[go: up one dir, main page]

JP7002847B2 - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
JP7002847B2
JP7002847B2 JP2017049782A JP2017049782A JP7002847B2 JP 7002847 B2 JP7002847 B2 JP 7002847B2 JP 2017049782 A JP2017049782 A JP 2017049782A JP 2017049782 A JP2017049782 A JP 2017049782A JP 7002847 B2 JP7002847 B2 JP 7002847B2
Authority
JP
Japan
Prior art keywords
gas
processing
substrate
ballast
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017049782A
Other languages
English (en)
Other versions
JP2018150612A (ja
Inventor
成幸 大倉
裕樹 慶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2017049782A priority Critical patent/JP7002847B2/ja
Priority to TW107108385A priority patent/TWI751301B/zh
Priority to KR1020180029541A priority patent/KR102039248B1/ko
Priority to US15/921,506 priority patent/US10584414B2/en
Publication of JP2018150612A publication Critical patent/JP2018150612A/ja
Application granted granted Critical
Publication of JP7002847B2 publication Critical patent/JP7002847B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、基板を収容した処理容器内に、基板を処理するための処理ガスと、雰囲気を置換するための置換ガスとを交互に供給し、基板の処理を行う基板処理装置及び基板処理方法に関する。
例えば半導体デバイスなどの製造プロセスにおいては、基板としての半導体ウェハ(以下、単に「ウェハ」という)に対してエッチング処理、成膜処理などの各種処理が行われる。ウェハに対して成膜を行うための手法としては、いわゆるALD(Atomic Layer Deposition)と呼ばれる処理が用いられることがある。このALD処理では、真空雰囲気とされた処理容器内に、ウェハの表面に吸着する原料ガスと、当該原料ガスと反応する反応ガス(還元ガスとも言う)と、を交互に複数回供給して、ウェハの表面に反応生成物の原子層を堆積させて成膜する。また、処理容器内においてウェハの表面以外の領域で原料ガスと、反応ガスとが気相反応してパーティクルが発生してしまうことを防ぐために、原料ガスと反応ガスとは互いに間隔を空けて供給される。そして、原料ガスの供給を行う時間帯と反応ガスの供給を行う時間帯との間には、不活性ガスが供給されることによって処理容器内の雰囲気がパージされて、当該不活性ガス雰囲気に置換される。
上記のようにパージを行う必要が有ることから、例えばALDを行う間、処理容器内には所定の流量で不活性ガスの供給が連続して行われる場合が有る。この不活性ガスは原料ガスまたは反応ガスが供給される間はこれらのガスのキャリアガスとして作用し、原料ガス及び反応ガスの供給が行われない間はパージガスとして作用する。
特許文献1には、処理ガス(原料ガス及び反応ガス)に対するキャリアガス及びパージガスであるN(窒素)ガスの供給源と処理容器とを接続するガス流路に、バイパス流路を備え、ALDを行う成膜装置が開示されている。この成膜装置では、処理ガスを処理容器内に供給するときにはバイパス流路に介在するバルブが閉じられ、パージを行うときには処理容器内へ供給されるNガスの流量が比較的多くなるように当該バルブが開かれる。
特許文献2には、原料ガスの供給源と処理容器とを接続する原料ガス流路と、当該原料ガス流路から分岐した第1のNガス流路と、原料ガス流路及び第1のNガス流路とは独立して処理容器にパージガスであるNガスを供給する第2のNガス流路とを備え、パージを行うときに処理容器内へ供給されるNガスの量を多くして、ALDを行う成膜装置が開示されている。
特開2016-23324号公報 特開2014-198872号公報
ところで、配線の微細化に向けて、連続性が良好な極薄膜の生成を確保することができるようにALDを行うことが求められている。連続性が良好な極薄膜の生成を確保する方法として、反応ガスを供給するステップの1回あたりの時間を長くする方法や、反応ガスの流量を増加させて、処理容器内における反応ガスの分圧を高くする方法が考えられる。
しかし、前者の方法では生産性が低下し、後者の方法のように反応ガスの流量を増加させこの分圧を高くすると、上記のパーティクルの発生を防ぐためにパージを行う時間を延長する必要が有るので、成膜処理に要する時間が長くなってしまう。特許文献1や特許文献2のように、パージを行うときに処理容器内へ供給されるNガスの量を多くすれば、パージを行う時間の長期化を防ぐことができる。しかし、反応ガスの流量が大きいと、処理容器内や排気系に堆積する反応副生成物が増加し、また、ガスコストが増大する。このような事情から、反応ガスの流量が比較的小さくても、連続性が良好な極薄膜の成膜を行うことができ、且つ処理容器内のパージを速やかに行うことができる技術が求められている。
本発明はこのような事情に基づいてなされたものであり、その目的は、処理ガスと置換ガスとを交互に複数回処理容器内の基板に供給して基板を処理するにあたり、処理ガスの流量を大きくさせずに処理容器内の処理ガスの分圧を高くし、連続性が良好な極薄膜の成膜を行うことである。
前記の目的を達成するため、本発明は、排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスを供給する処理ガス供給工程と、前記処理容器内に、雰囲気を置換するための置換ガスを供給する置換ガス供給工程とを、を交互に複数回行い、前記基板の処理を行う基板処理方法であって、前記処理ガス供給工程を行う際に、ガスを一旦貯留するガス貯留タンクを介して前記排気管へバラストガスを導入するバラストガス導入工程を含むことを特徴としている。
別な観点による本発明によれば、排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスを供給する処理ガス供給工程と、前記処理容器内に、雰囲気を置換するための置換ガスを供給する置換ガス供給工程とを、を交互に複数回行い、前記基板の処理を行う基板処理方法であって、前記基板の処理は、ALD処理であり、当該基板処理方法は、金属含有ガスを前記処理ガスとした前記処理ガス供給工程と、前記置換ガス供給工程と、還元ガスを前記処理ガスとした前記処理ガス供給工程と、前記置換ガス供給工程とをこの順で複数回行い、前記処理ガス供給工程を行う際に、前記排気管へバラストガスを導入するバラストガス導入工程を含み、前記バラストガス導入工程は、前記還元ガスを前記処理ガスとした前記処理ガス供給工程を行う際にのみ、前記排気管へバラストガスを導入することを特徴としている
前記バラストガス導入工程は、前記排気管における開度可変弁の上流に、前記バラストガスを導入する工程であることが好ましい。
前記バラストガス導入工程における前記バラストガスの導入開始タイミングは、前記処理ガスの供給源と前記処理容器の間に設けられたバルブを開くタイミングより遅いことが好ましい。
別な観点による本発明によれば、排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスと、前記処理容器内の雰囲気を置換するための置換ガスとを交互に供給し、前記基板の処理を行う基板処理装置であって、前記処理ガスの供給時に、ガスを一旦貯留するガス貯留タンクを介して前記排気管へバラストガスを導入するバラストガス導入部を備えることを特徴としている。

別な観点による本発明によれば、排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスと、前記処理容器内の雰囲気を置換するための置換ガスとを交互に供給し、前記基板の処理を行う基板処理装置であって、前記基板の処理は、ALD処理であり、当該基板処理装置は、前記処理ガスとしての金属含有ガス、前記置換ガス、前記処理ガスとしての還元ガス、前記置換ガスとをこの順で複数回、前記処理容器内に供給し、前記処理ガスの供給時に、前記排気管へバラストガスを導入するバラストガス導入部を備え、前記バラストガス導入部は、前記処理ガスとしての還元ガスの供給時にのみ、前記バラストガスを導入することが好ましい。

前記バラストガス導入部は、前記排気管における開度可変弁の上流に、前記バラストガスを導入することが好ましい。
前記バラストガス導入部は、前記処理ガスの供給源と前記処理容器の間に設けられたバルブを開くタイミングより遅れて、前記バラストガスを導入することが好ましい。
本発明によれば、処理ガスと置換ガスとを交互に複数回処理容器内の基板に供給して基板を処理するにあたり、処理ガスの流量を大きくさせずに処理容器内の処理ガスの分圧を高くすることができ、連続性が良好な極薄膜の生成を確保することができる。
本実施形態にかかる成膜装置の縦断側面図である。 図1の成膜装置によって行われる処理を説明するための模式図である。 図1の成膜装置によって行われる処理を説明するための模式図である。 図1の成膜装置によって行われる処理を説明するための模式図である。 図1の成膜装置によって行われる処理を説明するための模式図である。 図1の成膜装置による処理で供給されるガスの量の変化を示すタイミングチャートである。 評価試験で供給したガスの量の変化を示すタイミングチャートである。 別の評価試験で供給したガスの量の変化を示すタイミングチャートである。 評価試験の結果を示す図である。 ラフ層比の算出方法を説明する図である。 実施例と比較例のラフ層比が最小となる位置での膜厚を示す図である。 実施例及び比較例にかかるTiN膜の残留塩素の深さ方向の濃度分布を示す図である。
以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
図1は、本発明の実施の形態にかかる基板処理装置としての成膜装置を概略的に示した縦断面図である。
図の成膜装置1は、基板としてのウェハWにALD法によりTiN膜の成膜処理を行い、より具体的には、ウェハWを処理するための処理ガスと、後述の処理容器11内の処理ガス雰囲気を置換するための置換ガスすなわちパージガスとを処理容器11内に交互に供給し、TiN膜の成膜処理を行う。さらに具体的には、成膜装置1は、処理ガスである金属含有ガスとしてのTiCl(四塩化チタン)ガス、パージガスである不活性ガスとしてのN(窒素)ガス、処理ガスである反応ガスとしてのNH(アンモニア)ガス、パージガスであるNガスとをこの順で複数回、処理容器11内に供給し、TiN膜の成膜処理を行う。また、ALDによる成膜処理中は、TiClガス及びNHガスを処理容器11内に導入するためのキャリアガスとして、Nガスが連続して処理容器11内に供給される。
成膜装置1は、真空雰囲気が形成される円形状の空間を内部に有する処理容器11を備え、該処理容器11内にはウェハWが収容される。ウェハWの表面には、配線を形成するために例えば凹凸が形成されている。
処理容器11の側壁には、ウェハWの搬送口である開口12と、該開口12を開閉するゲートバルブ13が設けられている。
また、成膜装置1は、ウェハWを載置する載置台21を処理容器11内に備える。載置台21には、ヒータ22が内蔵されており、載置台21に載置されたウェハWを所定の温度に加熱することができる。
さらに、成膜装置1は、載置台21を囲むように設けられた筒状のカバー部材23と、載置台21の下部を支持する垂直な支柱24とを備える。支柱24の下端は、処理容器11の底部に設けられた開口部14を貫通して処理容器11の外部へと伸び、昇降機構25に接続されている。支柱24には、フランジ26が設けられている。フランジ26と開口部14の縁部とにベローズ27が接続され、処理容器11内の気密性が確保されている。
昇降機構25は、処理容器11内の上方側におけるウェハWの処理位置と、処理容器11内の下方側におけるウェハWの受け渡し位置とに載置台21を昇降させることができる。受け渡し位置においては、突き上げ機構28により、載置台21に形成された孔29を通過してウェハWを突き上げるピン20と、開口12を介して処理容器11内に挿入された不図示の搬送機構との間でウェハWの受け渡しが行われる。ピン20の本数は例えば3本(図では2本のみ表示している)である。
処理容器11の天井面は、中央部から周縁部に向かうにつれて下降するように形成されており、ウェハWが上記の処理位置となる位置に載置台21が移動されているときに、該載置台21の表面、カバー部材23の表面及び処理容器11の天井面によって囲まれる平らな円錐状の処理空間10が形成される。上記天井面を形成する処理容器11の天板15の中央部には、当該天板15を厚さ方向に貫通する2本のガス供給路31、32が形成されており、当該ガス供給路31、32の下方には、ガス供給路31、32から吐出されるガスを処理空間10内に分散させるための分散板33が例えば水平に設けられている。
処理容器11の内部には、開口12の上方において処理容器11の内壁が突出するように形成された環状部材16が設けられている。該環状部材16は、上記処理位置における載置台21のカバー部材23の外側に近接して囲むように配置されている。また、処理容器11には、当該容器11の側壁を形成するように円環状に湾曲させて構成された排気ダクト17が設けられている。この排気ダクト17の内周面側は、環状部材16上において周方向に亘って開口しており、カバー部材23と処理容器11の天板15との間に形成された隙間18を介して、処理空間10の雰囲気を排気することができる。
排気ダクト17には、排気管34の一端が接続されており、排気管34の他端は、真空排気ポンプ35に接続されている。排気管34における排気ダクト17と真空排気ポンプ35との間には、排気量を調整して処理空間10の真空圧を調整するための開度可変弁などを有する圧力調整部(APC:Auto Pressure Controller)36と、バルブ37とが、上流側から順に設けられている。
上記のガス供給路31、32には、ガス流路41、61の下流端がそれぞれ接続されている。
ガス流路41の上流端は、バルブV1、ガス貯留タンク42、流量調整部43を下流側からこの順に介して、金属含有ガスであるTiClガスの供給源44に接続されている。流量調整部43は、マスフローコントローラにより構成され、ガス供給源44から供給されるTiClガスについて下流側へ供給される流量を調整する。なお、後述する他の各流量調整部47、52、63、67、72、82についても、この流量調整部43と同様に構成されており、流路の下流側へ供給されるガスの流量を調整する。
なお、TiClガス供給源44は、液体の状態でTiClを貯留するタンクを有し、当該タンクを加熱してタンク内のTiClを気化させ、このように気化させたTiClをガス流路41へ供給する。なお、各流量調整部は、流量を調整するガスの温度に応じて適切なものが用いられる。TiClにかかる流量調整部43については、このように加熱されることで比較的高温であるTiClガスの流量を調整することができるように設計されたものが用いられる。
ガス貯留タンク42は、ガス供給源44から供給されたTiClガスを処理容器11内に供給する前に一旦貯留する。そのようにTiClガスを貯留させ、ガス貯留タンク42内が所定の圧力に昇圧した後で、ガス貯留タンク42から処理容器11へTiClガスを供給する。このガス貯留タンク42から処理容器11へのTiClガスの給断が、上記のバルブV1の開閉により行われる。このようにガス貯留タンク42へTiClガスを一旦貯留することで、比較的高い流量で安定的に当該TiClガスを処理容器11に供給することができる。
なお、後述する各ガス貯留タンク46、62、66、81についても、ガス貯留タンク42と同様に、ガス流路の上流側のガス供給源から供給される各ガスを一旦貯留することで、処理容器11または排気管34に供給される各ガスの流量を安定化させる役割を有するガス貯留部である。そして、各ガス貯留タンク46、62、66、81の下流側に設けられるバルブV2、V4、V5、V10の開閉によって、各ガス貯留タンク46、62、66、81から処理容器11または排気管34へのガスの給断がそれぞれ行われる。
ガス流路41の説明に戻る。ガス流路41におけるバルブV1の下流側には、ガス流路45の下流端が接続されている。ガス流路45の上流端は、バルブV2、ガス貯留タンク46、流量調整部47を下流側からこの順に介して、Nガスの供給源48に接続されている。
さらに、ガス流路45におけるバルブV2の下流側には、ガス流路51の下流端が接続されている。ガス流路51の上流端は、バルブV3、流量調整部52を下流側からこの順に介して、Nガスの供給源53に接続されている。このガス流路51におけるバルブV3の下流側には、オリフィス54が形成されている。つまり、ガス流路51におけるバルブV3の下流側の径は、ガス流路51におけるバルブV3の上流側及びガス流路41、45の径よりも小さい。ガス貯留タンク42、46によって、ガス流路41、45には比較的大きい流量でガスが供給されるが、オリフィス54によってこれらガス流路41、45に供給されたガスが、ガス流路51を逆流するのを抑制することができる。
ところで、Nガス供給源48からガス流路45に供給されるNガスは、パージを行うために処理容器11内に供給される。一方、Nガス供給源53からガス流路51に供給されるNガスは、TiClガスに対するキャリアガスである。このキャリアガスは、上記のようにウェハWの処理中は連続して処理容器11内に供給されるので、パージを行う際にも処理容器11内に供給される。したがって、当該キャリアガスが処理容器11内に供給される時間帯は、パージを行うためにガス供給源48からのNガスが処理容器11内に供給される時間帯に重なり、キャリアガスはパージにも用いられることになるが、説明の便宜上、Nガス供給源48からガス流路45に供給されるガスをパージガスとして記載し、Nガス供給源53からガス流路51に供給されるガスはキャリアガスとして記載する。なお、このキャリアガスは、TiClガスがガス流路51を逆流することを防止するための逆流防止用のガスでもある。
続いて、処理容器11のガス供給路32に接続されるガス流路61について説明する。
ガス流路61の上流端は、バルブV4、ガス貯留タンク62、流量調整部63を下流側からこの順に介して、処理ガスであるNHガスの供給源64に接続されている。このガス流路61は反応ガス流路であり、原料ガス流路であるガス流路41に対して独立して形成されている。
ガス流路61におけるバルブV4の下流側にはガス流路65の下流端が接続されている。ガス流路65の上流端はバルブV5、ガス貯留タンク66、流量調整部67を下流側からこの順に介して、Nガスの供給源68に接続されている。さらに、ガス流路65においてバルブV5の下流側には、ガス流路71の下流端が接続されている。ガス流路71の上流端は、バルブV6、流量調整部72を下流側からこの順に介して、Nガスの供給源73に接続されている。このガス流路71におけるバルブV6の下流側には、オリフィス74が形成されている。つまり、ガス流路71におけるバルブV6の下流側の径は、ガス流路71におけるバルブV6の上流側及びガス流路61、65の径よりも小さい。このオリフィス74は、オリフィス54と同様に、ガス流路61、65に比較的大きな流量で供給されたガスが、ガス流路71を逆流することを抑制するために形成されている。
上記のNガス供給源68からガス流路65に供給されるNガスは、パージを行うために処理容器11内に供給される。Nガス供給源73からガス流路71に供給されるNガスは、NHガスに対するキャリアガスであり、TiClガスに対するキャリアガスと同様にパージにも用いられることになるが、説明の便宜上、Nガス供給源68からガス流路65に供給されるガスをパージガスとして記載し、Nガス供給源73からガス流路71に供給されるガスはキャリアガスとして記載する。なお、当該キャリアガスは、NHガスがガス流路71を逆流することを防止するための逆流防止用のガスでもある。
以上のように各ガス流路が形成されていることで、ガス流路51は、キャリアガスの供給制御機器としてバルブV3及び流量調整部52を備えており、ガス流路45には、キャリアガスの供給制御機器とは別個なパージガスの供給制御機器として、バルブV2及び流量調整部47が設けられていることになる。また、ガス流路71は、他のキャリアガスの供給制御機器として、バルブV6及び流量調整部72を備えており、他のキャリアガスの供給制御機器とは別個な他のパージガスの供給制御機器として、バルブV5及び流量調整部67が設けられていることになる。
ところで、上記のようにパージガスはガス流路45、65の両方から処理容器11に供給されるように構成されている。これは、処理容器11内に残留するTiClガス及びNHガスだけではなく、ガス流路41においてバルブV1の下流側に残留するTiClガス及びガス流路61においてバルブV4の下流側に残留するNHガスについてもパージするためである。つまり、より確実にこれらTiClガス及びNHガスをパージするために、パージガスの流路が2つ形成されている。
また、排気管34における圧力調整部36の上流側には、ガス流路80の下流端が接続されている。ガス流路80の上流端は、バルブV10、ガス貯留タンク81、流量調整部82を下流側からこの順に介して、バラストガスである不活性ガスとしてのNガスの供給源83に接続されている。ガス流路80から排気管34に供給するバラストガスの量等によって、処理空間10の真空圧を調整することができる。
バルブV10には、該バルブV10を開状態とするよう制御信号が入力されてから実際にバルブV10が開状態となるまでの時間が非常に短い高速バルブが用いられる。また、上記制御信号が入力されてから実際に開状態となるまでのバルブV10の時間は例えば約10msecである。バルブV10を開状態とするまでの時間の短縮は、例えば、バルブV10をエアオペレートバルブで構成し、エアオペレートバルブのバネの強さを大きくすることで、図ることができる。
また、成膜装置1は制御部100を備えている。制御部100は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ヒータ22やバルブV1~V6、V10、37、流量調整部43、47、52、63、67、72、82、圧力調整部36などの各機器を制御して、成膜装置1を動作させるためのプログラムも格納されている。
なお、上記のプログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部100にインストールされたものであってもよい。
続いて成膜装置1における成膜処理について、各バルブの開閉状態及び各ガス流路におけるガスの流通状態について示す図2~図5を用いて説明する。これらの図2~図5では、開状態のバルブを白塗りで、閉状態のバルブを黒塗りで示し、ガスが下流側へ流通しているガス流路を太線で示す。なお、図2~図5では、図1に比べて処理容器11及び処理容器11内の各部を簡略化して表示している。さらに、以下の成膜処理の説明では図6のタイミングチャートも適宜参照する。このタイミングチャートにおいては、TiClガス、NHガス、キャリアガス、パージガスがそれぞれ流れる時間帯を、互いに濃度が異なるグレースケールを付した矩形領域で示している。各矩形領域の高さは処理容器11内に供給されるガスの量に対応しており、当該矩形領域の高さが大きいほど供給されるガスの量が多い。
まず、バルブV1~V6、V10が閉じられた状態で、搬送機構によりウェハWが処理容器11内に搬送されて、受け渡し位置における載置台21に載置される。搬送機構が処理容器11内から退避した後、ゲートバルブ13が閉じられる。載置台21のヒータ22によりウェハWが例えば460℃に加熱されると共に載置台21が処理位置まで上昇し、処理空間10が形成される。排気管34に介設される圧力調整部36により、処理容器11内が所定の真空圧力になるように調整される。そしてバルブV3、V6が開かれ、Nガス供給源53、73からそれぞれガス流路51、71に例えば500sccmのキャリアガス(Nガス)が供給される。つまり、合計1000sccmのキャリアガスが、処理容器11内に供給される。その一方で、バルブV1、V4、V10が閉じられた状態で、ガス供給源44、64、83からTiClガス、NHガス、Nガスがそれぞれガス流路41、61、80にそれぞれのタイミングで供給される。これにより、TiClガス、NHガス、Nガスは、ガス貯留タンク42、62、81にそれぞれ貯留され、ガス貯留タンク42、62、81内が昇圧する。
キャリアガスの供給開始から所定時間経過後、図2に示すように、バルブV1、V10が開かれ(図6の時刻t)、ガス貯留タンク81に貯留されたNガスが排気管34内に供給されると共に、ガス貯留タンク42に貯留されたTiClガスが処理容器11内に供給され、ウェハWの表面にTiClガスが吸着される。このように、TiClガスの処理容器11への供給の際に、排気管34へNガスすなわちバラストガスを導入しているため、処理空間10からの排気量を所望の値まで迅速に落とすことができる。したがって、ガス貯留タンク42からのTiClガスの流量が大きくなくとも、バラストガスの導入をしない場合に比べ、処理容器11内におけるTiClガスの分圧を迅速に高くすることができる。
また、処理容器11内へのTiClガスの供給等に並行して、ガス供給源48、68からバルブV2、V5が閉じられた状態でガス流路45、65にそれぞれパージガス(Nガス)が供給される。これにより、パージガスはガス貯留タンク46、66に貯留され、当該ガス貯留タンク46、66内が昇圧する(ステップS1)。
時刻tから例えば0.05秒経過後、図3に示すように、バルブV1、V10が閉じられると共にバルブV2、V5が開かれ(図6の時刻t)、処理容器11内へのTiClガスの供給及び排気管34内へのNガスの供給が停止すると共に、ガス貯留タンク46、66に各々貯留されたパージガスが処理容器11内に供給される。
TiClガスの処理容器11への供給の停止に合わせて、排気管34へのNガスすなわちバラストガスの供給を停止しているため、処理空間10からの排気量をバラストガスの供給前の状態に迅速に戻すことができる。したがって、処理空間10からの排気量を圧力調整部36により調整する場合に比べ、処理容器11内に残留するTiClガスが速やかに排気管34へと排気され、処理容器11内がTiClガス雰囲気からNガス雰囲気に置換される。
また、上記のように圧力が上昇した状態のガス貯留タンク46、66からパージガスが供給されることにより、処理容器11内には比較的大きな流量、例えばキャリアガスの流量よりも大きい1500sccm~5000sccmでパージガスが供給される。したがって、処理容器11内に残留するTiClガスがより速やかに排気管34へと排気され、処理容器11内がTiClガス雰囲気からNガス雰囲気に置換される。
このように処理容器11内のパージが行われる一方で、バルブV1が閉じられたことにより、ガス供給源44からガス流路41に供給されたTiClガスがガス貯留タンク42に貯留され、該ガス貯留タンク42内が昇圧する。また、バルブV10が閉じられたことにより、ガス供給源83からガス流路80に供給されたNガスがガス貯留タンク81に貯留され、該ガス貯留タンク81内が昇圧する(ステップS2)。
時刻tから例えば0.2秒経過後、図4に示すように、バルブV2、V5が閉じられると共にバルブV4、V10が開かれる(図6の時刻t)。これにより、処理容器11内へのパージガスの供給が停止すると共に、ガス貯留タンク81に貯留されたNガスが排気管34内に供給され、ガス貯留タンク62に貯留されたNHガスが処理容器11内に供給され、ウェハWの表面に吸着したTiClガスと反応し、反応生成物であるTiNの原子層が形成される。このように、NHガスの処理容器11への供給の際に、排気管34へバラストガスとしてのNガスを導入しているため、処理空間10からの排気量を所望の値まで迅速に落とすことができる。したがって、ガス貯留タンク62からのNHガスの流量が大きくなくとも、バラストガスの導入をしない場合に比べ、処理容器11内におけるNHガスの分圧を迅速に高くすることができる。
その一方で、バルブV2、V5が閉じられたことにより、ガス供給源48、68からガス流路45、65にそれぞれ供給されたパージガスがガス貯留タンク46、66に貯留され、該ガス貯留タンク46、66内が昇圧する(ステップS3)。
時刻tから例えば0.3秒経過後、図5に示すように、バルブV4、V10が閉じられると共にバルブV2、V5が開かれ(図6の時刻t)、処理容器11内へのNHガスの供給及び排気管34内へのNガスの供給が停止すると共に、ガス貯留タンク46、66に各々貯留されたパージガスが処理容器11内に供給される。
NHガスの処理容器11への供給の停止に合わせて、排気管34へのNガスすなわちバラストガスの供給を停止しているため、処理空間10からの排気量をバラストガスの供給前の状態に迅速に戻すことができる。したがって、処理空間10からの排気量を圧力調整部36により調整する場合に比べ、処理容器11内に残留するNHガスが速やかに排気管34へと排気され、処理容器11内がNHガス雰囲気からNガス雰囲気に置換される。
また、上記のように圧力が上昇した状態のガス貯留タンク46、66からパージガスが供給されることにより、処理容器11内には例えば1500sccm~5000sccmでパージガスが供給される。したがって、処理容器11内に残留するNHガスが、より速やかに排気管34へと排気され、処理容器11内がNHガス雰囲気からNガス雰囲気に置換される。このように処理容器11内のパージが行われる一方で、バルブV4が閉じられたことにより、ガス供給源64からガス流路41に供給されたNH3ガスがガス貯留タンク62に貯留され、当該ガス貯留タンク62内が昇圧する。また、バルブV10が閉じられたことにより、ガス供給源83からガス流路80に供給されたNガスがガス貯留タンク81に貯留され、該ガス貯留タンク81内が昇圧する(ステップS4)。
このようにパージが行われる一方で、バルブV1が閉じられたことにより、ガス供給源44からガス流路41に供給されたTiClガスがガス貯留タンク42に貯留され、該ガス貯留タンク42内が昇圧する。また、バルブV10が閉じられたことにより、ガス供給源83からガス流路80に供給されたNガスがガス貯留タンク81に貯留され、該ガス貯留タンク81内が昇圧する。
時刻tから例えば0.3秒経過後、バルブV2、V5が閉じられると共にバルブV1、V10が開かれ(図6の時刻t)、処理容器11内へのパージガスの供給が停止すると共に、ガス貯留タンク81に貯留されたNガスが排気管34内に供給され、ガス貯留タンク42に貯留されたTiClガスが処理容器11内に供給される。つまり上記のステップS1が再度行われる。したがって、上記のパージが終了する時刻tは、上記のTiClガスの供給が開始される時刻tでもある。このステップS1が行われた後は上記のステップS2~S4が行われ、その後は、さらにステップS1~S4が行われる。つまり上記のステップS1~S4を一つのサイクルとすると、このサイクルが繰り返し行われ、TiNの原子層がウェハWの表面に堆積し、TiN膜が成膜される。そして、所定の回数のサイクルが実行されると、処理容器11内への搬入時とは逆の手順でウェハWが処理容器11から搬出される。
上記の成膜装置1では、排気管34に対してバラストガスのガス流路80が接続されており、NHガスの供給時に、ガス流路80から排気管34へバラストガスを供給する。したがって、処理容器11内の処理空間10からの排気量を迅速に低くすることができる。よって、ガス貯留タンク62からのNHガスの流量が大きくなくとも、処理容器11内におけるNHガスの分圧を迅速に高くすることができ、連続性が良好な極薄膜を生成することができる。
また、NHガスの処理容器11への供給の停止に合わせて、排気管34へのバラストガスの供給を停止しているため、処理空間10からの排気量をバラストガスの供給前の状態に迅速に戻すことができる。したがって、処理容器11内をNHガス雰囲気からNガス雰囲気に速やかに置換することができる。
成膜装置1では、上述のように、TiClガスの供給時にも、ガス流路80から排気管34へバラストガスを供給する。したがって、TiClガスの供給時にも、処理容器11内の処理空間10からの排気量を迅速に低くすることができる。よって、ガス貯留タンク42からのTiClガスの流量が大きくなくとも、処理容器11内におけるTiClガスの分圧を迅速に高くすることができ、さらに連続性が良好な極薄膜を生成することができる。
さらに、TiClガスの処理容器11への供給の停止に合わせて、排気管34へのバラストガスの供給を停止しているため、処理空間10からの排気量をバラストガスの供給前の状態に迅速に戻すことができる。したがって、処理容器11内をTiClガス雰囲気からNガス雰囲気に速やかに置換することができる。
また、成膜装置1では、連続性が良好な極薄膜を生成するために必要なTiClガス及びNHガスの流量の上昇を抑えることができるので、これらTiClガス及びNHガスのガス流路41、61へのTiClガス及びNHガスの付着を抑制し、メンテナンスの頻度を低下させることができる。見方を変えれば、ガス流路41、61へのTiClガス及びNHガスの付着が十分に抑制できる範囲で、TiClガス及びNHガスの処理容器11へ供給する流量を増加させて、処理容器11内におけるTiClガス及びNHガスの分圧を高くし、連続性が良好な極薄膜からなるTiN膜を形成することができる。
さらにまた、成膜装置1では、TiClガス及びNHガスのキャリアガスを供給するためのガス流路51、71に介設される流量調整部52、72及びバルブV3、V6とは異なる流量調整部47、67及びバルブV2、V5を備えるように処理容器11内にパージガスを供給するためのガス流路45、65が設けられている。そして、これらのパージガスのガス流路45、65にはバルブV2、V5の開閉により、パージガスが貯留されて内部が昇圧した後、当該パージガスを処理容器11に供給するガス貯留タンク46、66がそれぞれ設けられている。したがって、パージガスを比較的大きな流量で処理容器11内に供給し、処理容器11内の雰囲気の置換をより速やかに行うことができる。そのため、スループットの向上を図ることができる。また、そのようにキャリアガスとは独立して流量が制御されるパージガスによって処理容器11内の雰囲気の置換を行うので、キャリアガスの流量が大きくなることをさらに抑制することができる。したがって、連続性が良好な極薄膜を生成するために必要なTiClガス及びNHガスの流量の上昇をさらに抑えることができるので、これらTiClガス及びNHガスのガス流路41、61への付着を抑制し、メンテナンスの頻度を低下させることができる。
上記の成膜処理において、パージガスについて比較的大きな流量が処理容器11内に供給されるものと記載したが、TiClガス、NHガスについてもガス貯留タンク42、62にそれぞれ貯留された後で処理容器11内に供給されるので、パージガスと同様に比較的大きな流量で処理容器11内に供給される。したがって、これらTiClガス、NHガスがそれぞれ供給される時間帯の短縮化を図ることができるため、より確実にスループットの向上を図ることができる。
ところで、パージガスのガス流路51、71は、TiClガス、NHガスをそれぞれ供給するガス流路41、61に接続されることには限られず、例えば処理容器11の天板15にガス供給路31、32とは独立して処理容器11内にガスを供給するためのガス供給路を設け、当該ガス供給路に接続されるように設けてもよい。また、その場合、ガス流路51、71の2つを設けることに限られず、ガス流路51、71のうちの一つを設ければよい。ただし、上記のようにガス流路41、61のパージを行うために、パージガスのガス流路51、71の2つをガス流路41、61にそれぞれ接続するように設けることが好ましい。
以上の説明では、成膜装置1は、TiClガスの供給時とNHガスの供給時との両方に、ガス流路80から排気管34へバラストガスを供給していた。成膜装置1は、TiClガスの供給時とNHガスの供給時とのいずれか一方のときにのみ、ガス流路80から排気管34へバラストガスを供給してもよい。特に、TiClガスの供給時とNHガスの供給時とでバラストガスの供給量を共通としたときに、TiClガス等の分圧を所望の速さで所望の圧力にすることができない場合は、上記いずれか一方のときにのみバラストガスを供給してもよい。TiClガスの供給時とNHガスの供給時とでバラストガスの供給量を異ならせる必要があるときは、バラストガスのガス供給路を複数設ける必要が生じることがあり、複数設けると成膜装置1の製造コストや寸法が大きくなるからである。
上述のようにTiClガスの供給時とNHガスの供給時とのいずれか一方のときにのみ、ガス流路80から排気管34へバラストガスを供給する場合は、NHガスの供給時にのみバラストガスを供給することが好ましい。後述するように、NHガスの供給時の方が、連続性が良好な極薄膜を生成することができるからである。
また、以上の説明では、排気管34における圧力調整部36の上流にバラストガスを導入するようにしていたが、排気管34における圧力調整部36の下流に導入するようにしてもよい。ただし、後述するように、上流に設けることにより、連続性が良好な極薄膜を生成することができる。また、同じ排気量を得るための圧力調整部36の開度は、排気管34等への反応生成物の付着により時間とともに変化するため、圧力調整部36の下流にバラストガスを導入する場合、上記開度に合わせてバラストガスの供給量を変更する必要があるが、圧力調整部36の上流にバラストガスを導入する場合、上記開度によらずバラストガスの供給量を一定とすることができる。
また、排気管34へのバラストガスの導入開始タイミングとTiClガスやNHガスの供給開始タイミングは同時であってもよいし異なってもよい。具体的には、バラストガスに対するバルブV10を開状態とするタイミングと、TiClガスやNHガスのバルブV1、V4を開状態とするタイミングは同一であってもよいし異なってもよい。特に、バルブV10を開状態とするタイミングを、バルブV1、V4を開状態とするタイミングより遅らせてもよい。バルブV10から排気管34までの距離より、バルブV1、バルブV4から排気管34までの距離の方が長いからである。
なお、キャリアガスとパージガスとバラストガスのガス供給源は共通としてもよい。
(評価試験)
続いて、本発明に関連して行われた評価試験について説明する。なお、以下では、各ガスの流量は、流量調整部43、47、52、63、67、72、82におけるガス流量ではなく、処理容器11内または排気管34へのガス流量である。
この評価試験では上記の成膜装置1を用いて図7または図8に示すタイミングチャートでガスを供給した。
評価試験Aでは、図7に示すように、キャリアガスとしてのNガスを1000sccmに設定し供給し続けた。また、評価試験Aでは、TiClガスを150sccmに設定しバラストガスを10000sccmに設定しそれぞれ同時に0.05秒供給する工程と、その後、キャリアガスとしても用いられたNガスにより0.80秒パージする工程とをこの順で300回繰り返した。
評価試験Bでは、図8に示すように、キャリアガスとしてのNガスを1000sccmに設定し供給し続けた。また、評価試験Bでは、NHガスを6000sccmに設定しバラストガスを10000sccmに設定しそれぞれ同時に0.30秒供給する工程と、その後、キャリアガスとしても用いられたNガスにより0.55秒パージする工程とをこの順で300回繰り返した。
比較試験Xでは、上記の成膜装置1を用いて、キャリアガスとしてのNガスを1000sccmに設定し供給し続けた。また、比較試験Xでは、バラストガスの供給は行わずにTiClガスを評価試験Aと同じ流量である150sccmに設定し0.05秒供給する工程と、キャリアガスとしても用いられたNガスにより0.20秒パージする工程と、バラストガスの供給は行わずにNHガスを評価試験Bと同じ流量である6000sccmに設定し0.30秒供給する工程と、キャリアガスとしても用いられたNガスにより0.3秒パージする工程と、この順で300回繰り返した。
図9は、TiClガスやNHガスを供給している期間を示すグラフ、具体的にはTiClガスやNHガスに対するバルブV1、V4に開状態とする制御信号を与えている期間を示すグラフに、評価試験A、B及び比較試験Xの結果を重ねて示している。図9の横軸はキャリアガスとしてのNガスの供給開始からの経過時間を示し、縦軸は排気ダクト17に設けられた圧力計で測定した処理空間10内の圧力を示している。
図に示すように、比較試験Xでは、TiClガスの供給期間中の処理空間10の圧力は約3Torrと小さく、NHガスの供給期間中の処理空間10の圧力も約3.7Torrと小さい。すなわち、比較試験Xでは、各処理ガス供給期間における処理空間10内の処理ガスの分圧は低い。
それに対し、バラストガスを供給した評価試験Aでは、TiClガスの供給期間中の処理空間10の圧力は供給開始直後から上昇し約8Torrまで上昇する。また、バラストガスを供給した評価試験Bでは、NHガスの供給期間中の処理空間10の圧力は、供給開始直後から評価試験Aよりは緩やかに上昇し、評価試験Aと同様に約8Torrまで上昇する。すなわち、評価試験A、Bでは、各処理ガス供給期間における処理空間10内の処理ガスの分圧は比較試験Xに比べて2倍以上高くすることができる。
したがって、評価試験A、Bのように処理ガス供給時に排気管34へバラストガスを供給することで、比較試験Xと同じ処理ガスの供給量であっても、各処理ガス供給期間における処理空間10内の処理ガスの分圧を迅速に上昇させることができることが分かる。
実施例1~3として、上記の成膜装置1を用いてTiN膜の成膜を行った。この際、実施例1、2では、バラストガスのガス流路80を排気管34における圧力調整部36の下流に接続して成膜を行い、実施例3では、バラストガスのガス流路80を排気管34における圧力調整部36の上流に接続して成膜を行った。また、実施例1、3では、TiClガスとNHガスの供給期間のうち、NHガスの供給期間でのみバラストガスを排気管34に供給し、実施例2では、TiClガスの供給期間でのみバラストガスを排気管34に供給した。
比較例として、上記の成膜装置1を用いて、いずれの処理ガスの供給期間においてもバラストガスの供給は行わずにTiN膜の成膜を行った。
なお、実施例1~3及び比較例では、キャリアガスとしてのNガスを1000sccmに設定し供給し続けた。また、実施例1~3及び比較例では、TiClガスを150sccmに設定し0.05秒供給する原料ガス供給工程と、パージガスとしてのNガスを8000sccmに設定し0.20秒供給しTiClガスをパージする工程と、NHガスを6000sccmに設定し0.30秒供給する反応ガス供給工程と、パージガスとしてのNガスを8000sccmに設定し0.30秒供給しNHガスをパージする工程と、を300回繰り返した。
また、実施例1、3では、上記反応ガス供給工程時に、バラストガスを10000sccmに設定し反応ガスと同時に0.30秒供給した。実施例2では、上記原料ガス供給工程時に、バラストガスを10000sccmに設定し原料元原稿ではいださい膜したTiN膜の残留塩素の深さ方向の濃度分布をガスと同時に0.05秒供給した。
そして、実施例1~3及び比較例について、図10に示すような、成膜したTiN膜の平坦なバルク部分の厚さT1と、凹凸部分の厚さT2とを、エリプソメータを用いて、複数の箇所で測定した。また、上記複数の箇所それぞれにおいて、測定した膜厚T1、T2に基づいて、ラフ層比R(Roughness Layer Ratio)を算出した。ラフ層比Rは、R=T2/(T1+T2)で与えられる。
さらに、実施例1、2及び比較例について、成膜したTiN膜の残留塩素の深さ方向の濃度分布として、チタン(Ti)に対する塩素(Cl)の割合(Cl/Ti)の深さ方向の分布を、XPS(X-ray Photoelectron Spectroscopy)とXRF(X-ray
Fluorescence)を用いて測定した。
図11は、実施例1~3と比較例のラフ層比Rが最小となる位置での膜厚を示す図である。
図に示すように、比較例に比べて、実施例1及び実施例2の方が、ラフ層比Rが最小となる位置での膜厚が小さい。このことから、処理空間10への処理ガスの供給時に、バラストガスを排気管34に供給することで、連続性の良い薄膜を生成することができることが分かる。
また、実施例2に比べて、実施例1の方が、ラフ層比Rが最小となる位置での膜厚が小さい。このことから、TiClガスの供給及びNHガスの供給のいずれかの時に、バラストガスを排気管34に供給するのであれば、後者の方が、連続性の良い薄膜を生成することができ、好適であることが分かる。
さらに、実施例1に比べて、実施例3の方が、ラフ層比Rが最小となる位置での膜厚が小さい。このことから、バラストガスを排気管34に供給するのであれば、排気管34における圧力調整部36の上流部分にバラストガスを導入する方が、下流部分に導入するのに比べて、連続性の良い薄膜を生成することができ、好適であることが分かる。
図12は、実施例1、2及び比較例にかかるTiN膜のチタンに対する塩素の割合の深さ方向の分布を示す図である。図中、横軸はTiN膜表面からの深さを示し、縦軸は上記割合を示す。
比較例に比べて、実施例1、2の方が、TiN膜の表面から0.5nm以下である表面付近におけるチタンに対する塩素の割合、すなわち、上記表面付近における残留塩素濃度が低い。このことから、処理空間10への処理ガスの供給時に、バラストガスを排気管34に供給することで、膜表面付近の残留塩素濃度を低くすることができ、すなわち、膜表面付近において比抵抗が小さい良質なTiN膜を生成することができることが分かる。なお、TiN膜を半導体デバイスに用いるときに重要となるのは膜表面付近の比抵抗である。
以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。例えば、本発明はTiN膜を形成する場合に限られず、例えばWN(窒化タングステン)膜を形成する場合にも用いることができる。この場合は、原料ガスとしては例えば塩化タングステンガスが、反応ガスとしては例えばNHガスがそれぞれ用いられる。なお、TiN膜や、WN膜を成膜するにあたり、原料ガスを窒化するためのガスは、NHガスに限られず、例えばヒドラジンなどの窒素を含むガスであってもよい。
また、以上の実施形態は、成膜処理以外の処理、例えばエッチング処理にも適用可能である。
1…成膜装置
10…処理空間
11…処理容器
34…排気管
35…真空排気ポンプ
36…圧力調整部
80…(バラストガスの)ガス流路
100…制御部

Claims (8)

  1. 排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスを供給する処理ガス供給工程と、前記処理容器内に、雰囲気を置換するための置換ガスを供給する置換ガス供給工程とを、を交互に複数回行い、前記基板の処理を行う基板処理方法であって、
    前記処理ガス供給工程を行う際に、ガスを一旦貯留するガス貯留タンクを介して前記排気管へバラストガスを導入するバラストガス導入工程を含むことを特徴とする基板処理方法。
  2. 排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスを供給する処理ガス供給工程と、前記処理容器内に、雰囲気を置換するための置換ガスを供給する置換ガス供給工程とを、を交互に複数回行い、前記基板の処理を行う基板処理方法であって、
    前記基板の処理は、ALD処理であり、
    当該基板処理方法は、
    金属含有ガスを前記処理ガスとした前記処理ガス供給工程と、前記置換ガス供給工程と、還元ガスを前記処理ガスとした前記処理ガス供給工程と、前記置換ガス供給工程とをこの順で複数回行い、
    前記処理ガス供給工程を行う際に、前記排気管へバラストガスを導入するバラストガス導入工程を含み、
    前記バラストガス導入工程は、前記還元ガスを前記処理ガスとした前記処理ガス供給工程を行う際にのみ、前記排気管へバラストガスを導入することを特徴とする基板処理方法。
  3. 前記バラストガス導入工程は、前記排気管における開度可変弁の上流に、前記バラストガスを導入する工程であることを特徴とする請求項1または2に記載の基板処理方法。
  4. 前記バラストガス導入工程における前記バラストガスの導入開始タイミングは、前記処理ガスの供給源と前記処理容器の間に設けられたバルブを開くタイミングより遅いことを特徴とする請求項1~3のいずれか1項に記載の基板処理方法。
  5. 排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスと、前記処理容器内の雰囲気を置換するための置換ガスとを交互に供給し、前記基板の処理を行う基板処理装置であって、
    前記処理ガスの供給時に、ガスを一旦貯留するガス貯留タンクを介して前記排気管へバラストガスを導入するバラストガス導入部を備えることを特徴とする基板処理装置。
  6. 排気管が接続され、基板を収容した処理容器内に、前記基板を処理するための処理ガスと、前記処理容器内の雰囲気を置換するための置換ガスとを交互に供給し、前記基板の処理を行う基板処理装置であって、
    前記基板の処理は、ALD処理であり、
    当該基板処理装置は、
    前記処理ガスとしての金属含有ガス、前記置換ガス、前記処理ガスとしての還元ガス、前記置換ガスとをこの順で複数回、前記処理容器内に供給し、
    前記処理ガスの供給時に、前記排気管へバラストガスを導入するバラストガス導入部を備え、
    前記バラストガス導入部は、前記処理ガスとしての還元ガスの供給時にのみ、前記バラストガスを導入する基板処理装置。
  7. 前記バラストガス導入部は、前記排気管における開度可変弁の上流に、前記バラストガスを導入することを特徴とする請求項5または6に記載の基板処理装置。
  8. 前記バラストガス導入部は、前記処理ガスの供給源と前記処理容器の間に設けられたバルブを開くタイミングより遅れて、前記バラストガスを導入することを特徴とする請求項5~7のいずれか1項に記載の基板処理装置。
JP2017049782A 2017-03-15 2017-03-15 基板処理装置及び基板処理方法 Active JP7002847B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017049782A JP7002847B2 (ja) 2017-03-15 2017-03-15 基板処理装置及び基板処理方法
TW107108385A TWI751301B (zh) 2017-03-15 2018-03-13 基板處理裝置及基板處理方法
KR1020180029541A KR102039248B1 (ko) 2017-03-15 2018-03-14 기판 처리 장치 및 기판 처리 방법
US15/921,506 US10584414B2 (en) 2017-03-15 2018-03-14 Substrate processing method that includes step of introducing ballast gas to exhaust line while supplying processing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049782A JP7002847B2 (ja) 2017-03-15 2017-03-15 基板処理装置及び基板処理方法

Publications (2)

Publication Number Publication Date
JP2018150612A JP2018150612A (ja) 2018-09-27
JP7002847B2 true JP7002847B2 (ja) 2022-01-20

Family

ID=63521597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049782A Active JP7002847B2 (ja) 2017-03-15 2017-03-15 基板処理装置及び基板処理方法

Country Status (4)

Country Link
US (1) US10584414B2 (ja)
JP (1) JP7002847B2 (ja)
KR (1) KR102039248B1 (ja)
TW (1) TWI751301B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411152B1 (ko) * 2017-05-02 2022-06-21 피코순 오와이 Ald 장치, 방법 및 밸브
KR20240056777A (ko) * 2018-09-20 2024-04-30 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 방법
TW202040692A (zh) * 2018-12-21 2020-11-01 美商得昇科技股份有限公司 工件的表面平滑化
CN109609931B (zh) * 2018-12-27 2021-05-07 北京北方华创微电子装备有限公司 原子层沉积装置及方法
JP7016833B2 (ja) 2019-05-17 2022-02-07 株式会社Kokusai Electric 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2020200496A (ja) * 2019-06-07 2020-12-17 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP7300898B2 (ja) * 2019-06-11 2023-06-30 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP7338355B2 (ja) 2019-09-20 2023-09-05 東京エレクトロン株式会社 エッチング方法、及びエッチング装置
US12068135B2 (en) * 2021-02-12 2024-08-20 Applied Materials, Inc. Fast gas exchange apparatus, system, and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179699A (ja) 2004-12-22 2006-07-06 Tokyo Electron Ltd 処理方法及び処理装置
JP2006303414A (ja) 2005-03-23 2006-11-02 Hitachi Kokusai Electric Inc 基板処理システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527915B2 (ja) * 2002-03-27 2004-05-17 株式会社ルネサステクノロジ Cvd装置およびそれを用いたcvd装置のクリーニング方法
AU2003280994A1 (en) * 2002-07-10 2004-02-02 Tokyo Electron Limited Film forming apparatus
US7296532B2 (en) * 2002-12-18 2007-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Bypass gas feed system and method to improve reactant gas flow and film deposition
KR100487556B1 (ko) * 2002-12-30 2005-05-03 삼성전자주식회사 반도체 박막 증착장치
US20050221004A1 (en) * 2004-01-20 2005-10-06 Kilpela Olli V Vapor reactant source system with choked-flow elements
KR100555575B1 (ko) * 2004-09-22 2006-03-03 삼성전자주식회사 원자층 증착 장치 및 방법
KR20060093611A (ko) * 2005-02-22 2006-08-25 삼성전자주식회사 화학기상증착설비와 잔류가스 배기방법
JP6081720B2 (ja) * 2012-07-04 2017-02-15 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6107327B2 (ja) 2013-03-29 2017-04-05 東京エレクトロン株式会社 成膜装置及びガス供給装置並びに成膜方法
JP6446881B2 (ja) 2014-07-17 2019-01-09 東京エレクトロン株式会社 ガス供給装置及びバルブ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179699A (ja) 2004-12-22 2006-07-06 Tokyo Electron Ltd 処理方法及び処理装置
JP2006303414A (ja) 2005-03-23 2006-11-02 Hitachi Kokusai Electric Inc 基板処理システム

Also Published As

Publication number Publication date
KR20180105587A (ko) 2018-09-28
JP2018150612A (ja) 2018-09-27
US10584414B2 (en) 2020-03-10
TWI751301B (zh) 2022-01-01
US20180265974A1 (en) 2018-09-20
KR102039248B1 (ko) 2019-10-31
TW201901802A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
JP7002847B2 (ja) 基板処理装置及び基板処理方法
KR102065243B1 (ko) 성막 방법 및 성막 장치
KR102051185B1 (ko) 가스 공급 장치 및 가스 공급 방법
KR101665371B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR20160031413A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
KR20190035507A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
CN113227450A (zh) 半导体器件的制造方法、衬底处理装置及程序
US10811264B2 (en) Film-forming method and film-forming apparatus
JP7065178B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
US20200063258A1 (en) Film-forming method and film-forming apparatus
JP7018748B2 (ja) 成膜方法及び成膜条件の算出方法
US20190385843A1 (en) Method of forming metal film and film forming apparatus
KR102775477B1 (ko) 기판 처리 장치, 기판 처리 방법, 반도체 장치의 제조 방법 및 프로그램
WO2021210419A1 (ja) 金属窒化膜を成膜する方法、及び装置
JP7033882B2 (ja) 成膜方法および成膜装置
WO2021210441A1 (ja) タングステン膜を形成する方法及び装置、並びにタングステン膜を形成する前の中間膜の形成を行う装置
KR20200020606A (ko) 성막 방법 및 성막 장치
WO2024034172A1 (ja) 基板処理装置、基板支持具、基板処理方法、半導体装置の製造方法及びプログラム
JP2021172841A (ja) 成膜方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7002847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250