[go: up one dir, main page]

JP7004342B2 - Painted coating molded product - Google Patents

Painted coating molded product Download PDF

Info

Publication number
JP7004342B2
JP7004342B2 JP2020072974A JP2020072974A JP7004342B2 JP 7004342 B2 JP7004342 B2 JP 7004342B2 JP 2020072974 A JP2020072974 A JP 2020072974A JP 2020072974 A JP2020072974 A JP 2020072974A JP 7004342 B2 JP7004342 B2 JP 7004342B2
Authority
JP
Japan
Prior art keywords
molded product
resin
coating
coated
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072974A
Other languages
Japanese (ja)
Other versions
JP2021169176A (en
Inventor
憲生 多田
隆晃 高橋
Original Assignee
株式会社岐阜多田精機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社岐阜多田精機 filed Critical 株式会社岐阜多田精機
Priority to JP2020072974A priority Critical patent/JP7004342B2/en
Publication of JP2021169176A publication Critical patent/JP2021169176A/en
Application granted granted Critical
Publication of JP7004342B2 publication Critical patent/JP7004342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、金型内で成形した樹脂成形品の表面を樹脂成形品の溶融樹脂の粘度よりも低粘度流体の被覆剤で被覆し、それを硬化させて被覆する塗装被覆成形品に関すもので、特に、金型内で成形した樹脂成形品の表面に塗布する塗装被覆成形品に関するものである。塗装被覆成形品を観察すれば2色成形、多色成形する技術に近似しており、樹脂成形品の塗布した被膜を薄くすることができる。 The present invention relates to a coating-coated molded product in which the surface of a resin-molded product molded in a mold is coated with a coating agent having a viscosity lower than that of the molten resin of the resin-molded product, and the surface is cured and coated. In particular, the present invention relates to a coating-coated molded product to be applied to the surface of a resin molded product molded in a mold. By observing the coated molded product, it is similar to the technique of two-color molding and multicolor molding, and the coated film of the resin molded product can be thinned.

例えば、特許文献1には、金型内で成形した樹脂成形品の表面と、金型キャビティ面との間に被覆剤を注入し、被覆剤を金型内で硬化させ、樹脂成形品の表面に被覆剤が密着一体化した成形品を得ている。
この型内塗装用金型は、主キャビティの外側全周に該主キャビティの背面の一部を構成する副キャビティと、該副キャビティの反塗装面側外周部内側において該副キャビティ内に進退する可動中子と、該可動中子に対向する位置に高温部を備えている。
For example, in Patent Document 1, a coating agent is injected between the surface of a resin molded product molded in a mold and the mold cavity surface, and the coating agent is cured in the mold to cure the surface of the resin molded product. A molded product in which the coating agent is closely integrated is obtained.
This in-mold coating mold advances and retreats into the sub-cavity that forms a part of the back surface of the main cavity on the entire outer circumference of the main cavity and inside the outer peripheral portion on the anti-painting surface side of the sub-cavity. A movable core and a high temperature portion are provided at positions facing the movable core.

故に、この型内塗装用金型によれば、可動中子により、金型副キャビティ面に樹脂成形品の副キャビティ部分の外周部付近が押し付けられる。このため、特許文献1によれば、樹脂成形品の副キャビティ部分の外周部付近が金型副キャビティ面に押し付けられた部分より外側には塗料が漏れ出すことがない。
また、この型内塗装用金型によれば、副キャビティの可動中子に対向する位置に高温部を設けることにより、瞬間的に塗膜を硬化させることができる。これにより、特許文献1の発明では、金型外部への塗膜の漏れを確実に防止できる。
Therefore, according to this in-mold coating mold, the movable core presses the vicinity of the outer peripheral portion of the sub-cavity portion of the resin molded product against the mold sub-cavity surface. Therefore, according to Patent Document 1, the paint does not leak to the outside of the portion where the outer peripheral portion of the sub-cavity portion of the resin molded product is pressed against the mold sub-cavity surface.
Further, according to this in-mold coating mold, the coating film can be instantaneously cured by providing the high temperature portion at a position facing the movable core of the sub-cavity. Thereby, in the invention of Patent Document 1, it is possible to surely prevent the coating film from leaking to the outside of the mold.

加えて、特許文献2乃至特許文献5には、樹脂成形品の表面に被覆剤が密着一体化する成形品を得る方法が開示され、公知である。
特開2002-172657号公報 特許第3843833号明細書 特許第3820332号明細書 特開2006-256088号公報 特開2009-220327号公報
In addition, Patent Documents 2 to 5 disclose and are known methods for obtaining a molded product in which a coating agent is closely integrated on the surface of the resin molded product.
Japanese Unexamined Patent Publication No. 2002-172657 Japanese Patent No. 3843833 Japanese Patent No. 382332 Japanese Unexamined Patent Publication No. 2006-256088 Japanese Unexamined Patent Publication No. 2009-220327

前述した特許文献1の技術では、副キャビティの反塗装面側の外周部内側にある可動中子により樹脂成形品の副キャビティ部分の塗装面側の外周部内側付近が金型副キャビティ面に押し付けられ、被覆剤(塗膜)が外側に漏れ出すのを防止している。
しかしながら、特許文献1の技術では、樹脂成形品の主キャビティ部の外周全周において副キャビティ部と主キャビティ部の背面の一部とは一体に成形されており、金型を微少開いて被覆剤を注入する際には、樹脂成形品の主キャビティ部は被覆剤注入圧やその後の再型締め動作による金型キャビティ内圧により反塗装面側の金型キャビティ面に押し付けられるのに反して、副キャビティ部分は可動中子により塗装面側の金型副キャビティ面へ押し付けられる。
In the technique of Patent Document 1 described above, the vicinity of the inside of the outer peripheral portion of the sub-cavity portion of the resin molded product on the painted surface side is pressed against the mold sub-cavity surface by the movable core inside the outer peripheral portion on the anti-painted surface side of the sub-cavity. This prevents the coating agent (coating film) from leaking to the outside.
However, in the technique of Patent Document 1, the sub-cavity portion and a part of the back surface of the main cavity portion are integrally molded around the entire outer circumference of the main cavity portion of the resin molded product, and the mold is slightly opened to cover the coating agent. When injecting, the main cavity of the resin molded product is pressed against the mold cavity surface on the anti-painted surface side by the coating agent injection pressure and the mold cavity internal pressure due to the subsequent remolding operation. The cavity portion is pressed against the mold subcavity surface on the painted surface side by the movable core.

そこで、特許文献1の技術では、一体の樹脂成形品である主キャビティ部と副キャビティ部との間で、それぞれが反対方向に押し付けられる。これにより、製品となる主キャビティ部へ無理なストレスが加わり、製品の変形等をまねく懸念があると共に、副キャビティ部に対しても、本来の目的である被覆剤の外部への漏れを防ぐシール圧力に関して、主キャビティ部から及ぶ変形や、被覆剤の注入、再型締め時の内圧の影響を受けるために不確実なものとなる可能性がある。 Therefore, in the technique of Patent Document 1, the main cavity portion and the sub-cavity portion, which are integrally resin molded products, are pressed in opposite directions. As a result, unreasonable stress is applied to the main cavity, which is the product, and there is a concern that the product may be deformed. At the same time, the sub-cavity is also sealed to prevent the coating material from leaking to the outside, which is the original purpose. The pressure can be uncertain due to the deformation extending from the main cavity, the injection of the coating, and the internal pressure during remolding.

これらの可能性を小さくするために副キャビティ内に薄肉部を設けることも記載されているが、この薄肉部は前記変形や圧力を受けても破損しない強度を備えていなければならないから、その効果は限定的なものとなる。
加えて、この技術では、副キャビティ部と一体となっている主キャビティ部の背面側(反被覆面側金型キャビティ面)に被覆剤を流し入れることはできないし、製品形状に沿って副キャビティ部をカットする後工程も複雑で高い精度が要求される。
It is also described that a thin-walled portion is provided in the sub-cavity in order to reduce these possibilities, but the effect is that the thin-walled portion must have strength that does not break even when subjected to the deformation or pressure. Will be limited.
In addition, with this technology, the coating agent cannot be poured into the back surface side (anti-covered surface side mold cavity surface) of the main cavity portion integrated with the sub-cavity portion, and the sub-cavity portion follows the product shape. The post-process of cutting is also complicated and requires high accuracy.

例えば、最終製品を別部品の上に重ねて取付ける場合、被覆された製品面と前記別部品とのわずかな取付け隙間から後工程でカットされた非被覆面が見え、外部から見た意匠性において問題となる。このため、取付け方法自体が制約を受けるので、反被覆面側にいくらかでも被覆剤を廻すことができ、この制約を解消できるとしている。
特許文献2乃至特許文献5等に代表される従来の技術は、押圧部を持たず、シール性能が副キャビティの形状によってのみ決定されるものが殆どで、樹脂の種類や被覆剤の種類が変わって、それぞれの粘度が変わるとその度に形状の寸法検討、試行錯誤をしなければならない。また、形状によるシール性能は部分的に均一でない可能性や量産において形状が経時的に変化する可能性等も含め確実なシール性能とは言えない。
For example, when the final product is mounted on top of another part, the uncovered surface cut in the subsequent process can be seen from the slight mounting gap between the covered product surface and the other part, and the design is as seen from the outside. It becomes a problem. Therefore, since the mounting method itself is restricted, it is possible to apply some coating agent to the anti-covering surface side, and this restriction can be solved.
Most of the conventional techniques represented by Patent Documents 2 to 5 and the like do not have a pressing portion and the sealing performance is determined only by the shape of the sub-cavity, and the type of resin and the type of coating material change. Therefore, each time the viscosity of each changes, it is necessary to examine the dimensions of the shape and make trial and error. In addition, the sealing performance depending on the shape may not be partially uniform, and the shape may change over time in mass production, so it cannot be said that the sealing performance is reliable.

例えば、特許文献5は、キャビティと離間して外側全周に位置する補助キャビティにキャビティから必要最小限の断面積を持つ貫通部に溶融樹脂を流通させることによって、パーティング面シール部材を成形する。加えて、補助キャビティ形成溝及び補助キャビティ形成面に対してパーティング面シール部材を圧接させるために、アーム部の傾斜面が、該傾斜面に密着したパーティング面シール部材の押圧面を押圧するものである。
しかし、特許文献1乃至特許文献5の発明は、2色成形を前提とする技術であり、原理的には、金型内で成形した樹脂成形品の表面を樹脂成形品の溶融樹脂の粘度よりも低粘度流体の被覆剤で被覆するものであるが、低粘度流体の被覆剤の流れの影響が被覆に生じ、被覆剤の厚みを1mm程度以上とする必要があった。それでも、被覆剤の流れの影響が被覆に現れる現象が生じていた。
For example, in Patent Document 5, a parting surface sealing member is formed by circulating a molten resin from the cavity to a penetrating portion having a minimum necessary cross-sectional area in an auxiliary cavity located on the entire outer circumference apart from the cavity. .. In addition, in order to press the parting surface sealing member against the auxiliary cavity forming groove and the auxiliary cavity forming surface, the inclined surface of the arm portion presses the pressing surface of the parting surface sealing member in close contact with the inclined surface. It is a thing.
However, the inventions of Patent Documents 1 to 5 are techniques premised on two-color molding, and in principle, the surface of the resin molded product molded in the mold is based on the viscosity of the molten resin of the resin molded product. Is also coated with a coating agent of a low-viscosity fluid, but the influence of the flow of the coating agent of the low-viscosity fluid occurs on the coating, and the thickness of the coating agent needs to be about 1 mm or more. Nevertheless, there was a phenomenon in which the influence of the flow of the dressing appeared on the dressing.

そこで、本発明は上記問題点を解消すべく、最大塗膜の膜厚がポリウレタン塗膜の被覆であっても、金型間にバリが生ぜず、「流体特性(圧力エネルギ、速度エネルギ、位置エネルギ)」の急激な被覆剤の空気による巻き込みの影響が被覆に生じ難い塗装被覆成形品の提供を課題とするものである。 Therefore, in order to solve the above problems, the present invention does not generate burrs between the molds even if the maximum coating film thickness is a polyurethane coating film, and "fluid characteristics (pressure energy, velocity energy, position). An object of the present invention is to provide a coating-coated molded product in which the influence of air entrainment of a sudden coating agent of "energy)" is unlikely to occur in the coating.

請求項1の発明に係る塗装被覆成形品は、金型内で成形した樹脂成形品の表面を、前記樹脂成形品の溶融樹脂の粘度よりも低粘度の塗膜で被覆する塗装被覆成形品であって、前記塗装被覆成形品の表面を被覆する2液混合タイプのポリウレタン塗料の塗膜は、厚みが0.2mm以上のポリウレタン塗膜として使用できる。金型相互間のインローを精度1/100mmより良くし、更に、ベルヌーイの定理を圧力p[Pa]、密度ρ[kg/m3]、速度V[m/s]、高さz[m]、重力加速度 g[m/s2] で現わすとき、「速度エネルギ」を所定の範囲内に固定するものである。
このとき、金型内で成形した樹脂成形品の表面を、前記樹脂成形品の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品の表面に被覆する樹脂塗料は、厚みが新規に可能になった0.1mmから、多色成形の公知の0.8mmのポリウレタン塗膜以上まで成型できる。
The coating-coated molded product according to the invention of claim 1 is a coating-coated molded product in which the surface of the resin-molded product molded in the mold is coated with a coating film having a viscosity lower than the viscosity of the molten resin of the resin-molded product. Therefore, the coating film of the two-component mixed type polyurethane paint that covers the surface of the coating coating molded product can be used as a polyurethane coating film having a thickness of 0.2 mm or more. The inlay between the molds is improved to an accuracy of 1/100 mm, and Bernoulli's theorem is applied to pressure p [Pa], density ρ [kg / m 3 ], velocity V [m / s], and height z [m]. , Gravity acceleration When expressed by g [m / s 2 ], "velocity energy" is fixed within a predetermined range.
At this time, the thickness of the resin paint that covers the surface of the resin molded product molded in the mold with the resin paint having a viscosity lower than the viscosity of the molten resin of the resin molded product is thick. It can be molded from the newly made 0.1 mm to more than the known 0.8 mm polyurethane coating for multicolor molding.

また、塗装被覆成形品において、金型相互間のインローを精度1/100mm以下とした従来からの公知の精度のインロー加工であっても、無いよりはあった方が良いことが確認された。実用的な効果が表れる金型相互間のインローの精度は、1/1000mm~7/1000mmの範囲内とするのが好ましい。
そして、ベルヌーイの定理を、流体の圧力p[Pa]、密度をρ[kg/m3]、速度(流速)V[m/s]、高さz[m]、重力加速度 g[m/s2] で現わすと、p+ρV2/2+ρ gz = Const(一定)で、「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」の和が等しくなるように「流体特性(圧力エネルギ、速度エネルギ、位置エネルギ)」の断面積をConst(一定)にするように制御する。このとき、速度Vは流体の速度[m/s]であり、入出力の流体の速度VをConst(一定)とするものである。逆に、速度V[m/s]をconst(一定)でなくなったときには、それをもって充填終了とすることができる。
Further, it was confirmed that in the coated molded product, even if the in-row processing between the molds has an accuracy of 1/100 mm or less and the in-row processing has a conventionally known accuracy, it is better to have it than not to have it. The accuracy of the inlay between the molds at which a practical effect is exhibited is preferably in the range of 1/1000 mm to 7/1000 mm.
Then, Bernoulli's theorem applies to the fluid pressure p [Pa], density ρ [kg / m 3 ], velocity (velocity) V [m / s], height z [m], and gravitational acceleration g [m / s. 2 ], p + ρV 2/2 + ρ gz = Const (constant), so that the sum of "pressure energy" + "velocity energy" + "position energy" is equal, "fluid characteristics (pressure energy, velocity energy, The cross-sectional area of "positional energy)" is controlled to be Const (constant). At this time, the velocity V is the velocity [m / s] of the fluid, and the velocity V of the input / output fluid is set to Constant (constant). On the contrary, when the velocity V [m / s] is not constant (constant), the filling can be completed.

請求項1の発明の溶融樹脂の粘度よりも低粘度の塗膜で被覆する塗装被覆成形品の表面を被覆する2液混合タイプのポリウレタン塗料の塗膜は、被覆する塗膜は薄く、厚みが0.2mm以上のポリウレタン塗膜とし、かつ、金型相互間のインローを精度1/100mmより良くしたものである。
更に、ベルヌーイの定理を圧力p[Pa]、密度ρ[kg/m3]、速度V[m/s]、高さz[m]、重力加速度 g[m/s2] で現わすと、「速度エネルギ」を固定し、「圧力エネルギ」及び「位置エネルギ」を変量とするものである。
したがって、速度V[m/s]の違いは、その自乗に影響することから、その速度V[m/s]をConst(一定)とし、誤差をそれだけでも少なくするものである。
ベルヌーイの定理の流体の圧力p[Pa]、密度をρ[kg/m3]、速度(流速)V[m/s]、高さz[m]、重力加速度 g[m/s2] で現わすと、p+ρV2/2+ρ gz = Const(一定)で、「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」の和が等しくなるように「流体特性(圧力エネルギ、速度エネルギ、位置エネルギ)」をConst(一定)にすることは、重力加速度を g[m/s2]が変化しないから、流体の圧力p[Pa]、高さz[m]によって対応することになるから、概略的な誤差の少ない値が出せる。
A coating film coated with a coating film having a viscosity lower than that of the molten resin of the invention of claim 1 The coating film of a two-component mixed type polyurethane paint that covers the surface of a molded product has a thin coating film and a thick thickness. The polyurethane coating film is 0.2 mm or more, and the inlay between the molds is improved to an accuracy of 1/100 mm.
Furthermore, when Bernoulli's theorem is expressed by pressure p [Pa], density ρ [kg / m 3 ], velocity V [m / s], height z [m], and gravitational acceleration g [m / s 2 ], The "velocity energy" is fixed, and the "pressure energy" and "positional energy" are variable.
Therefore, since the difference in the velocity V [m / s] affects the square, the velocity V [m / s] is set to Const (constant), and the error is reduced by itself.
Bernoulli's theorem fluid pressure p [Pa], density ρ [kg / m 3 ], velocity (flow velocity) V [m / s], height z [m], gravitational acceleration g [m / s 2 ] When expressed, p + ρV 2/2 + ρ gz = Const (constant), and "fluid characteristics (pressure energy, velocity energy, position energy)" so that the sum of "pressure energy" + "velocity energy" + "position energy" becomes equal. To make "Const", the gravitational acceleration does not change in g [m / s 2 ], so it corresponds to the pressure p [Pa] and height z [m] of the fluid. A value with little error can be obtained.

このとき、金型内で成形した樹脂成形品の表面に、前記樹脂成形品の溶融樹脂の粘度よりも低粘度の塗膜で被覆する塗装被覆成形品の表面に被覆する塗膜は、空気の巻き込みを生じさせない厚みが0.2mmのポリウレタン塗膜としているから、薄手のポリウレタン塗膜の被覆を形成できる。
また、塗装被覆成形品において、金型相互間のインローを精度1/100以下とし、従来からのインローの精度であっても、無いよりはあった方が良いことが発明者らに確認された。金型相互間のインローの精度は1/1000mm~7/1000mmの範囲内とする方が好ましくバリの発生を抑止できる。
At this time, the surface of the resin molded product molded in the mold is coated with a coating film having a viscosity lower than the viscosity of the molten resin of the resin molded product. Since the polyurethane coating film has a thickness of 0.2 mm that does not cause entanglement, a thin polyurethane coating film can be formed.
Further, it was confirmed by the inventors that the accuracy of the in-row between the molds is set to 1/100 or less in the coated molded product, and it is better to have the accuracy of the conventional in-row than to have it. .. The accuracy of the inlay between the molds is preferably in the range of 1/1000 mm to 7/1000 mm, and the generation of burrs can be suppressed.

図1はポリウレタン塗料の粘度特性を示す粘性特性図である。FIG. 1 is a viscosity characteristic diagram showing the viscosity characteristics of a polyurethane paint. 図2はイソシアネートAとポリオールBとの混合を行った場合の温度と粘性の関係を示す特性表図である。FIG. 2 is a characteristic chart showing the relationship between temperature and viscosity when isocyanate A and polyol B are mixed. 図3は成形品のバリの発生(a)、バリの巻き込み処理(b)を説明する説明図である。FIG. 3 is an explanatory diagram illustrating the generation of burrs (a) and the entrainment treatment (b) of burrs in the molded product. 図4はインローの原理を説明する説明図で、(a)は上金型の斜視図、(b)は下型の斜視図を分解した状態の説明図である。4A and 4B are explanatory views for explaining the principle of inlay, FIG. 4A is a perspective view of an upper mold, and FIG. 4B is an explanatory view of a state in which a perspective view of a lower mold is disassembled. 図5はインローを説明する下金型の事例の説明図である。FIG. 5 is an explanatory diagram of an example of a lower mold for explaining an inlay. 図6はインローを説明する図5の切断線A-Aの下金型の事例の説明図である。FIG. 6 is an explanatory diagram of an example of the lower die of the cutting line AA of FIG. 5 for explaining the inlay. 図7はインローを説明する上金型の事例の説明図である。FIG. 7 is an explanatory diagram of an example of an upper mold for explaining an inlay. 図8はインローを説明する図7の切断線B-Bの上金型の事例の説明図である。FIG. 8 is an explanatory diagram of an example of the upper mold of the cutting line BB of FIG. 7 for explaining the inlay. 図9はインローを説明する上金型及び下型の説明図である。FIG. 9 is an explanatory diagram of an upper mold and a lower mold for explaining the inlay. 図10はインローを説明する下金型の説明図である。FIG. 10 is an explanatory diagram of a lower mold for explaining the inlay. 図11はインローを説明する上金型の説明図である。FIG. 11 is an explanatory diagram of an upper mold for explaining the inlay. 図12は塗装被覆成形品 (サイドモール)で、(a)はその長さ方向を示す平面図、(b)は正面図、(c)は背面図である。12A and 12B are painted-coated molded products (side moldings), FIG. 12A is a plan view showing the length direction thereof, FIG. 12B is a front view, and FIG. 12C is a rear view. 図13は本発明の実施の形態の塗装被覆成形品を示す成形品(a)及び断面の面積を取得する概念を示す説明図(b)である。FIG. 13 is an explanatory diagram (b) showing a molded product (a) showing the coating-coated molded product according to the embodiment of the present invention and a concept of acquiring an area of a cross section.

以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。
[実施の形態]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiment, the same symbol and the same reference numeral in the illustration are the same or corresponding functional parts, and therefore the overlapping description thereof will be omitted here.
[Embodiment]

図1及び図2において、ポリウレタン塗料等の樹脂(75℃)の粘度は97(mPa・s)である。因みに、20℃の水の粘度は1.0(mPa・s)であり、一般合成樹脂の260℃の温度の粘度は1.0×105~1.0×106(mPa・s)であるから、ポリウレタン(75℃)の粘度は水の粘度に近似している。また、一般合成樹脂の260℃の温度の粘度は、1.0×105~1.0×106(mPa・s)であり、一般論からしてポリウレタン(75℃)の粘度が一般樹脂の1000~10000倍粘度が低く、水に近い粘度であることがわかる。これに対して、一般合成樹脂の260℃の温度の粘度は、成形温度が高いばかりか、260℃の温度で粘度は1.0×105(mPa・s)と射出成型の管理が難しい。そこで、本実施の形態では、ポリウレタン(75℃)を使用することとする。 In FIGS. 1 and 2, the viscosity of the resin (75 ° C.) such as polyurethane paint is 97 (mPa · s). Incidentally, the viscosity of water at 20 ° C. is 1.0 (mPa · s), and the viscosity of general synthetic resin at a temperature of 260 ° C. is 1.0 × 10 5 to 1.0 × 10 6 (mPa · s). Therefore, the viscosity of polyurethane (75 ° C.) is close to the viscosity of water. The viscosity of the general synthetic resin at a temperature of 260 ° C. is 1.0 × 10 5 to 1.0 × 10 6 (mPa · s), and the viscosity of polyurethane (75 ° C.) is generally the general resin. It can be seen that the viscosity is 1000 to 10000 times lower than that of water, and the viscosity is close to that of water. On the other hand, the viscosity of a general synthetic resin at a temperature of 260 ° C. is not only high in molding temperature, but also has a viscosity of 1.0 × 105 ( mPa · s) at a temperature of 260 ° C., which makes injection molding difficult to control. Therefore, in this embodiment, polyurethane (75 ° C.) is used.

因みに、イソシアネートA(Puronate 960/1)とポリオールB(Puroclear 3351 IT)の関係を、2液混合タイプのポリウレタン樹脂(塗料)を例に説明する。
本発明を実施する場合の樹脂塗料は、ウレタン結合を有する共重合からなるポリマーのことで、高い基材密着性、反発弾性を有する皮膜特性、伸びと硬さのバランスを特徴として挙げることができる。即ち、イソシアネートAとポリオールBとの2液混合タイプで、70℃以上、即ち、70℃~80℃で液混合タイプの粘性が柔らかくなり、30℃以下で粘性が6×102(mPa・s)以上に粘性が固くなるものである。即ち、70℃以上で粘性が1.15×102(mPa・s)よりも柔らかく、30℃以下で粘性が6×102(mPa・s)以上に固くなる2液混合タイプの樹脂塗料である。
Incidentally, the relationship between isocyanate A (Puronate 960/1) and polyol B (Puroclear 3351 IT) will be described by taking a two-component mixed type polyurethane resin (paint) as an example.
The resin paint for carrying out the present invention is a copolymer made of a copolymer having a urethane bond, and can be mentioned as characterized by high substrate adhesion, film characteristics having impact resilience, and a balance between elongation and hardness. .. That is, in the two-component mixed type of isocyanate A and polyol B, the viscosity of the liquid mixed type becomes soft at 70 ° C or higher, that is, 70 ° C to 80 ° C, and the viscosity becomes 6 × 10 2 (mPa · s) at 30 ° C or lower. ) More viscous. That is, it is a two-component mixed type resin paint whose viscosity is softer than 1.15 × 10 2 (mPa · s) at 70 ° C or higher and harder than 6 × 10 2 (mPa · s) at 30 ° C or lower. be.

イソシアネートAとポリオールBとの温度と粘度との関係を図1に示す。70~80℃で粘性が弱くなり、60~80℃の範囲で比較的低い粘性が安定していることから、この温度範囲で樹脂加工すると、軽負荷で比較的流動性の高いポリウレタン樹脂の加工を行うことができる。
しかし、ポリウレタン(75℃)の粘度が一般合成樹脂に比して非常に弱いことは、塗装被覆成形品13を形成する塗装被覆成形品用金型にインロー加工(精度1/100)21a~21dされていても、その塗装被覆成形品用金型の隙間に図3(a)に示すバリ29が発生し、そのバリ29の除去は簡単化することができない。また、1回の操作で全面切除することもできない。この流動性の高いポリウレタン塗料のバリ29を切断するには、下金型20及び上金型30の金型相互間の間隔が精度1/1000mm~7/1000mmの範囲でないと切断できないことが発明者等によって確認された。
前記下金型20及び上金型30の形状は、煩雑になるので省略しているが、前記下金型20及び上金型30が3個または4個に分割することがあり、本実施の形態では、樹脂成形品11及び被覆成形部12を形成したものであるから、形成前の被覆成形部12は金型の一部であることも当然あり得る。勿論、樹脂成形品11を金型とする場合もある。
The relationship between the temperature and the viscosity of isocyanate A and polyol B is shown in FIG. Since the viscosity weakens at 70 to 80 ° C and the viscosity is relatively low in the range of 60 to 80 ° C, resin processing in this temperature range results in processing of polyurethane resin with a light load and relatively high fluidity. It can be performed.
However, the fact that the viscosity of polyurethane (75 ° C.) is much weaker than that of general synthetic resin is that the mold for the coating-coated molded product 13 forming the coating-coated molded product 13 is in-row processed (accuracy 1/100) 21a to 21d. Even if the burrs are formed, the burrs 29 shown in FIG. 3A are generated in the gaps of the mold for the coating coated molded product, and the removal of the burrs 29 cannot be simplified. In addition, it is not possible to completely excise with one operation. It was invented that in order to cut the burr 29 of this highly fluid polyurethane paint, the distance between the lower mold 20 and the upper mold 30 must be in the range of accuracy 1/1000 mm to 7/1000 mm. Confirmed by the person.
The shapes of the lower mold 20 and the upper mold 30 are omitted because they are complicated, but the lower mold 20 and the upper mold 30 may be divided into three or four pieces. In the form, since the resin molded product 11 and the coated molded portion 12 are formed, it is naturally possible that the coated molded portion 12 before formation is a part of the mold. Of course, the resin molded product 11 may be used as a mold.

イソシアネートAとポリオールBの温度と粘度との関係を図1に示す。70~80℃で粘性が小さくなり、比較的低い60~80℃の範囲で特性が安定していることから、この温度範囲で加工すると、軽負荷で比較的流動性の高いポリウレタン樹脂の加工を行うことができる。
しかし、ポリウレタン(75℃)の粘度が一般合成樹脂に比して非常に小さいことは、塗装被覆成形品13を形成する塗装被覆成形品用金型にインロー加工(精度1/100mm)21a~21dが形成されていても、その塗装被覆成形品用金型の隙間に図3(a)に示すバリ29が発生し、そのバリ29の除去は簡単化できない。また、1回のストロークでバリ29を除去して図3(b)に示すように、全面切除することもできない。この流動性の高いポリウレタン樹脂のバリ29を切断するには、下金型20及び上金型30の金型相互間の間隔が精度1/1000mm~7/1000mmの範囲でないとバリ切りできないことが発明者等によって確認された。
The relationship between the temperature and viscosity of isocyanate A and polyol B is shown in FIG. Since the viscosity decreases at 70 to 80 ° C and the characteristics are stable in the relatively low range of 60 to 80 ° C, processing of polyurethane resin with a light load and relatively high fluidity can be performed in this temperature range. It can be carried out.
However, the fact that the viscosity of polyurethane (75 ° C.) is much smaller than that of general synthetic resin means that the mold for the coating-coated molded product 13 forming the coating-coated molded product 13 is in-row processed (accuracy 1/100 mm) 21a to 21d. Even if the burrs 29 are formed, the burrs 29 shown in FIG. 3A are generated in the gaps of the mold for the coating coated molded product, and the removal of the burrs 29 cannot be simplified. Further, as shown in FIG. 3 (b), the burr 29 cannot be removed with one stroke and the entire surface cannot be excised. In order to cut the burrs 29 of this highly fluid polyurethane resin, the burrs cannot be cut unless the distance between the lower mold 20 and the upper mold 30 is in the range of accuracy 1/1000 mm to 7/1000 mm. Confirmed by the inventor and others.

例えば、塗装被覆成形品13を成形する金型はインロー加工21a~21dされている。しかし、図4乃至図13に示すように、インロー加工21a~21dの精度が1/100程度であるから、精度1/100mm程度の流動性の高いポリウレタン樹脂のバリ29が発生する確率が高い。
図4はインロー加工の参考説明図で、上金型30に突出した形状の凸部30Xを形成し、また、それと嵌合する下金型20に凹部20Yを形成する。この上金型30の下に凸の凸部30X、及び嵌合する下金型20に凹部20Yは、上金型30及び下金型20の何れも外径に近い位置で位置決めできるように形成するのが望ましい。
図4に示す上金型30に突出した形状の凸部30X、下金型20に突出した形状の凹部20Yを形成する所謂、嵌め合いに対しても所定の射出する成形型が形成されている。
For example, the mold for molding the coating-coated molded product 13 is in-row processed 21a to 21d. However, as shown in FIGS. 4 to 13, since the accuracy of the in-row processing 21a to 21d is about 1/100, there is a high probability that a highly fluid polyurethane resin burr 29 having an accuracy of about 1/100 mm is generated.
FIG. 4 is a reference explanatory view of inlay processing, in which a convex portion 30X having a protruding shape is formed on the upper mold 30, and a concave portion 20Y is formed on the lower mold 20 fitted with the convex portion 30X. The convex portion 30X under the upper mold 30 and the concave portion 20Y in the lower mold 20 to be fitted are formed so that both the upper mold 30 and the lower mold 20 can be positioned at positions close to the outer diameter. It is desirable to do.
A molding die having a predetermined shape for fitting is formed so as to form a convex portion 30X having a protruding shape on the upper mold 30 and a concave portion 20Y having a protruding shape on the lower mold 20 shown in FIG. ..

前記金型相互間はインロー方式とし、かつ、前記塗装被覆成形品の表面に被覆し、図4に示すように、上金型30及び下金型20を形成した状態の部品同士が噛み合いをインローという。特に、部品がしっくりはまる凸部30X、凹部20Yの部分のことを「インロー」という。これは現場用語である。ここで、塗装被覆成形品用金型のインロー加工の精度を、図4乃至図8に示すように、1/100、1/200、1/300、1/400と小さく仕上げ精度を上げると、論理的にはバリ29の発生が少なくなる。
図4乃至図11は、射出成型に使用される金型のインロー方式を形成したものである。
As shown in FIG. 4, the parts in the state where the upper mold 30 and the lower mold 20 are formed are engaged with each other by using an in-row method between the molds and covering the surface of the coated molded product. That is. In particular, the portions of the convex portion 30X and the concave portion 20Y where the parts fit nicely are called "inrows". This is a field term. Here, as shown in FIGS. 4 to 8, the accuracy of in-row processing of the mold for coating coated molded products is reduced to 1/100, 1/200, 1/300, 1/400, and the finishing accuracy is increased. Logically, the occurrence of burrs 29 is reduced.
4 to 11 show an in-row method of a mold used for injection molding.

塗装被覆成形品13は、樹脂成形品11及びその上に樹脂塗料による被覆成形部12を保持しており、図12及び図13に示すように、ベースを樹脂成形品11とし、その上に樹脂塗料による被覆成形部12を形成している。ベースを樹脂成形品11は、幅方向の断面の面積、即ち、幅の長さ[m]と、その厚み[h]の[幅m×厚h]が特定の値になるように断面積を決めている。図では樹脂成形品11を略凹字状として形成されているが、現実には合成樹脂の流れが乱されないように、角が面取りされている。幅の長さ[m]とその厚み[h]からなる[幅m×厚h]は、ベルヌーイの定理の速度(流速)V[m/s]一定から決定されるものである。 The coating-coated molded product 13 holds a resin-molded product 11 and a coating-molded portion 12 with a resin paint on the resin-molded product 11, and as shown in FIGS. 12 and 13, the base is a resin-molded product 11 and a resin is placed on the base. A coating molding portion 12 made of paint is formed. The base of the resin molded product 11 has a cross-sectional area so that the area of the cross section in the width direction, that is, the length [m] of the width and the [width m × thickness h] of the thickness [h] become specific values. I have decided. In the figure, the resin molded product 11 is formed in a substantially concave shape, but in reality, the corners are chamfered so that the flow of the synthetic resin is not disturbed. The [width m x thickness h] consisting of the width length [m] and its thickness [h] is determined from the constant velocity (flow velocity) V [m / s] of Bernoulli's theorem.

図4乃至図13に示すように、下金型20には、その4隅に、インロー加工21a~21d用の4角柱をNC加工機によって形成している。上金型30も同様、インロー加工22a~22dの4角柱は、1/100mm程度の精度に仕上げている。即ち、精度1/100のテーパによって、設定値の誤差が最小値になるようにした。図中、ボルト穴2は塗装被覆成形品13を保持しており、ボルト3によって上金型30と下金型20を接続している。
図9に示すインロー加工23a~23dは、インロー加工22a~22dと噛み合う凹部からなり、対となってインロー加工21a~21dを構成している。
本発明で実施するインロー加工は、四隅に凹凸を配設するものに限られるものではなく、公知の形態からのインローの構造形態が採用できる。
As shown in FIGS. 4 to 13, in the lower die 20, four square pillars for inlaying 21a to 21d are formed at four corners thereof by an NC processing machine. Similarly for the upper mold 30, the quadrangular prisms of inlaying 22a to 22d are finished with an accuracy of about 1/100 mm. That is, the error of the set value is minimized by the taper with an accuracy of 1/100. In the figure, the bolt hole 2 holds the paint-coated molded product 13, and the upper mold 30 and the lower mold 20 are connected by the bolt 3.
The in-row processes 23a to 23d shown in FIG. 9 are formed of recesses that mesh with the in-row processes 22a to 22d, and form a pair of the in-row processes 21a to 21d.
The in-row processing carried out in the present invention is not limited to the one in which irregularities are arranged at the four corners, and an in-row structural form from a known form can be adopted.

図4乃至図11に示すように、インロー加工22a~22dの4角柱は、NC旋盤、NC工作機械等のNC加工装置で1/100mmの精度で切削されている。勿論、本発明を実施する場合には、円柱とテーパによって1/100mmの精度に切削してもよく、そのインロー加工方法について限定されるものではない。
なお、インロー加工の加工は、例えば、文章では1/100mmの精度と示しているが、これは1/100mmの精度に機械設定したことを意味するものである。故に、インローの加工精度との間は目安に過ぎない。
インロー加工21a~21d以外の塗装被覆成形品13の金型、即ち、下金型20及び上金型30は、ベースを樹脂成形品11とし、その上に塗膜による被覆成形部12を形成している。塗装被覆成形品13は、樹脂成形品11及び被覆成形部12を形成したもので、形成前の被覆成形部12は塗装被覆成形品13が形成されるキャビティとして使用されている。
As shown in FIGS. 4 to 11, the four-sided prisms of in-row processing 22a to 22d are cut with an accuracy of 1/100 mm by NC processing equipment such as NC lathes and NC machine tools. Of course, when the present invention is carried out, cutting may be performed with an accuracy of 1/100 mm by using a cylinder and a taper, and the inlaying method thereof is not limited.
It should be noted that the in-row processing is indicated by, for example, as an accuracy of 1/100 mm in the text, which means that the machine is set to an accuracy of 1/100 mm. Therefore, the accuracy of the inlay is only a guide.
The molds of the coating-coated molded products 13 other than the in-row processing 21a to 21d, that is, the lower mold 20 and the upper mold 30, have the base as the resin molded product 11 and the coating-molded portion 12 by the coating film formed on the resin molded product 11. ing. The coating-coated molded product 13 is formed by forming the resin molded product 11 and the coating-molded portion 12, and the coating-molded portion 12 before formation is used as a cavity in which the coating-coated molded product 13 is formed.

しかし、インロー加工の加工精度を良くしても(数値を小さくしても)、1対の金型の収まりが悪いと、金型全体の精度を下げ、インロー加工の全加工精度を良くすることができない。
そこで、発明者等は1/1000mm~1/100mmをNC旋盤、NC工作機械等のNC加工装置で切削したインロー加工精度を基に、その下金型20と上金型30の収まりを検証した。
However, even if the processing accuracy of in-row processing is improved (even if the numerical value is reduced), if the pair of dies does not fit well, the accuracy of the entire mold is lowered and the overall processing accuracy of in-row processing is improved. Can't.
Therefore, the inventors verified the fit of the lower die 20 and the upper die 30 based on the in-row machining accuracy of cutting 1/1000 mm to 1/100 mm with an NC machining device such as an NC lathe or an NC machine tool. ..

発明者等はインロー加工として1/1000mm~1/100mmの四角柱のものを切削加工して試験資料に供した。8/1000mm以下では位置によって温度が変化し、必ずしも安定した特性が得られなかった。また、8/1000mm以上では、金型間の隙間により、ポリウレタン樹脂のバリ29が強くなる傾向にある。結果、1/1000mm~8/1000mmであれば、インロー加工として精度を上げた効果が得られた。
特に、精度1/1000mm以上になると、安定した収まりによって、金型相互のボルト穴2、ボルト3による金型の締め付けも正しく行なわれた。
しかし、インロー加工の精度1/1000mm以上になると、安定した金型の収まりによって、ボルト2、ボルト穴3による締め付けも正しく行なわれた。
従来の1/100mmの精度のインロー加工を基に、ポリウレタン樹脂のバリ29を最小とする場合には、厚みが0.1mm以上で、従来の2色成形での厚み0.8mm以上のポリウレタン塗膜として、金型相互間のインローを1/1000mm~7/1000mmの範囲とした場合にバリ切りが減少した。6/1000mm、7/1000mmにおいては、どれだけ温度による膨張・収縮が生じているのか究明中である。
The inventors cut a square pillar having a size of 1/1000 mm to 1/100 mm as an inlay process and used it as a test material. At 8/1000 mm or less, the temperature changed depending on the position, and stable characteristics could not always be obtained. Further, at 8/1000 mm or more, the burr 29 of the polyurethane resin tends to be strong due to the gap between the molds. As a result, if it was 1/1000 mm to 8/1000 mm, the effect of improving the accuracy as inlay processing was obtained.
In particular, when the accuracy is 1/1000 mm or more, the molds are correctly tightened by the bolt holes 2 and the bolts 3 between the molds due to the stable fitting.
However, when the accuracy of inlaying was 1/1000 mm or more, the bolts 2 and the bolt holes 3 were correctly tightened due to the stable fitting of the mold.
When the burr 29 of the polyurethane resin is minimized based on the conventional inlay processing with an accuracy of 1/100 mm, the polyurethane coating has a thickness of 0.1 mm or more and a thickness of 0.8 mm or more in the conventional two-color molding. As the film, the burr cutting was reduced when the inlay between the molds was in the range of 1/1000 mm to 7/1000 mm. At 6/1000 mm and 7/1000 mm, it is being investigated how much expansion / contraction occurs due to temperature.

即ち、発明者らの実験によれば、インロー加工の精度1/1000mm~7/1000mmの範囲では、厚みが0.1~0.8mmという1mm以下のポリウレタン塗膜とすることができる。即ち、ポリウレタン塗料の表面張力が維持されているとき、ポリウレタン塗料の容積の一部が金型の温度膨張となって減容量側に傾くから、ポリウレタン塗料の塊(澱んだ結果の塊)がバースト(破裂)に至らないからと推定される。
特に、厚みが0.8mm以上のポリウレタン塗膜においては、表面張力によって体積を保持しており、また、毛細管現象による広がりが加わると、厚みが0.1~0.8mmの範囲の数値よりも大きくならない。この要因は表面張力及び毛細管現象が作用していると推定される。
特に、厚みが0.8mm以上のポリウレタン塗膜においては、表面張力によってポリウレタン塗膜の体積が丸くなろうとしており、また、毛細管現象による広がりが加わると、厚みが0.1mm以下の範囲の数値よりも大きくならない。この要因には表面張力及び毛細管現象が作用していると推定される。
That is, according to the experiments by the inventors, a polyurethane coating film having a thickness of 0.1 to 0.8 mm and a thickness of 1 mm or less can be obtained in the range of inlay processing accuracy of 1/1000 mm to 7/1000 mm. That is, when the surface tension of the polyurethane paint is maintained, a part of the volume of the polyurethane paint becomes the temperature expansion of the mold and tilts toward the capacity reduction side, so that the lump of the polyurethane paint (the lump resulting from the stagnation) bursts. It is presumed that it does not lead to (burst).
In particular, in a polyurethane coating film having a thickness of 0.8 mm or more, the volume is maintained by surface tension, and when the spread due to the capillary phenomenon is added, the thickness is larger than the numerical value in the range of 0.1 to 0.8 mm. It doesn't grow. It is presumed that this factor is due to surface tension and capillarity.
In particular, in a polyurethane coating film having a thickness of 0.8 mm or more, the volume of the polyurethane coating film is about to be rounded due to surface tension, and when the spread due to the capillary phenomenon is added, the thickness is in the range of 0.1 mm or less. Does not get bigger than. It is presumed that surface tension and capillarity act on this factor.

特に、見栄えを良くするには、厚みが0.1~0.8mmの薄さで、特に、厚みは0.8mm以上とすることもできるが、ポリウレタン塗膜を塗布する場合の厚みむらが出やすくなる。厚みが0.1mmのポリウレタン塗膜、特に好ましくは、厚みが0.8mm以上のポリウレタン塗膜は、2色成形でも成形可能であるから、それを除去すると、厚みが0.1~0.8mmのポリウレタン塗膜には、毛細管現象及び表面張力のバランスが取れていると推定される。 In particular, in order to improve the appearance, the thickness may be as thin as 0.1 to 0.8 mm, and in particular, the thickness may be 0.8 mm or more, but uneven thickness appears when the polyurethane coating film is applied. It will be easier. A polyurethane coating film having a thickness of 0.1 mm, particularly preferably a polyurethane coating film having a thickness of 0.8 mm or more, can be molded by two-color molding. Therefore, when it is removed, the thickness is 0.1 to 0.8 mm. It is presumed that the polyurethane coating film has a good balance between capillarity and surface tension.

図12(a)乃至図12(c)の成形品及び図12の塗装被覆成形品(サイドモール)13は、例えば、20等分した測定点は、溶融樹脂がW=50、51、52、・・・56、57、58、59、60、・・・・等に順次溶融樹脂が射出される。これは、幅方向の測定点、即ち、幅方向の断面の面積、幅の長さmとその厚みhが、[幅m×厚h]として現して±30%以内に入るように設定されている。ここで、溶融樹脂Wは[幅m×厚h]が均一となる。
各測定点W=50をV1=V[m/s]とする入力速度、右端側の測定点は、W=50をV2=V[m/s]とする出力速度であり、中央付近の変化点の測定点、測定点W=59ではV3となる。更に、厚みの異なるところは、ヒケ、ボイドが生じないように意識して樹脂成形品11に凹部、凸部を形成している。
In the molded product of FIGS. 12 (a) to 12 (c) and the coating coated molded product (side molding) 13 of FIG. 12, for example, at the measurement points divided into 20 equal parts, the molten resin was W = 50, 51, 52. ... The molten resin is sequentially injected into 56, 57, 58, 59, 60, ..., Etc. This is set so that the measurement point in the width direction, that is, the area of the cross section in the width direction, the length m of the width and its thickness h are expressed as [width m × thickness h] within ± 30%. There is. Here, the molten resin W has a uniform [width m × thickness h].
Each measurement point W = 50 is the input speed where V 1 = V [m / s], and the measurement point on the right end side is the output speed where W = 50 is V 2 = V [m / s], near the center. At the measurement point of the change point of, and the measurement point W = 59, it becomes V 3 . Further, in the places having different thicknesses, concave portions and convex portions are formed in the resin molded product 11 so as not to cause sink marks and voids.

ベルヌーイの定理から
1+ρ1(V12/2+ρ111 =p2+ρ2(V22/2+ρ222
との式から、被覆成形部12の幅が左端から射出するとなると、途中で3倍の幅に広くなっているから、V2[m/s]と(V/3)2 [m/s]が等しくなるように他の制御が必要である。ここでは、速度VからV/9の制御が必要となることがわかる。
From Bernoulli's theorem, p 1 + ρ 1 (V 1 ) 2/2 + ρ 1 g 1 z 1 = p 2 + ρ 2 (V 2 ) 2/2 + ρ 2 g 2 z 2
From the formula above, when the width of the coating molding portion 12 is ejected from the left end, it is tripled in width on the way, so V 2 [m / s] and (V / 3) 2 [m / s]. Other controls are needed so that are equal. Here, it can be seen that control from speed V to V / 9 is required.

塗装被覆成形品13の設計値から、下金型20及び上金型30のキャビティとしての被覆成形部12によって樹脂成形品11の一次元の長さ方向の測定点W=50、・・・、70を得る。また、各断面点のサイドモールの断面積を算出し、当該キャビティの被覆成形部12の断面形状を得る。それらのキャビティを基に速度V[m/s]を均一にする場合、高さz[m]、重力加速度 g[m/s2]、流体の圧力p[Pa]、密度ρ[kg/m3]を変数として、成形が変化しない程度の均一の速度V[m/s]を得る。 From the design value of the coating-coated molded product 13, the measurement point W = 50 in the one-dimensional length direction of the resin molded product 11 by the coating-molded portion 12 as the cavity of the lower mold 20 and the upper mold 30 ... Get 70. Further, the cross-sectional area of the side molding at each cross-sectional point is calculated, and the cross-sectional shape of the covering molded portion 12 of the cavity is obtained. When the velocity V [m / s] is made uniform based on those cavities, the height z [m], the gravitational acceleration g [m / s 2 ], the fluid pressure p [Pa], and the density ρ [kg / m]. With 3 ] as a variable, a uniform velocity V [m / s] is obtained so that the molding does not change.

本実施の形態の図12のサイドモールのような塗装被覆成形品13の被覆成形部12は、図12(a)及び図12(b)に示すように、下金型20及び上金型30内で成形した樹脂成形品11の表面のキャビティとなる部分である。
なお、本実施の形態の説明では、被覆成形部12には塗膜で被覆成形部12を形成したものと、塗膜で被覆成形部12を形成するキャビティを指す場合もある。
As shown in FIGS. 12A and 12B, the coating molding portion 12 of the coating coating molded product 13 such as the side molding of FIG. 12 of the present embodiment has a lower mold 20 and an upper mold 30. It is a portion that becomes a cavity on the surface of the resin molded product 11 molded inside.
In the description of the present embodiment, the coating film forming portion 12 may refer to a case where the coating film forming portion 12 is formed by a coating film and a cavity in which the coating film forming portion 12 is formed by the coating film.

前記樹脂成形品11における溶融樹脂の粘度よりも低粘度の塗膜で被覆するものである。図12(b)の正面図に示すように、前記樹脂成形品11の一次元の長さ方向の測定点Xに対して、幅方向の測定点が変化していることが判る。ところが、幅(二次元の長さ)の測定点が変化しているのみではなく、図12(a)乃至(c)に示す平面図、正面図、背面図から示されているように、サイドモールは曲面となっている。 It is coated with a coating film having a viscosity lower than that of the molten resin in the resin molded product 11. As shown in the front view of FIG. 12B, it can be seen that the measurement point in the width direction is changed with respect to the measurement point X in the one-dimensional length direction of the resin molded product 11. However, not only the measurement point of the width (two-dimensional length) is changed, but also the side view is shown from the plan view, the front view, and the rear view shown in FIGS. 12 (a) to 12 (c). The mall is curved.

図12(a)乃至図12(c)の成形品及び図13のサイドモール等の塗装被覆成形品13は、例えば、20等分した測定点は、W=50、51、52、・・・56、57、58、59、60、・・・・を検出点としたものである。左端側の測定点Wは、W=50をV1=V[m/s]とすると、中央付近の変化点の測定点は、測定点W=59ではV2=V/3[m/s]の断面となる。また、W=V2=V1=V[m/s]と見做される。
なお、測定点Wの等分は10等分または20等分に限定されるものではないし、必ずしも等分にする必要はなく、図面(設計値)の測定点と実施物の測定点とが1対1に対応すればよい。
ベルヌーイの定理から
1+ρ1(V12/2+ρ111 =p2+ρ2(V22/2+ρ222
この式から、図12(b)の幅が中央部付近で3倍になっているから、V2[m/s]とその自乗の(V/3)2 [m/s]が等しくなるように制御が必要である。即ち、ここでは、1/9の制御が必要となることがわかる。
In the molded product of FIGS. 12 (a) to 12 (c) and the coating coated molded product 13 such as the side molding of FIG. 13, for example, the measurement points divided into 20 equal parts are W = 50, 51, 52, ... The detection points are 56, 57, 58, 59, 60, .... As for the measurement point W on the left end side, assuming that W = 50 is V 1 = V [m / s], the measurement point of the change point near the center is V 2 = V / 3 [m / s] at the measurement point W = 59. ] Is the cross section. Further, it is considered that W = V 2 = V 1 = V [m / s].
It should be noted that the equal division of the measurement point W is not limited to 10 equal divisions or 20 equal divisions, and it is not always necessary to divide the measurement points W into equal parts. It suffices to correspond to one-to-one.
From Bernoulli's theorem, p 1 + ρ 1 (V 1 ) 2/2 + ρ 1 g 1 z 1 = p 2 + ρ 2 (V 2 ) 2/2 + ρ 2 g 2 z 2
From this equation, since the width of FIG. 12 (b) is tripled near the central part, V 2 [m / s] and its square (V / 3) 2 [m / s] should be equal. Needs control. That is, it can be seen that 1/9 control is required here.

即ち、左端側の断面の速度V1=V[m/s]、中央付近の速度V2=V/3[m/s]とすれば、中央付近の断面は、1/9の速度とする必要がある。
ベルヌーイの定理で断面の速度V[m/s]を変化しないでConst(一定)とすれば、高さz[m]及び重力加速度 g[m/s2]も変化しないので、流体の圧力p[Pa]、密度をρ[kg/m3]を変化させることになる。
That is, if the velocity V 1 = V [m / s] of the cross section on the left end side and the velocity V 2 = V / 3 [m / s] near the center, the cross section near the center has a velocity of 1/9. There is a need.
According to Bernoulli's theorem, if the velocity V [m / s] of the cross section is not changed and is set to Const (constant), the height z [m] and the gravitational acceleration g [m / s 2 ] do not change, so the fluid pressure p. [Pa], the density will change ρ [kg / m 3 ].

速度V[m/s]、高さz[m]、重力加速度 g[m/s2]、流体の圧力p[Pa]、密度ρ[kg/m3]は、塗装被覆成形品13の値から、下金型20及び上金型30のキャビティとしての被覆成形部12によって樹脂成形品11の一次元の長さ方向の測定点Wは、W=50、・・・、70を得る。各断面点のサイドモールの断面を算出し、当該キャビティの被覆成形部12の断面形状を得る。それらのキャビティを基に速度V[m/s]、高さをz[m]、重力加速度g[m/s2]、流体の圧力p[Pa]、密度ρ[kg/m3]を算出する。 The velocity V [m / s], height z [m], gravitational acceleration g [m / s 2 ], fluid pressure p [Pa], and density ρ [kg / m 3 ] are the values of the coated coating product 13. Therefore, the measurement point W in the one-dimensional length direction of the resin molded product 11 is obtained from W = 50, ..., 70 by the coating molding portion 12 as the cavity of the lower mold 20 and the upper mold 30. The cross section of the side molding at each cross-sectional point is calculated, and the cross-sectional shape of the covering molded portion 12 of the cavity is obtained. Velocity V [m / s], height z [m], gravitational acceleration g [m / s 2 ], fluid pressure p [Pa], density ρ [kg / m 3 ] are calculated based on these cavities. do.

即ち、下金型20及び上金型30内の塗装被覆成形品13は、前記樹脂成形品11における溶融樹脂の粘度よりも低粘度の塗膜で被覆し、また、サイドモールとしての塗装被覆成形品13は、前記樹脂成形品11の表面に塗膜を噴射する射出口SGを取付け、前記樹脂成形品11の長さ方向の表面に沿って塗料を噴射し、前記射出口SGから前記樹脂成形品11の長さ方向の表面に沿って塗料を噴射するとき、流体調整機構90の「流体特性」を常に均一として制御する。
この流体調整機構90は、ステッピングモータ、サーボモータで横方向の測定点Wの位置の検出ができるもので、符号化または複合化コード盤を具備しているパルスモータ等であっても使用可能である。
なお、ベルヌーイの定理の「流体特性」とは、速度V[m/s]、高さをz[m]、重力加速度g[m/s2]、流体の圧力p[Pa]、密度ρ[kg/m3]の個々の特性をいう。
That is, the coating-coated molded product 13 in the lower mold 20 and the upper mold 30 is coated with a coating film having a viscosity lower than the viscosity of the molten resin in the resin molded product 11, and is also coated and molded as a side molding. The product 13 has an injection port SG for injecting a coating film on the surface of the resin molded product 11, sprays paint along the surface of the resin molded product 11 in the length direction, and the resin molding is performed from the injection port SG. When the paint is sprayed along the surface of the product 11 in the length direction, the "fluid characteristics" of the fluid adjusting mechanism 90 are always controlled to be uniform.
This fluid adjustment mechanism 90 can detect the position of the measurement point W in the lateral direction with a stepping motor or a servo motor, and can be used even with a pulse motor or the like equipped with a coded or compounded code board. be.
The "fluid characteristics" of Bernoulli's theorem are velocity V [m / s], height z [m], gravitational acceleration g [m / s 2 ], fluid pressure p [Pa], and density ρ [. kg / m 3 ] refers to the individual characteristics.

上記樹脂成形品11の表面に塗料を噴射する射出口SGは、塗料を霧状に噴霧する噴射口を有するもので、本実施の形態では所定の幅を塗布できるものである。
この射出口SGとしては、イオンエアーコンプレッサ、静電除去エアーガン等が使用できる。
また、流体調整機構90は、塗装被覆成形品13に沿って前記射出口SGを取付け、少なくとも、樹脂成形品11の長さ方向の表面に沿って塗料を噴射し、一次元または二次元的に頭部が移動するものである。
流体調整機構90は、図12の概念図において、下端に一次元または二次元的に移動する射出口SGを取付けた軌条を移動するものである。
The injection port SG for spraying the paint on the surface of the resin molded product 11 has an injection port for spraying the paint in the form of mist, and in the present embodiment, a predetermined width can be applied.
As the injection port SG, an ion air compressor, an electrostatic eliminator air gun, or the like can be used.
Further, the fluid adjusting mechanism 90 attaches the injection port SG along the coating coated molded product 13, and at least sprays the paint along the surface of the resin molded product 11 in the length direction, and one-dimensionally or two-dimensionally. The head moves.
In the conceptual diagram of FIG. 12, the fluid adjusting mechanism 90 moves a rail having an injection port SG that moves one-dimensionally or two-dimensionally at the lower end.

ここで、本実施の形態の流体調整機構90は、射出口SGから樹脂成形品11の長さ方向の表面に沿って塗料を噴射するとき、樹脂成形品11の長さ方向に測定点Xに移動する「流体特性」は、流体調整機構90の何れの位置においても「流体特性」が同じになるように設定する。
この時、設計的に測定点W=50、・・・、70の側は、サイドモールの片端から空気を抜きながら射出口SGで塗装するのが効率的である。
Here, the fluid adjusting mechanism 90 of the present embodiment reaches the measurement point X in the length direction of the resin molded product 11 when the paint is sprayed from the injection port SG along the surface of the resin molded product 11 in the length direction. The moving "fluid characteristic" is set so that the "fluid characteristic" is the same at any position of the fluid adjusting mechanism 90.
At this time, it is efficient to paint the side of the measurement points W = 50, ..., 70 by the injection port SG while removing air from one end of the side molding.

流体調整機構90は、射出口SGの流体調整機構90の位置を対応付けるもので、速度V[m/s]、高さz[m]、重力加速度 g[m/s2]、流体の圧力p[Pa]、密度ρ[kg/m3]を算出する。全長の流体抵抗に対するベルヌーイの定理から、「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」との前提を算出する。
そして、塗装被覆成形品13の設計値から、下金型20及び上金型30のキャビティを基に作成された被覆成形部12によって、樹脂成形品11の一次元の長さ方向の測定点W=50、・・・、70を得る。また、サイドモールの各断面を算出し、塗装被覆成形品13のキャビティから、「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」を算出する。
The fluid adjusting mechanism 90 associates the position of the fluid adjusting mechanism 90 of the injection port SG with the speed V [m / s], the height z [m], the gravitational acceleration g [m / s 2 ], and the fluid pressure p. Calculate [Pa] and density ρ [kg / m 3 ]. From Bernoulli's theorem for the total length of fluid resistance, the assumption of "pressure energy" + "velocity energy" + "potential energy" is calculated.
Then, from the design value of the coating-coated molded product 13, the measuring point W in the one-dimensional length direction of the resin molded product 11 is provided by the coating-molded portion 12 created based on the cavities of the lower mold 20 and the upper mold 30. = 50, ..., 70 is obtained. Further, each cross section of the side molding is calculated, and "pressure energy" + "velocity energy" + "potential energy" is calculated from the cavity of the coating coating molded product 13.

ここで、塗装被覆成形品13の一次元の長さ方向の測定点Wに対して何等分かに分け、樹脂成形品11の表面の空気の巻き込みを塗装被覆成形品13の一次元の長さ方向の測定点Wに対しても、二次元の測定点Wの変化を少なくする。勿論、等分する距離は細分化することが望ましいが、この検出位置は、ベルヌーイの定理の入力端と出力端からその間の数値を推定することができる。 Here, the measurement point W in the one-dimensional length direction of the coating coating molded product 13 is divided into equal parts, and the entrainment of air on the surface of the resin molded product 11 is divided into the one-dimensional length of the coating coating molded product 13. The change of the two-dimensional measurement point W is also reduced with respect to the measurement point W in the direction. Of course, it is desirable to subdivide the distance to be equally divided, but this detection position can be estimated from the input end and the output end of Bernoulli's theorem.

発明者等の実験では
1+ρ1(V12/2+ρ111 =p2+ρ2(V22/2+ρ222
が3割内の誤差を持つ時には表面の空気の巻き込みが抑えられ塗装被覆成形品13の見栄えがそれほど低下しないので、3割以下の誤差に抑えるか、二次元の長さ測定点について、できるだけ変動を少なくするのが望ましい。特に、速度は、速度V[m/s]の自乗で影響するから、誤差は3割内に抑えるのが好ましい。
In the experiments of the inventors, p 1 + ρ 1 (V 1 ) 2/2 + ρ 1 g 1 z 1 = p 2 + ρ 2 (V 2 ) 2/2 + ρ 2 g 2 z 2
When there is an error within 30%, the entrainment of air on the surface is suppressed and the appearance of the painted coating molded product 13 does not deteriorate so much. It is desirable to reduce. In particular, since the speed is affected by the square of the speed V [m / s], it is preferable to keep the error within 30%.

本実施の形態は、下金型20及び上金型30内で成形した樹脂成形品11の表面を、樹脂成形品11における溶融樹脂の粘度よりも低粘度の塗料で被覆する下金型20及び上金型30内で成形した樹脂成形品11の表面を、前記樹脂成形品11における溶融樹脂の粘度よりも低粘度の塗料で被覆した塗装被覆成形品13であって、樹脂成形品11の表面に塗料を噴射する射出口SGを取付け、樹脂成形品11の長さ方向の表面に沿って塗料を噴射し、前記射出口SGから樹脂成形品11の長さ方向の表面に沿って塗料を噴射するとき、「流体特性」を常に均一として制御する流体調整機構90を具備するものである。 In this embodiment, the lower mold 20 and the lower mold 20 in which the surface of the resin molded product 11 molded in the lower mold 20 and the upper mold 30 is coated with a paint having a viscosity lower than the viscosity of the molten resin in the resin molded product 11 A coating-coated molded product 13 in which the surface of the resin molded product 11 molded in the upper mold 30 is coated with a paint having a viscosity lower than the viscosity of the molten resin in the resin molded product 11, and is the surface of the resin molded product 11. An injection port SG for injecting paint is attached to the injection port SG, the paint is sprayed along the surface of the resin molded product 11 in the length direction, and the paint is sprayed from the injection port SG along the surface of the resin molded product 11 in the length direction. When this is done, the fluid adjusting mechanism 90 that constantly controls the "fluid characteristics" to be uniform is provided.

本実施の形態の被覆成形部12である2液混合タイプの塗料は、塗装被覆成形品13の表面に被覆し、かつ、70℃以上で粘性が1.15×102(mPa・s)よりも柔らかく、30℃以下で粘性が6×102(mPa・s)以上に固くしたものである。
ここで、70℃以上で粘性が1.15×102(mPa・s)よりも柔らかくは、必ずしも、2液混合タイプの塗料が当該値に特定されるものではなく、3割前後の粘性が異なっても被覆成形部12の形態によって、問題にならない場合もある。
同様に、30℃以下で粘性が6×102(mPa・s)以上に固くしたについても、3割前後の粘性が異なっても被覆成形部12の形態によって、問題にならない場合があることを付言する。
The two-component mixture type paint, which is the coating molding portion 12 of the present embodiment, covers the surface of the coating coating molded product 13 and has a viscosity of 1.15 × 10 2 (mPa · s) at 70 ° C. or higher. It is also soft and hardened to a viscosity of 6 × 10 2 (mPa · s) or more at 30 ° C. or lower.
Here, if the viscosity is softer than 1.15 × 10 2 (mPa · s) at 70 ° C. or higher, the two-component mixed type paint is not necessarily specified by the value, and the viscosity is about 30%. Even if they are different, it may not be a problem depending on the form of the coating molding portion 12.
Similarly, even if the viscosity is hardened to 6 × 10 2 (mPa · s) or more at 30 ° C. or lower, there may be no problem depending on the form of the coating molding portion 12 even if the viscosity is different by about 30%. I will add.

上記樹脂成形品11の表面に樹脂塗料を噴射する射出口SGは、樹脂塗料を霧状に噴霧する噴射口を有するもので、本実施の形態では所定の幅を塗布できるものである。
また、射出口SGを取付け、少なくとも、樹脂成形品11の長さ方向の表面に沿って塗膜を噴射し、一次元または二次元的平面または曲面にポリウレタン塗料が移動する。そして、流体調整機構90は、射出口SGから樹脂成形品11の長さ方向の表面に沿って塗膜を噴射するとき、何れの位置においても常に均一として移動するものである。
The injection port SG for spraying the resin paint on the surface of the resin molded product 11 has an injection port for spraying the resin paint in the form of mist, and in the present embodiment, a predetermined width can be applied.
Further, the injection port SG is attached, and at least the coating film is sprayed along the surface of the resin molded product 11 in the length direction, and the polyurethane paint moves to a one-dimensional or two-dimensional flat surface or a curved surface. When the coating film is sprayed from the injection port SG along the surface of the resin molded product 11 in the length direction, the fluid adjusting mechanism 90 always moves uniformly at any position.

この発明に係る塗装被覆成形品13は、前記樹脂成形品11の表面に沿って噴射する樹脂塗料は、ポリウレタン塗料としたものである。
ここで、前記樹脂成形品11の表面に沿って噴射する塗料は、ポリウレタン塗料としたものであるから、前記樹脂成形品11の表面に沿って噴射するとは、一次元または二次元平面または曲面とするものである。特に、ベルヌーイの定理の前提は、流体は摩擦の少ない非粘性流体であることから、ポリウレタン塗料を非粘性流体と見做すことができる。
In the coating coated molded product 13 according to the present invention, the resin paint sprayed along the surface of the resin molded product 11 is a polyurethane paint.
Here, since the paint sprayed along the surface of the resin molded product 11 is a polyurethane paint, spraying along the surface of the resin molded product 11 is a one-dimensional or two-dimensional plane or curved surface. It is something to do. In particular, the premise of Bernoulli's theorem is that the polyurethane is a non-viscous fluid with little friction, so the polyurethane paint can be regarded as a non-viscous fluid.

上記樹脂成形品11の表面に樹脂塗料を噴射する射出口SGは、樹脂塗料を霧状に噴霧する噴射口を有するもので、本実施の形態では所定の幅を塗布できるものである。
また、流体調整機構90は、射出口SGを取付け、少なくとも、樹脂成形品11の長さ方向の表面に沿って樹脂塗料を噴射し、一次元または二次元的平面または曲面に移動する。
そして、流体調整機構90の「流体特性」は、射出口SGから樹脂成形品11の長さ方向の表面に沿って樹脂塗料を噴射するとき、何れの位置においても常に均一として移動するものである。
The injection port SG for spraying the resin paint on the surface of the resin molded product 11 has an injection port for spraying the resin paint in the form of mist, and in the present embodiment, a predetermined width can be applied.
Further, the fluid adjusting mechanism 90 attaches the injection port SG, sprays the resin paint at least along the surface of the resin molded product 11 in the length direction, and moves to a one-dimensional or two-dimensional plane or a curved surface.
The "fluid characteristic" of the fluid adjusting mechanism 90 always moves uniformly at any position when the resin paint is sprayed from the injection port SG along the surface of the resin molded product 11 in the length direction. ..

更に、この発明に係る塗装被覆成形品13は、前記樹脂成形品11の表面に沿って噴射する塗料は、ポリウレタン塗料としたものである。
ここで、樹脂成形品11の表面に沿って噴射するとは、一次元または二次元平面または曲面とするものである。特に、ベルヌーイの定理でいう前提は、流体は摩擦の少ない非粘性流体であり、ポリウレタン塗料は非粘性流体と見做すことができる程度の粘性である。
Further, in the coating coating molded product 13 according to the present invention, the paint sprayed along the surface of the resin molded product 11 is a polyurethane paint.
Here, injecting along the surface of the resin molded product 11 is a one-dimensional or two-dimensional plane or a curved surface. In particular, the premise of Bernoulli's theorem is that the fluid is a non-viscous fluid with little friction, and the polyurethane paint is viscous to the extent that it can be regarded as a non-viscous fluid.

塗装被覆成形品13は、インロー加工により、射出口SGで噴射する樹脂塗料及び空気の通過が特定された金型を通過するものである。金型をインロー加工とすることにより密着性を出し、射出口SGで噴射する樹脂塗料及び空気の通過が特定された金型のキャビティを通過するものであるから、そこを通過する時間変化のない定常流、流体は摩擦の少ない非粘性流体として設計できる。 The coating-coated molded product 13 passes through a mold in which the resin paint and air to be sprayed at the injection port SG are specified to pass by the in-row processing. Adhesion is obtained by inlaying the mold, and the passage of the resin paint and air sprayed at the injection port SG passes through the specified mold cavity, so there is no time change to pass there. The steady flow and fluid can be designed as a non-viscous fluid with less friction.

下金型20及び上金型30の他の金型内で成形した樹脂成形品11の表面を、樹脂成形品11の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆成形部12を被覆する塗装被覆成形品13であって、前記塗装被覆成形品13の表面に被覆する塗料は、ポリウレタン塗料とし、かつ、金型相互間のインローを5/1000mm以下とし、更に、ベルヌーイの定理の「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」の和が等しくなるように「流体特性(圧力エネルギ、速度エネルギ、位置エネルギ)」を設定するものである。 The surface of the resin molded product 11 molded in the lower mold 20 and the other molds of the upper mold 30 is covered with a resin coating having a viscosity lower than the viscosity of the molten resin of the resin molded product 11. The paint to be coated on the surface of the paint-coated molded product 13 is a polyurethane paint, and the inlay between the molds is 5/1000 mm or less, and further, the "pressure" of Bernoulli's theorem is set. The "fluid characteristics (pressure energy, velocity energy, position energy)" are set so that the sum of "energy" + "velocity energy" + "positional energy" becomes equal.

下金型20及び上金型30内で成形した樹脂成形品11の表面の被覆成形部12を、樹脂成形品11の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品13であって、塗装被覆成形品13の表面に被覆する樹脂塗料は、厚みが0.1~0.8mmまたは0.2~0.8mmのポリウレタン塗料とし、かつ、金型相互間のインローを1/1000~7/1000の範囲とし、更に、ベルヌーイの定理の「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」の和が等しくなるように「流体特性」を設定するものである。 A coating-coated molded product 13 in which the coated molded portion 12 on the surface of the resin molded product 11 molded in the lower mold 20 and the upper mold 30 is coated with a resin paint having a viscosity lower than the viscosity of the molten resin of the resin molded product 11. The resin paint to be coated on the surface of the paint-coated molded product 13 is a polyurethane paint having a thickness of 0.1 to 0.8 mm or 0.2 to 0.8 mm, and the inlay between the molds is 1. The range is from / 1000 to 7/1000, and the "fluid characteristics" are set so that the sum of "pressure energy" + "velocity energy" + "positional energy" in Bernoulli's theorem is equal.

他の金型で成形した樹脂成形品11の表面を、樹脂成形品11の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品13であって、塗装被覆成形品13の表面に被覆する塗膜は、ポリウレタン塗膜とし、かつ、金型相互間のインローを精度1/1000mm~7/1000mmの範囲とし、更に、ベルヌーイの定理のエネルギの和が等しくなるように「流体特性」を制御するものである。 A coating-coated molded product 13 in which the surface of the resin-molded product 11 molded by another mold is coated with a resin paint having a viscosity lower than the viscosity of the molten resin of the resin-molded product 11, and is the surface of the coating-coated molded product 13. The coating film to be coated is a polyurethane coating film, the in-row between the molds is in the range of 1/1000 mm to 7/1000 mm, and the sum of the energies of Bernoulli's theorem is equal. It controls.

本発明に係る塗装被覆成形品13は、樹脂成形品11の表面に沿って噴射する樹脂塗料をポリウレタン塗料としたものであり、一次元または二次元平面または曲面を樹脂成形品11の表面に沿って噴射するものである。特に、ベルヌーイの定理による「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」=Const(一定)の前提は、摩擦の少ない非粘性流体であることから、ポリウレタン塗料は非粘性流体と見做しても問題は確認されなかった。 The coating coated molded product 13 according to the present invention is a polyurethane paint made of a resin paint sprayed along the surface of the resin molded product 11, and has a one-dimensional or two-dimensional plane or a curved surface along the surface of the resin molded product 11. Is to be sprayed. In particular, the premise of "pressure energy" + "velocity energy" + "positional energy" = Const (constant) according to Bernoulli's theorem is that it is a non-viscous fluid with little friction, so polyurethane paint is regarded as a non-viscous fluid. But no problem was confirmed.

下金型20及び上金型30内で成形した樹脂成形品11の表面を、樹脂成形品11における溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品13において、樹脂成形品11の表面に噴射する樹脂塗料は、流体調整機構90の「圧力エネルギ」、「速度エネルギ」、「位置エネルギ」からなる「流体特性」を常に均一になるように樹脂成形品11の長さ方向の表面に沿ってポリウレタン塗料を噴射し、射出口SGの出力を制御する。樹脂成形品11の表面に樹脂塗料を噴射する射出口SGを取付け、樹脂成形品11の長さ方向の表面に沿って樹脂塗料を噴射し、前記射出口SGから樹脂成形品11の長さ方向の表面に沿って樹脂塗料を噴射するとき、「流体特性」、例えば、速度V[m/s]を常にConst(一定)としたとき、他を変量として制御する。このように、下金型20及び上金型30内で成形した樹脂成形品11の表面を、樹脂成形品11における溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆するものである。 In the coating-coated molded product 13 in which the surface of the resin molded product 11 molded in the lower mold 20 and the upper mold 30 is coated with a resin paint having a viscosity lower than the viscosity of the molten resin in the resin molded product 11, the resin molded product The resin paint sprayed on the surface of the resin molded product 11 is in the length direction of the resin molded product 11 so that the "fluid characteristics" consisting of the "pressure energy", "velocity energy", and "positional energy" of the fluid adjusting mechanism 90 are always uniform. Polyurethane paint is sprayed along the surface of the injection port SG to control the output of the injection port SG. An injection port SG for spraying the resin paint is attached to the surface of the resin molded product 11, the resin paint is sprayed along the surface in the length direction of the resin molded product 11, and the resin molded product 11 is sprayed from the injection port SG in the length direction of the resin molded product 11. When the resin paint is sprayed along the surface of the above, when the "fluid characteristics", for example, the velocity V [m / s] is always set to Const (constant), the others are controlled as variables. In this way, the surface of the resin molded product 11 molded in the lower mold 20 and the upper mold 30 is covered with a resin paint having a viscosity lower than that of the molten resin in the resin molded product 11.

樹脂成形品11の表面に沿って噴射するポリウレタン塗膜は、一次元または二次元平面または曲面とするものである。特に、ベルヌーイの定理の「流体特性」は、流体として摩擦の少ない非粘性流体であることから、ポリウレタン塗膜は非粘性流体と見做している。
即ち、2つの流体の流れの断面を通過する圧縮性流体のエネルギは、ベルヌーイの定理を流体の圧力p[Pa]、密度をρ[kg/m3]、速度V[m/s]、高さz[m]、重力加速度 g[m/s2] で現わすとすれば、
p+ρV2/2+ρ gz = Const(一定) であり、
「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」=Const(一定)から、入口と出口の2つの流れ方向に垂直な断面は、そこを通過する時間変化のない定常流、「流体特性」は摩擦の少ない非粘性流体である。ここで、2つの流れに対して垂直な断面を通過する「流体特性」は、その速度Vの自乗に影響することになる。したがって、速度V[m/s]をConst(一定)にすれば、密度ρ[kg/m3]が変化しないので、前記スプレーガンの樹脂塗料の噴霧雰囲気を均一化でき、仕上がり面が均一化できる。
The polyurethane coating film sprayed along the surface of the resin molded product 11 is a one-dimensional or two-dimensional plane or a curved surface. In particular, the "fluid property" of Bernoulli's theorem is that the polyurethane coating film is regarded as a non-viscous fluid because it is a non-viscous fluid with little friction as a fluid.
That is, the energy of a compressible fluid passing through the cross section of two fluid flows is Bernoulli's theorem: fluid pressure p [Pa], density ρ [kg / m 3 ], velocity V [m / s], high. If it is expressed by z [m] and gravitational acceleration g [m / s 2 ],
p + ρV 2/2 + ρ gz = Const (constant),
From "pressure energy" + "velocity energy" + "positional energy" = Const (constant), the cross section perpendicular to the two flow directions of the inlet and outlet is a steady flow that does not change with time, "fluid characteristics". Is a non-viscous fluid with low friction. Here, the "fluid characteristic" passing through the cross section perpendicular to the two flows affects the square of the velocity V. Therefore, if the velocity V [m / s] is set to Const (constant), the density ρ [kg / m 3 ] does not change, so that the spray atmosphere of the resin paint of the spray gun can be made uniform, and the finished surface becomes uniform. can.

下金型20及び上金型30内で成形した樹脂成形品11の表面を、樹脂成形品11の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品13であって、塗装被覆成形品13の表面に被覆する樹脂塗料は、厚みが0.1~0.8mmまたは0.2~0.8mmのポリウレタン塗膜とし、かつ、金型相互間のインローを1/1000~7/1000mmの範囲とし、更に、ベルヌーイの定理の「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」の和が等しくなるように「流体特性」を制御する。 A coating-coated molded product 13 in which the surfaces of the resin molded product 11 molded in the lower mold 20 and the upper mold 30 are coated with a resin paint having a viscosity lower than the viscosity of the molten resin of the resin molded product 11 and coated. The resin paint to be coated on the surface of the coated molded product 13 is a polyurethane coating having a thickness of 0.1 to 0.8 mm or 0.2 to 0.8 mm, and the inlay between the molds is 1/1000 to 7 The range is set to / 1000 mm, and the "fluid characteristics" are controlled so that the sum of "pressure energy" + "velocity energy" + "positional energy" in Bernoulli's theorem becomes equal.

本発明に係る塗装被覆成形品13は、流体調整機構90の「流体特性」を常に均一になるように樹脂成形品11の長さ方向の表面に沿ってポリウレタン塗料を噴射し、前記射出口SGの出力を制御する。樹脂成形品11の表面に樹脂塗料を噴射する射出口SGを取付け、樹脂成形品11の長さ方向の表面に沿って樹脂塗料を噴射し、前記射出口SGから樹脂成形品11の長さ方向の表面に沿って樹脂塗料を注入するとき、前記「流体特性」を常に均一として制御する流体調整機構90とを具備し、他の金型内で成形した樹脂成形品11の表面を、樹脂成形品11における溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆するものである。 The coating coated molded product 13 according to the present invention sprays polyurethane paint along the surface of the resin molded product 11 in the length direction so that the "fluid characteristics" of the fluid adjusting mechanism 90 are always uniform, and the injection port SG is used. Controls the output of. An injection port SG for spraying the resin paint is attached to the surface of the resin molded product 11, the resin paint is sprayed along the surface in the length direction of the resin molded product 11, and the resin molded product 11 is sprayed from the injection port SG in the length direction of the resin molded product 11. When the resin paint is injected along the surface of the above, the surface of the resin molded product 11 molded in another mold is resin-molded with a fluid adjusting mechanism 90 that constantly controls the "fluid characteristics" to be uniform. It is coated with a resin paint having a viscosity lower than that of the molten resin in the product 11.

樹脂成形品11の表面に沿って噴射するポリウレタン塗料が、樹脂成形品11の表面に沿って噴射する対象は、一次元または二次元平面または曲面とするものである。特に、ベルヌーイの定理の前提は、流体は摩擦の少ない非粘性流体であることから、ポリウレタン塗料は非粘性流体と見做すことができる。 The object of the polyurethane paint sprayed along the surface of the resin molded product 11 to be sprayed along the surface of the resin molded product 11 is a one-dimensional or two-dimensional plane or a curved surface. In particular, the premise of Bernoulli's theorem is that the fluid is a non-viscous fluid with little friction, so the polyurethane paint can be regarded as a non-viscous fluid.

即ち、2つの流体の流れの方向に対して垂直な断面を通過する圧縮性流体のエネルギは、ベルヌーイの定理の流体の圧力p[Pa]、密度ρ[kg/m3]、速度V[m/s]、高さz[m]、重力加速度 g[m/s2] で現わすとすれば、p+ρV2/2+ρ gz = Const(一定) であり、
「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」=Const(一定)から、2つの流れに対して垂直な断面は、そこを通過する時間変化のない定常流、流体は摩擦の少ない非粘性流体である。
ここで、2つの断面を通過する流体は、その速度Vの自乗に影響することになる。
したがって、速度V[m/s]をConst(一定)にすれば、密度ρ[kg/m3]が変化しないので、前記スプレーガンの樹脂塗料の噴霧雰囲気を均一化でき、仕上がり面が均一化できる。
That is, the energy of the compressible fluid passing through the cross section perpendicular to the direction of the flow of the two fluids is the fluid pressure p [Pa], density ρ [kg / m 3 ], and velocity V [m] of Bernoulli's theorem. If it is expressed by / s], height z [m], and gravitational acceleration g [m / s 2 ], p + ρV 2/2 + ρ gz = Const (constant).
From "pressure energy" + "velocity energy" + "positional energy" = Const (constant), the cross section perpendicular to the two flows is a steady flow that passes through it without time change, and the fluid is non-viscous with little friction. It is a fluid.
Here, the fluid passing through the two cross sections affects the square of its velocity V.
Therefore, if the velocity V [m / s] is set to Const (constant), the density ρ [kg / m 3 ] does not change, so that the spray atmosphere of the resin paint of the spray gun can be made uniform, and the finished surface becomes uniform. can.

この塗装被覆成形品13の表面に沿って射出口SGで噴射する樹脂塗料は、ポリウレタン塗料としたものである。ここで、樹脂成形品11の表面に沿って噴射するとは、一次元または二次元、即ち、平面または曲面とするものである。特に、ベルヌーイの定理の前提は、流体は摩擦の少ない非粘性流体であることから、ポリウレタン塗料は非粘性流体と見做すことができる。
ポリウレタン塗料として1.0×102のものを使用すれば、下金型20及び上金型30の相互間のインローを5/1000以下で被膜形成は、厚みが0.1~0.8mmとした厚みに実施できる。更に歩留まりを考慮すれば、かつ、安全性を考慮すれば、高効率で塗装被覆成形品13が得られる。
塗装被覆成形品13の表面に被覆する樹脂塗料は、厚みが0.1~0.8mmのポリウレタン塗料とし、かつ、金型相互間のインローを5/1000以下とし、更に、ベルヌーイの定理のエネルギの和が等しくなるように制御するものである。
The resin paint sprayed from the injection port SG along the surface of the paint-coated molded product 13 is a polyurethane paint. Here, injecting along the surface of the resin molded product 11 is one-dimensional or two-dimensional, that is, a flat surface or a curved surface. In particular, the premise of Bernoulli's theorem is that the fluid is a non-viscous fluid with little friction, so the polyurethane paint can be regarded as a non-viscous fluid.
If 1.0 × 10 2 polyurethane paint is used, the inlay between the lower mold 20 and the upper mold 30 is 5/1000 or less, and the film formation has a thickness of 0.1 to 0.8 mm. It can be carried out to the desired thickness. Further, if the yield is taken into consideration and the safety is taken into consideration, the coating coated molded article 13 can be obtained with high efficiency.
The resin paint to be coated on the surface of the paint-coated molded product 13 is a polyurethane paint having a thickness of 0.1 to 0.8 mm, the inlay between the molds is 5/1000 or less, and the energy of Bernoulli's theorem. It controls so that the sum of is equal.

下金型20及び上金型30内に収納して成形する事例で説明したが、中子にも同様に使用できる。また、ベルヌーイの定理に従って、「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」特別しているが、本発明を実施する場合には、コントロールが容易な項目を制御すればよい。
この成形により、ポリウレタンの単色成形または2色成形したものと同一の質感が出せる。特に、樹脂成形品11は下金型20及び上金型30内で形成してもよいし、下金型20及び上金型30内で全体を移動しないようにしてもよい。したがって、多層化が可能であり、多層化による違和感がない。
Although described in the case of storing and molding in the lower mold 20 and the upper mold 30, the same can be used for the core. Further, according to Bernoulli's theorem, "pressure energy" + "velocity energy" + "potential energy" is special, but when the present invention is carried out, items that are easy to control may be controlled.
By this molding, the same texture as that of polyurethane single-color molding or two-color molding can be obtained. In particular, the resin molded product 11 may be formed in the lower mold 20 and the upper mold 30, or may not move entirely in the lower mold 20 and the upper mold 30. Therefore, it is possible to have multiple layers, and there is no sense of discomfort due to the multiple layers.

本実施の形態の塗装被覆成形品は、下金型20及び上金型30内で成形した樹脂成形品11の表面を、前記樹脂成形品11の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品13であって、前記塗装被覆成形品13の表面を被覆する2液混合タイプ、その例として、ポリウレタン塗料の樹脂塗料とし、前記2液混合タイプのポリウレタン塗料の樹脂塗料の供給は、製品として使用する前記樹脂成形品11の被覆形態の断面積に応じて供給し、断面積を一定にして樹脂の充填速度を一定にするか及び/またはオーバーフロー部を設けて気泡が巻き込んだ部位を成形製品部から離す発明である。 In the coating-coated molded product of the present embodiment, the surface of the resin molded product 11 molded in the lower mold 20 and the upper mold 30 is coated with a resin paint having a viscosity lower than that of the molten resin of the resin molded product 11. A two-component mixed type that covers the surface of the coating-coated molded product 13 to be coated. The supply is supplied according to the cross-sectional area of the coating form of the resin molded product 11 used as a product, and the cross-sectional area is kept constant to keep the resin filling speed constant, and / or an overflow portion is provided to entrain air bubbles. It is an invention that separates the part from the molded product part.

樹脂成形品11の表面に、前記樹脂成形品11を被覆する溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品13であって、塗装被覆成形品13の表面に被覆する樹脂塗料はポリウレタン塗膜とする。ポリウレタンは非粘性に近いため一般樹脂に比べて気泡を巻き込み易い。故に、空気の巻き込みの影響で、被覆剤の流れが被覆に現れる現象が生じていた。そこで、外観不良を改善する案として、塗装被覆成形品13とランナーの断面積を一定にして速度を一定にするか、オーバーフロー部を設けて気泡が巻き込み部位を塗装被覆成形品13から離すことで対応できる。逆に、例えば、それまで使用していた速度V[m/s]が一定でなくなったときには、それをもって充填制御を終了とすることができる。 A coating-coated molded product 13 in which the surface of the resin-molded product 11 is coated with a resin paint having a viscosity lower than the viscosity of the molten resin covering the resin-molded product 11, and the resin to be coated on the surface of the coating-coated molded product 13. The paint shall be a polyurethane coating. Since polyurethane is almost non-viscous, it is easier to entrain air bubbles than general resin. Therefore, due to the influence of air entrainment, the phenomenon that the flow of the dressing appears on the dressing has occurred. Therefore, as a plan to improve the appearance defect, the cross-sectional area of the coating coating molded product 13 and the runner may be kept constant to keep the speed constant, or an overflow portion may be provided to separate the portion where air bubbles are caught from the coating coating molded product 13. I can handle it. On the contrary, for example, when the speed V [m / s] used up to that point is not constant, the filling control can be terminated at that time.

11 樹脂成形品
12 被覆成形部(塗装被覆成形品の金型のキャビティ)
13 塗装被覆成形品
20 下金型
29 バリ
30 上金型
SG 射出口
11 Resin molded product 12 Coated molded part (cavity of mold of painted coated molded product)
13 Painted coating molded product 20 Lower mold 29 Burr 30 Upper mold SG injection port

Claims (1)

金型内で成形した樹脂成形品の表面を、前記樹脂成形品の溶融樹脂の粘度よりも低粘度の樹脂塗料で被覆する塗装被覆成形品の製造方法であって、
前記樹脂成形品の表面を被覆する2液混合タイプのポリウレタン塗料の塗膜は、厚みが0.1mm以上のポリウレタン塗膜とし、かつ、金型相互間のインローを有し、
更に、ベルヌーイの定理を圧力p[Pa]、密度ρ[kg/m3]、速度V[m/s]、高さz[m]、重力加速度g[m/s2]で現わすとき、p+ρV2/2+ρgz=Const(一定)で、「圧力エネルギ」+「速度エネルギ」+「位置エネルギ」の和が一定となるように、前記樹脂成形品の表面に沿って噴射する前記樹脂塗料の「流体特性(圧力エネルギ、速度エネルギ、位置エネルギ)」を制御するときの「速度エネルギ」の値を所定の値内に固定することを特徴とする塗装被覆成形品の製造方法。
A method for manufacturing a coating-coated molded product in which the surface of a resin-molded product molded in a mold is coated with a resin paint having a viscosity lower than the viscosity of the molten resin of the resin-molded product.
The coating film of the two-component mixing type polyurethane paint that covers the surface of the resin molded product is a polyurethane coating film having a thickness of 0.1 mm or more and has an inlay between the molds.
Furthermore, when Bernoulli's theorem is expressed by pressure p [Pa], density ρ [kg / m 3 ], velocity V [m / s], height z [m], and gravitational acceleration g [m / s 2 ], At p + ρV 2/2 + ρgz = Const (constant), the "pressure energy" + "velocity energy" + "positional energy" is sprayed along the surface of the resin molded product so that the sum of the "pressure energy" + "velocity energy" + "positional energy" is constant. A method for manufacturing a coated coated product, characterized in that the value of "velocity energy" when controlling "fluid characteristics (pressure energy, velocity energy, position energy)" is fixed within a predetermined value.
JP2020072974A 2020-04-15 2020-04-15 Painted coating molded product Active JP7004342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072974A JP7004342B2 (en) 2020-04-15 2020-04-15 Painted coating molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072974A JP7004342B2 (en) 2020-04-15 2020-04-15 Painted coating molded product

Publications (2)

Publication Number Publication Date
JP2021169176A JP2021169176A (en) 2021-10-28
JP7004342B2 true JP7004342B2 (en) 2022-01-21

Family

ID=78149823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072974A Active JP7004342B2 (en) 2020-04-15 2020-04-15 Painted coating molded product

Country Status (1)

Country Link
JP (1) JP7004342B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025033181A1 (en) * 2023-08-09 2025-02-13 パナソニックIpマネジメント株式会社 Method for manufacturing in-mold coated component, and mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172657A (en) 2000-12-07 2002-06-18 Ube Ind Ltd In-mold coating mold and in-mold coating method
JP3820332B2 (en) 1999-11-17 2006-09-13 宇部興産機械株式会社 Mold for in-mold coating molding and in-mold coating molding method
JP2006256088A (en) 2005-03-17 2006-09-28 Ube Machinery Corporation Ltd Mold for in-mold coating molding
JP3843833B2 (en) 2001-12-26 2006-11-08 宇部興産機械株式会社 In-mold coating mold
JP2009220327A (en) 2008-03-14 2009-10-01 Kraussmaffei Technologies Gmbh In-mold molded product coating mold and in-mold molded product coating forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820332B2 (en) 1999-11-17 2006-09-13 宇部興産機械株式会社 Mold for in-mold coating molding and in-mold coating molding method
JP2002172657A (en) 2000-12-07 2002-06-18 Ube Ind Ltd In-mold coating mold and in-mold coating method
JP3843833B2 (en) 2001-12-26 2006-11-08 宇部興産機械株式会社 In-mold coating mold
JP2006256088A (en) 2005-03-17 2006-09-28 Ube Machinery Corporation Ltd Mold for in-mold coating molding
JP2009220327A (en) 2008-03-14 2009-10-01 Kraussmaffei Technologies Gmbh In-mold molded product coating mold and in-mold molded product coating forming method

Also Published As

Publication number Publication date
JP2021169176A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
DE69416217T2 (en) Method of making a thin film
CA1046720A (en) Molding system with automatic fluid treatment of mold cavity
US10040249B2 (en) Method for producing a three-dimensional object by means of generative construction
JP7004342B2 (en) Painted coating molded product
JP7004341B2 (en) Painted coating molded product
JP7025049B2 (en) Painted coating molded product
US9950473B2 (en) Consecutive piecewise molding system and method
JP6999968B2 (en) Painted coating molded product
WO2004052616B1 (en) Method of designing and producing a mold
CN113646156A (en) Nozzle assembly and method of manufacturing the same using additive manufacturing
KR0170750B1 (en) Method of detecting injected amount from an injection molder
CN1081120C (en) Gas injected molding machine
US7182904B2 (en) Low pressure laminate gas assist molding
CN1137811C (en) Method for preventing in-mold decoration process gate from being washed
KR20070083238A (en) Method and apparatus for coating at least one electronic component in whole or in part with compound
Surma et al. Designing and production of polymer product with Fused deposition modeling–case study
JP3478392B2 (en) Injection molding method for plastic products
JP6730039B2 (en) Mold for molding
Jacobson et al. Practical issues in the application of direct metal laser sintering
KR100696301B1 (en) Manufacturing method of door pile and tail door pile for vehicle interior / exterior inspection door made of aluminum
JPH08117950A (en) Coating applicator for release agent
JP2020097044A (en) Cast product manufacturing device
DE102005006794A1 (en) Multi-component injection process for molding products in different materials involves making pre-molding with integral or separate sealing lip, which after tool cavity enlargement, prevents flash formation by further injected material
JP2002172654A (en) Mold for in-mold coating molding
JPH04156976A (en) Device for forming resin coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 7004342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250