JP7014695B2 - Conductive materials, molded products and electronic components - Google Patents
Conductive materials, molded products and electronic components Download PDFInfo
- Publication number
- JP7014695B2 JP7014695B2 JP2018196983A JP2018196983A JP7014695B2 JP 7014695 B2 JP7014695 B2 JP 7014695B2 JP 2018196983 A JP2018196983 A JP 2018196983A JP 2018196983 A JP2018196983 A JP 2018196983A JP 7014695 B2 JP7014695 B2 JP 7014695B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive material
- plating
- plating layer
- resin
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims description 99
- 238000007747 plating Methods 0.000 claims description 110
- 239000011347 resin Substances 0.000 claims description 61
- 229920005989 resin Polymers 0.000 claims description 61
- 239000000463 material Substances 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 9
- 230000003746 surface roughness Effects 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 5
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 5
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 229910001020 Au alloy Inorganic materials 0.000 claims description 4
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 4
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000003353 gold alloy Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 52
- 238000012360 testing method Methods 0.000 description 16
- 238000005530 etching Methods 0.000 description 9
- 239000007769 metal material Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TXRHHNYLWVQULI-UHFFFAOYSA-L nickel(2+);disulfamate;tetrahydrate Chemical compound O.O.O.O.[Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O TXRHHNYLWVQULI-UHFFFAOYSA-L 0.000 description 2
- 235000011962 puddings Nutrition 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- WIEZTXFTOIBIOC-UHFFFAOYSA-L azane;dichloropalladium Chemical compound N.N.Cl[Pd]Cl WIEZTXFTOIBIOC-UHFFFAOYSA-L 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- LAIZPRYFQUWUBN-UHFFFAOYSA-L nickel chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ni+2] LAIZPRYFQUWUBN-UHFFFAOYSA-L 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- NRTDAKURTMLAFN-UHFFFAOYSA-N potassium;gold(3+);tetracyanide Chemical compound [K+].[Au+3].N#[C-].N#[C-].N#[C-].N#[C-] NRTDAKURTMLAFN-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/615—Microstructure of the layers, e.g. mixed structure
- C25D5/617—Crystalline layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49579—Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
- H01L23/49582—Metallic layers on lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/50—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroplating Methods And Accessories (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Lead Frames For Integrated Circuits (AREA)
- Laminated Bodies (AREA)
Description
本発明は、導電性材料、成型品及び電子部品に関する。 The present invention relates to conductive materials, molded products and electronic components.
近年、金属と樹脂との密着性の改善要望が増加している。例えば、リードフレーム、バズバーモジュール等のような金属製の電子部品を衝撃、温度、湿度等の要因から守るために、当該電子部品の表面を樹脂で固める樹脂成型、樹脂封止、または、モールド成型等を施すことがある。このような場合、使用中に樹脂が剥離しないように当該電子部品の金属表面と樹脂とが優れた密着力で密着されている必要がある。特に、車載向けについては過酷な環境下にあるエンジンルーム周りでの電子化が進むことで、より一層の密着性の向上が求められている。 In recent years, there has been an increasing demand for improving the adhesion between metal and resin. For example, in order to protect metal electronic components such as lead frames and buzz bar modules from factors such as impact, temperature, and humidity, resin molding, resin encapsulation, or molding is performed by solidifying the surface of the electronic components with resin. It may be molded. In such a case, it is necessary that the metal surface of the electronic component and the resin are in close contact with each other with excellent adhesion so that the resin does not peel off during use. In particular, for in-vehicle use, further improvement in adhesion is required due to the progress of digitization around the engine room in a harsh environment.
金属と樹脂との密着性の向上を図った公知技術として特許文献1~3には、樹脂封止型半導体装置におけるリードフレームとモールド樹脂との密着性を高めるために、リードフレームのメッキ表面を粗化する技術が提案されている。 As a known technique for improving the adhesion between the metal and the resin, Patent Documents 1 to 3 describe the plated surface of the lead frame in order to improve the adhesion between the lead frame and the mold resin in the resin-sealed semiconductor device. A roughening technique has been proposed.
また、最近の公知技術として特許文献4には、金属と樹脂との密着性の向上を図るために比表面積及び表層の酸化膜厚に着目した技術が提案されている。 Further, as a recently known technique, Patent Document 4 proposes a technique focusing on the specific surface area and the oxide film thickness of the surface layer in order to improve the adhesion between the metal and the resin.
従来、高温高湿試験において例えばJEDEC-LEVEL1等をクリアすることが求められてきたが、近年では自動車の電子化等によって、さらに過酷な環境下、例えばヒートサイクル試験等において耐久性を有することが要求されており、従来の技術では必ずしも特性が十分とはいえない状況が散見されている。 Conventionally, it has been required to clear, for example, JEDEC-LEVEL1 in a high temperature and high humidity test, but in recent years, due to the digitization of automobiles, it is possible to have durability in a harsher environment such as a heat cycle test. There are some situations where the characteristics are not always sufficient with the conventional technology.
本発明は上記の課題を解決するためになされたものであり、過酷な環境下においても優れた樹脂密着性を示す導電性材料を提供する。 The present invention has been made to solve the above problems, and provides a conductive material that exhibits excellent resin adhesion even in a harsh environment.
本発明者らは、鋭意検討の結果、樹脂を成型するまたは樹脂で封止する表面を金属で構成し、当該表面を所定の形態に制御することで、当該課題を解決し得る導電性材料が得られることを見出した。 As a result of diligent studies, the present inventors have found a conductive material that can solve the problem by forming the surface of the resin to be molded or sealed with the metal with a metal and controlling the surface to a predetermined form. I found that I could get it.
以上の知見を基礎として完成した本発明は一実施形態において、表面に樹脂を成型する、または、表面を樹脂で封止する導電性材料であって、
前記表面が金属で構成され、下記(1)及び(2)の条件を満たす導電性材料である。
(1)算術平均面粗さ高さSaが0.25~0.4μm、
(2)山の頂点密度Spdが1mm2あたり250万個以上。
The present invention completed based on the above findings is, in one embodiment, a conductive material in which a resin is molded on the surface or the surface is sealed with the resin.
The surface is made of metal and is a conductive material satisfying the following conditions (1) and (2).
(1) Arithmetic mean surface roughness height Sa is 0.25 to 0.4 μm,
(2) The peak density Spd of the mountain is 2.5 million or more per 1 mm 2 .
本発明の導電性材料は更に別の一実施形態において、前記表面の最大面粗さ高さSzが3.5~6.5μmである。 In still another embodiment, the conductive material of the present invention has a maximum surface roughness height Sz of 3.5 to 6.5 μm.
本発明の導電性材料は更に別の一実施形態において、前記導電性材料が基材と前記基材上に形成されためっき層とを含み、前記表面が前記めっき層である。 In still another embodiment, the conductive material of the present invention includes a base material and a plating layer formed on the base material, and the surface thereof is the plating layer.
本発明の導電性材料は更に別の一実施形態において、前記基材が、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかで構成されている。 In still another embodiment of the conductive material of the present invention, the base material is made of any one of copper, a copper alloy, aluminum, an aluminum alloy, iron and an iron alloy.
本発明の導電性材料は更に別の一実施形態において、前記めっき層が1種以上のめっき層で構成されている。 In still another embodiment, the conductive material of the present invention is composed of one or more types of plating layers.
本発明の導電性材料は更に別の一実施形態において、前記めっき層は前記基材上に形成された第1めっき層を有し、前記第1めっき層が銅、銅合金、ニッケル及びニッケル合金のいずれかで構成されている。 In still another embodiment, the conductive material of the present invention has a first plating layer formed on the substrate, and the first plating layer is a copper, copper alloy, nickel and nickel alloy. It is composed of any of.
本発明の導電性材料は更に別の一実施形態において、前記めっき層は前記第1めっき層上に形成された第2めっき層を有し、前記第2めっき層がパラジウム、パラジウム合金、金及び金合金のいずれかで構成されている。 In still another embodiment, the conductive material of the present invention has a second plating layer formed on the first plating layer, and the second plating layer is palladium, a palladium alloy, gold and the like. It is composed of any of the gold alloys.
本発明の導電性材料は更に別の一実施形態において、前記1種以上のめっき層で構成された前記めっき層の厚みの総和が1~7μmである。 In still another embodiment, the conductive material of the present invention has a total thickness of 1 to 7 μm of the plating layer composed of the one or more types of plating layers.
本発明の導電性材料は更に別の一実施形態において、前記(1)及び(2)の条件を満たす表面を部分的に有する。 In still another embodiment, the conductive material of the present invention partially has a surface satisfying the above conditions (1) and (2).
本発明は更に別の一実施形態において、前記表面に樹脂が成型された、または、前記表面が樹脂で封止された本発明の導電性材料を備えた成型品である。 In still another embodiment, the present invention is a molded product provided with the conductive material of the present invention, wherein the surface is molded with a resin or the surface is sealed with a resin.
本発明は更に別の一実施形態において、本発明の導電性材料を備えた電子部品である。 The present invention is, in yet another embodiment, an electronic component comprising the conductive material of the present invention.
本発明によれば、過酷な環境下においても優れた樹脂密着性を示す導電性材料を提供することができる。 According to the present invention, it is possible to provide a conductive material that exhibits excellent resin adhesion even in a harsh environment.
<導電性材料>
本発明の実施形態に係る導電性材料は、表面に樹脂を成型する、または、表面を樹脂で封止する導電性材料であって、表面が金属で構成され、下記(1)及び(2)の条件を満たす。
(1)算術平均面粗さ高さSaが0.25~0.4μm、
(2)山の頂点密度Spdが1mm2あたり250万個以上。
<Conductive material>
The conductive material according to the embodiment of the present invention is a conductive material in which a resin is molded on the surface or the surface is sealed with a resin, the surface of which is made of metal, and the following (1) and (2). Satisfy the conditions.
(1) Arithmetic mean surface roughness height Sa is 0.25 to 0.4 μm,
(2) The peak density Spd of the mountain is 2.5 million or more per 1 mm 2 .
従来、金属と樹脂との密着性について、金属の線粗さ(Rz,Ra)を制御していたものの、より過酷な環境下で使用される電子部品での樹脂との密着性を制御するパラメータとしては不十分である。これに対し、詳細は後述するが、本発明では面における粗さとして、国際標準化機構ISO25178-2:2012に規定されるSa、Spdを導入することにより、従来よりも良好に樹脂との密着性を制御することができるようになった。 Conventionally, regarding the adhesion between metal and resin, the line roughness (Rz, Ra) of the metal was controlled, but the parameter that controls the adhesion with resin in electronic parts used in more harsh environments. Is not enough. On the other hand, although the details will be described later, in the present invention, by introducing Sa and Spd specified in the International Organization for Standardization ISO25178-2: 2012 as the roughness on the surface, the adhesion to the resin is better than before. Can now be controlled.
本発明の実施形態に係る導電性材料は少なくとも表面が金属で構成されていればよいため、詳細は後述するが、1種類の金属材料で形成してもよく、基材と表面の金属層とに分けて形成してもよい。 Since the conductive material according to the embodiment of the present invention may be formed of one kind of metal material, the details may be described later because at least the surface thereof may be made of metal. It may be formed separately into.
本発明の実施形態に係る導電性材料の表面の算術平均面粗さ高さSaは0.25~0.4μmに制御されている。導電性材料の表面のSaが0.25μm未満であると表面の粗化不足によりアンカー効果が不十分となって、樹脂との密着性が低下する。導電性材料の表面のSaが0.4μm超であると、導電性材料の表面の粗化されて生じた先端部分が破断しやすくなる。導電性材料の表面のSaは、0.27~0.38μmであるのが好ましく、0.3~0.35μmであるのがより好ましい。 The arithmetic mean surface roughness height Sa of the surface of the conductive material according to the embodiment of the present invention is controlled to 0.25 to 0.4 μm. If the Sa of the surface of the conductive material is less than 0.25 μm, the anchor effect becomes insufficient due to insufficient roughening of the surface, and the adhesion to the resin is lowered. When Sa on the surface of the conductive material is more than 0.4 μm, the tip portion formed by roughening the surface of the conductive material is likely to break. The Sa on the surface of the conductive material is preferably 0.27 to 0.38 μm, more preferably 0.3 to 0.35 μm.
本発明の実施形態に係る導電性材料の金属表面と樹脂とが密着するとき、樹脂の方が金属より熱膨張係数が大きいため、樹脂の熱膨張を金属アンカーによって抑制する必要がある。本発明では当該樹脂との熱膨張係数差の問題に対し、導電性材料の表面の山の頂点密度Spdが1mm2あたり250万個以上に制御されている。導電性材料の表面のSpdが1mm2あたり250万個未満であると、当該アンカー効果が不十分となり、熱膨張係数差に負けて、樹脂との剥離が生じるおそれがある。また、導電性材料の表面のSpdは大きすぎると、アンカー密度が高くなりすぎて、アンカー間の隙間に樹脂が入り込みにくくなり、却って密着強度が低下するおそれが生じる場合がある。このような観点から、導電性材料の表面のSpdは、前記Saとの組合せで効果を発揮するため特に上限は設けないが、1mm2あたり550万個以下であるのが好ましい。また、導電性材料の表面のSpdは、1mm2あたり260~600万個であるのが好ましく、1mm2あたり300~550万個であるのがより好ましい。 When the metal surface of the conductive material according to the embodiment of the present invention is in close contact with the resin, the coefficient of thermal expansion of the resin is larger than that of the metal, so that it is necessary to suppress the thermal expansion of the resin by a metal anchor. In the present invention, the peak density Spd of the surface of the conductive material is controlled to 2.5 million or more per 1 mm 2 to solve the problem of the difference in the coefficient of thermal expansion from the resin. If the Spd on the surface of the conductive material is less than 2.5 million pieces per 1 mm 2 , the anchor effect becomes insufficient, and the difference in the coefficient of thermal expansion may be lost and peeling from the resin may occur. Further, if the Spd on the surface of the conductive material is too large, the anchor density becomes too high, and it becomes difficult for the resin to enter the gap between the anchors, which may lead to a decrease in the adhesion strength. From such a viewpoint, the Spd on the surface of the conductive material is not particularly limited because it exerts an effect in combination with the Sa, but it is preferably 5.5 million or less per 1 mm 2 . Further, the Spd on the surface of the conductive material is preferably 2.6 to 6 million pieces per 1 mm 2 , and more preferably 3 to 5.5 million pieces per 1 mm 2 .
本発明の実施形態に係る導電性材料の表面の最大面粗さ高さSz(ISO25178-2:2012)は3.5~6.5μmであるのが好ましい。導電性材料の表面のSzが3.5μm未満であると表面の粗化不足によりアンカー効果が不十分となって、樹脂との密着性が低下する。導電性材料の表面のSzが6.5μm超であると、導電性材料の表面の高低間の隙間に樹脂が入り込みにくくなるおそれがある。導電性材料の表面のSaは、3.7~6.0μmであるのが好ましく、4.5~5.0μmであるのがより好ましい。 The maximum surface roughness height Sz (ISO25178-2: 2012) of the surface of the conductive material according to the embodiment of the present invention is preferably 3.5 to 6.5 μm. If the Sz on the surface of the conductive material is less than 3.5 μm, the anchor effect becomes insufficient due to insufficient roughening of the surface, and the adhesion to the resin is lowered. If the Sz on the surface of the conductive material is more than 6.5 μm, it may be difficult for the resin to enter the gap between the heights of the surface of the conductive material. The Sa on the surface of the conductive material is preferably 3.7 to 6.0 μm, more preferably 4.5 to 5.0 μm.
本発明の実施形態に係る導電性材料は、表面が少なくとも金属であればよく、特に限定されないが、以下の3パターンの形態(実施形態1~3)を含む。 The conductive material according to the embodiment of the present invention is not particularly limited as long as the surface is at least metal, and includes the following three patterns (embodiments 1 to 3).
・導電性材料の構成に係る実施形態1
図1は、本発明の実施形態1に係る導電性材料10の構成を示す断面模式図である。導電性材料10は金属材料で構成されており、上記(1)及び(2)の条件を満たす表面11を有する。図1の点線枠12部分の拡大図が右図に示されている。なお図1の右図は導電性材料10の粗化表面の一例を示すものであり、このような形状の粗化表面に限定されるものではない。このような構成によれば、導電性材料を構成する材料が1種類の金属材料であるため、製造効率または製造コストが良好となる。導電性材料10の金属材料としては、例えば銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金、ニッケル、ニッケル合金、パラジウム、パラジウム合金、金及び金合金のいずれかで構成することができる。また、金属と樹脂とでは、樹脂の方が熱膨張係数が大きい。このとき、樹脂に密着する金属(導電性材料10の金属材料)の熱伝導率が高ければ、樹脂に籠っている熱を効率的に逃がすことができる。その結果、樹脂の熱膨張を抑えることができる。このような観点から、導電性材料10の金属材料の熱伝導率に比例する導電率は、10%IACS以上であることが好ましい。
Embodiment 1 relating to the composition of a conductive material
FIG. 1 is a schematic cross-sectional view showing the structure of the
導電性材料10は、所定の金属材料を準備し、当該金属材料の表面に、エッチング処理、ブラスト処理、または、凹凸面を有する圧延ロールによる転写処理を施すことで、上記(1)及び(2)の条件を満たす表面11を形成することができる。エッチング処理としては、例えば、メック株式会社製 CZ8101(製品名)や三菱ガス化学株式会社製 CPE900(製品名)、さらにメック株式会社製 NR1870(製品名)など、各社より市販されているエッチング液を使用して所定の形状に制御することができる。なおエッチング方法としては、浸漬式、スプレー式、電解式など、さまざまな手法を採用することができる。
For the
・導電性材料の構成に係る実施形態2
図2は、本発明の実施形態2に係る導電性材料20の構成を示す断面模式図である。導電性材料20は、基材22と基材22上に形成されためっき層23とを含み、上記(1)及び(2)の条件を満たす表面21がめっき層23である。図2の点線枠24部分の拡大図が右図に示されている。なお図2の右図は導電性材料20の粗化表面の一例を示すものであり、このような形状の粗化表面に限定されるものではない。このような構成によれば、上記(1)及び(2)の条件を満たす表面をめっき層で制御することができ、当該表面(表層、すなわちめっき層)の厚みを容易に制御することができる。
Embodiment 2 relating to the composition of a conductive material
FIG. 2 is a schematic cross-sectional view showing the structure of the
基材22は樹脂で構成されていてもよく、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかの金属で構成されていてもよい。また、基材22がめっき層23の金属と同種類の金属で構成されていてもよい。めっき層23は銅、銅合金、ニッケル及びニッケル合金のいずれかで構成されていてもよい。また、樹脂に間接的に密着する金属(導電性材料20の基材22)の熱伝導率が高ければ、樹脂に籠っている熱を効率的に逃がすことができる。その結果、樹脂の熱膨張を抑えることができる。このような観点から、導電性材料20の基材22の熱伝導率に比例する導電率は、10%IACS以上であることが好ましい。
The
導電性材料20は、所定の材料で形成された基材22を準備し、当該基材22上に所定のめっき条件でめっき層23を形成する。このとき、めっき浴の組成、めっき温度、電流密度、めっき厚等のめっき条件を制御することで、上記(1)及び(2)の条件を満たす表面21を形成することができる。
As the
・導電性材料の構成に係る実施形態3
図3は、本発明の実施形態3に係る導電性材料30の構成を示す断面模式図である。導電性材料30は、基材32と2種のめっき層(第1めっき層33、第2めっき層34)とで構成されている。第1めっき層33は基材32上に形成され、第2めっき層34は第1めっき層33上に形成されており、上記(1)及び(2)の条件を満たす表面31が第2めっき層34である。図3の点線枠35部分の拡大図が右図に示されている。なお図3の右図は導電性材料30の粗化表面の一例を示すものであり、このような形状の粗化表面に限定されるものではない。このような構成によれば、上記(1)及び(2)の条件を満たす表面をめっき層で制御することができ、当該表面(表層、すなわちめっき層)の厚みを容易に制御することができる。また、複層のめっき層を良好なコスト及び効率で製造することができる。
Embodiment 3 relating to the composition of a conductive material
FIG. 3 is a schematic cross-sectional view showing the configuration of the
基材32は樹脂で構成されていてもよく、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかの金属で構成されていてもよい。また、基材32が第1めっき層33の金属と同種類の金属で構成されていてもよい。第1めっき層33は銅、銅合金、ニッケル及びニッケル合金のいずれかで構成されていてもよい。第2めっき層はパラジウム、パラジウム合金、金及び金合金のいずれかで構成されていてもよい。導電性材料30が例えばリードフレームの場合、第2めっき層の表面(導電性材料30の最表面)をこのように貴金属めっきにすることによって、半田付け性を高め、且つ、低接触抵抗を実現できる。また、樹脂に間接的に密着する金属(導電性材料30の基材32)の熱伝導率が高ければ、樹脂に籠っている熱を効率的に逃がすことができる。その結果、樹脂の熱膨張を抑えることができる。このような観点から、導電性材料30の基材32の熱伝導率に比例する導電率は、10%IACS以上であることが好ましい。
The base material 32 may be made of a resin, or may be made of any metal such as copper, a copper alloy, aluminum, an aluminum alloy, iron and an iron alloy. Further, the base material 32 may be made of the same type of metal as the metal of the first plating layer 33. The first plating layer 33 may be made of any one of copper, a copper alloy, nickel and a nickel alloy. The second plating layer may be composed of any of palladium, a palladium alloy, gold and a gold alloy. When the
導電性材料30は、所定の材料で形成された基材32を準備し、当該基材32上に所定のめっき条件で第1めっき層33を形成し、続いて第2めっき層34を形成する。この時、めっき浴の組成、めっき温度、電流密度、めっき厚等のめっき条件を制御することで、上記(1)及び(2)の条件を満たす表面31を形成することができる。例えば、めっき浴の組成、めっき温度、電流密度、めっき厚等のめっき条件を制御することで上記(1)及び(2)の条件を満たす第1めっき層33を形成し、このような第1めっき層33上に薄い第2めっき層34を形成する。これにより、第2めっき層34の表面プロフィールは、第1めっき層33の表面プロフィールと略等しくなる。このようにして、上記(1)及び(2)の条件を満たす表面31を形成してもよい。
As the
めっき層は、実施形態2または3のように1層または2層で形成してもよく、3層または4層以上で形成してもよい。また、実施形態1~3の導電性材料10、20、30の最表面は、上記(1)及び(2)の条件を満たしている限り、リン酸エステル系の処理液等による処理を行うことで、めっきの酸化防止剤に係る機能を付与してもよい。また必要に応じて、めっきのピンホールによる腐食を抑制するための封孔処理を付与してもよい。
The plating layer may be formed of one layer or two layers as in the second or third embodiment, or may be formed of three layers or four or more layers. Further, the outermost surfaces of the
本発明の実施形態に係る導電性材料は、1種以上のめっき層で構成されためっき層の厚みの総和が1~7μmであるのが好ましい。めっき層の厚みの総和が1μm未満であると、表面の粗化の形状を十分に形成できず、また基材成分の拡散が進行しやすくなるおそれがある。めっき層の厚みの総和が7μm超であると、プレス加工時や曲げ加工時に導電性材料のめっき層にクラックが生じやすくなるおそれがある。 In the conductive material according to the embodiment of the present invention, the total thickness of the plating layers composed of one or more types of plating layers is preferably 1 to 7 μm. If the total thickness of the plating layers is less than 1 μm, the surface roughened shape may not be sufficiently formed, and the diffusion of the base material components may easily proceed. If the total thickness of the plating layers is more than 7 μm, cracks may easily occur in the plating layer of the conductive material during press working or bending.
本発明の実施形態に係る導電性材料は、上記(1)及び(2)の条件を満たす表面を部分的に有してもよい。導電性材料の表面全体が上記(1)及び(2)の条件を満たす場合に対し、当該表面が部分的に設けられていることで、樹脂の密着が不要な部分については容易に樹脂を除去することができる。一例として、当該表面が部分的に設けられていることで、目的箇所から漏れた樹脂(バリ)を容易に除去することができる。また、上記(1)及び(2)の条件を満たすような粗化形状を有する表面は、ワイヤボンディング性が悪化するという特性を有するため、当該表面を部分的に設けることによって、ワイヤボンディング性の悪化を抑制できる。当該部分的に設けられた表面は、ストライプ状であってもよく、スポット状、さらにはリング状などであってもよい。 The conductive material according to the embodiment of the present invention may partially have a surface satisfying the above conditions (1) and (2). When the entire surface of the conductive material satisfies the above conditions (1) and (2), the resin is easily removed from the portion where the resin does not need to be adhered because the surface is partially provided. can do. As an example, since the surface is partially provided, the resin (burr) leaked from the target location can be easily removed. Further, since a surface having a roughened shape that satisfies the above conditions (1) and (2) has a characteristic that the wire bonding property is deteriorated, the wire bonding property can be improved by partially providing the surface. Deterioration can be suppressed. The partially provided surface may be striped, spot-shaped, or even ring-shaped.
<導電性材料の用途>
本発明の実施形態に係る導電性材料の用途は特に限定しないが、樹脂との良好な密着性が必要な電子部品の材料として用いることができ、特に、衝撃、温度、湿度等の要因から守るために表面を樹脂で固める樹脂成型、樹脂封止、または、モールド成型等を施す電子部品の材料として用いることができる。当該電子部品としては例えば、リードフレーム、バズバーモジュール等のような金属製の電子部品が挙げられる。本発明の実施形態に係る導電性材料は、このような表面に樹脂成型、樹脂封止、または、モールド成型が施された成型品としても、導電性材料の表面と樹脂との密着性が非常に良好であるため、例えば車載向けのエンジンルーム周りという過酷な環境下で使用される電子部品の材料として用いた場合でも、良好な耐久性が期待できる。
<Use of conductive materials>
The use of the conductive material according to the embodiment of the present invention is not particularly limited, but it can be used as a material for electronic parts that require good adhesion to a resin, and is particularly protected from factors such as impact, temperature, and humidity. Therefore, it can be used as a material for electronic parts to be subjected to resin molding, resin encapsulation, mold molding, etc., in which the surface is hardened with a resin. Examples of the electronic component include metal electronic components such as lead frames and buzz bar modules. The conductive material according to the embodiment of the present invention has a very high adhesion between the surface of the conductive material and the resin even if it is a molded product in which the surface is resin-molded, resin-sealed, or molded. Therefore, good durability can be expected even when used as a material for electronic parts used in a harsh environment such as around an in-vehicle engine room.
以下、本発明の実施例と比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Hereinafter, both examples and comparative examples of the present invention will be shown, but these are provided for a better understanding of the present invention, and are not intended to limit the present invention.
<導電性材料の作製>
実施例1~14、17~21、従来例1、比較例1~2として、表1に示すように基材の表面に表層めっきを形成した。また、実施例15~16、従来例2として、表1に示すように基材表面に下地めっき及び表層めっきを形成し、導電性材料の試験片を作製した。各基材の面積は50mm×50mm、板厚は0.4mmとした。なお、表1に示す基材の種類は以下の通りである。
C11000:99.9%Cu
C10200:99.9%Cu
C19400:Cu-2.2%Fe-0.15%Zn-0.03%P
C70250:Cu-3%Ni-0.65%Si-0.15%Mg
A5052:Al-2.5Mg-0.4%Fe-0.25%Si-0.25%Cr-0.1%Cu-0.1%Mn-0.1%Zn
42アロイ:Fe-42%Ni
<Manufacturing of conductive material>
As Examples 1 to 14, 17 to 21, Conventional Example 1 and Comparative Examples 1 to 2, surface plating was formed on the surface of the base material as shown in Table 1. Further, as Examples 15 to 16 and Conventional Example 2, as shown in Table 1, base plating and surface plating were formed on the surface of the base material to prepare a test piece of a conductive material. The area of each base material was 50 mm × 50 mm, and the plate thickness was 0.4 mm. The types of base materials shown in Table 1 are as follows.
C11000: 99.9% Cu
C10200: 99.9% Cu
C19400: Cu-2.2% Fe-0.15% Zn-0.03% P
C70250: Cu-3% Ni-0.65% Si-0.15% Mg
A5052: Al-2.5Mg-0.4% Fe-0.25% Si-0.25% Cr-0.1% Cu-0.1% Mn-0.1% Zn
42 Alloy: Fe-42% Ni
各めっきを行う前の前処理条件としては、A5052以外の各基材については、水酸化ナトリウムが50g/Lのアルカリ脱脂浴にてカソード電解脱脂を5A/dm2で60秒実施後、10%硫酸およびフッ化アンモニウム50g/Lの酸洗溶液にて30秒酸洗浄し、各めっき工程へ移行した。 As a pretreatment condition before each plating, for each substrate other than A5052, after performing cathode electrolytic degreasing at 5 A / dm 2 for 60 seconds in an alkaline degreasing bath containing 50 g / L of sodium hydroxide, 10%. It was pickled with a pickling solution of sulfuric acid and ammonium fluoride 50 g / L for 30 seconds, and the process proceeded to each plating step.
またA5052においては、前記のアルカリ脱脂浴にてカソード電解脱脂を5A/dm2で10秒実施後、10%硫酸およびフッ化アンモニウム50g/Lの酸洗溶液にて10秒酸洗浄した後、水酸化ナトリウムを50g/L、酸化亜鉛を5g/L、塩化第二鉄を2g/L、ロッシェル塩を50g/Lをそれぞれ含有した亜鉛置換浴で、浴温25℃、処理時間10秒処理して亜鉛置換を実施し、もう一度前記の酸洗浄と亜鉛置換を繰り返して各めっき工程へ移行した。 In A5052, cathode electrolytic degreasing was carried out at 5 A / dm 2 for 10 seconds in the alkaline degreasing bath, then pickled with a pickling solution of 10% sulfuric acid and 50 g / L of ammonium fluoride for 10 seconds, and then water. In a zinc replacement bath containing 50 g / L of sodium oxide, 5 g / L of zinc oxide, 2 g / L of ferric chloride, and 50 g / L of Rochelle salt, the bath temperature was 25 ° C. and the treatment time was 10 seconds. Zinc substitution was carried out, and the above-mentioned pickling and zinc substitution were repeated once again to move to each plating step.
各めっき処理は、電気めっきにて、めっき浴の組成、めっき液の温度、電流密度及びめっき時間を調製することで行った。表2に実施例1~5でそれぞれ用いた電気めっき条件を示す。めっき浴成分は、Niメタル分130g/L、ホウ酸25g/LでpH3.3であった。ここで、Niメタル分は、Ni塩としてスルファミン酸ニッケル四水和物及び塩化Niで構成されている。より具体的には、スルファミン酸ニッケル四水和物:Ni(NH2SO3)2・4H2O=294g/L(約300g/L)、Ni量で53.5g/L、塩化ニッケル六水和物:NiCl2・6H2O=約310g/L、Ni量で76.5g/Lである。 Each plating treatment was performed by electroplating by adjusting the composition of the plating bath, the temperature of the plating solution, the current density and the plating time. Table 2 shows the electroplating conditions used in Examples 1 to 5, respectively. The plating bath components had a Ni metal content of 130 g / L, boric acid of 25 g / L, and a pH of 3.3. Here, the Ni metal component is composed of nickel sulfamate tetrahydrate and Ni chloride as Ni salts. More specifically, nickel sulfamate tetrahydrate: Ni (NH 2 SO 3 ) 2.4H 2 O = 294 g / L (about 300 g / L), Ni amount 53.5 g / L, nickel chloride hexahydrate Japanese product: NiCl 2.6H 2 O = about 310 g / L, and the amount of Ni is 76.5 g / L.
実施例6~14及び17~20、従来例1、比較例1~2の表層めっき、及び、実施例15~16の下地めっき及び表層めっきは、上記実施例1~5の表2で用いためっき条件に基づき、めっき浴の組成、めっき液の温度、電流密度及びめっき時間、さらに撹拌の程度をそれぞれ調整することで形成した。このとき、導電性材料の試験片の表面のSa、Spd、Szが所望の数値となるように、上記実施例1~5の表2で用いためっき条件と後述の評価結果を参考にした。また、各めっき条件の調整は以下の知見に基づいて行った。
膜厚:膜厚が増加すると、結晶粒が膜厚方向に優先的に成長する(水平方向よりも膜厚方向への成長速度が速い)ため、Sa、Szは大きくなる。一方、Spdについては、隣り合った結晶が合体しやすくなるため、極大値を5μm位でとり、それ以上の膜厚は低下する傾向にある。
めっき液種類:めっき液中の塩素濃度、すなわち塩化Ni濃度を大きくすることで、結晶が尖りやすく、また表面の凹凸が大きくなるため、Sa、Sz、Spdがそれぞれ増大する。
めっき液温度:めっき浴の液温が高いと、結晶が等方的に成長し、結晶粒が大きくなりやすいため、Sa、Sz、Spdはそれぞれ増加する。一方で、60℃を超えると結晶粒粗大化が進行し、極大値を55℃近辺でとってやがて低下する。
電流密度:電流密度が高くなると、核生成数が多くなるため、膜厚が薄い場合と厚い場合に分けて考えられる。概ね3μm前後で差があり、3μm以下であれば電流密度が高いとSa、Szは微細析出が優先となり小さくなる傾向にある、Spdは各発生数が増えて突起の数が多くなるため大きくなる傾向にある。一方で、膜厚が厚いとSa、Szは上記膜厚上昇と同じ要因で増加し、他方で隣り合った結晶が合体してSpdが低下する傾向にある。
なお、従来例2は、特許文献3の実施例に基づき、以下の条件で導電性材料の試験片を作製した。具体的には、従来例2のNiめっきは、硫酸ニッケルを260g/L、塩化ニッケルを50g/L、ホウ酸を35g/L、pH4.5、浴温50℃、電流密度5A/dm2、めっき時間200秒の条件で作製した。
さらに実施例15、16および従来例2に記載のAuめっきについては、シアン化金カリウムを20g/L、クエン酸カリウムを50g/L、pH5、浴温60℃、電流密度1A/dm2で所定の膜厚になるようにめっき時間を調整し、またPdめっきにおいては、ジアンミンジクロロパラジウムをPd成分として20g/L、塩化アンモニウムを75g/L、pH9、浴温40℃、電流密度1.5A/dm2で所定の膜厚になるようにめっき時間を調整して作製した。従来例2のめっき厚は1μmとした。
なお、めっき厚の確認については、任意の5点について蛍光X線膜厚計(日立ハイテク社製 SFT9500)を使用し、コリメータ径0.2mm、各膜厚測定時間30秒での平均値について算出した。
The surface plating of Examples 6 to 14 and 17 to 20, Conventional Example 1 and Comparative Examples 1 to 2, and the base plating and surface plating of Examples 15 to 16 were used in Table 2 of Examples 1 to 5. It was formed by adjusting the composition of the plating bath, the temperature of the plating solution, the current density and the plating time, and the degree of stirring based on the plating conditions. At this time, the plating conditions used in Table 2 of Examples 1 to 5 and the evaluation results described later were referred to so that Sa, Spd, and Sz on the surface of the test piece of the conductive material had desired values. In addition, the adjustment of each plating condition was performed based on the following findings.
Film thickness: As the film thickness increases, the crystal grains grow preferentially in the film thickness direction (the growth rate in the film thickness direction is faster than in the horizontal direction), so that Sa and Sz increase. On the other hand, with respect to Spd, since adjacent crystals are likely to coalesce, a maximum value of about 5 μm is taken, and the film thickness beyond that tends to decrease.
Plating solution type: By increasing the chlorine concentration in the plating solution, that is, the Ni chloride concentration, the crystals tend to be sharpened and the surface irregularities become large, so that Sa, Sz, and Spd increase, respectively.
Plating liquid temperature: When the liquid temperature of the plating bath is high, the crystals grow isotropically and the crystal grains tend to become large, so that Sa, Sz, and Spd increase respectively. On the other hand, when the temperature exceeds 60 ° C, grain grain coarsening progresses, and the maximum value is eventually lowered at around 55 ° C.
Current density: As the current density increases, the number of nucleations increases, so it is possible to consider the case where the film thickness is thin and the case where the film thickness is thick. There is a difference at about 3 μm, and if the current density is 3 μm or less, Sa and Sz tend to be smaller due to the priority of fine precipitation, and Spd becomes larger because the number of each generation increases and the number of protrusions increases. There is a tendency. On the other hand, when the film thickness is thick, Sa and Sz tend to increase due to the same factor as the above-mentioned film thickness increase, and on the other hand, adjacent crystals tend to coalesce and Spd decreases.
In Conventional Example 2, a test piece of a conductive material was produced under the following conditions based on the examples of Patent Document 3. Specifically, in the Ni plating of Conventional Example 2, nickel sulfate is 260 g / L, nickel chloride is 50 g / L, boric acid is 35 g / L, pH 4.5, bath temperature is 50 ° C., and current density is 5 A / dm 2 . It was manufactured under the condition that the plating time was 200 seconds.
Further, for Au plating described in Examples 15 and 16 and Conventional Example 2, predetermined gold potassium cyanide is 20 g / L, potassium citrate is 50 g / L, pH 5, bath temperature is 60 ° C., and current density is 1 A / dm 2 . In Pd plating, 20 g / L of diamminedichloropalladium as a Pd component, 75 g / L of ammonium chloride, pH 9, bath temperature 40 ° C., current density 1.5 A / It was produced by adjusting the plating time so as to have a predetermined film thickness at dm 2 . The plating thickness of Conventional Example 2 was 1 μm.
To check the plating thickness, use a fluorescent X-ray film thickness meter (SFT9500 manufactured by Hitachi High-Tech) for any 5 points, and calculate the average value at a collimator diameter of 0.2 mm and each film thickness measurement time of 30 seconds. did.
実施例21については、実施例1と同じ条件で6μmのNiめっきを行った後、Niめっき厚を5μmとなるまで以下の条件にてエッチングした。
・エッチング条件
エッチング液:メック社製NR1870、エッチング液温:25℃、エッチング時間:30秒
For Example 21, 6 μm of Ni plating was performed under the same conditions as in Example 1, and then etching was performed under the following conditions until the Ni plating thickness became 5 μm.
・ Etching conditions Etching liquid: NR1870 manufactured by MEC, etching liquid temperature: 25 ° C, etching time: 30 seconds
<評価>
・表面のSa、Spd、Sz
導電性材料の試験片の表面のSa、Spd、Szは、キーエンス社製レーザー顕微鏡(VK-X150)を使用し、観察倍率1000倍、スポット径φ0.8mm、測定面積100μm×100μmで測定した。5回の測定(N5)の平均値を算出し、導電性材料の試験片の表面のSa、Spd、Szの値とした。
<Evaluation>
-Sa, Spd, Sz on the surface
The Sa, Spd, and Sz on the surface of the test piece of the conductive material were measured using a laser microscope (VK-X150) manufactured by KEYENCE Corporation with an observation magnification of 1000 times, a spot diameter of φ0.8 mm, and a measurement area of 100 μm × 100 μm. The average value of the five measurements (N5) was calculated and used as the Sa, Spd, and Sz values on the surface of the test piece of the conductive material.
・シェア強度(初期)
導電性材料の試験片の表面に樹脂成型したものをサンプルとして、プリンカップモールド試験にてシェア強度を測定した。試験条件は、樹脂:日立化成社製GE-7470LA樹脂、プリンカップ底面の面積:10mm2、樹脂成型時間:120秒、モールドキュア:175℃で8時間とし、10回のせん断力測定(N10)の平均値を算出し、シェア強度(初期)とした。シェアはデイジ社製 ボンドテスター(Series4000)にて、シェア速度100μm/秒にて測定した。評価基準は以下の通りとした。
◎:20kg以上
〇:15kg以上20kg未満
×:15kg未満
・ Share strength (initial)
The shear strength was measured by a pudding cup mold test using a resin-molded sample on the surface of a test piece of a conductive material as a sample. The test conditions were resin: GE-7470LA resin manufactured by Hitachi Kasei Co., Ltd., area of the bottom of the pudding cup: 10 mm 2 , resin molding time: 120 seconds, mold cure: 175 ° C. for 8 hours, and 10 shear force measurements (N10). The average value of was calculated and used as the share strength (initial). The share was measured with a bond tester (Series 4000) manufactured by Daige Co., Ltd. at a share speed of 100 μm / sec. The evaluation criteria are as follows.
◎: 20 kg or more 〇: 15 kg or more and less than 20 kg ×: less than 15 kg
・シェア強度(高温高湿試験)
また、上記のように作製したサンプルを、温度85℃、湿度85%の環境下で168時間放置した後、上記シェア強度を同様に測定した。評価基準は以下の通りとした。
◎:剥離無し
〇:剥離率20%未満
×:剥離率20%以上
当該剥離率は、超音波探傷による画像から、導電性材料の表面と樹脂とがどのような割合で剥離しているのかを計算して評価した。
・ Share strength (high temperature and high humidity test)
Further, the sample prepared as described above was left to stand in an environment of a temperature of 85 ° C. and a humidity of 85% for 168 hours, and then the share strength was measured in the same manner. The evaluation criteria are as follows.
◎: No peeling 〇: Peeling rate less than 20% ×: Peeling
・シェア強度(ヒートサイクル試験)
さらに、上記のように作製したサンプルを、125℃で30分間保持した後、-40℃で30分間保持することを1サイクルとして、これを500サイクル連続で繰り返した。その後、上記シェア強度を同様に測定した。評価基準は以下の通りとした。
◎:剥離無し
〇:剥離率10%未満
△:剥離率10%以上20%未満
×:剥離率20%以上
当該剥離率は、超音波探傷による画像から、導電性材料の表面と樹脂とがどのような割合で剥離しているのかを計算して評価した。
上記試験条件及び評価結果を表1、2に示す。
・ Share strength (heat cycle test)
Further, the sample prepared as described above was held at 125 ° C. for 30 minutes and then held at −40 ° C. for 30 minutes as one cycle, and this was repeated for 500 consecutive cycles. Then, the share strength was measured in the same manner. The evaluation criteria are as follows.
⊚: No peeling 〇: Peeling rate less than 10% △: Peeling
The above test conditions and evaluation results are shown in Tables 1 and 2.
実施例1~21は、いずれも導電性材料の表面が下記(1)及び(2)の条件を満たしたため、初期、高温高湿試験のいずれのシェア強度も非常に良好であり、ヒートサイクル試験のシェア強度は評価基準が△、〇、◎のいずれかであり、過酷な環境下においても優れた樹脂密着性を示すことがわかった。
(1)算術平均面粗さ高さSaが0.25~0.4μm、
(2)山の頂点密度Spdが1mm2あたり250万個以上
従来例1、2及び比較例1、2は、いずれも導電性材料の表面が上記(1)及び(2)の条件の少なくとも1つを満たさなかったため、少なくともヒートサイクル試験のシェア強度が不良であった。
In Examples 1 to 21, since the surface of the conductive material satisfied the following conditions (1) and (2), the share strengths of both the initial and high temperature and high humidity tests were very good, and the heat cycle test was performed. It was found that the share strength of No. 1 had an evaluation standard of △, 〇, or ◎, and showed excellent resin adhesion even in a harsh environment.
(1) Arithmetic mean surface roughness height Sa is 0.25 to 0.4 μm,
(2) The peak density Spd of the mountain is 2.5 million or more per 1 mm 2. In both Conventional Examples 1 and 2 and Comparative Examples 1 and 2, the surface of the conductive material is at least one of the conditions (1) and (2) above. At least the share strength of the heat cycle test was poor because it did not meet the above requirements.
10、20、30 導電性材料
11、21、31 表面
12、24、35 点線枠
22、32 基材
23 めっき層
33 第1めっき層
34 第2めっき層
10, 20, 30
Claims (11)
前記表面が金属で構成され、下記(1)及び(2)の条件を満たす導電性材料。
(1)算術平均面粗さ高さSaが0.25~0.4μm、
(2)山の頂点密度Spdが1mm2あたり250万個以上。 A conductive material that forms a resin on the surface or seals the surface with a resin.
A conductive material whose surface is made of metal and which satisfies the following conditions (1) and (2).
(1) Arithmetic mean surface roughness height Sa is 0.25 to 0.4 μm,
(2) The peak density Spd of the mountain is 2.5 million or more per 1 mm 2 .
前記表面が前記めっき層である請求項1または2に記載の導電性材料。 The conductive material comprises a substrate and a plating layer formed on the substrate.
The conductive material according to claim 1 or 2, wherein the surface is the plating layer.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196983A JP7014695B2 (en) | 2018-10-18 | 2018-10-18 | Conductive materials, molded products and electronic components |
PCT/JP2019/028332 WO2020079904A1 (en) | 2018-10-18 | 2019-07-18 | Electroconductive material, molded article, and electronic component |
KR1020217010425A KR102565186B1 (en) | 2018-10-18 | 2019-07-18 | Conductive materials, molded articles and electronic components |
CN201980064733.2A CN112912546B (en) | 2018-10-18 | 2019-07-18 | Conductive material, molded article, and electronic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196983A JP7014695B2 (en) | 2018-10-18 | 2018-10-18 | Conductive materials, molded products and electronic components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020063492A JP2020063492A (en) | 2020-04-23 |
JP7014695B2 true JP7014695B2 (en) | 2022-02-01 |
Family
ID=70283023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018196983A Active JP7014695B2 (en) | 2018-10-18 | 2018-10-18 | Conductive materials, molded products and electronic components |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7014695B2 (en) |
KR (1) | KR102565186B1 (en) |
CN (1) | CN112912546B (en) |
WO (1) | WO2020079904A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022045072A (en) * | 2020-09-08 | 2022-03-18 | 株式会社東芝 | Semiconductor device |
JP7608130B2 (en) | 2020-11-27 | 2025-01-06 | Jx金属株式会社 | Plating materials and electronic parts |
WO2024154741A1 (en) * | 2023-01-16 | 2024-07-25 | 東洋鋼鈑株式会社 | Nickel-plated metal material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339584A (en) | 2003-05-16 | 2004-12-02 | Mitsui High Tec Inc | Lead frame, and plating method therefor |
JP2010236058A (en) | 2009-03-31 | 2010-10-21 | Mitsui Mining & Smelting Co Ltd | Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate |
JP2012116126A (en) | 2010-12-01 | 2012-06-21 | Hitachi Ltd | Metal-resin composite structure, method for producing the same, busbar, module case and resin connector component |
JP2013111881A (en) | 2011-11-29 | 2013-06-10 | Polyplastics Co | Method of manufacturing metal component, and composite molding |
WO2017006739A1 (en) | 2015-07-03 | 2017-01-12 | 三井金属鉱業株式会社 | Roughened copper foil, copper-clad laminate and printed wiring board |
WO2018123708A1 (en) | 2016-12-27 | 2018-07-05 | 古河電気工業株式会社 | Lead frame member and method for manufacturing same, and semiconductor package |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3228789B2 (en) | 1992-07-11 | 2001-11-12 | 新光電気工業株式会社 | Method for manufacturing insert member for resin |
JPH09148508A (en) * | 1995-11-29 | 1997-06-06 | Nippon Denkai Kk | Lead frame for semiconductor device and plastic molded type semiconductor device using the same |
JPH1027873A (en) | 1996-07-11 | 1998-01-27 | Nippon Koujiyundo Kagaku Kk | Lead frame for semiconductor device |
JPH10265991A (en) * | 1997-03-24 | 1998-10-06 | Nikko Kinzoku Kk | Plating material excellent in resin adhesion |
JP2004263300A (en) * | 2003-02-12 | 2004-09-24 | Furukawa Techno Research Kk | Copper foil for fine pattern printed circuit and manufacturing method therefor |
TW200500199A (en) * | 2003-02-12 | 2005-01-01 | Furukawa Circuit Foil | Copper foil for fine patterned printed circuits and method of production of same |
US20050158574A1 (en) * | 2003-11-11 | 2005-07-21 | Furukawa Circuit Foil Co., Ltd. | Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier |
JP2006093559A (en) | 2004-09-27 | 2006-04-06 | Sumitomo Metal Mining Package Materials Co Ltd | Lead frame and its manufacturing method |
CN101274495B (en) * | 2007-03-30 | 2012-05-23 | 株式会社神户制钢所 | Resin-coated metal plate with excellent conductivity |
CN101981234B (en) * | 2008-03-31 | 2013-06-12 | Jx日矿日石金属株式会社 | Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance |
JP5333822B2 (en) * | 2008-06-23 | 2013-11-06 | 日立化成株式会社 | Conductive substrate for plating, conductor layer pattern using the same or method for producing substrate with conductor layer pattern, substrate with conductor layer pattern, and electromagnetic wave shielding member |
US9955583B2 (en) * | 2013-07-23 | 2018-04-24 | Jx Nippon Mining & Metals Corporation | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board |
JP2015028197A (en) * | 2013-07-30 | 2015-02-12 | 株式会社Shカッパープロダクツ | Roughened copper foil, copper-clad laminate sheet and printed wiring board |
CN105705307B (en) * | 2013-11-07 | 2018-06-12 | 旭硝子株式会社 | The manufacturing method of mold release film and semiconductor package body |
JP2017055044A (en) * | 2015-09-11 | 2017-03-16 | 古河電気工業株式会社 | Lead frame |
JP6789965B2 (en) * | 2015-11-05 | 2020-11-25 | 古河電気工業株式会社 | Lead frame material and its manufacturing method |
JPWO2017179447A1 (en) | 2016-04-12 | 2018-04-19 | 古河電気工業株式会社 | Lead frame material and manufacturing method thereof |
-
2018
- 2018-10-18 JP JP2018196983A patent/JP7014695B2/en active Active
-
2019
- 2019-07-18 WO PCT/JP2019/028332 patent/WO2020079904A1/en active Application Filing
- 2019-07-18 CN CN201980064733.2A patent/CN112912546B/en active Active
- 2019-07-18 KR KR1020217010425A patent/KR102565186B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339584A (en) | 2003-05-16 | 2004-12-02 | Mitsui High Tec Inc | Lead frame, and plating method therefor |
JP2010236058A (en) | 2009-03-31 | 2010-10-21 | Mitsui Mining & Smelting Co Ltd | Roughened copper foil, method for producing roughened copper foil, and copper-clad laminate |
JP2012116126A (en) | 2010-12-01 | 2012-06-21 | Hitachi Ltd | Metal-resin composite structure, method for producing the same, busbar, module case and resin connector component |
JP2013111881A (en) | 2011-11-29 | 2013-06-10 | Polyplastics Co | Method of manufacturing metal component, and composite molding |
WO2017006739A1 (en) | 2015-07-03 | 2017-01-12 | 三井金属鉱業株式会社 | Roughened copper foil, copper-clad laminate and printed wiring board |
WO2018123708A1 (en) | 2016-12-27 | 2018-07-05 | 古河電気工業株式会社 | Lead frame member and method for manufacturing same, and semiconductor package |
Also Published As
Publication number | Publication date |
---|---|
WO2020079904A1 (en) | 2020-04-23 |
CN112912546B (en) | 2024-01-12 |
JP2020063492A (en) | 2020-04-23 |
KR102565186B1 (en) | 2023-08-10 |
CN112912546A (en) | 2021-06-04 |
KR20210056400A (en) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7014695B2 (en) | Conductive materials, molded products and electronic components | |
CN108026657B (en) | Lead frame material and method for producing same | |
WO2009123144A1 (en) | Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance | |
TWI374950B (en) | ||
JP4197718B2 (en) | High strength copper alloy sheet with excellent oxide film adhesion | |
WO2007126011A1 (en) | TIN-PLATED Cu-Ni-Si ALLOY STRIP | |
US7488408B2 (en) | Tin-plated film and method for producing the same | |
JP6805217B2 (en) | Conductive materials, molded products and electronic components | |
JP2009235579A (en) | Lead frame | |
JPH10284667A (en) | Material for electric electronic device component having superior corrosion resistance and oxidation resistance | |
KR20170120547A (en) | Sn-PLATED MATERIAL FOR ELECTRONIC COMPONENT | |
JP5766318B2 (en) | Lead frame | |
JP2005105307A (en) | Reflow Sn-plated member, method for manufacturing the member, and component for electric and electronic equipment using the member | |
JP2022148743A (en) | Conductive material, molded article and electronic component | |
JP7608130B2 (en) | Plating materials and electronic parts | |
JP7366480B1 (en) | Lead frame material and its manufacturing method, and semiconductor package using lead frame material | |
JP6827150B1 (en) | Lead frame material and its manufacturing method, lead frame and electrical and electronic parts | |
JP6856342B2 (en) | Copper or copper alloy plate material and its manufacturing method, and terminals | |
JP2007009334A (en) | Lead frame | |
JPS59140342A (en) | Copper alloy for lead frame | |
JPH0987899A (en) | Production of copper alloy material for electronic apparatus | |
JPH02104654A (en) | Production of surface treated steel sheet for high-effeiciency lead frame excellent in corrosion resistance, plating suitability, and solderability | |
JPH0456117B2 (en) | ||
JPH07307426A (en) | Copper base string for electronic device part and its manufacturing method | |
JPS63105992A (en) | Surface treated steel sheet for lead frame having superior corrosion resistance, solderability and adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220120 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7014695 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |