[go: up one dir, main page]

JP7011434B2 - Fuel cell module and fuel cell device - Google Patents

Fuel cell module and fuel cell device Download PDF

Info

Publication number
JP7011434B2
JP7011434B2 JP2017190577A JP2017190577A JP7011434B2 JP 7011434 B2 JP7011434 B2 JP 7011434B2 JP 2017190577 A JP2017190577 A JP 2017190577A JP 2017190577 A JP2017190577 A JP 2017190577A JP 7011434 B2 JP7011434 B2 JP 7011434B2
Authority
JP
Japan
Prior art keywords
fuel cell
oxygen
containing gas
cell module
plate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017190577A
Other languages
Japanese (ja)
Other versions
JP2019046775A (en
Inventor
光博 中村
光隆 嶌田
亨祐 山内
貴之 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Dainichi Co Ltd
Original Assignee
Kyocera Corp
Dainichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Dainichi Co Ltd filed Critical Kyocera Corp
Publication of JP2019046775A publication Critical patent/JP2019046775A/en
Application granted granted Critical
Publication of JP7011434B2 publication Critical patent/JP7011434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池モジュールおよび燃料電池装置に関する。 The present invention relates to a fuel cell module and a fuel cell device.

近年、次世代エネルギーとして、燃料ガス(水素含有ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルが複数配列されたセルスタック装置を、収納容器内に収納してなる燃料電池モジュールや、この燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が、種々提案されている(たとえば特許文献1を参照)。 In recent years, as next-generation energy, a cell stack device in which a plurality of fuel cell cells capable of obtaining power by using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) are arranged is stored in a storage container. Various fuel cell modules and fuel cell devices in which the fuel cell modules are housed in an outer case have been proposed (see, for example, Patent Document 1).

燃料電池モジュールは、収納容器内の収納室内にセルスタック装置が収納された構成であり、セルスタック装置に酸素含有ガスを供給するための流路、および、外部へと排ガスを排出するための流路が、収納容器内に形成されている。酸素含有ガスと排ガスとは、互いに隣接する流路を流れることで、酸素含有ガスと排ガスの間で、効率よく熱交換を行っている。 The fuel cell module has a configuration in which the cell stack device is housed in the storage chamber inside the storage container, and is a flow path for supplying oxygen-containing gas to the cell stack device and a flow for discharging exhaust gas to the outside. A road is formed in the storage container. The oxygen-containing gas and the exhaust gas flow through adjacent flow paths to efficiently exchange heat between the oxygen-containing gas and the exhaust gas.

また、燃料電池モジュール内において、酸素含有ガスは、前述の排ガスとの熱交換部位を経由した後、2枚の板の間の空間(流路)に流過させることができる、酸素含有ガス導入部材を介して、各燃料電池セルの下方にある柱状の根元部または基部に導入される。なお、酸素含有ガス導入部材を流過する酸素含有ガスは、燃料電池モジュール内の比較的高温の流体と熱交換することで、セルスタック装置に供給される酸素含有ガスを、より高温としている。 Further, in the fuel cell module, an oxygen-containing gas introduction member capable of allowing the oxygen-containing gas to flow through the space (flow path) between the two plates after passing through the heat exchange portion with the exhaust gas described above. Via, it is introduced into a columnar root or base below each fuel cell. The oxygen-containing gas flowing through the oxygen-containing gas introducing member exchanges heat with a relatively high-temperature fluid in the fuel cell module, so that the oxygen-containing gas supplied to the cell stack device has a higher temperature.

特開2012-28099号公報Japanese Unexamined Patent Publication No. 2012-28099

ところで、上述する酸素含有ガス導入部材の2枚の板のうち一方側の板と対向する領域が、他方側の板と対向する領域より高温である場合に、いずれの板も同様の構造であると、酸素含有ガスと燃料電池モジュール内の高温領域との間で、効率良く熱交換を行うことができないおそれがあった。 By the way, when the region facing the plate on one side of the two plates of the oxygen-containing gas introduction member described above is higher than the region facing the plate on the other side, both plates have the same structure. And, there is a possibility that heat exchange cannot be efficiently performed between the oxygen-containing gas and the high temperature region in the fuel cell module.

本発明の目的は、酸素含有ガス導入部材において、酸素含有ガスと高温領域との熱交換が効率的に行われる燃料電池モジュール、および、それを用いた発電効率の高い燃料電池装置を提供することである。 An object of the present invention is to provide a fuel cell module in which heat exchange between an oxygen-containing gas and a high-temperature region is efficiently performed in an oxygen-containing gas introducing member, and a fuel cell device using the same, which has high power generation efficiency. Is.

本開示の燃料電池モジュールは、酸素含有ガスと燃料ガスとを用いて発電を行なう燃料電池セルを複数個配列してなるセルスタックと、
前記セルスタックを収納する収納室を有する収納容器と、
酸素含有ガスを各燃料電池セルの下方に供給する中空状の酸素含有ガス導入部材であって、前記収納室の上方より垂下し、高温領域と対向する第一板部材と、該第一板部材に対して酸素含有ガスの流路となる中空部を挟んで対向する第二板部材とを有する酸素含有ガス導入部材と、を備え、
前記燃料電池セルの上下方向でかつ該燃料電池セルの配列方向と直交する方向、における任意の断面において、
前記第一板部材の少なくとも一部は、燃料電池セルの上下方向における中央部が、上端部に比べて燃焼室側に近づく湾曲形状であり、かつ、
前記第一板部材における外表面に沿った全長が、前記第二板部材における外表面に沿った全長より長いことを特徴とする。
The fuel cell module of the present disclosure includes a cell stack in which a plurality of fuel cell cells that generate electricity using an oxygen-containing gas and a fuel gas are arranged.
A storage container having a storage chamber for storing the cell stack,
A hollow oxygen-containing gas introduction member that supplies oxygen-containing gas below each fuel cell, and a first plate member that hangs down from above the storage chamber and faces a high temperature region, and the first plate member. It is provided with an oxygen-containing gas introducing member having a second plate member facing the hollow portion which is a flow path of the oxygen-containing gas.
In an arbitrary cross section in the vertical direction of the fuel cell and in the direction orthogonal to the arrangement direction of the fuel cell.
At least a part of the first plate member has a curved shape in which the central portion of the fuel cell in the vertical direction is closer to the combustion chamber side than the upper end portion .
The total length along the outer surface of the first plate member is longer than the total length along the outer surface of the second plate member.

また、本開示の燃料電池装置は、燃料電池モジュールと、前記燃料電池モジュールの運転を行なうための補機と、前記燃料電池モジュールと前記補機とを収納する外装ケースと、を備える。 Further, the fuel cell device of the present disclosure includes a fuel cell module, an auxiliary machine for operating the fuel cell module, and an outer case for accommodating the fuel cell module and the auxiliary machine.

本開示の燃料電池モジュールによれば、酸素含有ガス導入部材の中を流過して燃料電池セルに供給される酸素含有ガスと高温領域との熱交換を効率的に行うことができ、モジュールの発電効率の低下を抑制することができる。 According to the fuel cell module of the present disclosure, heat exchange between the oxygen-containing gas supplied to the fuel cell by passing through the oxygen-containing gas introducing member and the high temperature region can be efficiently performed, and the module can be used. It is possible to suppress a decrease in power generation efficiency.

また、本開示の燃料電池装置によれば、上記の燃料電池モジュールを備えることで、発電効率を向上させることができる。 Further, according to the fuel cell apparatus of the present disclosure, the power generation efficiency can be improved by providing the above-mentioned fuel cell module.

実施形態の燃料電池モジュールの分解斜視図である。It is an exploded perspective view of the fuel cell module of an embodiment. 実施形態の燃料電池モジュールの内部構成を示す縦方向の断面図である。It is sectional drawing in the vertical direction which shows the internal structure of the fuel cell module of embodiment. (a)は燃料電池モジュール内部の酸素含有ガス導入部材の形状を示す半断面図(カットモデル)であり、(b)は酸素含有ガス導入部材が接合される天板の開口部の形状と、第1の熱電対挿入部材のフランジ部の係止状態とを示す平面図である。(A) is a half cross-sectional view (cut model) showing the shape of the oxygen-containing gas introducing member inside the fuel cell module, and (b) is the shape of the opening of the top plate to which the oxygen-containing gas introducing member is joined. It is a top view which shows the locked state of the flange part of the 1st thermocouple insertion member. (a)燃料電池モジュール内部の酸素含有ガス導入部材をセルスタック方向から見た正面図であり、(b)は酸素含有ガス導入部材を構成する金属板材料が巻回されている様子を示す説明図である。(A) is a front view of the oxygen-containing gas introducing member inside the fuel cell module as viewed from the cell stack direction, and (b) is an explanation showing how the metal plate material constituting the oxygen-containing gas introducing member is wound. It is a figure. 熱電対の挿入に用いる第1および第2の熱電対挿入部材の構成を説明する断面図である。It is sectional drawing explaining the structure of the 1st and 2nd thermocouple insertion members used for inserting a thermocouple. 熱電対の挿入に用いる第1の熱電対挿入部材の(a)正面図と(b)側面図である。It is (a) front view and (b) side view of the 1st thermocouple insertion member used for inserting a thermocouple. 実施形態の燃料電池装置の概略構成図である。It is a schematic block diagram of the fuel cell apparatus of embodiment.

実施形態の燃料電池モジュール10は、固体酸化物形燃料電池(SOFC)の燃料電池モジュールであり、図1の分解斜視図に示すように、収納容器1の内側に、セルスタック4,マニホールド5および改質器6からなるセルスタック装置Sと、酸素含有ガス導入部材2(空気導入板)、酸素含有ガスの流路形成用の板状部材(天板3)、および、内部断熱部材7(7A,7B,7C等)を収容して、収納容器1の開口を蓋体8で密閉した構成をとる。 The fuel cell module 10 of the embodiment is a fuel cell module of a solid oxide fuel cell (SOFC), and as shown in the exploded perspective view of FIG. 1, the cell stack 4, the manifold 5 and the inside of the storage container 1 A cell stack device S including a reformer 6, an oxygen-containing gas introduction member 2 (air introduction plate), a plate-shaped member for forming a flow path for oxygen-containing gas (top plate 3), and an internal heat insulating member 7 (7A). , 7B, 7C, etc.) are accommodated, and the opening of the storage container 1 is sealed with a lid 8.

その内部には、図2の縦方向の断面図に示すように、底部断熱材(台座)7Cおよび側部断熱材7A,7B等からなる中央の内部空間が、収納室11として形成され、この収納室11に、セルスタック装置Sが収容される。図2で示す一実施形態においては、酸素含有ガス導入部材2は収納室11に隣接して配置されており、酸素含有ガス導入部材2より収納室11側を高温領域とする。一方、酸素含有ガス導入部材2の収納室11側と反対側には断熱部材(側部断熱材7A)が配置されており、酸素含有ガス導入部材2より側部断熱材7A側を低温領域とする。 Inside, as shown in the vertical cross-sectional view of FIG. 2, a central internal space composed of a bottom heat insulating material (pedestal) 7C, side heat insulating materials 7A, 7B, etc. is formed as a storage chamber 11. The cell stack device S is housed in the storage room 11. In one embodiment shown in FIG. 2, the oxygen-containing gas introducing member 2 is arranged adjacent to the storage chamber 11, and the storage chamber 11 side of the oxygen-containing gas introducing member 2 is set as a high temperature region. On the other hand, a heat insulating member (side heat insulating material 7A) is arranged on the side opposite to the storage chamber 11 side of the oxygen-containing gas introducing member 2, and the side heat insulating material 7A side from the oxygen-containing gas introducing member 2 is defined as a low temperature region. do.

また、収納容器1の開口を密閉する蓋体8側(図2の図示左側)には、セルスタック4に酸素含有ガスを供給するための酸素含有ガス流路31,32等と、燃焼室11Bで発生する高温の排ガスを、上述の酸素含有ガスと熱交換した後、燃料電池モジュール10外部に向けて排出するための排ガス流路41,42等と、が設けられている。なお、ガス流路を形成するために用いられる各部材を総称して、流路形成部材9と呼ぶ。 Further, on the lid 8 side (left side in the drawing of FIG. 2) that seals the opening of the storage container 1, oxygen-containing gas passages 31, 32, etc. for supplying oxygen-containing gas to the cell stack 4 and a combustion chamber 11B are provided. Exhaust gas flow paths 41, 42 and the like for exhausting the high-temperature exhaust gas generated in the above-mentioned oxygen-containing gas to the outside of the fuel cell module 10 after heat exchange with the above-mentioned oxygen-containing gas are provided. In addition, each member used for forming a gas flow path is generically referred to as a flow path forming member 9.

セルスタック4に供給される酸素含有ガス(外部の空気)は、まず、蓋体8に設けられた導入口である空気導入管9Dから取り入れられ、蓋体8と蓋体8の外面側(図示左側)に配設された第1流路部材9Aとの間に形成された第1酸素含有ガス流路31内を、上方に向けて流過する。上端に達した酸素含有ガスは、蓋体8に設けられたスリット状の流入口8aから、収納容器1内部の上部(天井部)に配置された天板3(第2流路部材)と収納容器1の内面(天面)との間に形成された第2酸素含有ガス流路32(空気溜まり)内に、流入する。 The oxygen-containing gas (outside air) supplied to the cell stack 4 is first taken in from the air introduction pipe 9D, which is an introduction port provided in the lid 8, and is on the outer surface side of the lid 8 and the lid 8 (not shown). It flows upward in the first oxygen-containing gas flow path 31 formed between the first flow path member 9A arranged on the left side). The oxygen-containing gas that has reached the upper end is stored from the slit-shaped inflow port 8a provided in the lid 8 to the top plate 3 (second flow path member) arranged in the upper part (ceiling portion) inside the storage container 1. It flows into the second oxygen-containing gas flow path 32 (air reservoir) formed between the inner surface (top surface) of the container 1.

ついで、酸素含有ガスは、第2酸素含有ガス流路32の下面(底面)に形成された、接合部2aである開口部3aから、その下側でかつ収納室11内のセルスタック4と側部断熱材7Aとの間に配設された酸素含有ガス導入部材2内の第3酸素含有ガス流路33に流入して、下端まで流過する。下端まで達した酸素含有ガスは、酸素含有ガス導入部材2の下端側面のセルスタック4側に、水平方向に複数設けられた吐出口2bから、セルスタック4を構成する柱状の各燃料電池セルの間の根元部または基部に供給される。 Next, the oxygen-containing gas is formed on the lower surface (bottom surface) of the second oxygen-containing gas flow path 32 from the opening 3a which is the joint portion 2a, and is below the opening 3a and on the side of the cell stack 4 in the storage chamber 11. It flows into the third oxygen-containing gas flow path 33 in the oxygen-containing gas introducing member 2 arranged between the heat insulating material 7A and flows to the lower end. The oxygen-containing gas that has reached the lower end is collected from each of the columnar fuel cell cells constituting the cell stack 4 from a plurality of horizontal discharge ports 2b provided on the cell stack 4 side on the lower end side surface of the oxygen-containing gas introduction member 2. It is supplied to the root or base of the space.

なお、各燃料電池セル間に供給された酸素含有ガスは、各セル間を上昇しながら発電に寄与した後、上端にまで達し、各燃料電池セルの反対側の隙間を上昇してきた、余剰の燃料ガス(水素含有ガス)と混合されて着火され、燃焼する。燃焼による高温は、燃焼室11B内に配設された改質器6(図2参照)の水気化用熱源および改質用熱源として利用された後、高温を保ったまま、燃焼排気ガスとして、排ガス流路41,42を通じて排出される。 The oxygen-containing gas supplied between the fuel cell cells contributes to power generation while rising between the cells, and then reaches the upper end and rises in the gap on the opposite side of each fuel cell, which is a surplus. It is mixed with fuel gas (hydrogen-containing gas), ignited, and burned. The high temperature due to combustion is used as a heat source for water vaporization and a heat source for reforming of the reformer 6 (see FIG. 2) arranged in the combustion chamber 11B, and then as combustion exhaust gas while maintaining the high temperature. It is discharged through the exhaust gas channels 41 and 42.

燃焼室11Bから排出される排ガスは、まず、燃焼室11B上部に設けられた排出口11cから、蓋体8と蓋体8の内面側(図示右側)に配設された第3流路部材9Bとの間に形成された第1排ガス流路41内に流入し、下方に向けて流過する。下端に達した排ガスは、蓋体8に配設された排出管9Fを介して、先述の第1流路部材9Aのさらに外側に配設された第4流路部材9Cの中に形成された、第2排ガス流路42へと流出する。そして、蓋体8の最外面(図示左側)に位置する第2排ガス流路42内を、上端まで流過した排ガスは、接続管9Eを介して燃料電池モジュール10外部へ排出される。 The exhaust gas discharged from the combustion chamber 11B first is a third flow path member 9B arranged on the inner surface side (right side in the drawing) of the lid 8 and the lid 8 from the discharge port 11c provided in the upper part of the combustion chamber 11B. It flows into the first exhaust gas flow path 41 formed between the and, and flows downward. The exhaust gas that reached the lower end was formed in the fourth flow path member 9C arranged further outside the first flow path member 9A described above via the discharge pipe 9F arranged in the lid 8. , Outflow to the second exhaust gas flow path 42. Then, the exhaust gas that has flowed to the upper end in the second exhaust gas flow path 42 located on the outermost surface (left side in the drawing) of the lid 8 is discharged to the outside of the fuel cell module 10 via the connecting pipe 9E.

この時、蓋体8の周囲では、外部から流入した低温(室温)の空気が、第1酸素含有ガス流路31内を上方に向かって流れる一方、金属製等の部材を挟んでその左右両側に配設された第1排ガス流路41内および第2排ガス流路42内を、高温の排ガスが流れるようになっている。このように、実施形態の燃料電池モジュール10における、収納容器1の蓋体8側(図2における左側)では、低温の空気と高温の排ガスとの間で熱交換が行われ、燃料電池セルに供給される空気が暖められて、燃料電池の発電効率を高めることができるように構成されている。 At this time, around the lid 8, low-temperature (room temperature) air flowing in from the outside flows upward in the first oxygen-containing gas flow path 31, while sandwiching a member made of metal or the like on both the left and right sides thereof. High-temperature exhaust gas flows through the first exhaust gas flow path 41 and the second exhaust gas flow path 42 arranged in the room. As described above, in the fuel cell module 10 of the embodiment, heat is exchanged between the low temperature air and the high temperature exhaust gas on the lid 8 side (left side in FIG. 2) of the storage container 1, and the fuel cell is connected to the fuel cell. It is configured so that the supplied air can be warmed to increase the power generation efficiency of the fuel cell.

これに対して、収納容器1内においてセルスタック装置Sを挟んで蓋体8に対向する、収納容器1の凹箱形状の底部側(図2における右側の側壁1a寄り)の構成においては、セルスタック4と側部断熱材7Aとの間に配設された酸素含有ガス導入部材2の構造により、燃料電池の発電効率を高める工夫が種々なされている。 On the other hand, in the configuration of the bottom side of the concave box shape of the storage container 1 (closer to the side wall 1a on the right side in FIG. 2) facing the lid 8 with the cell stack device S sandwiched in the storage container 1, the cell is used. Various measures have been taken to improve the power generation efficiency of the fuel cell by the structure of the oxygen-containing gas introducing member 2 arranged between the stack 4 and the side heat insulating material 7A.

すなわち、実施形態の燃料電池モジュール10における酸素含有ガス導入部材2は、図2に示すように、セルスタック4側(高温領域側)に位置する板状部材(第一板部材21)と、側部断熱材7A側(低温領域側)に配置され、第一板部材21に対して酸素含有ガスの流路となる中空部を挟んで対向する板状部材(第二板部材22)と、を備えている。これら第一板部材21と第二板部材22とは、それぞれセルの配列方向に平行に、かつ、互いに対向するように配設されており、間に形成される上下方向の隙間(中空部)が、先に述べた第3酸素含有ガス流路33になっている。板状部材は金属製であってもよい。 That is, as shown in FIG. 2, the oxygen-containing gas introduction member 2 in the fuel cell module 10 of the embodiment has a plate-shaped member (first plate member 21) located on the cell stack 4 side (high temperature region side) and a side. A plate-shaped member (second plate member 22) arranged on the heat insulating material 7A side (low temperature region side) and facing the first plate member 21 with a hollow portion serving as a flow path for oxygen-containing gas. I have. The first plate member 21 and the second plate member 22 are arranged so as to be parallel to each other in the cell arrangement direction and to face each other, and a vertical gap (hollow portion) formed between them. However, it is the third oxygen-containing gas flow path 33 described above. The plate-shaped member may be made of metal.

ここで、図2で示すように、燃料電池セルの上下方向かつ燃料電池セルの配列方向と直交する方向、における任意の断面において、高温領域である燃焼室11B側に位置する第一板部材21の少なくとも一部は湾曲形状である。加えて、第一板部材21における外表面21aに沿った全長が、第二板部材22における外表面22aに沿った全長より長い。なお、第二板部材22も湾曲していてもよい。 Here, as shown in FIG. 2, the first plate member 21 located on the combustion chamber 11B side, which is a high temperature region, in an arbitrary cross section in the vertical direction of the fuel cell and in the direction orthogonal to the arrangement direction of the fuel cell. At least part of is curved. In addition, the total length of the first plate member 21 along the outer surface 21a is longer than the total length of the second plate member 22 along the outer surface 22a. The second plate member 22 may also be curved.

すなわち、第一板部材21におけるセルスタック4に対向する面21a(セルスタック4側の外表面21a)の湾曲に沿った全長と、第二板部材22における側部断熱材7Aに対向する面22a(側部断熱材7A側の外表面22a)に沿った全長とを比較すると、第一板部材21の外表面21aの全長(L21a)は、第二板部材22の外表面22aの全長(L22a)より長くなっている(L21a > L22a)。 That is, the total length along the curve of the surface 21a of the first plate member 21 facing the cell stack 4 (the outer surface 21a on the cell stack 4 side) and the surface 22a of the second plate member 22 facing the side heat insulating material 7A. Comparing with the total length along (the outer surface 22a on the side heat insulating material 7A side), the total length (L21a) of the outer surface 21a of the first plate member 21 is the total length (L22a) of the outer surface 22a of the second plate member 22. ) Is longer (L21a> L22a).

第一板部材21における外表面21aに沿った全長とは、上下方向における直線的な全長ではなく、湾曲形状に沿った全長をいう。第二板部材22が第一板部材21と同様に湾曲している場合には、第二板部材22における外表面22aに沿った全長とは、第一板部材21と同様、湾曲形状に沿った全長をいう。なお、湾曲形状とは、一方向のみに突出するように湾曲していてもよく、また、いずれの一方向に突出する部分および他方向に突出する部分のいずれをも有する波形状であってもよい。波形状である場合においては、第一板部材21における外表面21aに沿った全長を、より長くすることができる。 The total length along the outer surface 21a of the first plate member 21 does not mean a linear total length in the vertical direction, but a total length along a curved shape. When the second plate member 22 is curved in the same manner as the first plate member 21, the total length of the second plate member 22 along the outer surface 22a is along the curved shape as in the first plate member 21. It means the total length. The curved shape may be curved so as to protrude in only one direction, or may be a wave shape having both a portion protruding in any one direction and a portion protruding in the other direction. good. In the case of a wavy shape, the total length of the first plate member 21 along the outer surface 21a can be made longer.

この構成により、高温領域側と対向する第一板部材21の外表面21aの表面積を大きくすることができるため、酸素含有ガスと高温領域との熱交換を効率的に行うことができる。その結果、実施形態の燃料電池モジュール10は、燃料電池セルに供給される酸素含有ガスが充分に加温され、発電効率の低下が抑えられている。したがって、上述の構成の燃料電池モジュール10を使用した燃料電池装置は、その発電効率を向上させることができる。 With this configuration, the surface area of the outer surface 21a of the first plate member 21 facing the high temperature region side can be increased, so that heat exchange between the oxygen-containing gas and the high temperature region can be efficiently performed. As a result, in the fuel cell module 10 of the embodiment, the oxygen-containing gas supplied to the fuel cell is sufficiently heated, and the decrease in power generation efficiency is suppressed. Therefore, the fuel cell device using the fuel cell module 10 having the above configuration can improve the power generation efficiency.

図2は、燃料電池モジュール10を、燃料電池セルの配列方向における中央部で切断した縦断面図である。燃料電池セルの配列方向のなかでも、より高温である中央部の高温領域側と対向する第一板部材21の外表面21aの表面積を大きくすることで、さらに効率的に酸素含有ガスと高温領域との熱交換を行うことができる。燃料電池セルの配列方向における中央部とは、燃料電池セルの配列方向の全長を5等分したうちの中央の3つの区画部分をいう。 FIG. 2 is a vertical cross-sectional view of the fuel cell module 10 cut at the center in the arrangement direction of the fuel cell. In the arrangement direction of the fuel cell, the surface area of the outer surface 21a of the first plate member 21 facing the high temperature region side of the central portion, which is higher temperature, is increased to more efficiently oxygen-containing gas and the high temperature region. Can exchange heat with. The central portion in the arrangement direction of the fuel cell means the three central divisions of the total length of the fuel cell in the arrangement direction divided into five equal parts.

さらに、図3(a)のカットモデルに示すように、セルスタック4側の第一板部材21と側部断熱材7A側の第二板部材22とは、共に、横断面においても、燃料電池セルの配列方向における中央部が、高温領域である燃焼室11Bにより近づく湾曲形状になっていてもよい。なお、図3(a)は、図2のX-X線矢視断面図に相当するものである。 Further, as shown in the cut model of FIG. 3A, both the first plate member 21 on the cell stack 4 side and the second plate member 22 on the side heat insulating material 7A side are fuel cells in the cross section. The central portion in the cell arrangement direction may have a curved shape closer to the combustion chamber 11B, which is a high temperature region. Note that FIG. 3A corresponds to a cross-sectional view taken along the line XX of FIG. 2.

なお、前述の第一板部材21の外表面21a〔図4(a)〕は、それ以外の酸素含有ガス導入部材2の表面、たとえば第一板部材21の内表面21b、第二板部材22の外表面22a,内表面22b等より、面粗度の高い粗面であってもよい。これにより、外表面21aの表面積がさらに増大するため、第一板部材21の外表面21aの外の高温領域(燃焼室11)と、外表面21aの内側を流れる酸素含有ガスとの熱交換効率を向上できる。 The outer surface 21a [FIG. 4 (a)] of the first plate member 21 is the surface of the other oxygen-containing gas introducing member 2, for example, the inner surface 21b of the first plate member 21 and the second plate member 22. A rough surface having a higher surface roughness than the outer surface 22a, the inner surface 22b, etc. may be used. As a result, the surface area of the outer surface 21a is further increased, so that the heat exchange efficiency between the high temperature region (combustion chamber 11) outside the outer surface 21a of the first plate member 21 and the oxygen-containing gas flowing inside the outer surface 21a. Can be improved.

したがって、この構成によっても、酸素含有ガスと高温領域との熱交換を効率的に行うことができる。なお、第一板部材21の外表面21aがそれ以外の酸素含有ガス導入部材2の表面より面粗度が高い、とは第一板部材21の外表面21aがそれ以外の酸素含有ガス導入部材2の表面より算術平均粗さRaが大きいことを意味する。 Therefore, even with this configuration, heat exchange between the oxygen-containing gas and the high temperature region can be efficiently performed. The outer surface 21a of the first plate member 21 has a higher surface roughness than the surface of the other oxygen-containing gas introducing member 2, which means that the outer surface 21a of the first plate member 21 has other oxygen-containing gas introducing members. It means that the arithmetic mean roughness Ra is larger than the surface of 2.

さらに、上述の酸素含有ガス導入部材2上端の接合部2aと、第2酸素含有ガス流路32の下面に形成された天板3の開口部3aとは、溶接により気密状に接続されており、この天板3の開口部3aは、図3(b)に示すように、角部の丸い矩形に形成されている。この開口部3aの縁部形状は、角部からの亀裂やひび等の発生を防止するためのものである。 Further, the joint portion 2a at the upper end of the oxygen-containing gas introducing member 2 and the opening portion 3a of the top plate 3 formed on the lower surface of the second oxygen-containing gas flow path 32 are airtightly connected by welding. As shown in FIG. 3B, the opening 3a of the top plate 3 is formed into a rectangle with rounded corners. The edge shape of the opening 3a is for preventing the occurrence of cracks, cracks, etc. from the corners.

これにより、酸素含有ガス導入部材2およびこれを使用する燃料電池モジュール10の、製品寿命を延ばすことができる。なお、開口部3aの縁部形状は、たとえば長孔形や楕円形等、角部が鋭角や尖った形状でない、亀裂の発生の原因とならない形状であれば、どのような形状でもよい。 As a result, the product life of the oxygen-containing gas introduction member 2 and the fuel cell module 10 using the oxygen-containing gas introduction member 2 can be extended. The edge shape of the opening 3a may be any shape as long as the corners are not acute or sharp, such as a long hole shape or an elliptical shape, and do not cause cracks.

なお、酸素含有ガス導入部材2は、内部を流過する酸素含有ガスを整流させるために、第一板部材21と第二板部材22がそれぞれ中空部側に向かって凸状部を形成し、これらを当接させることで酸素含有ガス導入部材2内部の中空部を潰して流路を形成する「整流部」を備えていてもよい。 In the oxygen-containing gas introducing member 2, in order to rectify the oxygen-containing gas flowing through the inside, the first plate member 21 and the second plate member 22 each form a convex portion toward the hollow portion side. A "rectifying section" that forms a flow path by crushing the hollow portion inside the oxygen-containing gas introducing member 2 by bringing them into contact with each other may be provided.

第一板部材21におけるセルスタック4側の外表面21aのうち、セルスタック4の上端より上方の、高温領域のなかでも比較的温度が高い燃焼室11Bと対向する部分は、上下方向に沿った平坦な部位(平坦部)であってもよい。平坦部とは、上述する整流部などのように、第一板部材21と第二板部材22との間の中空部が潰れている部分が存在しない面であることを意味しており、当該平坦部は湾曲していてもよい。 Of the outer surface 21a on the cell stack 4 side of the first plate member 21, the portion above the upper end of the cell stack 4 and facing the combustion chamber 11B having a relatively high temperature in the high temperature region is along the vertical direction. It may be a flat portion (flat portion). The flat portion means that there is no portion where the hollow portion between the first plate member 21 and the second plate member 22 is crushed, such as the rectifying portion described above. The flat portion may be curved.

この構成により、高温領域のなかでも比較的温度が高いセルスタックの上端より上方と対向する部分においては、第一板部材21と第二板部材22との間の中空部が潰れている部分がないので、内部を流過する酸素含有ガスと高温領域との間で熱交換させる面を多く確保することができるため、より効率良く酸素含有ガスと高温領域とで熱交換を行うことができようになる。 With this configuration, in the portion facing above the upper end of the cell stack, which has a relatively high temperature in the high temperature region, the hollow portion between the first plate member 21 and the second plate member 22 is crushed. Since there is no such thing, it is possible to secure a large number of surfaces for heat exchange between the oxygen-containing gas flowing inside and the high-temperature region, so that heat exchange can be performed more efficiently between the oxygen-containing gas and the high-temperature region. become.

実施形態の燃料電池モジュール10においては、酸素含有ガス導入部材2における、セルスタック4に対向する第一板部材21が、図2のように燃料電池モジュール10に内蔵された際、燃料電池モジュール10の水平方向に対応する方向(図4における黒塗り矢印方向)に、予め圧延加工された金属板を用いて形成されていてもよい。 In the fuel cell module 10 of the embodiment, when the first plate member 21 of the oxygen-containing gas introducing member 2 facing the cell stack 4 is incorporated in the fuel cell module 10 as shown in FIG. 2, the fuel cell module 10 It may be formed by using a pre-rolled metal plate in the direction corresponding to the horizontal direction of (the direction of the black-painted arrow in FIG. 4).

すなわち、第一板部材21は、金属板の製造ラインにおいて図4(b)に示す黒塗り矢印方向に圧延加工され、そのまま、黒塗り矢印方向を長手方向としてロール状に巻回され、このロールから巻き出された方向(黒塗り矢印方向)が、図4(a)に示した第一板部材21における黒塗り矢印方向と合致するように打ち抜き加工等を行った板部材を用いて製造することができる。 That is, the first plate member 21 is rolled in the direction of the black-painted arrow shown in FIG. 4B on the metal plate production line, and is wound as it is in a roll shape with the direction of the black-painted arrow as the longitudinal direction. Manufactured using a plate member punched so that the direction unwound from (black-painted arrow direction) coincides with the black-painted arrow direction in the first plate member 21 shown in FIG. 4 (a). be able to.

以上の構成により、第一板部材21には、圧延加工された方向に応力が内在するため、図2で示すような一実施形態のように、上下方向において第一板部材21を湾曲させる場合に、その湾曲形状が上下方向において経時的に変形することを抑制できる。 With the above configuration, stress is inherent in the first plate member 21 in the rolled direction. Therefore, when the first plate member 21 is curved in the vertical direction as in one embodiment as shown in FIG. In addition, it is possible to prevent the curved shape from being deformed over time in the vertical direction.

以上、本発明の実施形態について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the gist of the present invention. be.

たとえば、酸素含有ガス導入部材2は、セルスタック4の配列方向のどちら側(図2における右側または左側)に配設してもよく、両側に配設してもよい。また、酸素含有ガス導入部材2に酸素含有ガス(空気)を導入する流路も、酸素含有ガス導入部材2の配置に適合させて、どのようにでも構成することが可能である。 For example, the oxygen-containing gas introducing member 2 may be arranged on either side (right side or left side in FIG. 2) of the cell stack 4 in the arrangement direction, or may be arranged on both sides. Further, the flow path for introducing the oxygen-containing gas (air) into the oxygen-containing gas introducing member 2 can be configured in any way by adapting to the arrangement of the oxygen-containing gas introducing member 2.

また、セルスタック4を複数列備えるセルスタック装置であってもよい。すなわち、セルスタック4の配列方向において温度分布を有する複数のセルスタック4の間に酸素含有ガス導入部材2を配設してもよい。 Further, the cell stack device may be provided with a plurality of rows of cell stacks 4. That is, the oxygen-containing gas introducing member 2 may be arranged between a plurality of cell stacks 4 having a temperature distribution in the arrangement direction of the cell stacks 4.

つぎに、実施形態の燃料電池モジュール10は、図2の断面図に示すように、酸素含有ガス導入部材2の内部温度を測定するためのシース形のThermoCouple(TC)である熱電対12が、収納容器外の第2の熱電対挿入部材14に挿通されて、収納容器1の外壁の上面に設けられた第1の貫通孔1bを通過し、天板3(第2流路部材)の開口部3aから下方に配設された第1の熱電対挿入部材13に挿通されて、酸素含有ガス導入部材2の第一板部材21と第二板部材22との間に挿入されている。 Next, in the fuel cell module 10 of the embodiment, as shown in the cross-sectional view of FIG. 2, a thermocouple 12 which is a sheath-shaped Thermo Couple (TC) for measuring the internal temperature of the oxygen-containing gas introducing member 2 is provided. It is inserted through the second thermocouple insertion member 14 outside the storage container, passes through the first through hole 1b provided on the upper surface of the outer wall of the storage container 1, and opens the top plate 3 (second flow path member). It is inserted through a first thermocouple insertion member 13 disposed downward from the portion 3a, and is inserted between the first plate member 21 and the second plate member 22 of the oxygen-containing gas introducing member 2.

図5は、第1の熱電対挿入部材13および第2の熱電対挿入部材14の構成を示す断面図である。第2の熱電対挿入部材14は、筒状部材である中空管14Aと、中空管14Aの下端14cに接続された基台14Bとから構成されている。 FIG. 5 is a cross-sectional view showing the configuration of the first thermocouple insertion member 13 and the second thermocouple insertion member 14. The second thermocouple insertion member 14 is composed of a hollow tube 14A which is a tubular member and a base 14B connected to the lower end 14c of the hollow tube 14A.

基台14Bは、略円板状の平板部材であり、その中央部または中心には、熱電対12を挿通可能な第2の貫通孔14eが設けられている。基台14Bと中空管14Aとは、第2の貫通孔14eと、中空管14Aの中空部が同心状に連通するように、その間が溶接等によって接続されている。熱電対12は、中空管14A内に挿通され、中空管14Aの上端14dとシース形熱電対12との間が、ロウ付け等により密封固定される。 The base 14B is a substantially disk-shaped flat plate member, and a second through hole 14e through which the thermocouple 12 can be inserted is provided in the center or the center thereof. The base 14B and the hollow pipe 14A are connected to each other by welding or the like so that the second through hole 14e and the hollow portion of the hollow pipe 14A communicate with each other concentrically. The thermocouple 12 is inserted into the hollow tube 14A, and the upper end 14d of the hollow tube 14A and the sheath-type thermocouple 12 are hermetically sealed and fixed by brazing or the like.

また、基台14Bは、この基台14Bの第2の貫通孔14eと同形の貫通孔15aを有するシール部材(パッキン15)を介して、図5のように、収納容器1の第1の貫通孔1bと同心となる位置に載置されている。この基台14Bと収納容器1とはネジ止めなどにより固定される。 Further, the base 14B has a first penetration of the storage container 1 as shown in FIG. 5 via a seal member (packing 15) having a through hole 15a having the same shape as the second through hole 14e of the base 14B. It is placed at a position concentric with the hole 1b. The base 14B and the storage container 1 are fixed by screwing or the like.

上記した中空管14Aと熱電対12との固定および基台14Bと収納容器1との固定により、熱電対12の抜け止めと収納容器1内部の密封とが同時になされる。また、中空管14Aと熱電対12とのロウ付け部を、中空管14Aの長さ分だけ収納容器1から離間させているので、ロウ付け部が高温に晒されることを防いで耐久性を保持することができる。さらに、熱電対12の先端部12aから所定の長さの位置に基台14Bを配設することで、収納容器1内部に熱電対12を挿入する長さを決めることができる。これにより、熱電対12の先端部12aを、酸素含有ガス導入部材2の第一板部材21と第二板部材22との間の所定位置に確実に配設させることができ、組立性が向上する。 By fixing the hollow tube 14A and the thermocouple 12 and fixing the base 14B and the storage container 1 as described above, the thermocouple 12 is prevented from coming off and the inside of the storage container 1 is sealed at the same time. Further, since the brazed portion of the hollow tube 14A and the thermocouple 12 is separated from the storage container 1 by the length of the hollow tube 14A, the brazed portion is prevented from being exposed to high temperature and is durable. Can be held. Further, by disposing the base 14B at a position of a predetermined length from the tip portion 12a of the thermocouple 12, the length for inserting the thermocouple 12 inside the storage container 1 can be determined. As a result, the tip portion 12a of the thermocouple 12 can be reliably arranged at a predetermined position between the first plate member 21 and the second plate member 22 of the oxygen-containing gas introduction member 2, and the assemblability is improved. do.

第1の熱電対挿入部材13は、収納容器1の内面(下面)と天板3との間に形成された第2酸素含有ガス流路32を挟んで、前述の第1の貫通孔1bの鉛直直下に相当する位置に取り付けられている。その形状は、真上から見ると、図3(b)に示すように、第1の貫通孔1bの真下に相当する中央位置に、熱電対12を鉛直下方に向かって挿通することのできる案内隙間(ガイドスペースG)が形成されている。 The first thermocouple insertion member 13 sandwiches the second oxygen-containing gas flow path 32 formed between the inner surface (lower surface) of the storage container 1 and the top plate 3, and has the above-mentioned first through hole 1b. It is installed at a position corresponding to just below the vertical. When viewed from directly above, the shape is such that, as shown in FIG. 3 (b), the thermocouple 12 can be inserted vertically downward at the central position corresponding to directly below the first through hole 1b. A gap (guide space G) is formed.

図6は、第1の熱電対挿入部材13を、酸素含有ガス導入部材2の第一板部材21の幅方向から見た(a)正面図と、セルスタック4の配列方向から見た(b)側面図である。この図に示すように、第1の熱電対挿入部材13は、図示下方に向かって二股状に分岐する2つの部材13A,13Bを接合して構成されており、図6(a)のように正面側から見た場合、下部の各二股状部位13c,13cの間には、熱電対12の先端部12aを挿通可能なガイドスペースGが形成されている。 FIG. 6 shows the first thermocouple insertion member 13 as viewed from the width direction of the first plate member 21 of the oxygen-containing gas introduction member 2 (a) and from the arrangement direction of the cell stack 4 (b). ) It is a side view. As shown in this figure, the first thermocouple insertion member 13 is configured by joining two members 13A and 13B that are bifurcated downward in the drawing, as shown in FIG. 6A. When viewed from the front side, a guide space G through which the tip portion 12a of the thermocouple 12 can be inserted is formed between the lower bifurcated portions 13c and 13c.

また、第1の熱電対挿入部材13の上端部は、図6(b)および図3(b)に示すように、それぞれ、天板3の開口部3aの幅方向に突出するフランジ部13dが延設されており、第1の熱電対挿入部材13が第一板部材21と第二板部材22との間に挿入された場合に、これらフランジ部13d,13dが、開口部3aの縁部に係止されて、位置決めと落下防止の機能を果たすようになっている。 Further, as shown in FIGS. 6B and 3B, the upper end portion of the first thermocouple insertion member 13 has a flange portion 13d protruding in the width direction of the opening portion 3a of the top plate 3, respectively. When the first thermocouple insertion member 13 is extended between the first plate member 21 and the second plate member 22, these flange portions 13d and 13d are the edges of the opening 3a. It is locked to the function of positioning and fall prevention.

以上の構成により、酸素含有ガス導入部材2の内部温度を測定する熱電対12を、第一板部材21と第二板部材22との間の所定位置まで、簡単に挿通させ固定することができる。特に、酸素含有ガス導入部材2が、図2,図3(a)で示したような、第一板部材21の少なくとも一部が湾曲形状である酸素含有ガス導入部材であっても、熱電対12を容易に挿通させることができる。 With the above configuration, the thermocouple 12 for measuring the internal temperature of the oxygen-containing gas introducing member 2 can be easily inserted and fixed to a predetermined position between the first plate member 21 and the second plate member 22. .. In particular, even if the oxygen-containing gas introducing member 2 is an oxygen-containing gas introducing member in which at least a part of the first plate member 21 has a curved shape as shown in FIGS. 2 and 3A, the thermocouple is used. 12 can be easily inserted.

なお、第一板部材21と第二板部材22との間に挿入される第1の熱電対挿入部材13は、先に述べた、第一板部材21の上下方向の湾曲形状の経時変形を、より抑制できる。 The first thermocouple insertion member 13 inserted between the first plate member 21 and the second plate member 22 undergoes the above-mentioned deformation of the first plate member 21 in the vertical direction with time. , Can be suppressed more.

また、上述した、収納容器外の第2の熱電対挿入部材14および収納容器内の第1の熱電対挿入部材13は、酸素含有ガス導入部材(空気導入板)が湾曲していない燃料電池モジュールおよび燃料電池装置にも適用することができる。 Further, the above-mentioned second thermocouple insertion member 14 outside the storage container and the first thermocouple insertion member 13 inside the storage container are fuel cell modules in which the oxygen-containing gas introduction member (air introduction plate) is not curved. And can also be applied to fuel cell devices.

つぎに、図7は、本実施形態の燃料電池装置100の一例を示す透過斜視図である。
燃料電池装置100は、前述の燃料電池モジュール10と、燃料電池モジュール10を動作させるための補機と、燃料電池モジュール10および補機を収納する外装ケース50とを備えている。なお、図7においては一部構成を省略して示している。
Next, FIG. 7 is a transmission perspective view showing an example of the fuel cell device 100 of the present embodiment.
The fuel cell device 100 includes the above-mentioned fuel cell module 10, an auxiliary device for operating the fuel cell module 10, and an outer case 50 for accommodating the fuel cell module 10 and the auxiliary device. In FIG. 7, a part of the configuration is omitted.

燃料電池装置100は、図7に示すように、各支柱51と外装板(図示省略)から構成される外装ケース内に、上記実施形態の燃料電池モジュール10を収容したものである。この外装ケース内には、図示した燃料電池モジュール10の他、蓄熱用のタンク、発電した電力を外部に供給するためのパワーコンディショナ、ポンプやコントローラ等の補機類が配設される。 As shown in FIG. 7, the fuel cell device 100 accommodates the fuel cell module 10 of the above embodiment in an outer case composed of each support column 51 and an exterior plate (not shown). In addition to the illustrated fuel cell module 10, a tank for heat storage, a power conditioner for supplying generated electric power to the outside, and auxiliary equipment such as a pump and a controller are arranged in the outer case.

本実施形態の燃料電池装置100によれば、燃料電池モジュール10を備えることにより、発電効率を向上させることができる。 According to the fuel cell device 100 of the present embodiment, the power generation efficiency can be improved by providing the fuel cell module 10.

1 収納容器
1b 第1の貫通孔
2 酸素含有ガス導入部材
2a 接合部
2b 吐出部
3 天板(第2流路部材)
3a 開口部
4 セルスタック
7 内部断熱部材
7A,7B 側部断熱材
10 燃料電池モジュール
11 収納室
11A 発電室
11B 燃焼室
12 熱電対(TC)
13 第1の熱電対挿入部材
13c 二股状部位
13d フランジ部
14 第2の熱電対挿入部材
14A 中空管(筒状部材)
14B 基台
14e 第2の貫通孔
21 第一板部材
21a 外表面
21b 内表面
22 第二板部材
22a 外表面
22b 内表面
31 第1酸素含有ガス流路
32 第2酸素含有ガス流路
33 第3酸素含有ガス流路
100 燃料電池装置
S セルスタック装置
G ガイドスペース(案内空間)
1 Storage container 1b First through hole 2 Oxygen-containing gas introduction member 2a Joint part 2b Discharge part 3 Top plate (second flow path member)
3a Opening 4 Cell stack 7 Internal insulation 7A, 7B Side insulation 10 Fuel cell module 11 Storage chamber 11A Power generation chamber 11B Combustion chamber 12 Thermocouple (TC)
13 First thermocouple insertion member 13c Bifurcated part 13d Flange part 14 Second thermocouple insertion member 14A Hollow tube (cylindrical member)
14B Base 14e Second through hole 21 First plate member 21a Outer surface 21b Inner surface 22 Second plate member 22a Outer surface 22b Inner surface 31 First oxygen-containing gas flow path 32 Second oxygen-containing gas flow path 33 Third Oxygen-containing gas flow path 100 Fuel cell device S Cell stack device G Guide space (guidance space)

Claims (11)

酸素含有ガスと燃料ガスとを用いて発電を行なう燃料電池セルを複数個配列してなるセルスタックと、
前記セルスタックを収納する収納室を有する収納容器と、
酸素含有ガスを各燃料電池セルの下方に供給する中空状の酸素含有ガス導入部材であって、前記収納室の上方より垂下し、高温領域と対向する第一板部材と、該第一板部材に対して酸素含有ガスの流路となる中空部を挟んで対向する第二板部材とを有する酸素含有ガス導入部材と、を備え、
前記燃料電池セルの上下方向でかつ該燃料電池セルの配列方向と直交する方向、における任意の断面において、
前記第一板部材の少なくとも一部は、燃料電池セルの上下方向における中央部が、上端部に比べて燃焼室側に近づく湾曲形状であり、かつ、
前記第一板部材における外表面に沿った全長が、前記第二板部材における外表面に沿った全長より長いことを特徴とする燃料電池モジュール。
A cell stack consisting of a plurality of fuel cell cells that generate electricity using an oxygen-containing gas and a fuel gas.
A storage container having a storage chamber for storing the cell stack,
A hollow oxygen-containing gas introduction member that supplies oxygen-containing gas below each fuel cell, and a first plate member that hangs down from above the storage chamber and faces a high temperature region, and the first plate member. It is provided with an oxygen-containing gas introducing member having a second plate member facing the hollow portion which is a flow path of the oxygen-containing gas.
In an arbitrary cross section in the vertical direction of the fuel cell and in the direction orthogonal to the arrangement direction of the fuel cell.
At least a part of the first plate member has a curved shape in which the central portion of the fuel cell in the vertical direction is closer to the combustion chamber side than the upper end portion .
A fuel cell module characterized in that the total length along the outer surface of the first plate member is longer than the total length along the outer surface of the second plate member.
前記任意の断面は、前記燃料電池セルの配列方向における中央部の断面である、請求項1に記載の燃料電池モジュール。 The fuel cell module according to claim 1, wherein the arbitrary cross section is a cross section of a central portion in the arrangement direction of the fuel cell. 前記酸素含有ガス導入部材は、前記第一板部材の外表面が、該第一板部材の外表面以外の面より面粗度の高い粗面である、請求項1または2に記載の燃料電池モジュール。 The fuel cell according to claim 1 or 2, wherein the oxygen-containing gas introducing member has a rough surface having a higher surface roughness than a surface other than the outer surface of the first plate member. module. 前記収納容器は、前記収納室の天板を有しており、
該天板は、前記酸素含有ガス導入部材が挿通される開口部を含んでおり、
前記酸素含有ガス導入部材の上端と前記天板とが接合された接合部の形状が、角部の丸い矩形、長孔形、楕円形のいずれかである、請求項1~3のいずれか1つに記載の燃料電池モジュール。
The storage container has a top plate of the storage chamber, and the storage container has a top plate.
The top plate includes an opening through which the oxygen-containing gas introducing member is inserted.
Any one of claims 1 to 3, wherein the shape of the joint portion to which the upper end of the oxygen-containing gas introducing member and the top plate are joined is any of a rectangular shape with rounded corners, an elongated hole shape, and an elliptical shape. The fuel cell module described in one.
前記酸素含有ガス導入部材における、少なくとも前記セルスタックに対向する第一板部材が、モジュール水平方向に対応する方向に圧延加工された金属板で構成されている、請求項1~4のいずれか1つに記載の燃料電池モジュール。 Any one of claims 1 to 4, wherein at least the first plate member of the oxygen-containing gas introducing member facing the cell stack is made of a metal plate rolled in a direction corresponding to the horizontal direction of the module. The fuel cell module described in one. 前記第一板部材における、前記セルスタックの上端より上方と対向する部分は平坦部である、請求項1~5のいずれか1つに記載の燃料電池モジュール。 The fuel cell module according to any one of claims 1 to 5, wherein the portion of the first plate member facing above the upper end of the cell stack is a flat portion. 前記酸素含有ガス導入部材の内部温度を測定する熱電対と、
前記酸素含有ガス導入部材の前記第一板部材と前記第二板部材との間に位置する第1の熱電対挿入部材と、を備える請求項4に記載の燃料電池モジュール。
A thermocouple for measuring the internal temperature of the oxygen-containing gas introducing member,
The fuel cell module according to claim 4, further comprising a first thermocouple insertion member located between the first plate member and the second plate member of the oxygen-containing gas introducing member.
前記第1の熱電対挿入部材の下部は、2つの部位に分かれて垂下する二股状である、請求項7に記載の燃料電池モジュール。 The fuel cell module according to claim 7, wherein the lower portion of the first thermocouple insertion member has a bifurcated shape that is divided into two portions and hangs down. 前記第1の熱電対挿入部材は、前記天板に係止する係止用フランジ部を有する、請求項7または8に記載の燃料電池モジュール。 The fuel cell module according to claim 7, wherein the first thermocouple insertion member has a locking flange portion for locking to the top plate. 前記収納容器の外壁は、前記熱電対を挿入する第1の貫通孔を有し、
前記第1の貫通孔につながり、前記熱電対を挿入する第2の熱電対挿入部材を備え、
前記第2の熱電対挿入部材は、
筒状部材と、前記筒状部材の一端とつながる第2の貫通孔を有する基台と、を含み、
前記第2の熱電対挿入部材は、前記収納容器の外壁の前記第1の貫通孔と、前記第2の貫通孔とが同心になるように、前記基台が前記収納容器の外壁に載置され、
前記熱電対は、前記筒状部材の他端と接合されている、請求項7~9のいずれか1つに記載の燃料電池モジュール。
The outer wall of the storage container has a first through hole into which the thermocouple is inserted.
A second thermocouple insertion member connected to the first through hole and into which the thermocouple is inserted is provided.
The second thermocouple insertion member is
A tubular member and a base having a second through hole connected to one end of the tubular member.
In the second thermocouple insertion member, the base is placed on the outer wall of the storage container so that the first through hole on the outer wall of the storage container and the second through hole are concentric with each other. Being done
The fuel cell module according to any one of claims 7 to 9, wherein the thermocouple is joined to the other end of the tubular member.
請求項1~10のいずれか1つに記載の燃料電池モジュールと、
前記燃料電池モジュールの運転を行なうための補機と、
前記燃料電池モジュールと前記補機とを収納する外装ケースと、
を備える燃料電池装置。
The fuel cell module according to any one of claims 1 to 10.
Auxiliary equipment for operating the fuel cell module and
An outer case for accommodating the fuel cell module and the auxiliary equipment, and
A fuel cell device equipped with.
JP2017190577A 2017-08-31 2017-09-29 Fuel cell module and fuel cell device Active JP7011434B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168067 2017-08-31
JP2017168067 2017-08-31

Publications (2)

Publication Number Publication Date
JP2019046775A JP2019046775A (en) 2019-03-22
JP7011434B2 true JP7011434B2 (en) 2022-02-10

Family

ID=65816530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190577A Active JP7011434B2 (en) 2017-08-31 2017-09-29 Fuel cell module and fuel cell device

Country Status (1)

Country Link
JP (1) JP7011434B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096929A (en) 2011-11-04 2013-05-20 Daido Steel Co Ltd Temperature measuring section structure for heating furnace
JP2015087394A (en) 2013-10-31 2015-05-07 ゼネラル・エレクトリック・カンパニイ Thermocouple assembly
JP2017045644A (en) 2015-08-27 2017-03-02 京セラ株式会社 Module and module housing device
WO2017038782A1 (en) 2015-08-31 2017-03-09 京セラ株式会社 Fuel cell module and fuel cell device
JP2017098146A (en) 2015-11-26 2017-06-01 京セラ株式会社 Module and module housing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096929A (en) 2011-11-04 2013-05-20 Daido Steel Co Ltd Temperature measuring section structure for heating furnace
JP2015087394A (en) 2013-10-31 2015-05-07 ゼネラル・エレクトリック・カンパニイ Thermocouple assembly
JP2017045644A (en) 2015-08-27 2017-03-02 京セラ株式会社 Module and module housing device
WO2017038782A1 (en) 2015-08-31 2017-03-09 京セラ株式会社 Fuel cell module and fuel cell device
JP2017098146A (en) 2015-11-26 2017-06-01 京セラ株式会社 Module and module housing device

Also Published As

Publication number Publication date
JP2019046775A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US10224555B2 (en) Fuel cell
WO2015174386A1 (en) Fuel cell
JP5712334B2 (en) Fuel cell
JP6499247B2 (en) Fuel cell separator and fuel cell stack
JP6949182B2 (en) Manufacturing method of fuel cell module, fuel cell device and fuel cell module
JP5339719B2 (en) Fuel cell device
JP6867401B2 (en) Fuel cell module and fuel cell device
JP6959307B2 (en) Reformer, cell stack device, fuel cell module and fuel cell device
JP2020004726A (en) Solid oxide fuel cell module
JP7011434B2 (en) Fuel cell module and fuel cell device
JP5907751B2 (en) Solid oxide fuel cell
WO2017221790A1 (en) Fuel cell module and fuel cell device
JP6809884B2 (en) Fuel cell module and fuel cell device
US20150171458A1 (en) Fuel cell module, fuel cell, manufacturing method of fuel cell module, and method for supplying oxidant to fuel cell module
JP6826485B2 (en) Fuel cell module and fuel cell device
JP6941998B2 (en) Fuel cell module and fuel cell device
JP2012186041A (en) Solid oxide fuel battery
JP2022170336A (en) Fuel cell module and fuel cell device
JP5831842B2 (en) Fuel cell device
JP2021036488A (en) Fuel battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114

R150 Certificate of patent or registration of utility model

Ref document number: 7011434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250