゴム組成物を調製することができる。 The rubber composition according to the present embodiment can be produced by kneading according to a conventional method using a commonly used mixer such as a Banbury mixer, a kneader, or a roll. That is, for example, in the first mixing step, the polymer particles are added and mixed with other additives other than the vulcanizing agent and the vulcanization accelerator, and then the final mixing is performed with the obtained mixture. A rubber composition can be prepared by adding and mixing a vulcanizing agent and a vulcanization accelerator at the stage.

このようにして得られたタイヤ用ゴム組成物は、乗用車用タイヤ、トラックやバスの大型タイヤなど、各種用途・各種サイズの空気入りタイヤのトレッド部、サイドウォール部などタイヤの各部位に適用することができる。すなわち、該ゴム組成物は、常法に従い、例えば、押出加工によって所定の形状に成形され、他の部品と組み合わせてグリーンタイヤを作製した後、例えば140~180℃でグリーンタイヤを加硫成形することにより、空気入りタイヤを製造することができる。これらの中でも、タイヤのトレッド用配合として用いることが特に好ましい。 The rubber composition for tires thus obtained is applied to various parts of tires such as tread parts and sidewall parts of pneumatic tires of various uses and sizes such as passenger car tires and large tires for trucks and buses. be able to. That is, the rubber composition is molded into a predetermined shape by, for example, extrusion processing according to a conventional method, and after producing a green tire by combining with other parts, the green tire is vulcanized and molded, for example, at 140 to 180 ° C. Thereby, a pneumatic tire can be manufactured. Among these, it is particularly preferable to use it as a compound for tire tread.

以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be shown, but the present invention is not limited to these examples.

[平均粒径の測定方法]
ポリマー粒子の平均粒径は、動的光散乱法(DLS)により測定される粒度分布における積算値50%での粒径(50%径:D50)であり、大塚電子株式会社製のダイナミック光散乱光度計「DLS-8000」を用いた光子相関法(JIS Z8826準拠)により測定し(入射光と検出器との角度90°)、得られた自己相関関数からキュムラント法により求めた。
[Measuring method of average particle size]
The average particle size of the polymer particles is the particle size (50% diameter: D50) at an integrated value of 50% in the particle size distribution measured by the dynamic light scattering method (DLS), and is dynamic light scattering manufactured by Otsuka Electronics Co., Ltd. It was measured by a photon correlation method (JIS Z8826 compliant) using a photometric meter "DLS-8000" (angle between incident light and detector 90 °), and was obtained by the Cumulant method from the obtained autocorrelation function.

[Tgの測定方法]
ポリマー粒子のTgは、JIS K7121に準拠して示差走査熱量測定(DSC)法により、昇温速度:20℃/分にて測定した(測定温度範囲:-150℃~150℃)。
[Measurement method of Tg]
The Tg of the polymer particles was measured at a heating rate of 20 ° C./min by a differential scanning calorimetry (DSC) method in accordance with JIS K7121 (measurement temperature range: −150 ° C. to 150 ° C.).

〈合成例1〉
15.0gのメタクリル酸2,4,6-トリメチルヘプチル(メタクリル酸イソデシル)、0.394gのエチレングリコールジメタクリレート、1.91gのドデシル硫酸ナトリウム、120gの水及び13.5gのエタノールを混合し、1時間撹拌させることによりモノマーを乳化させ、0.179gの過硫酸カリウムを添加した後、1時間の窒素バブリングを実施し、溶液を70℃で8時間保持することにより、ポリマー粒子分散エマルションを合成した。得られた溶液中へのメタノール添加による凝析により、ポリマー粒子Aを得た。平均粒径は60nm、Tgは-37℃であった。
<Synthesis Example 1>
15.0 g of 2,4,6-trimethylheptyl methacrylate (isodecyl methacrylate), 0.394 g of ethylene glycol dimethacrylate, 1.91 g of sodium dodecyl sulfate, 120 g of water and 13.5 g of ethanol are mixed. The monomer was emulsified by stirring for 1 hour, 0.179 g of potassium persulfate was added, and then nitrogen bubbling was performed for 1 hour, and the solution was held at 70 ° C. for 8 hours to synthesize a polymer particle dispersion emulsion. did. Polymer particles A were obtained by coagulation by adding methanol to the obtained solution. The average particle size was 60 nm and Tg was −37 ° C.

〈合成例2〉
15.0gのメタクリル酸2-エチルヘキシル、0.450gのエチレングリコールジメタクリレート、2.18gのドデシル硫酸ナトリウム、120gの水及び13.5gのエタノールを混合し、1時間撹拌させることによりモノマーを乳化させ、0.204gの過硫酸カリウムを添加した以外は、合成例1と同様の手法により、ポリマー粒子Bを得た。平均粒径は58nm、Tgは-10℃であった。
<Synthesis example 2>
15.0 g of 2-ethylhexyl methacrylate, 0.450 g of ethylene glycol dimethacrylate, 2.18 g of sodium dodecyl sulfate, 120 g of water and 13.5 g of ethanol are mixed and stirred for 1 hour to emulsify the monomer. , 0.204 g of potassium persulfate was added, and polymer particles B were obtained by the same method as in Synthesis Example 1. The average particle size was 58 nm and the Tg was −10 ° C.

〈合成例3〉
15.0gのメタクリル酸n-ドデシル、0.351gのエチレングリコールジメタクリレート、1.70gのドデシル硫酸ナトリウム、120gの水及び13.5gのエタノールを混合し、1時間撹拌させることによりモノマーを乳化させ、0.159gの過硫酸カリウムを添加した以外は、合成例1と同様の手法により、ポリマー粒子Cを得た。平均粒径は62nm、Tgは-65℃であった。
<Synthesis Example 3>
15.0 g of n-dodecyl methacrylate, 0.351 g of ethylene glycol dimethacrylate, 1.70 g of sodium dodecyl sulfate, 120 g of water and 13.5 g of ethanol are mixed and stirred for 1 hour to emulsify the monomer. , 0.159 g of potassium persulfate was added, and polymer particles C were obtained by the same method as in Synthesis Example 1. The average particle size was 62 nm and the Tg was −65 ° C.

〈処理例1〉
上記合成例1で得られたポリマー粒子Aを、sp値が9.1であるテトラヒドロフラン(THF)溶媒中に浸漬させることにより、溶媒中に再分散させた後、メタノールを添加することにより、再凝固させ、ポリマー粒子1を得た。
<Processing example 1>
The polymer particles A obtained in Synthesis Example 1 are redispersed in a solvent by immersing them in a tetrahydrofuran (THF) solvent having an sp value of 9.1, and then redispersed by adding methanol. It was solidified to obtain polymer particles 1.

〈処理例2〉
テトラヒドロフランに代えて、sp値が9.9であるアセトンを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子2を得た。
<Processing example 2>
Polymer particles 2 were obtained by redispersion and recoagulation according to Treatment Example 1 except that acetone having an sp value of 9.9 was used instead of tetrahydrofuran.

〈処理例3〉
テトラヒドロフランに代えて、sp値が8.9であるトルエンを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子3を得た。
<Processing example 3>
Polymer particles 3 were obtained by redispersion and recoagulation according to Treatment Example 1 except that toluene having an sp value of 8.9 was used instead of tetrahydrofuran.

〈処理例4〉
テトラヒドロフランに代えて、sp値が7.3であるn-ヘキサンを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子4を得た。
<Processing example 4>
Polymer particles 4 were obtained by redispersion and recoagulation according to Treatment Example 1 except that n-hexane having an sp value of 7.3 was used instead of tetrahydrofuran.

〈処理例5〉
テトラヒドロフランに代えて、sp値が7.4であるジエチルエーテルを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子5を得た。
<Processing example 5>
Polymer particles 5 were obtained by redispersion and recoagulation according to Treatment Example 1 except that diethyl ether having an sp value of 7.4 was used instead of tetrahydrofuran.

〈処理例6〉
テトラヒドロフランに代えて、sp値が11.5であるイソプロピルアルコールを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子6を得た。
<Processing example 6>
Polymer particles 6 were obtained by redispersion and recoagulation according to Treatment Example 1 except that isopropyl alcohol having an sp value of 11.5 was used instead of tetrahydrofuran.

〈処理例7〉
テトラヒドロフランに代えて、sp値が12.7であるエタノールを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子7を得た。
<Processing example 7>
Polymer particles 7 were obtained by redispersion and recoagulation according to Treatment Example 1 except that ethanol having an sp value of 12.7 was used instead of tetrahydrofuran.

〈処理例8〉
ポリマー粒子Aに代えて、ポリマー粒子Bを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子8を得た。
<Processing example 8>
The polymer particles 8 were obtained by redispersion and recoagulation according to Treatment Example 1 except that the polymer particles B were used instead of the polymer particles A.

〈処理例9〉
ポリマー粒子Aに代えて、ポリマー粒子Cを用いた以外は処理例1に準じて、再分散及び再凝固処理を施し、ポリマー粒子9を得た。
<Processing example 9>
The polymer particles 9 were obtained by redispersion and recoagulation according to Treatment Example 1 except that the polymer particles C were used instead of the polymer particles A.

ポリマー粒子1~9について、再分散性及び再凝固性を評価し、ポリマー粒子A~C及びポリマー粒子1~9について、不純物量を測定し、結果を表1に示した。評価方法及び測定方法は、以下に示す通りである。なお、再凝固処理後のポリマー粒子の平均粒径及びTgは、処理前と変わらないと推測できるため、測定しなかった。 The redispersibility and recoagulability of the polymer particles 1 to 9 were evaluated, the amount of impurities was measured for the polymer particles A to C and the polymer particles 1 to 9, and the results are shown in Table 1. The evaluation method and the measurement method are as shown below. The average particle size and Tg of the polymer particles after the recoagulation treatment were not measured because it can be estimated that they are the same as those before the treatment.

・再分散性:ポリマー粒子が溶媒中に再分散されるかを目視にて確認し、良好に分散されるものは「○」とし、再分散しないものは「×」とした。 -Redispersity: It was visually confirmed whether the polymer particles were redispersed in the solvent, and those that were well dispersed were marked with "○" and those that were not redispersed were marked with "x".

・再凝固性:ポリマーが再凝固されるかを目視にて確認し、再凝固されるものは「○」、再凝固されないものは「×」とした。 -Re-coagulation: It was visually confirmed whether the polymer was re-coagulated, and those that were re-coagulated were marked with "○" and those that were not re-coagulated were marked with "x".

・不純物量([Na+K]):得られたポリマー粒子0.1gに硝酸5mlを加え、マイクロ波により分解し、蒸留水により50mlに希釈、測定溶液とした。パーキンエルマー(株)製「Оptima8300」を用いて、誘電結合プラズマ発光分析(ICP-OES)を行い、ナトリウム濃度、及びカリウム濃度を測定し、その合計値を求めた。 -Amount of impurities ([Na + + K + ]): 5 ml of nitric acid was added to 0.1 g of the obtained polymer particles, decomposed by microwave, and diluted to 50 ml with distilled water to prepare a measurement solution. Inductively coupled plasma emission spectrometry (ICP-OES) was performed using "Optima 8300" manufactured by PerkinElmer Co., Ltd., and the sodium concentration and the potassium concentration were measured, and the total value was obtained.

Figure 0007025201000007
Figure 0007025201000007

ラボミキサーを使用し、下記表2に示す配合(質量部)に従って、まず、第一混合段階で、ジエン系ゴム成分に対し硫黄及び加硫促進剤を除く他の配合剤を添加し混練した(排出温度=160℃)。次いで、得られた混練物に、最終混合段階で、硫黄と加硫促進剤を添加し混練して(排出温度=90℃)、ゴム組成物を調製した。表2中の各成分の詳細は、以下の通りである。 Using a lab mixer, first, in the first mixing step, other compounding agents other than sulfur and vulcanization accelerator were added to the diene-based rubber component and kneaded according to the compounding (part by mass) shown in Table 2 below (). Discharge temperature = 160 ° C). Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product in the final mixing step and kneaded (discharge temperature = 90 ° C.) to prepare a rubber composition. The details of each component in Table 2 are as follows.

・変性SBR:JSR(株)製「HPR350」
・BR:宇部興産(株)製「BR150B」
・シリカ:東ソー・シリカ(株)製「ニップシールAQ」
・シランカップリング剤:ビス(3-トリエトキシシリルプロピル)テトラスルフィド、エボニックジャパン(株)製「Si69」
・ポリマー粒子A~C:上記合成例1~3でそれぞれ得られたポリマー粒子
・ポリマー粒子1~9:上記処理例1~9でそれぞれ得られたポリマー粒子
・亜鉛華:三井金属鉱業(株)製「亜鉛華1種」
・老化防止剤:大内新興化学工業(株)製「ノクラック6C」
・ステアリン酸:花王(株)製「ルナックS-20」
・硫黄:細井化学工業(株)製「ゴム用粉末硫黄150メッシュ」
・加硫促進剤:大内新興化学工業(株)製「ノクセラーCZ」
・2次加硫促進剤:大内新興化学工業(株)製「ノクセラーD」
-Denatured SBR: "HPR350" manufactured by JSR Corporation
・ BR: "BR150B" manufactured by Ube Industries, Ltd.
・ Silica: "Nip Seal AQ" manufactured by Tosoh Silica Co., Ltd.
-Silane coupling agent: Bis (3-triethoxysilylpropyl) tetrasulfide, "Si69" manufactured by Evonik Japan Co., Ltd.
-Polymer particles A to C: Polymer particles obtained in the above synthesis examples 1 to 3, respectively-Polymer particles 1 to 9: Polymer particles obtained in the above treatment examples 1 to 9, respectively-Zinc oxide: Mitsui Metal Mining Co., Ltd. Made by "Zinc Oxide 1"
・ Anti-aging agent: "Nocrack 6C" manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
-Stearic acid: "Lunac S-20" manufactured by Kao Corporation
・ Sulfur: "Powdered sulfur 150 mesh for rubber" manufactured by Hosoi Chemical Industry Co., Ltd.
・ Vulcanization accelerator: "Noxeller CZ" manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
-Secondary vulcanization accelerator: "Noxeller D" manufactured by Ouchi Shinko Chemical Industry Co., Ltd.

得られた各ゴム組成物について、160℃×20分で加硫して所定形状の試験片を作製し、得られた試験片を用いて、動的粘弾性試験を行って0℃及び60℃でのtanδを測定した。 Each of the obtained rubber compositions was vulcanized at 160 ° C. for 20 minutes to prepare a test piece having a predetermined shape, and a dynamic viscoelasticity test was performed using the obtained test piece at 0 ° C. and 60 ° C. The tan δ was measured at.

・ウエットグリップ性能:UBM社製レオスペクトロメーターE4000を用いて、周波数10Hz、静歪み10%、動歪み2%、温度0℃の条件で損失係数tanδを測定し、比較例1の値を100とした指数で表示した。指数が大きいほど、tanδが大きく、ウエットグリップ性能に優れることを示す。 Wet grip performance: Using the UBM Leospectometer E4000, the loss coefficient tan δ was measured under the conditions of frequency 10 Hz, static distortion 10%, dynamic distortion 2%, and temperature 0 ° C., and the value of Comparative Example 1 was set to 100. It is displayed by the index. The larger the index, the larger the tan δ, indicating that the wet grip performance is excellent.

・低燃費性:温度を60℃に変え、その他は0℃でのtanδと同様にしてtanδ測定し、比較例1の値を100とした指数で表示した。指数が小さいほど、発熱しにくく、タイヤでの転がり抵抗が小さくて転がり抵抗性能(即ち、低燃費性)に優れることを示す。 -Fuel efficiency: The temperature was changed to 60 ° C., and tanδ was measured in the same manner as tanδ at 0 ° C., and the value of Comparative Example 1 was set to 100 and displayed as an index. The smaller the index, the less likely it is that heat will be generated, the smaller the rolling resistance of the tire, and the better the rolling resistance performance (that is, fuel efficiency).

Figure 0007025201000008
Figure 0007025201000008

結果は、表2に示す通りであり、実施例1~5は、比較例2~8との対比より、優れたウエットグリップ性能を維持しつつ、低燃費性が向上したことがわかる。 The results are as shown in Table 2, and it can be seen that in Examples 1 to 5, fuel efficiency was improved while maintaining excellent wet grip performance as compared with Comparative Examples 2 to 8.

ポリマー粒子A~Cを含有する比較例2,7,8は、比較例1との対比より、低燃費性の向上効果が不十分、又は低燃費性が悪化したことがわかる。 It can be seen that Comparative Examples 2, 7 and 8 containing the polymer particles A to C had insufficient effect of improving fuel efficiency or deteriorated fuel efficiency as compared with Comparative Example 1.

本発明のタイヤ用ゴム組成物は、乗用車、ライトトラック・バス等の各種タイヤ用ゴム組成物に用いることができる。

The rubber composition for tires of the present invention can be used for various rubber compositions for tires such as passenger cars, light trucks and buses.

Claims (3)

ジエン系ゴムからなるゴム成分100質量部に対して、式(1)で表されるアルキル(メタ)アクリレート単位を構成単位として有し、ナトリウム濃度及びカリウム濃度の合計量が2000ppm以下であるポリマー粒子を1~100質量部含有し、
前記ポリマー粒子中のナトリウム又はカリウムが、脂肪酸塩又は過硫酸塩として存在する、タイヤ用ゴム組成物。
Figure 0007025201000009
式中、Rは水素原子又はメチル基であり、同一分子中のRは同一でも異なっていてもよく、Rは炭素数4~18のアルキル基であり、同一分子中のRは同一でも異なっていてもよい。
Polymer particles having an alkyl (meth) acrylate unit represented by the formula (1) as a constituent unit with respect to 100 parts by mass of a rubber component made of a diene rubber, and the total amount of sodium concentration and potassium concentration is 2000 ppm or less. Contains 1 to 100 parts by mass ,
A rubber composition for a tire in which sodium or potassium in the polymer particles is present as a fatty acid salt or a persulfate .
Figure 0007025201000009
In the formula, R 1 is a hydrogen atom or a methyl group, R 1 in the same molecule may be the same or different, R 2 is an alkyl group having 4 to 18 carbon atoms, and R 2 in the same molecule is. It may be the same or different.
前記ポリマー粒子のガラス転移温度が、-70~0℃である、請求項1に記載のタイヤ用ゴム組成物。 The rubber composition for a tire according to claim 1, wherein the polymer particles have a glass transition temperature of −70 to 0 ° C. 請求項1又は2に記載のタイヤ用ゴム組成物を用いて作製された、空気入りタイヤ。
A pneumatic tire produced by using the rubber composition for a tire according to claim 1 or 2 .
JP2017248082A 2017-12-25 2017-12-25 Rubber composition for tires and pneumatic tires using them Active JP7025201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248082A JP7025201B2 (en) 2017-12-25 2017-12-25 Rubber composition for tires and pneumatic tires using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248082A JP7025201B2 (en) 2017-12-25 2017-12-25 Rubber composition for tires and pneumatic tires using them

Publications (2)

Publication Number Publication Date
JP2019112559A JP2019112559A (en) 2019-07-11
JP7025201B2 true JP7025201B2 (en) 2022-02-24

Family

ID=67223055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248082A Active JP7025201B2 (en) 2017-12-25 2017-12-25 Rubber composition for tires and pneumatic tires using them

Country Status (1)

Country Link
JP (1) JP7025201B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155965A1 (en) 2014-04-08 2015-10-15 東洋ゴム工業株式会社 Rubber composition and pneumatic tire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155965A1 (en) 2014-04-08 2015-10-15 東洋ゴム工業株式会社 Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JP2019112559A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP5617040B2 (en) Rubber composition and tire
CN108473721B (en) Rubber composition and pneumatic tire
JP6719366B2 (en) Rubber composition and pneumatic tire
JP5248082B2 (en) Rubber composition for pneumatic tire
JP6625879B2 (en) Rubber composition and pneumatic tire
JP6826876B2 (en) Rubber composition and pneumatic tire
JP7025201B2 (en) Rubber composition for tires and pneumatic tires using them
JP6943754B2 (en) Rubber composition for tires and pneumatic tires using it
JP6959848B2 (en) Rubber composition for tires and pneumatic tires using it
JP6742203B2 (en) Rubber composition and pneumatic tire
JP6826877B2 (en) Rubber composition and pneumatic tire
JP6804961B2 (en) Rubber composition and pneumatic tire
JP7365913B2 (en) Rubber composition and pneumatic tire using the same
JP7365876B2 (en) Rubber composition and pneumatic tire using the same
JP7365877B2 (en) Rubber composition and pneumatic tire using the same
JP6826875B2 (en) Rubber composition and pneumatic tire
JP7405597B2 (en) Polymer particles and their manufacturing method, rubber compositions and tires
JP7405598B2 (en) Polymer particles, rubber compositions and tires
JP7129289B2 (en) Rubber composition and pneumatic tire
JP2022087685A (en) Rubber composition, and pneumatic tire using the same
JP6981870B2 (en) Method for manufacturing polymer particles
JP2023177126A (en) Rubber composition, and pneumatic tire including the same
JP2023177127A (en) Rubber composition, and pneumatic tire including the same
JP7129319B2 (en) Rubber composition and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220210

R150 Certificate of patent or registration of utility model

Ref document number: 7025201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150