JP7010552B2 - Bacteria and water treatment system using them - Google Patents
Bacteria and water treatment system using them Download PDFInfo
- Publication number
- JP7010552B2 JP7010552B2 JP2017038224A JP2017038224A JP7010552B2 JP 7010552 B2 JP7010552 B2 JP 7010552B2 JP 2017038224 A JP2017038224 A JP 2017038224A JP 2017038224 A JP2017038224 A JP 2017038224A JP 7010552 B2 JP7010552 B2 JP 7010552B2
- Authority
- JP
- Japan
- Prior art keywords
- water treatment
- treatment system
- strain
- bacteria
- bacterium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
本発明は、N-アシル化ホモセリンラクトン(AHL)分解活性を有する細菌及びそれを用いた水処理システムに関する。 The present invention relates to a bacterium having N-acylated homoserine lactone (AHL) degrading activity and a water treatment system using the same.
バイオフィルムは、細菌が物質固相表面に付着及び増殖して、多糖類などの高分子有機物を生産することにより形成される。バイオフィルムは、膜状の構造体であり、生物膜やスライムとも呼ばれる。 Biofilms are formed by bacteria adhering to and multiplying on the surface of a solid phase of a substance to produce high molecular weight organic substances such as polysaccharides. A biofilm is a membranous structure, also called a biofilm or slime.
バイオフィルムは、冷却水系などの循環水系において、伝熱効率の低下や配管の目詰まりの要因となることが知られている。また、バイオフィルムは、製紙工程において生産性低下や品質の劣化などの障害(スライム障害)の要因となることが知られ、逆浸透膜(RO膜)を利用した水処理工程においてRO膜のフラックスの低下の要因となることが知られている。 Biofilms are known to cause a decrease in heat transfer efficiency and clogging of pipes in a circulating water system such as a cooling water system. In addition, biofilm is known to cause obstacles (slime obstacles) such as productivity deterioration and quality deterioration in the papermaking process, and the flux of RO membranes in the water treatment process using reverse osmosis membranes (RO membranes). It is known to be a factor in the decline of.
上記の循環水系、製紙工程、水処理工程など(以下、まとめて「水処理系」という)においてバイオフィルムに起因する上記の各問題を防止するために、様々な処置方法が考案されている。 Various treatment methods have been devised in order to prevent the above-mentioned problems caused by biofilms in the above-mentioned circulating water system, papermaking process, water treatment process and the like (hereinafter collectively referred to as "water treatment system").
それら様々な処置方法うち、最も一般的なものは、殺菌剤や増殖抑制剤を用いて細菌の繁殖を防止する方法である。これら殺菌剤や増殖抑制剤を用いる方法では、従来、塩素、臭素ならびにその派生物、ClMIT(5-クロロ-2-メチル-4-イソチアゾリン-3-オンと2-メチル-4-イソチアゾリン-3-オンの混合物)やDBNPA(2,2-ジブロモ-3-ニトリロプロピオンアミド)といった有機抗菌剤、オゾンや過酸化水素などの酸化性の殺菌剤が利用されている。
その他、界面活性剤を利用した分散処理や剥離処理も行われており、これらの方法では、アルキルベンゼンスルホン酸、ポリオキシエチレンアルキルエーテル類、ポリエチレンイミンなどが利用されている。
Of these various treatment methods, the most common is a method of preventing the growth of bacteria by using a fungicide or a growth inhibitor. Methods using these bactericides and growth inhibitors have traditionally included chlorine, bromine and its derivatives, ClMIT (5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one). Organic antibacterial agents such as on mixture) and DBNPA (2,2-dibromo-3-nitrilopropionamide) and oxidizing bactericides such as ozone and hydrogen peroxide are used.
In addition, dispersion treatment and stripping treatment using a surfactant are also performed, and in these methods, alkylbenzene sulfonic acid, polyoxyethylene alkyl ethers, polyethyleneimine and the like are used.
また近年、細胞間情報伝達物質がバイオフィルム形成のシグナルとして重要な役割を担っていることが明らかになり、細胞間情報伝達物質を分解してバイオフィルムの形成を抑制する技術開発も進んでいる。 In recent years, it has become clear that cell-cell communication substances play an important role as a signal for biofilm formation, and technological developments are underway to decompose cell-cell communication substances and suppress biofilm formation. ..
細胞間情報伝達物質を分解してバイオフィルムの形成を抑制する技術として、グラム陰性細菌の中で幅広く使われている細胞間情報伝達物質であるN-アシル化ホモセリンラクトン(AHL)に着目した技術が開示されている(特許文献1等)。 A technology focusing on N-acylated homoserine lactone (AHL), which is a cell-cell communication substance widely used in Gram-negative bacteria, as a technology for decomposing cell-cell communication substances and suppressing the formation of biofilms. Is disclosed (Patent Document 1 etc.).
実験室レベルでは、AHL分解活性を有する細菌(以下、「AHL分解菌」ともいう)を水処理系内に導入してAHL分解菌にAHLを分解させることによってバイオフィルムの形成を抑制する技術が実証されている(非特許文献1)。 At the laboratory level, there is a technology that suppresses the formation of biofilm by introducing bacteria having AHL degrading activity (hereinafter, also referred to as "AHL degrading bacteria") into a water treatment system and causing AHL degrading bacteria to decompose AHL. It has been demonstrated (Non-Patent Document 1).
しかし、実際の水処理系は開放系であり、その系内には多様な自然界の細菌等の微生物が存在する。そして、従来のAHL分解菌では、これら多様な自然界の細菌等が存在する開放系の水処理系内に、安定的に定着させることができないという問題があった。 However, the actual water treatment system is an open system, and various microorganisms such as bacteria in the natural world exist in the system. Further, the conventional AHL-degrading bacteria have a problem that they cannot be stably established in an open water treatment system in which these various natural bacteria and the like exist.
本発明はこのような事情に鑑みてなされたものであり、本発明は、上記した従来技術の問題を解決し、多様な自然界の細菌等の微生物が存在する開放系の処理系内でも、安定的に定着させることができるAHL分解菌及び、そのAHL分解菌を用いた水処理システムの提供を目的とする。 The present invention has been made in view of such circumstances, and the present invention solves the above-mentioned problems of the prior art and is stable even in an open treatment system in which various microorganisms such as bacteria in the natural world are present. It is an object of the present invention to provide an AHL-degrading bacterium that can be colonized and a water treatment system using the AHL-degrading bacterium.
上記のような問題を解決するため、本発明者らは鋭意検討した結果、本発明者らが分離したスフィンゴピクシス属細菌の新規な菌株により、上記の目的を達成できることを見出し、本発明を完成させた。
本発明は、以下の[1]~[7]を提供する。
[1]スフィンゴピクシス属に属し、塩素耐性を有するとともに、N-アシル化ホモセリンラクトン(AHL)分解活性を有する、細菌。
[2]16SrDNA配列が、配列番号1又は配列番号2に記載の16SrDNA配列と97%以上の配列相同性を有する、[1]の細菌。
[3]スフィンゴピクシス属FD7株(受託番号:NITE P-02356)又はスフィンゴピクシス属EG6株(受託番号:NITE P-02355)である、[1]又は[2]の細菌。
[4][1]~[3]の何れかの細菌を水処理系内に含有する水処理システム。
[5]前記細菌を担体に固定した水処理用資材を備える、[4]の水処理システム。
[6]前記細菌を水処理系内に添加する細菌添加手段を備える、[4]の水処理システム。
[7]水処理系内に殺菌剤である塩素系薬剤を添加する殺菌剤添加手段を備える、[1]~[3]の何れかの水処理方法。
As a result of diligent studies to solve the above problems, the present inventors have found that a novel strain of a bacterium belonging to the genus Sphingopixis isolated by the present inventors can achieve the above object, and completed the present invention. I let you.
The present invention provides the following [1] to [7].
[1] A bacterium belonging to the genus Sphingopicsis, which has chlorine resistance and N-acylated homoserine lactone (AHL) degrading activity.
[2] The bacterium of [1], wherein the 16SrDNA sequence has 97% or more sequence homology with the 16SrDNA sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2.
[3] Bacteria according to [1] or [2], which is a sphingopicsis FD7 strain (accession number: NITE P-02356) or a sphingopixis EG6 strain (accession number: NITE P-02355).
[4] A water treatment system containing any of the bacteria [1] to [3] in a water treatment system.
[5] The water treatment system according to [4], comprising a water treatment material in which the bacterium is immobilized on a carrier.
[6] The water treatment system of [4], comprising a bacterium addition means for adding the bacterium into the water treatment system.
[7] The water treatment method according to any one of [1] to [3], comprising a fungicide addition means for adding a chlorine-based agent as a fungicide into the water treatment system.
本発明によれば、AHL分解活性を有するとともに、塩素耐性を有する細菌を提供することができる。
本発明の細菌をAHL分解菌として水処理系内に導入して、その水処理系内に殺菌剤として次亜塩素酸ナトリウム等の塩素系薬剤を低濃度で共存させることにより、本発明の細菌を、開放系の水処理系において多様な土着の細菌の存在下でも、それらの細菌との競争に打ち勝って定着させ、優占的に個体数を維持させることができる。このように開放系の水処理系において継続的に十分な個体数を維持することができるAHL分解菌を水処理系内に共存させて水処理を行うことにより、AHLを分解してバイオフィルムの形成を抑制する効果を継続的に安定して得ることができる。
According to the present invention, it is possible to provide a bacterium having AHL degrading activity and chlorine resistance.
By introducing the bacterium of the present invention into a water treatment system as an AHL-degrading bacterium and coexisting a chlorine-based agent such as sodium hypochlorite as a bactericidal agent in the water treatment system at a low concentration, the bacterium of the present invention. In an open water treatment system, even in the presence of various indigenous bacteria, it is possible to overcome the competition with these bacteria and establish them, and to maintain the population predominantly. In this way, AHL-degrading bacteria that can continuously maintain a sufficient number of individuals in an open water treatment system are allowed to coexist in the water treatment system to perform water treatment, thereby decomposing AHL and biofilm. The effect of suppressing the formation can be continuously and stably obtained.
本発明のスフィンゴピクシス(Sphingopyxis)属細菌(以下、「本発明細菌」ということもある)は、AHL分解活性を有するとともに、塩素耐性を有する。 The bacterium belonging to the genus Sphingopyxis of the present invention (hereinafter, also referred to as “the bacterium of the present invention”) has AHL degrading activity and chlorine resistance.
AHL分解活性は、レポーター細菌と呼ばれるクロモバクテリウム・ビオラセウム(Chromobacterium violaceus)の遺伝子組み換え体(AHL合成遺伝子破壊株)を利用した公知の方法によって定量できる。
具体的には、レポーター細菌を混合したLB寒天培地にAHLを含むペーパーディスクを置くと、AHLに応答してレポーター細菌は紫色色素(ビオラセイン)を生産することから、紫色の強度を指標としてAHLの量を半定量することができる。
こうしたレポーター細菌株としては、短鎖AHL(C4~C8:アシル基の鎖長を示す)に応答するCV026株(Microbiology誌、143巻、3703-3711ページ、1997年)や長鎖AHL(C8~C18)に応答するVIR07株(FEMS Microbiol.Lett.誌、279巻、124-130ページ、2007年)が知られており、利用することができる。
AHL分解菌の培養液とAHL試料を混合して反応させたのち、その反応物を用いて上述のレポーターアッセイを行うことで、AHLの分解性を評価することができる。具体的には、未反応のAHLが示す紫色色素の強度に対して、培養液との処理により色調がどれだけ低下したかを比較評価することで、分解性を半定量することができる。
The AHL degradation activity can be quantified by a known method using a gene recombinant (AHL synthetic gene disruption strain) of Chromobacterium violaceus called a reporter bacterium.
Specifically, when a paper disk containing AHL is placed on an LB agar medium mixed with reporter bacteria, the reporter bacteria produce a purple pigment (violacein) in response to AHL. Therefore, the intensity of purple is used as an index for AHL. The amount can be semi-quantified.
Such reporter bacterial strains include CV026 strains (Microbiology, Vol. 143, pp. 3703-3711, 1997) that respond to short-chain AHL (C4 to C8: indicating the chain length of the acyl group) and long-chain AHL (C8 to C8 to). A VIR07 strain (FEMS Microbiol. Lett., Vol. 279, pp. 124-130, 2007) that responds to C18) is known and available.
The degradability of AHL can be evaluated by mixing and reacting the culture solution of the AHL-degrading bacterium and the AHL sample, and then performing the above-mentioned reporter assay using the reaction product. Specifically, the degradability can be semi-quantified by comparing and evaluating how much the color tone is lowered by the treatment with the culture solution with respect to the intensity of the purple pigment indicated by the unreacted AHL.
本明細書において、塩素耐性を有するとは、次亜塩素酸ナトリウムに対する抵抗性を有することを意味する。
具体的には、遊離残留塩素濃度が0.3mg/L・as Cl2である水溶液に30℃で15分間接触させた後の生存率が50%を上回る細菌を「塩素耐性を有する」細菌と定義する。遊離残留塩素とは、水中で次亜塩素酸や次亜塩素酸イオンとして存在するものを意味する。
As used herein, having chlorine resistance means having resistance to sodium hypochlorite.
Specifically, bacteria having a survival rate of more than 50% after being contacted with an aqueous solution having a free residual chlorine concentration of 0.3 mg / L · as Cl 2 at 30 ° C. for 15 minutes are referred to as “chlorine resistant” bacteria. Define. Free residual chlorine means what exists as hypochlorous acid or hypochlorite ion in water.
本発明細菌は、上記性質の他に、配列番号1又は配列番号2に記載の16SrDNA配列と97%以上、好ましくは98.7%以上、更に好ましくは99%以上の配列相同性を有するものである。 In addition to the above-mentioned properties, the bacterium of the present invention has 97% or more, preferably 98.7% or more, more preferably 99% or more sequence homology with the 16SrDNA sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2. be.
更に、本発明細菌は、以下の生化学性状を有する。
分離源:冷却塔より採取した冷却水
形態:好気性グラム陰性非芽胞形成性棹菌
コロニー:R2A寒天培地上で黄色のコロニーを形成
Furthermore, the bacterium of the present invention has the following biochemical properties.
Isolation source: Cooling water collected from a cooling tower Morphology: Aerobic gram-negative non-spore-forming spore-forming colonies: Yellow colonies formed on R2A agar medium
上記の性質を有する本発明細菌は、例えば、以下の方法によって得ることができる。 The bacterium of the present invention having the above-mentioned properties can be obtained, for example, by the following method.
工場やビルの冷却塔より冷却水を採取し分離源試料とする。塩素系薬剤を連続注入している冷却水系が望ましい。分離源試料を希釈し、PY培地(1%ポリペプトン、1%酵母エキス、0.5%NaCl、pH7.0)を水で10倍希釈した寒天培地や、R2A寒天培地(Becton, Dickinson and Company)に塗抹後、5~10日間、30℃で培養する。その後、増殖したコロニーを目視あるいは実体顕微鏡にて観察し、形態の異なるコロニーを釣菌し、上記の寒天培地にて好気的に純化培養を繰り返すことにより、本発明細菌を分離できる。 Cooling water is collected from the cooling tower of a factory or building and used as a separation source sample. A cooling water system in which chlorine-based chemicals are continuously injected is desirable. Agar medium obtained by diluting the separation source sample and 10-fold diluted PY medium (1% polypeptone, 1% yeast extract, 0.5% NaCl, pH 7.0) with water, or R2A agar medium (Becton, Dickinson and Company). After smearing, incubate at 30 ° C. for 5 to 10 days. Then, the bacterium of the present invention can be isolated by observing the grown colonies visually or with a stereomicroscope, catching colonies having different morphologies, and repeating aerobic purification culture on the above-mentioned agar medium.
具体的に、上記の性質を有する細菌としては、本発明者らが上記の方法で分離したスフィンゴピクシス属FD7株及びスフィンゴピクシス属EG6株が挙げられる。これらは独立行政法人産業技術総合研究所 特許生物寄託センター(茨城県つくば市東1丁目1番地1中央第6)に2016年9月23日付で寄託した。受託番号は、以下の通り。
スフィンゴピクシス属FD7株:NITE P-02356
スフィンゴピクシス属EG6株:NITE P-02355
Specifically, examples of the bacterium having the above-mentioned properties include a sphingopicsis FD7 strain and a sphingopicsis EG6 strain isolated by the present inventors by the above-mentioned method. These were deposited on September 23, 2016 at the Patent Organism Depositary Center (1-1-1 Central 6 Higashi, Tsukuba City, Ibaraki Prefecture), National Institute of Advanced Industrial Science and Technology. The acceptance number is as follows.
Sphingolipidis FD7 strain: NITE P-02356
Sphingolipidis EG6 strain: NITE P-02355
分離株(スフィンゴピクシス属FD7株及びスフィンゴピクシス属EG6株)から染色体DNAを調整し、これをテンプレートとしてPCRによって16SrRNA遺伝子のほぼ全長を増幅し、その塩基配列を決定した。
配列表の配列番号1にスフィンゴピクシス属FD7株の1411塩基の塩基配列を示し、配列表の配列番号2にスフィンゴピクシス属EG6株の1411塩基の塩基配列を示す。
Chromosome DNA was prepared from the isolates (FD7 strain of Sphingopixis and EG6 strain of Sphingopixis), and the entire length of the 16S rRNA gene was amplified by PCR using this as a template, and its nucleotide sequence was determined.
SEQ ID NO: 1 in the sequence listing shows the base sequence of 1411 bases of the Sphingopixis FD7 strain, and SEQ ID NO: 2 of the sequence listing shows the base sequence of 1411 bases of the Sphingopixis EG6 strain.
更に、得られた配列情報をもとに相同性検索及び系統分析を行った。相同性検索及び系統分析は、インターネット上のデータベースであるDDBJ(http://www.ddbj.nig.ac.jp/index-j.html)や、株式会社テクノスルガ・ラボ社製の微生物同定システム、アポロン等の市販データベースを用いて行うことができる。なお、本明細書において、配列相同性は、「株式会社テクノスルガ・ラボ社製の微生物同定システム、アポロン」で計算された値に基づくものである。 Furthermore, homology search and phylogenetic analysis were performed based on the obtained sequence information. For homology search and phylogenetic analysis, use DDBJ (http://www.ddbj.nig.ac.jp/index-j.html), which is a database on the Internet, and a microorganism identification system manufactured by Technosuruga Lab Co., Ltd. , Apollon and other commercially available databases can be used. In this specification, the sequence homology is based on the value calculated by "Apollon, a microorganism identification system manufactured by Technosuruga Lab."
スフィンゴピクシス属FD7株について相同性検索及び系統分析を行った結果を表1及び図1に示す。図1の「D7」は、スフィンゴピクシス属FD7株を意味する。 The results of homology search and phylogenetic analysis of the FD7 strain of the genus Sphingopicsis are shown in Table 1 and FIG. “D7” in FIG. 1 means the FD7 strain of the genus Sphingopicsis.
表1及び図1に示すように、FD7株はスフィンゴピクシス・ソリ(S.soli)と最も近縁であり、その相同性は98.8%である。この相同性から、FD7株はスフィンゴピクシス・ソリと同種あるいは新種の細菌のいずれかと判断される。 As shown in Table 1 and FIG. 1, the FD7 strain is most closely related to S. soli, and its homology is 98.8%. From this homology, the FD7 strain is judged to be either the same species as the sphingopicsis sled or a new species of bacterium.
スフィンゴピクシス属EG6株について相同性検索及び系統分析を行った結果を表2及び図2に示す。図2の「G6」は、スフィンゴピクシス属EG6株を意味する。 Table 2 and FIG. 2 show the results of homology search and phylogenetic analysis of the sphingopicsis EG6 strain. “G6” in FIG. 2 means the EG6 strain of the genus Sphingopicsis.
表2及び図2に示すように、EG6株はスフィンゴピクシス・キレンシス(S.chilensis)及びスフィンゴピクシスバウザネンシス(S.bauzanensis)と最も近縁であり、その相同性は98.4%である。相同性が98.4%と低いことから、EG6株はスフィンゴピクシス属の新規な菌種と判断される。 As shown in Table 2 and FIG. 2, the EG6 strain is most closely related to S. chilensis and S. bauzanensis, with a homology of 98.4%. be. Since the homology is as low as 98.4%, the EG6 strain is judged to be a novel strain of the genus Sphingopicsis.
本発明細菌は、その培養液を水処理系の系内に含有させて使用するのに好適である。
本発明細菌を水処理系の系内に含有する水処理方法によれば、水処理系内で、被処理水中のAHLを分解して、水処理系におけるバイオフィルムの形成を抑制することができる。
The bacterium of the present invention is suitable for use by containing the culture solution in a water treatment system.
According to the water treatment method in which the bacterium of the present invention is contained in the system of the water treatment system, AHL in the water to be treated can be decomposed in the water treatment system and the formation of a biofilm in the water treatment system can be suppressed. ..
本発明細菌を水処理系内に含有させるための具体的形態は特に限定されない。例えば、水処理系内に本発明細菌を添加する細菌添加手段を備えた水処理システムを構築し、細菌添加手段を用いて、本発明細菌を水処理系内に間欠的あるいは連続的に投入することができる。本発明細菌は培地や保存液等の溶液に懸濁した状態、または、乾燥菌体として粉末状で供給することも可能である。水処理系周辺に培養設備を設け、オンサイトで培養した細菌を供給することも可能である。或いは、細菌を担体に固定した水処理用資材を備える水処理システムを構築し、この水処理用資材に水処理系内の被処理水を通液させることもできる。 The specific form for containing the bacterium of the present invention in the water treatment system is not particularly limited. For example, a water treatment system equipped with a bacterium addition means for adding the bacterium of the present invention into the water treatment system is constructed, and the bacterium of the present invention is intermittently or continuously introduced into the water treatment system by using the bacterium addition means. be able to. The bacterium of the present invention can be supplied in a suspended state in a solution such as a medium or a storage solution, or as a dry bacterium in the form of powder. It is also possible to provide culture equipment around the water treatment system to supply bacteria cultivated on-site. Alternatively, a water treatment system including a water treatment material in which bacteria are fixed to a carrier can be constructed, and the water to be treated in the water treatment system can be passed through the water treatment material.
水処理システムには、水処理系内に殺菌剤を添加する殺菌剤添加手段を備えることが好ましい。殺菌剤には、次亜塩素酸ナトリウムやクロラミン系の無機塩素系殺菌剤を利用することができる。殺菌剤の添加は間欠でも好ましいが、連続添加が望ましい。殺菌剤の濃度は、本発明細菌が生育でき、かつ、他の細菌が生育できない濃度にコントロールすることが望ましい。
尚、無機塩素系殺菌剤以外にも無機臭素系殺菌剤や過酸化水素等の酸化剤、あるいはDBNPAやCl-MIT等の有機殺菌剤を併用することもできる。また、防食薬剤やスケール防止薬剤などの水処理薬剤と併用することも可能である。
水処理系が開放系の場合、系内に多様な自然界の細菌等の微生物が存在するが、これらの多様な土着の細菌は塩素耐性を有さない。このため、開放系の水処理系内に本発明細菌と多様な土着の細菌と亜塩素酸ナトリウム等の塩素系殺菌剤を共存させると、本発明細菌が、多様な土着の細菌との競争に打ち勝って定着する。
このような水処理システムによれば、水処理系が開放系であって、系内に多様な自然界の細菌等の微生物が存在する場合でも、本発明細菌が系内において優占的に個体数を維持するため、AHLを分解してバイオフィルムの形成を抑制する効果を継続的に安定して得ることができる。
It is preferable that the water treatment system is provided with a fungicide addition means for adding a fungicide in the water treatment system. As the disinfectant, sodium hypochlorite or a chloramine-based inorganic chlorine-based disinfectant can be used. The addition of the fungicide is preferable even intermittently, but continuous addition is desirable. It is desirable to control the concentration of the fungicide to a concentration at which the bacterium of the present invention can grow and other bacteria cannot grow.
In addition to the inorganic chlorine-based bactericide, an inorganic bromine-based bactericide, an oxidizing agent such as hydrogen peroxide, or an organic sterilizing agent such as DBNPA or Cl-MIT can also be used in combination. It can also be used in combination with water treatment agents such as anticorrosion agents and antiscale agents.
When the water treatment system is an open system, various microorganisms such as natural bacteria exist in the system, but these various indigenous bacteria do not have chlorine resistance. Therefore, if the bacteria of the present invention, various indigenous bacteria, and a chlorine-based bactericide such as sodium chlorite coexist in an open water treatment system, the bacteria of the present invention will compete with various indigenous bacteria. Overcome and settle.
According to such a water treatment system, even when the water treatment system is an open system and various microorganisms such as bacteria in the natural world are present in the system, the bacterium of the present invention is predominantly abundant in the system. In order to maintain the above, the effect of decomposing AHL and suppressing the formation of biofilm can be continuously and stably obtained.
なお、本発明細菌は、そのまま利用することもできるが、紫外線照射や変異剤処理、或いは遺伝子組換え操作によって得られた高AHL活性変異株や塩素強耐性変異株を利用することもできる。 The bacterium of the present invention can be used as it is, but a highly AHL active mutant strain or a highly chlorine-resistant mutant strain obtained by ultraviolet irradiation, treatment with a mutant agent, or a gene recombination operation can also be used.
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
スフィンゴピクシス属細菌標準株として、以下のDSM株をドイツの菌株保存機関DSMZ(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH)より入手した。
S. witflariensis DSM14551
S. chilensis DSM14889
S. taejonensis DSM15583
S. bauzanensis DSM22271
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
The following DSM strains were obtained from the German strain preservation organization DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) as standard strains of the genus Sphingopicsis.
S. witflariensis DSM14551
S. chilensis DSM14889
S. taejonensis DSM15583
S. bauzanensis DSM22271
<実施例1:塩素耐性の評価>
入手したDSM菌株とスフィンゴピクシス属FD7株及びスフィンゴピクシス属EG6株をそれぞれ1/10濃度のPY寒天培地上で生育し、各細菌菌体を150mMのリン酸緩衝液(pH 7.0)に懸濁した。
終濃度0.3mg/L・as Cl2(遊離塩素濃度)となるように次亜塩素酸ナトリウムを加え、30℃で15分間保温した。
希釈後1/10濃度のPY寒天培地に塗布し、30℃で、1週間培養した。培養後に、生成したコロニー数を測定してCFU(コロニーフォーミングユニット)を求め、CFUを生菌数とした。
対象実験(次亜塩素酸無添加)との比較から生存率を求めた。生存率は塩素無添加の対照系のCFUに対する割合として算出した。
<Example 1: Evaluation of chlorine resistance>
The obtained DSM strain, Sphingopixis FD7 strain, and Sphingopixis EG6 strain were each grown on 1/10 concentration PY agar medium, and each bacterial cell was suspended in 150 mM phosphate buffer (pH 7.0). It became cloudy.
Sodium hypochlorite was added so that the final concentration was 0.3 mg / L · as Cl 2 (free chlorine concentration), and the mixture was kept warm at 30 ° C. for 15 minutes.
After dilution, it was applied to 1/10 concentration of PY agar medium and cultured at 30 ° C. for 1 week. After culturing, the number of colonies generated was measured to obtain CFU (colony forming unit), and CFU was used as the viable cell count.
The survival rate was determined by comparison with the target experiment (without addition of hypochlorous acid). Survival rate was calculated as the ratio of chlorine-free control system to CFU.
表3に示すように、FD7株とEG6株は、それぞれ69%、74%の生存率を示し強い抵抗性を持つことが確認された。また、スフィンゴピクシス属細菌標準株であるDSM菌株は、塩素に対する抵抗性は有さないことが確認された。 As shown in Table 3, the FD7 strain and the EG6 strain showed survival rates of 69% and 74%, respectively, and were confirmed to have strong resistance. It was also confirmed that the DSM strain, which is a standard strain of the genus Sphingopicsis, has no resistance to chlorine.
<実施例2:AHL分解活性の評価>
入手したDSM菌株とスフィンゴピクシス属FD7株及びスフィンゴピクシス属EG6株をそれぞれ1/5濃度のTSB液体培地(Becton, Dickinson and Company)で30℃、16時間、前培養した。
前培養液は、20μMのC6-AHL水溶液(C6はアシル基の鎖長を示す)を含む新鮮な1/5濃度TBS液体培地に移し、30℃で3時間培養した。
培養物は、12000×g、5分間、遠心分離して上清を得た。遠心分離後の上清0.03mlをペーパーディスク(直径8mm:アドバンテック社)に塗布し、予めクロモバクテリウムビオラセウムCV026株を混合したLB寒天培地上にのせて、30℃で16時間培養した。
培養後に、ペーパーディスク周辺の紫色の色調強度を観察した。
<Example 2: Evaluation of AHL decomposition activity>
The obtained DSM strain, Sphingopixis FD7 strain, and Sphingopixis EG6 strain were precultured in TSB liquid medium (Becton, Dickinson and Company) at a concentration of 1/5, respectively, at 30 ° C. for 16 hours.
The preculture was transferred to a fresh 1/5 concentration TBS liquid medium containing a 20 μM C6-AHL aqueous solution (C6 indicates the chain length of the acyl group) and cultured at 30 ° C. for 3 hours.
The culture was centrifuged at 12000 xg for 5 minutes to obtain a supernatant. 0.03 ml of the supernatant after centrifugation was applied to a paper disk (diameter 8 mm: Advantech), placed on an LB agar medium mixed with Chromobacterium violaceum CV026 strain in advance, and cultured at 30 ° C. for 16 hours. ..
After culturing, the purple color tone intensity around the paper disc was observed.
また、それぞれの株に対し、上記C6-AHL水溶液に代えてC10-AHLを用い、上記CV026株に代えてVIR07株を用いて、上記同様の培養及び観察を行った。 Further, for each strain, C10-AHL was used instead of the C6-AHL aqueous solution, and VIR07 strain was used instead of the CV026 strain, and the same culture and observation as described above were carried out.
表4に示すように、AHLを直接ペーパーディスクにのせたコントロール(対照系)では強い紫色を示すことが観察された。
FD7株培養液及びEG6株培養液と接触させた系では紫色の色素産生は全く観察されず、AHLが完全に分解されていることが確認された。
スフィンゴピクシス属細菌標準株であるDSM菌株培養液と接触させた系では菌株により紫色の色調強度が異なることが確認された。DSM菌株のうち、S. bauzanensis DSM22271は、AHL分解活性を有することが確認された。
As shown in Table 4, it was observed that the control (control system) in which AHL was placed directly on the paper disc showed a strong purple color.
No purple pigment production was observed in the system in contact with the FD7 strain culture solution and the EG6 strain culture solution, confirming that AHL was completely degraded.
It was confirmed that the purple color tone intensity differs depending on the strain in the system contacted with the DSM strain culture medium, which is a standard strain of the genus Sphingopicsis. Among the DSM strains, S. bauzanensis DSM22271 was confirmed to have AHL degrading activity.
本発明は、例えば、冷却水系などの循環水系、或いは製紙工程、或いは逆浸透膜(RO膜)を利用した水処理工程において、バイオフィルムの形成を抑制するために利用することができる。 The present invention can be used, for example, to suppress the formation of a biofilm in a circulating water system such as a cooling water system, a paper making process, or a water treatment process using a reverse osmosis membrane (RO membrane).
Claims (6)
スフィンゴピクシス属FD7株(受託番号:NITE P-02356)又はスフィンゴピクシス属EG6株(受託番号:NITE P-02355)である、細菌。 It belongs to the genus Sphingopixis, has chlorine resistance, has N-acylated homoserine lactone (AHL) degrading activity, and is in an aqueous solution having a free residual chlorine concentration of 0.3 mg / L · as Cl 2 at 30 ° C. for 15 minutes. Bacteria with a survival rate of 69% or more after contact
A bacterium that is a sphingopicsis FD7 strain (accession number: NITE P-02356) or a sphingopixis EG6 strain (accession number: NITE P-02355) .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038224A JP7010552B2 (en) | 2017-03-01 | 2017-03-01 | Bacteria and water treatment system using them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038224A JP7010552B2 (en) | 2017-03-01 | 2017-03-01 | Bacteria and water treatment system using them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018143107A JP2018143107A (en) | 2018-09-20 |
JP7010552B2 true JP7010552B2 (en) | 2022-02-10 |
Family
ID=63588466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017038224A Active JP7010552B2 (en) | 2017-03-01 | 2017-03-01 | Bacteria and water treatment system using them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7010552B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7007539B2 (en) * | 2018-03-23 | 2022-02-10 | 栗田工業株式会社 | N-acylated homoserine lactone (AHL) lactase, water treatment agent using it, and water treatment method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011043232A1 (en) | 2009-10-05 | 2011-04-14 | 旭化成ケミカルズ株式会社 | Additive used in a membrane-separation activated sludge process |
CN102712512A (en) | 2009-11-10 | 2012-10-03 | 诺维信生物股份有限公司 | Methods, compositions and systems for controlling fouling of a membrane |
JP2013540443A (en) | 2010-10-15 | 2013-11-07 | ソウル大学校産学協力団 | Biofilm formation-inhibiting microorganism immobilization container and separation membrane water treatment apparatus using the same |
JP2016041402A (en) | 2014-08-18 | 2016-03-31 | 栗田工業株式会社 | Water treatment method and apparatus |
-
2017
- 2017-03-01 JP JP2017038224A patent/JP7010552B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011043232A1 (en) | 2009-10-05 | 2011-04-14 | 旭化成ケミカルズ株式会社 | Additive used in a membrane-separation activated sludge process |
CN102712512A (en) | 2009-11-10 | 2012-10-03 | 诺维信生物股份有限公司 | Methods, compositions and systems for controlling fouling of a membrane |
JP2013540443A (en) | 2010-10-15 | 2013-11-07 | ソウル大学校産学協力団 | Biofilm formation-inhibiting microorganism immobilization container and separation membrane water treatment apparatus using the same |
JP2016041402A (en) | 2014-08-18 | 2016-03-31 | 栗田工業株式会社 | Water treatment method and apparatus |
Non-Patent Citations (5)
Title |
---|
Ecotoxicology and environmental safety,2014年,Vol. 109,pp. 15-21 |
Environmental Science and Technology Letters,2015年,Vol. 3,pp. 36-40 |
Journal of Environmental Biotechnology,2010年,Vol. 10, No. 1,pp. 15-18 |
Microbes and environments,2012年,Vol. 27, No. 4,pp. 443-448 |
Scientific reports,2013年,Vol. 3: 2935,pp. 1-9 |
Also Published As
Publication number | Publication date |
---|---|
JP2018143107A (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Afzal et al. | Characteristics of phenol biodegradation in saline solutions by monocultures of Pseudomonas aeruginosa and Pseudomonas pseudomallei | |
Gopinath et al. | Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach | |
Baker et al. | Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity | |
Bakker et al. | Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetylphloroglucinol on the microflora of field grown wheat | |
Jara et al. | Role of Lactobacillus biofilms in Listeria monocytogenes adhesion to glass surfaces | |
Dhiman et al. | Bioprospecting and molecular characterization of laccase producing bacteria from paper mills of Himachal Pradesh | |
Lee et al. | Cultured bacterial diversity and human impact on alpine glacier cryoconite | |
Yuan et al. | Interspecies interactions in dual-species biofilms formed by psychrotrophic bacteria and the tolerance of sessile communities to disinfectants | |
KR102001097B1 (en) | Algicidal bacteria for the prevention of algal bloom | |
Yildiz et al. | Isolation, characterization and phylogenetic analysis of halophilic Archaea from a salt mine in central Anatolia (Turkey) | |
Dziga et al. | Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxins elimination | |
Harirchi et al. | The effect of calcium/magnesium ratio on the biomass production of a novel thermoalkaliphilic Aeribacillus pallidus strain with highly heat-resistant spores | |
Zhao et al. | Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria | |
JP7010552B2 (en) | Bacteria and water treatment system using them | |
Ann | Rhizobacteria of pepper (Piper nigrum) and their antifungal activities | |
RU2382075C1 (en) | Strain of bacteria brevibacillus laterosporus suppressing and preventing development of plankton and biofilm forms of microscopic seaweed in aqueous systems | |
Vikromvarasiri et al. | Optimizing sulfur oxidizing performance of Paracoccus pantotrophus isolated from leather industry wastewater | |
CN103966127B (en) | The red coccus of one strain katsura tree and screening technique and application | |
JP7007539B2 (en) | N-acylated homoserine lactone (AHL) lactase, water treatment agent using it, and water treatment method | |
KR20180014637A (en) | Celeribacter sp. strain from marine source and method for producing indigo dye by using the same | |
Ramírez et al. | Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms | |
KR20100134343A (en) | JR-5, a genus of Rhodococos with algal growth inhibition and resolution | |
KR101516728B1 (en) | A novel Bacillus spp. strain and it's mutant having antifungal activity against pathogenic Scleromitrula shiraiana causing mulberry popcorn disease, and Biocontrol agent comprising the same | |
KR20210040339A (en) | Method for control of gray mold caused by Botrytis cinerea using oxalate-degrading bacteria | |
Parvin et al. | Isolation of mixed bacterial culture from Rajshahi Silk industrial zone and their efficiency in Azo Dye decolorization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170516 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210803 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7010552 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |