JP7014674B2 - Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries - Google Patents
Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries Download PDFInfo
- Publication number
- JP7014674B2 JP7014674B2 JP2018097389A JP2018097389A JP7014674B2 JP 7014674 B2 JP7014674 B2 JP 7014674B2 JP 2018097389 A JP2018097389 A JP 2018097389A JP 2018097389 A JP2018097389 A JP 2018097389A JP 7014674 B2 JP7014674 B2 JP 7014674B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium
- active material
- electrode active
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 69
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 48
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 69
- 238000005259 measurement Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910014211 My O Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 238000010304 firing Methods 0.000 description 17
- 238000001179 sorption measurement Methods 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 150000002642 lithium compounds Chemical class 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- QWMFKVNJIYNWII-UHFFFAOYSA-N 5-bromo-2-(2,5-dimethylpyrrol-1-yl)pyridine Chemical compound CC1=CC=C(C)N1C1=CC=C(Br)C=N1 QWMFKVNJIYNWII-UHFFFAOYSA-N 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004147 desorption mass spectrometry Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- FGHSTPNOXKDLKU-UHFFFAOYSA-N nitric acid;hydrate Chemical compound O.O[N+]([O-])=O FGHSTPNOXKDLKU-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。 The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.
リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 A lithium-containing transition metal oxide is generally used as the positive electrode active material of a lithium ion battery. Specifically, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc. have improved characteristics (high capacity, cycle characteristics, storage characteristics, internal resistance reduction). , Rate characteristics) and these are being combined in order to improve safety. Lithium-ion batteries for large-scale applications such as in-vehicle use and road leveling are required to have characteristics different from those for conventional mobile phones and personal computers.
リチウムイオン電池の正極活物質の特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性の改善に関しては、例えば特許文献1に記載されているように種々のものが知られている。
Regarding the improvement of the characteristics (high capacity, cycle characteristics, storage characteristics, internal resistance reduction, rate characteristics) of the positive electrode active material of the lithium ion battery and the improvement of safety, for example, various things as described in
正極材の表面の残留アルカリや、正極に含まれる水分や水が取り込まれ反応した水酸基などは、電池を作製する際に電解液と反応してしまうため、電池に必要な電解液の量が欠乏状態となり、さらに当該反応の際にはガス発生を伴うこともあるため、電池特性の劣化につながる。また、電池内に水分が持ち込まれると粒子表面の形態が変化して、充放電時のLiの拡散を妨げるおそれがある。このため、当該水分は極力取り除く必要がある。 The residual alkali on the surface of the positive electrode material, the water contained in the positive electrode, and the hydroxyl group that reacts with the water taken in are reacted with the electrolytic solution when the battery is manufactured, so that the amount of the electrolytic solution required for the battery is insufficient. In addition, the reaction may be accompanied by gas generation, which leads to deterioration of battery characteristics. Further, when water is brought into the battery, the morphology of the particle surface may change, which may hinder the diffusion of Li during charging and discharging. Therefore, it is necessary to remove the water as much as possible.
一般的に、水分の吸着には物理吸着と化学吸着の2種類がある。リチウムイオン電池の正極活物質も同様に、水分が表面に吸着して、比較的弱いファンデルワールス力によって物理吸着している水分と、化学結合などにより粒子内に取り込まれて化学吸着している水分との2種類がある。このうち、特に物理吸着は、正極材表面で反応しているもので、これが多いと特性に悪影響を及ぼす。しかしながら、従来、正極活物質の水分量の制御について、当該吸着の種類にまで踏み込んで検討されておらず、正極活物質の水分量の制御手段及びそれによる電池特性については未だ改善の余地がある。 Generally, there are two types of water adsorption, physical adsorption and chemisorption. Similarly, in the positive electrode active material of a lithium ion battery, water is adsorbed on the surface, and the water physically adsorbed by a relatively weak van der Waals force is taken into the particles by chemical bonds and chemically adsorbed. There are two types, moisture. Of these, physical adsorption in particular reacts on the surface of the positive electrode material, and if it is too much, it adversely affects the characteristics. However, conventionally, the control of the water content of the positive electrode active material has not been studied in detail to the type of adsorption, and there is still room for improvement in the means for controlling the water content of the positive electrode active material and the battery characteristics thereof. ..
本発明は、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。 An object of the present invention is to provide a positive electrode active material for a lithium ion battery having good battery characteristics.
正極材中の水分量については、カールフィシャー水分計を用いて測定する手法が一般的である。しかしながら、カールフィシャー水分計では温度における積算水分量を出すために、どの温度領域までが物理吸着であるかが定かではない。また、カールフィシャー水分計による加熱温度測定領域は、常温から300℃の範囲までであり、それ以上の温度領域での測定が困難である。しかしながら、実際の水分、特に正極材の粒子内部に取り込まれた水分や反応している水分は、300℃程度の温度領域では取り除けない場合が多い。本発明者は、高温度測定領域まで測定可能なTPD-MS測定法を用いて、正極材の水分が物理吸着であるか、化学吸着であるかを明確に区別した上で、より電池特性に影響を与える方の水分の発生速度を制御することで、電池特性が良好な正極活物質が得られることを見出した。 The water content in the positive electrode material is generally measured using a Karl Fisher Moisture Meter. However, in the Karl Fischer Moisture Meter, it is not clear to which temperature range the physical adsorption occurs in order to obtain the integrated water content at the temperature. Further, the heating temperature measurement region by the Karl Fischer Moisture Meter is in the range of room temperature to 300 ° C., and it is difficult to measure in the temperature region higher than that. However, in many cases, the actual water content, particularly the water content taken into the particles of the positive electrode material and the water content reacting with the particles, cannot be removed in the temperature range of about 300 ° C. The present inventor clearly distinguishes whether the water content of the positive electrode material is physical adsorption or chemical adsorption by using the TPD-MS measurement method capable of measuring up to the high temperature measurement region, and further improves the battery characteristics. It has been found that a positive electrode active material having good battery characteristics can be obtained by controlling the generation rate of water that has an influence.
上記知見を基礎にして完成した本発明は一側面において、組成式:LixNi1-yMyO2+α
(前記式において、MはTi、V、Cr、Mn、Fe、Co、Cu、Al、Zn、Sn、Mg及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1である。)
で表され、TPD-MS測定で正極活物質を30mg採取して測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度が0.08wtppm/秒以下であり、260℃超500℃以下の領域でのH2O由来の水分の発生速度が0.32wtppm/秒以下であるリチウムイオン電池用正極活物質である。
The present invention completed on the basis of the above findings has one aspect: composition formula: Li x Ni 1- y My O 2 + α.
(In the above formula, M is one or more selected from Ti, V, Cr, Mn, Fe, Co, Cu, Al, Zn, Sn, Mg and Zr, and 0.9 ≦ x ≦ 1.2. Yes, 0 <y ≦ 0.7, −0.1 ≦ α ≦ 0.1.)
When 30 mg of the positive electrode active material was sampled and measured by TPD-MS measurement, the generation rate of water derived from H2O in the region of 25 ° C. or higher and 260 ° C. or lower was 0.08 wtppm / sec or less. It is a positive electrode active material for a lithium ion battery in which the generation rate of water derived from H2O in the region of more than 260 ° C. and 500 ° C. or lower is 0.32 wtppm / sec or less.
本発明に係るリチウムイオン電池用正極活物質は一実施形態において、TPD-MS測定で正極活物質を30mg採取して測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度の極大値Aと、260℃超500℃以下の領域でのH2O由来の水分の発生速度の極大値Bとの比A/Bが、1.2以上2.0以下である。 In one embodiment, the positive electrode active material for a lithium ion battery according to the present invention is H 2 O-derived water content in a region of 25 ° C. or higher and 260 ° C. or lower when 30 mg of the positive electrode active material is sampled and measured by TPD-MS measurement. The ratio A / B of the maximum value A of the generation rate of H 2 O to the maximum value B of the generation rate of water derived from H 2 O in the region of more than 260 ° C. and 500 ° C. or less is 1.2 or more and 2.0 or less. ..
本発明に係るリチウムイオン電池用正極活物質は別の一実施形態において、TPD-MS測定で正極活物質を30mg採取して測定したとき、260℃超500℃以下の領域での水分量が500ppm以下である。 In another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has a water content of 500 ppm in a region of more than 260 ° C. and 500 ° C. or lower when 30 mg of the positive electrode active material is sampled and measured by TPD-MS measurement. It is as follows.
本発明に係るリチウムイオン電池用正極活物質は更に別の一実施形態において、TPD-MS測定で正極活物質を30mg採取して測定したとき、25℃以上260℃以下の領域での水分量が250ppm以下である。 In still another embodiment, the positive electrode active material for a lithium ion battery according to the present invention has a water content in the region of 25 ° C. or higher and 260 ° C. or lower when 30 mg of the positive electrode active material is sampled and measured by TPD-MS measurement. It is 250 ppm or less.
本発明に係るリチウムイオン電池用正極活物質は一実施形態において、前記Mが、Mn及びCoから選択される1種以上である。 In one embodiment, the positive electrode active material for a lithium ion battery according to the present invention is one or more in which M is selected from Mn and Co.
本発明は、別の一側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。 In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.
本発明は、更に別の一側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。 In yet another aspect, the present invention is a lithium ion battery using a positive electrode for a lithium ion battery according to the present invention.
本発明によれば、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。 According to the present invention, it is possible to provide a positive electrode active material for a lithium ion battery having good battery characteristics.
(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
組成式:LixNi1-yMyO2+α
(前記式において、Mは金属であり、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1である。)
で表される。
また、Mは、好ましくはTi、V、Cr、Mn、Fe、Co、Cu、Al、Zn、Sn、Mg及びZrから選択される1種以上であり、より好ましくはMn及びCoから選択される1種以上である。
(Composition of positive electrode active material for lithium-ion batteries)
As the material of the positive electrode active material for a lithium ion battery of the present invention, a compound useful as a positive electrode active material for a general positive electrode for a lithium ion battery can be widely used, and in particular, lithium cobalt oxide (LiCoO 2 ), It is preferable to use a lithium-containing transition metal oxide such as lithium nickel oxide (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ). The positive electrode active material for a lithium ion battery of the present invention produced using such a material is
Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is a metal, 0.9 ≦ x ≦ 1.2, 0 <y ≦ 0.7, and −0.1 ≦ α ≦ 0.1.)
It is represented by.
Further, M is preferably one or more selected from Ti, V, Cr, Mn, Fe, Co, Cu, Al, Zn, Sn, Mg and Zr, and more preferably selected from Mn and Co. One or more.
本発明のリチウムイオン電池用正極活物質は、TPD-MS測定で正極活物質を測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度が0.08wtppm/秒以下であり、260℃超500℃以下の領域でのH2O由来の水分の発生速度が0.32wtppm/秒以下である。TPD-MS(加熱発生ガス分析:Temperature Programmed Desorption-Mass Spectrometry)測定装置は、温度コントローラ付き特殊加熱装置に質量分析計(MS)が直結されて構成されており、決められた昇温プログラムに従い加熱された試料から発生する気体の濃度変化を温度または時間の関数として追跡する。オンラインでの分析であるため、一度の測定で水分などの無機成分や有機成分を同時検出することが可能である。また、捕集されたトラップ物をGC/MS分析することにより有機成分の定性が可能である。TPD-MS測定によって、昇温の際の水分を検知し、温度依存性を調べることができる。本発明では、室温としての25℃から水分が蒸発するであろう500℃までの昇温領域において、低温領域(25℃以上260℃以下)、及び、より電池特性に影響を与える高温領域(260℃超500℃以下)でそれぞれ水分の発生速度を制御している。 In the positive electrode active material for a lithium ion battery of the present invention, when the positive electrode active material is measured by TPD-MS measurement, the generation rate of water derived from H2O in the region of 25 ° C. or higher and 260 ° C. or lower is 0.08 wtppm / sec. The rate of generation of water derived from H2O in the region of more than 260 ° C. and 500 ° C. or lower is 0.32 wtppm / sec or less. The TPD-MS (Temperature Programmed Desorption-Mass Spectrometry) measuring device is configured by directly connecting a mass spectrometer (MS) to a special heating device with a temperature controller, and heats according to a determined temperature rise program. The change in concentration of gas generated from the sample is tracked as a function of temperature or time. Since it is an online analysis, it is possible to simultaneously detect inorganic and organic components such as water with a single measurement. In addition, the organic component can be qualitatively analyzed by GC / MS analysis of the collected trap material. By TPD-MS measurement, it is possible to detect the water content at the time of temperature rise and investigate the temperature dependence. In the present invention, in the temperature rise region from 25 ° C. as the room temperature to 500 ° C. where the water will evaporate, a low temperature region (25 ° C. or higher and 260 ° C. or lower) and a high temperature region (260 ° C.) that further affects the battery characteristics. The rate of water generation is controlled at temperatures above ° C and below 500 ° C.
本発明では、このように、高温度測定領域まで測定可能なTPD-MS測定法を用いて、正極材の水分が物理吸着であるか、化学吸着であるかを明確に区別した上で、より電池特性に影響を与える方の水分の発生速度を制御することで、良好な電池特性を示す正極材を実現している。具体的には、物理吸着は、吸着物質(ここでは水)と個体の、ファンデルワールス力などの弱い相互作用による吸着である。一方、化学吸着は、吸着物質(ここでは水)と個体との比較的強固な化学結合による吸着である。このため、TPD-MS測定によれば、当該物理吸着している水分と、化学吸着している水分との除去温度が分かれることまで確認でき、水分の発生速度曲線において、低温領域で水分の発生速度のピークを有する山と、高温領域で水分の発生速度のピークを有する山とに分かれて観察される。本発明では、TPD-MS測定で正極活物質を測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度が0.08wtppm/秒以下であり、260℃超500℃以下の領域でのH2O由来の水分の発生速度が0.32wtppm/秒以下となるように制御しており、これによって、より電池特性に影響を与える高温領域でようやく除去できる水分量を制御することができ、その結果、当該正極材を用いた電池特性が良好となる。 In the present invention, the TPD-MS measurement method capable of measuring up to the high temperature measurement region is used to clearly distinguish whether the water content of the positive electrode material is physical adsorption or chemisorption, and then further. By controlling the rate of water generation that affects the battery characteristics, a positive electrode material that exhibits good battery characteristics is realized. Specifically, physical adsorption is adsorption by a weak interaction such as van der Waals force between an adsorbed substance (here, water) and an individual. On the other hand, chemical adsorption is adsorption by a relatively strong chemical bond between an adsorbed substance (here, water) and an individual. Therefore, according to the TPD-MS measurement, it can be confirmed that the removal temperature of the physically adsorbed water and the chemically adsorbed water is separated, and the water is generated in the low temperature region in the water generation rate curve. It is observed separately as a mountain having a peak of velocity and a mountain having a peak of moisture generation rate in a high temperature region. In the present invention, when the positive electrode active material is measured by TPD-MS measurement, the generation rate of water derived from H2O in the region of 25 ° C. or higher and 260 ° C. or lower is 0.08 wtppm / sec or less, and is over 260 ° C. and 500 ° C. The rate of generation of water derived from H 2 O in the region below ° C is controlled to 0.32 wtppm / sec or less, which allows the amount of water that can be finally removed in the high temperature region, which further affects the battery characteristics. It can be controlled, and as a result, the battery characteristics using the positive electrode material are improved.
また、TPD-MS測定で正極活物質を測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度の極大値Aと、260℃超500℃以下の領域でのH2O由来の水分の発生速度の極大値Bとの比A/Bが、1.2以上2.0以下であるのが好ましい。このような構成によれば、より電池特性に影響を与える高温領域でようやく除去できる水分量を制御することができ、その結果、当該正極材を用いた電池特性がより良好となる。当該比A/Bは、1.2以上1.4以下がより好ましい。 Further, when the positive electrode active material was measured by TPD-MS measurement, the maximum value A of the generation rate of water derived from H 2 O in the region of 25 ° C. or higher and 260 ° C. or lower and the maximum value A in the region of more than 260 ° C. and 500 ° C. or lower. It is preferable that the ratio A / B of the generation rate of water derived from H 2 O to the maximum value B is 1.2 or more and 2.0 or less. According to such a configuration, it is possible to control the amount of water that can be finally removed in the high temperature region that further affects the battery characteristics, and as a result, the battery characteristics using the positive electrode material become better. The ratio A / B is more preferably 1.2 or more and 1.4 or less.
また、TPD-MS測定で正極活物質を測定したとき、260℃超500℃以下の領域での水分量が500ppm以下であるのが好ましい。ここで、当該水分量は、260℃超500℃以下の領域におけるTPD-MS測定の積算水分量である。このような構成によれば、より電池特性に影響を与える高温領域でようやく除去できる水分量を制御することができ、その結果、当該正極材を用いた電池特性がより良好となる。260℃超500℃以下の領域での水分量は400ppm以下がより好ましく、300ppm以下がさらにより好ましい。 Further, when the positive electrode active material is measured by TPD-MS measurement, it is preferable that the water content in the region of more than 260 ° C. and 500 ° C. or lower is 500 ppm or less. Here, the water content is the integrated water content measured by TPD-MS in the region of more than 260 ° C. and 500 ° C. or lower. According to such a configuration, it is possible to control the amount of water that can be finally removed in the high temperature region that further affects the battery characteristics, and as a result, the battery characteristics using the positive electrode material become better. The water content in the region above 260 ° C. and 500 ° C. or lower is more preferably 400 ppm or less, and even more preferably 300 ppm or less.
TPD-MS測定で正極活物質を測定したとき、25℃以上260℃以下の領域での水分量が250ppm以下であるのが好ましい。ここで、当該水分量は、260℃超500℃以下の領域におけるTPD-MS測定の積算水分量である。このように正極材の水分量を抑制することで、当該正極材を用いた電池特性がより良好となる。25℃以上260℃以下の領域での水分量は、150ppm以下がより好ましく、100ppm以下がさらにより好ましい。 When the positive electrode active material is measured by TPD-MS measurement, the water content in the region of 25 ° C. or higher and 260 ° C. or lower is preferably 250 ppm or less. Here, the water content is the integrated water content measured by TPD-MS in the region of more than 260 ° C. and 500 ° C. or lower. By suppressing the water content of the positive electrode material in this way, the battery characteristics using the positive electrode material become better. The water content in the region of 25 ° C. or higher and 260 ° C. or lower is more preferably 150 ppm or less, and even more preferably 100 ppm or less.
(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Positive electrode for lithium-ion battery and configuration of lithium-ion battery using it)
The positive electrode for a lithium ion battery according to the embodiment of the present invention is, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above configuration, a conductive auxiliary agent, and a binder from an aluminum foil or the like. It has a structure provided on one side or both sides of the current collector. Further, the lithium ion battery according to the embodiment of the present invention includes a positive electrode for a lithium ion battery having such a configuration.
(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、Ni及び金属Mである。金属Mとしては、好ましくはTi、V、Cr、Mn、Fe、Co、Cu、Al、Zn、Sn、Mg及びZrから選択される1種以上であり、より好ましくはMn及びCoから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属は、所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Manufacturing method of positive electrode active material for lithium-ion batteries)
Next, a method for producing a positive electrode active material for a lithium ion battery according to an embodiment of the present invention will be described in detail.
First, a metal salt solution is prepared. The metals are Ni and Metal M. The metal M is preferably one or more selected from Ti, V, Cr, Mn, Fe, Co, Cu, Al, Zn, Sn, Mg and Zr, and more preferably selected from Mn and Co. One or more. The metal salt is a sulfate, a chloride, a nitrate, an acetate or the like, and a nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the cleaning step can be omitted, and the nitrate functions as an oxidizing agent to promote the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.
次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, lithium carbonate is suspended in pure water, and then a metal salt solution of the above metal is added to prepare a metal carbonate slurry. At this time, fine lithium-containing carbonates are deposited in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered. When the lithium compound reacts as a lithium raw material during heat treatment, such as nitrate and acetate, it can be used as a firing precursor by filtering and drying as it is without washing.
Next, the filtered lithium-containing carbonate is dried to obtain a powder of a lithium salt composite (a precursor for a lithium ion battery positive electrode material).
次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。本発明のH2O由来の水分の発生速度及び水分量の制御は、当該焼成工程における昇温レート、保持温度(最高温度)及び最高温度から300℃までの降温レートの調整によって行うことができる。焼成工程における昇温レートは150~170℃/h、保持温度(最高温度)は850~1000℃、最高温度から300℃までの降温レートは75~90℃/hが好ましい。焼成は、酸素雰囲気下及び大気雰囲気下で所定時間加熱保持することにより行う。また、101~202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。焼成後、室温まで冷却した後、解砕してリチウムイオン二次電池正極材の粉末を得る。 Next, a firing container having a capacity of a predetermined size is prepared, and the firing container is filled with the powder of the precursor for the positive electrode material of the lithium ion battery. Next, the firing container filled with the powder of the precursor for the positive electrode material of the lithium ion battery is transferred to the firing furnace and fired. The rate of water generation and the amount of water derived from H 2 O of the present invention can be controlled by adjusting the temperature rise rate, the holding temperature (maximum temperature), and the temperature decrease rate from the maximum temperature to 300 ° C. in the firing step. .. The temperature rise rate in the firing step is preferably 150 to 170 ° C./h, the holding temperature (maximum temperature) is 850 to 1000 ° C., and the temperature lowering rate from the maximum temperature to 300 ° C. is preferably 75 to 90 ° C./h. Firing is performed by heating and holding for a predetermined time in an oxygen atmosphere and an air atmosphere. Further, it is preferable to perform calcination under a pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases. After firing, it is cooled to room temperature and then crushed to obtain a powder of a positive electrode material of a lithium ion secondary battery.
以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。 Hereinafter, examples for better understanding the present invention and its advantages are provided, but the present invention is not limited to these examples.
(実施例1~10)
まず、所定の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、焼成雰囲気を大気とし、表1に記載の焼成条件(昇温レート、最高温度×保持時間、最高温度から300℃までの降温度レート)にて焼成した。続いて室温まで冷却した後、露点を11℃に管理した状態で解砕してリチウムイオン二次電池正極材の粉末を得た。
(Examples 1 to 10)
First, a predetermined amount of lithium carbonate was suspended in 3.2 liters of pure water, and then 4.8 liters of a metal salt solution was added. Here, the metal salt solution was adjusted so that the nitrate hydrate of each metal had the composition ratio shown in Table 1 and the total number of moles of the metal was 14 mol.
By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (precursor for a positive electrode material of a lithium ion battery).
Next, a firing container was prepared, and the firing container was filled with a lithium-containing carbonate. Next, the firing container was fired under the firing conditions shown in Table 1 (heating rate, maximum temperature × holding time, temperature decreasing rate from maximum temperature to 300 ° C.) with the firing atmosphere as the atmosphere. Subsequently, after cooling to room temperature, the powder was crushed while the dew point was controlled at 11 ° C. to obtain a powder of a positive electrode material of a lithium ion secondary battery.
(比較例1~3)
比較例1~3として、原料の各金属を表1に示すような組成とし、焼成条件を表1に示す条件とした以外は、実施例1と同様の処理を行った。
(Comparative Examples 1 to 3)
As Comparative Examples 1 to 3, the same treatment as in Example 1 was carried out except that each metal of the raw material had a composition as shown in Table 1 and the firing conditions were the conditions shown in Table 1.
(評価)
-正極材組成の評価-
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP-OES)で測定し、各金属の組成比(モル比)を算出した。各金属の組成比は、表1に記載の通りであることを確認した。また、酸素含有量はLECO法で測定しαを算出した。
(evaluation)
-Evaluation of positive electrode material composition-
The metal content in each positive electrode material was measured by an inductively coupled plasma emission spectrophotometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. It was confirmed that the composition ratio of each metal was as shown in Table 1. The oxygen content was measured by the LECO method and α was calculated.
-水分量の評価-
株式会社東レリサーチセンター製TPD-MS測定装置に、正極材を30mgセットし、アルゴンのキャリアガスを15分間流して安定状態となっていることを確認した後、水分の発生速度の測定を開始した。標準物質としてタングステン酸ナトリウム2水和物を用い、室温(25℃)から500℃まで昇温速度10℃/分で加熱した。これにより、正極材の各測定温度領域の積算水分量及びH2O由来の水分発生速度を測定した。
また、平沼産業製カールフィッシャー水分計を用いて、正極材の各測定温度領域の積算水分量を測定した。
-Evaluation of water content-
30 mg of the positive electrode material was set in the TPD-MS measuring device manufactured by Toray Research Center Co., Ltd., and after confirming that it was in a stable state by flowing an argon carrier gas for 15 minutes, the measurement of the water generation rate was started. .. Sodium tungstate dihydrate was used as a standard substance and heated from room temperature (25 ° C.) to 500 ° C. at a heating rate of 10 ° C./min. As a result, the integrated water content in each measurement temperature range of the positive electrode material and the water generation rate derived from H 2 O were measured.
In addition, the integrated water content in each measurement temperature range of the positive electrode material was measured using a Karl Fischer Moisture Meter manufactured by Hiranuma Sangyo.
-放電容量及び容量維持率の評価-
各正極活物質と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化して正極合剤を作製し、これをAl箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また、容量維持率は、電池測定によって得られた初期放電容量及び初期充電容量から算出した。
これらの結果を表1及び2に示す。
-Evaluation of discharge capacity and capacity retention rate-
Each positive electrode active material, the conductive material, and the binder are weighed at a ratio of 85: 8: 7, and the positive electrode active material and the conductive material are mixed with the binder dissolved in an organic solvent (N-methylpyrrolidone). The mixture was made into a slurry to prepare a positive electrode mixture, which was applied onto an Al foil, dried, and then pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 was dissolved in EC-DMC (1: 1) in an electrolytic solution, and the current density was 0.2 C. The discharge capacity was measured. The capacity retention rate was calculated from the initial discharge capacity and the initial charge capacity obtained by battery measurement.
These results are shown in Tables 1 and 2.
表2より、実施例1~10は、いずれもTPD-MS測定で正極活物質を測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度が0.08wtppm/秒以下であり、260℃超500℃以下の領域でのH2O由来の水分の発生速度が0.32wtppm/秒以下であり、作製した電池の放電容量及び容量維持率が良好であった。
比較例1~3は、いずれもTPD-MS測定で正極活物質を測定したとき、25℃以上260℃以下の領域でのH2O由来の水分の発生速度が0.08wtppm/秒超え、及び/又は、260℃超500℃以下の領域でのH2O由来の水分の発生速度が0.32wtppm/秒超えであり、いずれも作製した電池の容量維持率が不良であった。
実施例5及び3のTPD-MS測定装置における水分の発生速度曲線のグラフをそれぞれ図1、2に示す。
From Table 2, in each of Examples 1 to 10, when the positive electrode active material was measured by TPD-MS measurement, the generation rate of water derived from H 2 O in the region of 25 ° C. or higher and 260 ° C. or lower was 0.08 wtppm /. The rate of generation of water derived from H2O in the region of more than 260 ° C. and 500 ° C. or less was 0.32 wtppm / sec or less, and the discharge capacity and capacity retention rate of the produced battery were good.
In Comparative Examples 1 to 3, when the positive electrode active material was measured by TPD-MS measurement, the rate of generation of water derived from H2O in the region of 25 ° C. or higher and 260 ° C. or lower exceeded 0.08 wtppm / sec, and / Or, the rate of generation of water derived from H2O in the region of more than 260 ° C. and 500 ° C. or lower was more than 0.32 wtppm / sec, and the capacity retention rate of the manufactured batteries was poor in both cases.
Graphs of the water generation rate curves in the TPD-MS measuring devices of Examples 5 and 3 are shown in FIGS. 1 and 2, respectively.
Claims (6)
(前記式において、MはTi、V、Cr、Mn、Fe、Co、Cu、Al、Zn、Sn、Mg及びZrから選択される1種以上であり、0.9≦x≦1.2であり、0<y≦0.7であり、-0.1≦α≦0.1である。)
で表され、
TPD-MS測定で正極活物質を30mg採取してTPD-MS測定装置を用いて昇温速度10℃/分で測定したとき、260℃超500℃以下の領域でのH2O由来の水分の発生速度が0.32wtppm/秒以下であるリチウムイオン電池用正極活物質。 Composition formula: Li x Ni 1- y My O 2 + α
(In the above formula, M is one or more selected from Ti, V, Cr, Mn, Fe, Co, Cu, Al, Zn, Sn, Mg and Zr, and 0.9 ≦ x ≦ 1.2. Yes, 0 <y ≦ 0.7, −0.1 ≦ α ≦ 0.1.)
Represented by
When 30 mg of the positive electrode active material was sampled by TPD-MS measurement and measured at a temperature rise rate of 10 ° C./min using a TPD-MS measuring device, the water content derived from H 2 O in the region above 260 ° C. and 500 ° C. or lower. A positive electrode active material for lithium-ion batteries whose generation rate is 0.32 wtppm / sec or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018097389A JP7014674B2 (en) | 2018-05-21 | 2018-05-21 | Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018097389A JP7014674B2 (en) | 2018-05-21 | 2018-05-21 | Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016233535A Division JP2017041457A (en) | 2016-11-30 | 2016-11-30 | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018125314A JP2018125314A (en) | 2018-08-09 |
JP7014674B2 true JP7014674B2 (en) | 2022-02-01 |
Family
ID=63108989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018097389A Active JP7014674B2 (en) | 2018-05-21 | 2018-05-21 | Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7014674B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241417A1 (en) * | 2020-05-27 | 2021-12-02 | パナソニックIpマネジメント株式会社 | Positive electrode active material, positive electrode material, battery, and method for preparing positive electrode active material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016157899A1 (en) | 2015-03-30 | 2016-10-06 | 日本ゼオン株式会社 | Composition for secondary battery porous membranes, porous membrane for secondary batteries, and secondary battery |
JP6159514B2 (en) | 2012-09-19 | 2017-07-05 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
WO2017126312A1 (en) | 2016-01-19 | 2017-07-27 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0982325A (en) * | 1995-09-08 | 1997-03-28 | Sony Corp | Manufacture of positive active material |
JPH09213330A (en) * | 1996-01-30 | 1997-08-15 | Mitsui Toatsu Chem Inc | Manufacture of electrode active material for nonaqueous electrolyte battery |
JP2002358960A (en) * | 2001-05-31 | 2002-12-13 | Mitsubishi Chemicals Corp | Positive electrode material for lithium secondary battery |
JP3876989B2 (en) * | 2002-05-17 | 2007-02-07 | 三菱化学株式会社 | Method for producing surface-modified lithium-nickel composite oxide, positive electrode active material using surface-modified lithium-nickel composite oxide, positive electrode material, and lithium secondary battery |
JP4427314B2 (en) * | 2002-12-20 | 2010-03-03 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, non-aqueous electrolyte secondary battery using the same, and method for producing the same |
JP5215589B2 (en) * | 2007-05-11 | 2013-06-19 | キヤノン株式会社 | Insulated gate transistor and display device |
JP5487676B2 (en) * | 2009-03-30 | 2014-05-07 | Tdk株式会社 | Electrochemical device comprising an active material, an electrode including the active material, and an electrolyte solution including the electrode and a lithium salt |
JP5409174B2 (en) * | 2009-08-04 | 2014-02-05 | 住友金属鉱山株式会社 | Lithium nickel composite oxide for positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery using the same |
JP4749502B2 (en) * | 2009-10-09 | 2011-08-17 | 株式会社大阪チタニウムテクノロジーズ | SiOx, barrier film deposition material using the same, and negative electrode active material for lithium ion secondary battery |
US9214676B2 (en) * | 2011-03-31 | 2015-12-15 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
GB2514021A (en) * | 2011-12-27 | 2014-11-12 | Mitsui Mining & Smelting Co | Spinel-type lithium manganese transition metal oxide |
JP6292738B2 (en) * | 2012-01-26 | 2018-03-14 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
-
2018
- 2018-05-21 JP JP2018097389A patent/JP7014674B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6159514B2 (en) | 2012-09-19 | 2017-07-05 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
WO2016157899A1 (en) | 2015-03-30 | 2016-10-06 | 日本ゼオン株式会社 | Composition for secondary battery porous membranes, porous membrane for secondary batteries, and secondary battery |
WO2017126312A1 (en) | 2016-01-19 | 2017-07-27 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary battery, method for manufacturing same, and lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2018125314A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6159514B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP5819199B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
TWI591884B (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium battery | |
JP5819200B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP6016329B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery | |
CN104011913B (en) | Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery | |
JP5808316B2 (en) | Method for producing positive electrode active material for lithium ion battery | |
JP5963745B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP6756279B2 (en) | Manufacturing method of positive electrode active material | |
US20130143121A1 (en) | Positive Electrode Active Material For Lithium-Ion Battery, A Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery | |
JP5985818B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP2014194868A (en) | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery | |
JP7014674B2 (en) | Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion batteries | |
JP5876739B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery | |
JP2017041457A (en) | Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery | |
JP6069397B2 (en) | Method for producing positive electrode active material for lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190708 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190806 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20191018 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200714 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210322 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210413 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210706 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211018 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20211124 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220104 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220120 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7014674 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |