[go: up one dir, main page]

JP6984320B2 - Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method - Google Patents

Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method Download PDF

Info

Publication number
JP6984320B2
JP6984320B2 JP2017210528A JP2017210528A JP6984320B2 JP 6984320 B2 JP6984320 B2 JP 6984320B2 JP 2017210528 A JP2017210528 A JP 2017210528A JP 2017210528 A JP2017210528 A JP 2017210528A JP 6984320 B2 JP6984320 B2 JP 6984320B2
Authority
JP
Japan
Prior art keywords
less
steel
minutes
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017210528A
Other languages
Japanese (ja)
Other versions
JP2019081931A (en
Inventor
仁志 古谷
健太郎 渡邉
敬祐 森
正和 浅羽
芳章 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017210528A priority Critical patent/JP6984320B2/en
Publication of JP2019081931A publication Critical patent/JP2019081931A/en
Application granted granted Critical
Publication of JP6984320B2 publication Critical patent/JP6984320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、靭性に優れた低温用ニッケル含有鋼板およびその製法に関するものである。この製法で製造した鋼板は、造船、橋梁、建築、海洋構造物、圧力容器、タンク、ラインパイプなどの溶接構造物一般に用いることができるが、特に−253℃程度の低温での破壊靱性が要求される低温タンクでの使用において有効である。 The present invention relates to a nickel-containing steel sheet for low temperature having excellent toughness and a method for producing the same. Steel sheets manufactured by this method can be used for general welded structures such as shipbuilding, bridges, construction, marine structures, pressure vessels, tanks, and line pipes, but fracture toughness at a low temperature of about -253 ° C is particularly required. It is effective for use in low temperature tanks.

水素のエネルギーとしての利用に伴い、インフラの整備が重要な課題とされている。水素を液化保存するタンクの材料として、オーステナイト系ステンレス鋼などが使用されている。しかしながら、タンクの大型化をはかるためには、強度増大が容易なフェライト系の低温用鋼が必要である。しかし、フェライト系の低温用鋼は、低温脆性を生じるため、この克服が実用化への鍵となる。たとえば6%のひずみ付与後に200℃で1hrの熱処理を行った材料の−253℃のシャルピー衝撃吸収エネルギーの最低値が150J以上であることが望ましい。現在の水準では、これを達成することは必ずしも容易ではない。
フェライト系低温用ニッケル鋼の−253℃でのシャルピー衝撃吸収エネルギーに、ごく低い確率で発生する低値には、介在物が関わっていることがある。連続鋳造で製造される鋼スラブには、数μmの介在物が浮上分離せずに残存しているが、通常の清浄度であれば、そのような独立した介在物が−253℃でのシャルピー衝撃吸収エネルギーに与える影響は軽微である。しかしながら、数μmの介在物が凝集合体したクラスターを形成した場合、6%のひずみ付与後に200℃で1hrの熱処理を行った材料の−253℃のシャルピー衝撃吸収エネルギーが150J以下に低下することがある。介在物の主たるものは、アルミナ(Al23)である。アルミナクラスターは、製鋼工程において一般的に生じうる事象であり、本質的な改善は困難である。
With the use of hydrogen as energy, infrastructure development has become an important issue. Austenitic stainless steel or the like is used as a material for a tank that liquefies and stores hydrogen. However, in order to increase the size of the tank, a ferrite-based low-temperature steel that can easily increase its strength is required. However, ferrite-based low-temperature steels cause low-temperature brittleness, and overcoming this is the key to practical use. For example, it is desirable that the minimum value of Charpy impact absorption energy at -253 ° C of a material that has been heat-treated at 200 ° C for 1 hr after applying a strain of 6% is 150 J or more. At current levels, achieving this is not always easy.
Inclusions may be involved in the low value of the Charpy impact absorption energy of ferrite low temperature nickel steel at -253 ° C, which occurs with a very low probability. In steel slabs manufactured by continuous casting, inclusions of several μm remain without floating separation, but at normal cleanliness, such independent inclusions are Charpy at -253 ° C. The effect on shock absorption energy is minor. However, when a cluster of several μm inclusions is aggregated and coalesced, the Charpy impact absorption energy at −253 ° C. of the material heat-treated at 200 ° C. for 1 hr after applying a strain of 6% may decrease to 150 J or less. be. The main inclusion is alumina (Al 2 O 3 ). Alumina clusters are a common event in the steelmaking process and are difficult to improve in essence.

介在物、たとえばMnSなどの伸長介在物による害悪を軽減する方法として、クロス圧延がある。クロス圧延とは、鋼板の形状を作りこむ熱間圧延において、普通は鋼板の長手方向にのみ実施する圧延のうち、一部の圧下を鋼板の幅方向に実施するものであり、介在物がMnSの場合は鋼板長手方向のMnSの伸長が抑制されることから、試験片の長手方向が圧延幅方向と平行になるような試験片を用いたシャルピー試験において、シャルピー衝撃吸収エネルギーが改善する。 There is cross rolling as a method of reducing the harm caused by inclusions, for example, extension inclusions such as MnS. Cross-rolling is hot rolling that creates the shape of a steel sheet. Of the rolling that is normally performed only in the longitudinal direction of the steel sheet, some rolling is performed in the width direction of the steel sheet, and the inclusions are MnS. In the case of, since the elongation of MnS in the longitudinal direction of the steel sheet is suppressed, the Charpy impact absorption energy is improved in the Charpy test using the test piece so that the longitudinal direction of the test piece is parallel to the rolling width direction.

たとえば、特許文献1、特許文献2では、クロス圧延を実施する際の幅方向圧延を未再結晶温度域で行うことで、曲げ加工性や低温靭性を改善している。しかしながら、未再結晶温度域での幅方向圧延を行った場合、圧下前のオーステナイト粒径が大きいまま未再結晶域圧延を行うこととなり、靭性が不安定になる場合もあり、この方法では前記の目的を達成できない。また、特許文献3には、クロス圧延を実施する際の幅方向圧延と長手方向圧延の圧下比率を規定することで等方性の高い鋼板としている。介在物の制御に関しては、この方法が有効であるものの、圧下比率の規定のみでは、シャルピー衝撃吸収エネルギーに最も影響する因子である平均有効結晶粒径を小さくできないため、この方法では前記の目的を達成できない。
つまり、現在の技術では、靭性に優れた低温用ニッケル含有鋼板を提供することはできない。
For example, in Patent Document 1 and Patent Document 2, bending workability and low-temperature toughness are improved by performing widthwise rolling in the unrecrystallized temperature range when performing cross rolling. However, when rolling in the width direction in the unrecrystallized temperature range, rolling in the unrecrystallized region is performed while the austenite grain size before rolling is large, and the toughness may become unstable. Cannot achieve the purpose of. Further, Patent Document 3 defines a rolling reduction ratio between widthwise rolling and longitudinal rolling when cross-rolling is performed, so that a steel sheet having high isotropic properties is obtained. Although this method is effective for controlling inclusions, it is not possible to reduce the average effective crystal grain size, which is the factor that most affects the Charpy impact absorption energy, only by specifying the reduction ratio. Cannot be achieved.
That is, the current technology cannot provide a nickel-containing steel sheet for low temperature with excellent toughness.

特許第4897125号Patent No. 4897125 特開2005−226080号公報Japanese Unexamined Patent Publication No. 2005-226080 特開2002−161341号公報Japanese Unexamined Patent Publication No. 2002-161341

本発明は、靭性に優れた低温用ニッケル含有鋼板およびその製造方法を提供することである。 The present invention is to provide a nickel-containing steel sheet for low temperature having excellent toughness and a method for producing the same.

本発明は、靭性に優れた低温用ニッケル含有鋼板およびその製造方法を提供するものであり、その要旨とするところは以下の通りである。
(1)鋼が、質量%で、C:0.02%以上0.12%以下、Si:0.02%以上0.35%以下、Mn:0.10%以上1.50%以下、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、Ni:10.0%超15.0%以下、Al:0.002%以上0.090%以下、N:0.0001%以上0.0070%以下、T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下であり、引張強さが690MPa以上900MPa以下であることを特徴とする,ニッケル含有鋼板。
The present invention provides a nickel-containing steel sheet for low temperature having excellent toughness and a method for producing the same, and the gist thereof is as follows.
(1) Steel is by mass%, C: 0.02% or more and 0.12% or less, Si: 0.02% or more and 0.35% or less, Mn: 0.10% or more and 1.50% or less, P. : 0.0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, Ni: 10.0% or more and 15.0% or less, Al: 0.002% or more and 0.090% or less , N: 0.0001% or more and 0.0070% or less, TO: 0.0001% or more and 0.0030% or less, and the balance is a steel composition consisting of Fe and unavoidable impurities, which is equivalent to the old austenite circle. A nickel-containing steel sheet having a particle size of 20 μm or less, an effective crystal grain size of 7.0 μm or less, and a tensile strength of 690 MPa or more and 900 MPa or less.

(2)さらに質量%で、Cu:0.01%以上2.00%以下、Cr:0.01%以上5.00%以下、Mo:0.01%以上1.00%以下、B:0.0002%以上0.0500%以下、Nb:0.001%以上0.050%以下、Ti:0.001%以上0.050%以下、V:0.001%以上0.050%以下、Ca:0.0003%以上0.0300%以下、Mg:0.0003%以上0.0300%以下、REM:0.0003%以上0.0300%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする、前記(1)に記載のニッケル含有鋼板。 (2) Further, in terms of mass%, Cu: 0.01% or more and 2.00% or less, Cr: 0.01% or more and 5.00% or less, Mo: 0.01% or more and 1.00% or less, B: 0 .0002% or more and 0.0500% or less, Nb: 0.001% or more and 0.050% or less, Ti: 0.001% or more and 0.050% or less, V: 0.001% or more and 0.050% or less, Ca : 0.0003% or more and 0.0300% or less, Mg: 0.0003% or more and 0.0300% or less, REM: 0.0003% or more and 0.0300% or less, and the balance is Fe. The nickel-containing steel plate according to (1) above, which has a steel composition composed of unavoidable impurities.

(3)質量%で、C:0.02%以上0.12%以下、Si:0.02%以上0.35%以下、Mn:0.10%以上1.50%以下、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、Ni:10.0%超15.0%以下、Al:0.002%以上0.090%以下、N:0.0001%以上0.0070%以下、T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である鋳片あるいは鋼片を、下記(A)〜(C)の工程を経て、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下である鋼板とすることを特徴とする、ニッケル含有鋼板の製造方法。
(A)前記鋳片あるいは鋼片に、加熱温度が850℃以上1300℃以下、圧下比が4以上および仕上圧延1パス前入側温度が600℃以上850℃以下である圧延を施して鋼板となし、その後空冷する熱間圧延工程;
(B)前記熱間圧延工程により得られた鋼板に、550℃以上700℃以下の温度域における昇温速度を0.3℃/s以上として加熱し、680℃以上830℃以下の温度域に5分以上100分以下保持し、次いで急冷する焼入工程;および
(C)前記焼入工程により得られた鋼板を500℃以上660℃以下の温度域で5分以上100分以下保持する焼戻し工程。
(3) In terms of mass%, C: 0.02% or more and 0.12% or less, Si: 0.02% or more and 0.35% or less, Mn: 0.10% or more and 1.50% or less, P: 0. 0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, Ni: 10.0% or more and 15.0% or less, Al: 0.002% or more and 0.090% or less, N: The following is a slab or steel piece having a steel composition containing 0.0001% or more and 0.0070% or less, TO: 0.0001% or more and 0.0030% or less, and the balance is Fe and unavoidable impurities. A method for producing a nickel-containing steel sheet, which comprises the steps (A) to (C) to obtain a steel sheet having an old austenite circle-equivalent particle size of 20 μm or less and an effective crystal grain size of 7.0 μm or less. ..
(A) The slab or steel slab is rolled into a steel sheet having a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, a rolling reduction ratio of 4 or higher, and a finish rolling 1-pass front entry side temperature of 600 ° C. or higher and 850 ° C. or lower. None, then hot rolling process with air cooling;
(B) The steel plate obtained by the hot rolling step is heated at a temperature rise rate of 0.3 ° C./s or more in a temperature range of 550 ° C. or higher and 700 ° C. or lower to a temperature range of 680 ° C. or higher and 830 ° C. or lower. Quenching step of holding for 5 minutes or more and 100 minutes or less and then quenching; and (C) Tempering step of holding the steel plate obtained by the quenching step in a temperature range of 500 ° C. or more and 660 ° C. or less for 5 minutes or more and 100 minutes or less. ..

(4)質量%で、C:0.02%以上0.12%以下、Si:0.02%以上0.35%以下、Mn:0.10%以上1.50%以下、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、Ni:10.0%超15.0%以下、Al:0.002%以上0.090%以下、N:0.0001%以上0.0070%以下、T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である鋳片あるいは鋼片を、下記(A)〜(C)の工程を経て、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下である鋼板とすることを特徴とする、ニッケル含有鋼板の製造方法。
(A)前記鋳片あるいは鋼片に、加熱温度が850℃以上1300℃以下、圧下比が4以上および仕上圧延1パス前入側温度が600℃以上900℃以下である圧延を施して鋼板となし、その後、冷却速度200℃/s以下で水冷する熱間圧延工程;
(B)前記熱間圧延工程により得られた鋼板に、550℃以上700℃以下の温度域における昇温速度を0.3℃/s以上として加熱し、680℃以上830℃以下の温度域に5分以上100分以下保持し、次いで急冷する焼入工程;および
(C)前記焼入工程により得られた鋼板を500℃以上660℃以下の温度域で5分以上100分以下保持する焼戻し工程。
(4) In terms of mass%, C: 0.02% or more and 0.12% or less, Si: 0.02% or more and 0.35% or less, Mn: 0.10% or more and 1.50% or less, P: 0. 0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, Ni: 10.0% or more and 15.0% or less, Al: 0.002% or more and 0.090% or less, N: The following is a slab or steel piece having a steel composition containing 0.0001% or more and 0.0070% or less, TO: 0.0001% or more and 0.0030% or less, and the balance being Fe and unavoidable impurities. A method for producing a nickel-containing steel sheet, which comprises the steps (A) to (C) to obtain a steel sheet having an old austenite circle-equivalent particle size of 20 μm or less and an effective crystal grain size of 7.0 μm or less. ..
(A) The slab or steel slab is rolled into a steel sheet having a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, a rolling reduction ratio of 4 or higher, and a finish rolling 1-pass front entry side temperature of 600 ° C. or higher and 900 ° C. or lower. None, then hot rolling process with water cooling at a cooling rate of 200 ° C / s or less;
(B) The steel plate obtained by the hot rolling step is heated at a temperature rise rate of 0.3 ° C./s or more in a temperature range of 550 ° C. or higher and 700 ° C. or lower to a temperature range of 680 ° C. or higher and 830 ° C. or lower. Quenching step of holding for 5 minutes or more and 100 minutes or less and then quenching; and (C) Tempering step of holding the steel plate obtained by the quenching step in a temperature range of 500 ° C. or more and 660 ° C. or less for 5 minutes or more and 100 minutes or less. ..

(5)質量%で、C:0.02%以上0.12%以下、Si:0.02%以上0.35%以下、Mn:0.10%以上1.50%以下、P:0.0010%以上0.0100%以下、S:0.0001%以上0.0035%以下、Ni:10.0%超15.0%以下、Al:0.002%以上0.090%以下、N:0.0001%以上0.0070%以下、T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である鋳片あるいは鋼片を、下記(A)〜(C)の工程を経て、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下である鋼板とすることを特徴とする、ニッケル含有鋼板の製造方法。
(A)前記鋳片あるいは鋼片に、加熱温度が850℃以上1300℃以下、圧下比が4以上および仕上圧延1パス前入側温度が600℃以上900℃以下である圧延を施して鋼板となし、その後、水冷停止温度を150℃以上550℃以下とする水冷を行う熱間圧延工程;
(B)前記熱間圧延工程により得られた鋼板に、550℃以上700℃以下の温度域における昇温速度を0.3℃/s以上として加熱し、680℃以上830℃以下の温度域に5分以上100分以下保持し、次いで急冷する焼入工程;および
(C)前記焼入工程により得られた鋼板を500℃以上660℃以下の温度域で5分以上100分以下保持する焼戻し工程。
(5) In terms of mass%, C: 0.02% or more and 0.12% or less, Si: 0.02% or more and 0.35% or less, Mn: 0.10% or more and 1.50% or less, P: 0. 0010% or more and 0.0100% or less, S: 0.0001% or more and 0.0035% or less, Ni: 10.0% or more and 15.0% or less, Al: 0.002% or more and 0.090% or less, N: The following is a slab or steel piece having a steel composition containing 0.0001% or more and 0.0070% or less, TO: 0.0001% or more and 0.0030% or less, and the balance being Fe and unavoidable impurities. A method for producing a nickel-containing steel sheet, which comprises the steps (A) to (C) to obtain a steel sheet having an old austenite circle-equivalent particle size of 20 μm or less and an effective crystal grain size of 7.0 μm or less. ..
(A) The slab or steel slab is rolled into a steel sheet having a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, a rolling reduction ratio of 4 or higher, and a finish rolling 1-pass front entry side temperature of 600 ° C. or higher and 900 ° C. or lower. None, and then a hot rolling step of water cooling with a water cooling stop temperature of 150 ° C or higher and 550 ° C or lower;
(B) The steel plate obtained by the hot rolling step is heated at a temperature rise rate of 0.3 ° C./s or more in a temperature range of 550 ° C. or higher and 700 ° C. or lower to a temperature range of 680 ° C. or higher and 830 ° C. or lower. Quenching step of holding for 5 minutes or more and 100 minutes or less and then quenching; and (C) Tempering step of holding the steel plate obtained by the quenching step in a temperature range of 500 ° C. or more and 660 ° C. or less for 5 minutes or more and 100 minutes or less. ..

(6)焼き入れと焼き戻しの間に、加熱温度範囲が580℃以上720℃以下、保持時間が5分以上100分以下の中間熱処理を行うことを特徴とする、前記(3)〜(5)のいずれかに記載のニッケル含有鋼板の製造方法。 (6) The above-mentioned (3) to (5), wherein an intermediate heat treatment having a heating temperature range of 580 ° C. or higher and 720 ° C. or lower and a holding time of 5 minutes or longer and 100 minutes or shorter is performed between quenching and tempering. ). The method for manufacturing a nickel-containing steel sheet according to any one of.

(7)さらに質量%で、Cu:0.01%以上2.00%以下、Cr:0.01%以上5.00%以下、Mo:0.01%以上1.00%以下、B:0.0002%以上0.0500%以下、Nb:0.001%以上0.050%以下、Ti:0.001%以上0.050%以下、V:0.001%以上0.050%以下、Ca:0.0003%以上0.0300%以下、Mg:0.0003%以上0.0300%以下、REM:0.0003%以上0.0300%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする前記(3)〜(6)のいずれかに記載のニッケル含有鋼板の製造方法。 (7) Further, in terms of mass%, Cu: 0.01% or more and 2.00% or less, Cr: 0.01% or more and 5.00% or less, Mo: 0.01% or more and 1.00% or less, B: 0 .0002% or more and 0.0500% or less, Nb: 0.001% or more and 0.050% or less, Ti: 0.001% or more and 0.050% or less, V: 0.001% or more and 0.050% or less, Ca : 0.0003% or more and 0.0300% or less, Mg: 0.0003% or more and 0.0300% or less, REM: 0.0003% or more and 0.0300% or less, and the balance is Fe. The method for producing a nickel-containing steel sheet according to any one of (3) to (6) above, wherein the steel composition is composed of unavoidable impurities.

本発明によれば、不可避的にアルミナクラスターが存在する場合でも、厚板工程の製造方法の工夫により、優れた靭性の低温用ニッケル含有鋼板およびその製造方法を提供することが可能となり、産業上の価値の高い発明であるといえる。 According to the present invention, even when alumina clusters are inevitably present, it is possible to provide a nickel-containing steel sheet for low temperature with excellent toughness and a manufacturing method thereof by devising a manufacturing method in the thick plate process, which is industrially possible. It can be said that this is a highly valuable invention.

熱間圧延後空冷における旧オーステナイト円相当粒径に及ぼす圧下比と仕上げ1パス前温度の関係を示すグラフである。It is a graph which shows the relationship between the reduction ratio and the temperature before finishing 1 pass on the particle size corresponding to the old austenite circle in the air cooling after hot rolling. 熱間圧延後水冷における旧オーステナイト円相当粒径に及ぼす圧下比と仕上げ1パス前温度の関係を示すグラフである。It is a graph which shows the relationship between the reduction ratio and the temperature before finishing 1 pass on the particle size equivalent to the old austenite circle in water cooling after hot rolling. 旧オーステナイト円相当粒径に及ぼす焼入れ時の昇温速度の影響を示すグラフである。It is a graph which shows the influence of the temperature rise rate at the time of quenching on the particle size equivalent to the old austenite circle. ひずみ時効後の平均有効結晶粒径と靭性の関係を示すグラフである。It is a graph which shows the relationship between the average effective crystal grain size and toughness after strain aging. 旧オーステナイト円相当粒径と平均有効結晶粒径の関係を示すグラフである。It is a graph which shows the relationship between the particle size equivalent to the old austenite circle and the average effective crystal grain size.

本発明を詳細に説明する。発明者は、低温用ニッケル含有鋼板のうち、Ni含有量が10.0%超15.0%以下の鋼板において、製鋼工程ではなく熱間圧延以降の工程でアルミナクラスターに起因する靭性低下を回避、もしくはリカバリーできないか鋭意検討した。その結果、適正な熱間圧延の後、焼入れの昇温時に600℃以上750℃以下の昇温速度をわずかに高めることで、旧オーステナイトが大幅に微細化することを知見した。旧オーステナイト円相当粒径の微細化は、最終的な組織、すなわち焼戻しマルテンサイトを主体とする組織の微細化に繋がることから、靭性を大幅に改善することができる。 The present invention will be described in detail. The inventor avoids the decrease in toughness caused by alumina clusters in the steel sheet containing nickel for low temperature and having a Ni content of more than 10.0% and 15.0% or less in the process after hot rolling instead of the steelmaking process. Or, I eagerly examined whether it could be recovered. As a result, it was found that the old austenite is significantly refined by slightly increasing the heating rate of 600 ° C. or higher and 750 ° C. or lower when the temperature of quenching is raised after appropriate hot rolling. Since the miniaturization of the particle size equivalent to the old austenite circle leads to the miniaturization of the final structure, that is, the structure mainly composed of tempered martensite, the toughness can be significantly improved.

本発明において、旧オーステナイト円相当粒径を大幅に微細化するためには、2つの製造方法の組み合わせが重要である。第1点目は、焼入れ前に実施される熱間圧延の条件を適正に制御することであり、第2点目は、圧延後の焼入れの際の昇温条件を適正に制御することである。
本発明では、熱間圧延工程(A工程)、焼入工程(B工程)、焼戻し工程(C工程からなる。最初のA工程、すなわち、焼入れ前に実施される熱間圧延の条件について説明する。尚、熱間圧延の条件は、熱間圧延後空冷する場合と、熱間圧延後水冷する場合で異なる。
In the present invention, the combination of the two production methods is important in order to significantly reduce the particle size equivalent to the old austenite circle. The first point is to properly control the conditions of hot rolling performed before quenching, and the second point is to appropriately control the temperature rising conditions during quenching after quenching. ..
In the present invention, the hot rolling step (A step), the quenching step (B step), and the tempering step (C. The first step A, that is, the conditions of hot rolling performed before quenching will be described. The conditions for hot rolling differ between the case of hot rolling and then air cooling and the case of hot rolling and then water cooling.

(1)熱間圧延後空冷する場合;
最初に、熱間圧延後空冷する場合について説明する。Niを10.0%超15.0%以下含有する鋳片あるいは鋼片を、加熱温度を850℃以上1300℃以下とした加熱を行った後、熱間圧延を行い、以後空冷する。熱間圧延は、圧下比4以上で行い、仕上げ1パス前温度を600℃以上850℃以下とする。ここで、圧下比とは、圧延前の鋼片の厚さを、圧延後の鋼板の厚さで除した値である。また、仕上げ1パス前温度とは、圧延の最終1パスを行う直前たとえば5秒以内に測定された、鋼板表面の温度を指す。図1には、圧延後空冷する場合において、圧下比と仕上げ1パス前温度を種々変えた実験を行い、熱処理後の鋼板を用いて推定した、焼入れ加熱時の旧オーステナイト粒径と仕上げ1パス前温度の関係を示す。仕上げ1パス前温度が850℃超の場合、空冷で常温まで冷却された時点での組織が粗大であるため、旧オーステナイト円相当粒径が大きくなる。また、仕上げ1パス前温度が600℃未満では、変形抵抗が大きいため熱間圧延を実施できない。さらに、圧下比が4未満の際には、空冷後の組織が粗大になるため、旧オーステナイト円相当粒径が大きくなる。なお、ここで旧オーステナイト円相当粒径とは、熱処理後、最終製品の鋼板の板厚中央部から採取した光学顕微鏡試料について、長手方向と厚さ方向がなす面に平行な面を研磨し、さらにピクリン酸等の腐食液により焼入れ加熱時の旧オーステナイト粒界を現出したのち、JISG0551に記載の方法で測定した粒度番号から算出した円相当直径をいう。
(1) When air-cooled after hot rolling;
First, a case of air cooling after hot rolling will be described. A slab or steel slab containing more than 10.0% and 15.0% or less of Ni is heated at a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, then hot-rolled, and then air-cooled. Hot rolling is performed at a rolling reduction ratio of 4 or more, and the temperature before finishing 1 pass is set to 600 ° C. or higher and 850 ° C. or lower. Here, the rolling ratio is a value obtained by dividing the thickness of the steel piece before rolling by the thickness of the steel plate after rolling. The temperature before finishing 1 pass refers to the temperature of the surface of the steel sheet measured immediately before the final 1 pass of rolling, for example, within 5 seconds. In FIG. 1, an experiment was conducted in which the rolling reduction ratio and the temperature before finishing 1 pass were variously changed in the case of air cooling after rolling, and the old austenite grain size and the finishing 1 pass at the time of quenching and heating were estimated using the steel plate after heat treatment. The relationship between the pre-temperature is shown. When the temperature one pass before finishing is more than 850 ° C., the structure at the time of cooling to room temperature by air cooling is coarse, so that the particle size equivalent to the old austenite circle becomes large. Further, if the temperature one pass before finishing is less than 600 ° C., hot rolling cannot be performed because the deformation resistance is large. Further, when the reduction ratio is less than 4, the structure after air cooling becomes coarse, so that the particle size equivalent to the old austenite circle becomes large. Here, the particle size equivalent to the old austenite circle is defined by polishing the surface parallel to the plane formed by the longitudinal direction and the thickness direction of the optical microscope sample collected from the center of the plate thickness of the final product steel plate after heat treatment. Further, it refers to a circle-equivalent diameter calculated from a particle size number measured by the method described in JISG0551 after the old austenite grain boundaries at the time of quenching and heating are revealed by a corrosive liquid such as picric acid.

(2)熱間圧延後水冷する場合;
次に、熱間圧延後水冷する場合について説明する。Niを10.0%超15.0%以下含有する鋳片あるいは鋼片を、加熱温度を850℃以上1300℃以下とした加熱を行った後、熱間圧延を行い、以後水冷する。熱間圧延は、圧下比4以上で行い、仕上げ1パス前温度を600℃以上900℃以下とする。熱間圧延後、水冷の場合は、変態温度の低温化により、空冷よりも仕上げ1パス前温度上限が50℃高温で同様の微細化効果が得られる。図2には、熱間圧延後水冷する場合において、圧下比と仕上げ1パス前温度を種々変えた実験を行い、熱処理後の鋼板を用いて推定した、旧オーステナイト円相当粒径と仕上げ1パス前温度の関係を示す。仕上げ1パス前温度が900℃超の場合、水冷で常温まで冷却された時点での組織が粗大であるため、旧オーステナイト円相当粒径が大きくなる。また、仕上げ1パス前温度が600℃未満では、変形抵抗が大きいため熱間圧延を実施できない。さらに、圧下比が4未満の際には、水冷後の組織が粗大になるため、旧オーステナイト円相当粒径が大きくなる。
(2) When water-cooled after hot rolling;
Next, a case of hot rolling and then water cooling will be described. A slab or steel slab containing more than 10.0% and 15.0% or less of Ni is heated at a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, then hot-rolled, and then water-cooled. Hot rolling is performed at a rolling reduction ratio of 4 or more, and the temperature before finishing 1 pass is set to 600 ° C. or higher and 900 ° C. or lower. In the case of water cooling after hot rolling, the same miniaturization effect can be obtained when the upper limit of the temperature one pass before finishing is 50 ° C. higher than that of air cooling by lowering the transformation temperature. In FIG. 2, in the case of water cooling after hot rolling, experiments were performed in which the rolling ratio and the temperature before finishing 1 pass were variously changed, and the grain size equivalent to the old austenite circle and the finishing 1 pass were estimated using the heat-treated steel sheet. The relationship between the pre-temperature is shown. When the temperature one pass before finishing is more than 900 ° C., the structure at the time of cooling to room temperature by water cooling is coarse, so that the particle size equivalent to the old austenite circle becomes large. Further, if the temperature one pass before finishing is less than 600 ° C., hot rolling cannot be performed because the deformation resistance is large. Further, when the reduction ratio is less than 4, the structure after water cooling becomes coarse, so that the particle size equivalent to the old austenite circle becomes large.

焼入れの際の昇温速度;
次に、B工程、すなわち、焼入工程について説明する。
焼入れの際の加熱中の昇温速度は、600℃以上750℃以下の平均昇温速度を0.3℃/s以上とすることで、旧オーステナイト円相当粒径を大幅に微細化することができる。ここで、平均昇温速度とは、この場合、600℃と750℃との間の温度差150℃を、この間の昇温に要した時間で除した値である。図3には、焼入れの昇温速度を種々変えた実験を行い、熱処理後の鋼板を用いて推定した、旧オーステナイト円相当粒径と600℃以上750℃以下の平均昇温速度の関係を示す。焼入れ時の昇温速度が0.3℃/s以上の場合、旧オーステナイト円相当粒径が小さくなる。
Temperature rise rate during quenching;
Next, the B step, that is, the quenching step will be described.
As for the heating rate during heating during quenching, by setting the average heating rate of 600 ° C or higher and 750 ° C or lower to 0.3 ° C / s or higher, the particle size equivalent to the old austenite circle can be significantly reduced. can. Here, the average temperature rise rate is, in this case, a value obtained by dividing the temperature difference of 150 ° C. between 600 ° C. and 750 ° C. by the time required for temperature rise during this period. FIG. 3 shows the relationship between the particle size equivalent to the old austenite circle and the average temperature rise rate of 600 ° C. or higher and 750 ° C. or lower, which was estimated using the steel plate after heat treatment by conducting experiments in which the heating rate of quenching was variously changed. .. When the heating rate at the time of quenching is 0.3 ° C / s or more, the particle size equivalent to the old austenite circle becomes small.

ここで、昇温速度を高める温度区間を明らかにするために、200℃以上焼入れ加熱温度以下の昇温速度を0.1℃/sとした標準的な昇温を行った際の旧オーステナイト円相当粒径を、特定の温度範囲のみ昇温速度を2℃/sに高め、その他の温度範囲の昇温速度は0.1℃/sとした3つの条件、すなわち200℃以上600℃未満のみを2℃/sとした条件、600℃以上750℃以下のみを2℃/sとした条件、750℃超焼入れ加熱温度以下のみを2℃/sとした条件での昇温時の旧オーステナイト円相当粒径と比較した。その結果、表1に示すように、600℃以上750℃以下のみを2℃/sとして、その他の温度区間は0.1℃/sとした条件のみで、著しい旧オーステナイト円相当粒径の微細化がみられた。このことから、昇温速度の増大によって旧オーステナイト円相当粒径の微細化をはかる場合、600℃以上750℃以下の昇温速度を高めることが必要である。 Here, in order to clarify the temperature section in which the temperature rise rate is increased, the old austenite circle when the standard temperature rise is performed with the temperature rise rate of 200 ° C. or higher and the quenching heating temperature or lower set to 0.1 ° C./s. Only in three conditions, that is, 200 ° C or more and less than 600 ° C, in which the equivalent particle size is increased to 2 ° C / s only in a specific temperature range and the temperature rise rate in other temperature ranges is 0.1 ° C / s. The old austenite circle at the time of temperature rise under the condition that the temperature was set to 2 ° C / s, the condition was set to 2 ° C / s only at 600 ° C or higher and 750 ° C, and the condition was set to 2 ° C / s only under the heating temperature of 750 ° C. Compared with the equivalent particle size. As a result, as shown in Table 1, the particle size equivalent to that of the old austenite circle was remarkably fine under the condition that only the temperature of 600 ° C or higher and 750 ° C or lower was set to 2 ° C / s and the other temperature sections were set to 0.1 ° C / s. The change was seen. For this reason, it is necessary to increase the temperature rise rate of 600 ° C. or higher and 750 ° C. or lower in order to reduce the particle size equivalent to the old austenite circle by increasing the temperature rise rate.

Figure 0006984320
Figure 0006984320

平均有効結晶粒径の微細化により、ひずみ時効後の靭性が向上する。図4には、ひずみ時効後の靭性と、平均有効結晶粒径の関係を示す。本発明の鋼板においては、高い安全性の観点から、6%のひずみを付与した後に200℃で1時間熱処理をした後に試験片を採取して行った試験温度−253℃のシャルピー試験の吸収エネルギーが仕様上求められることが多く、その値は最大150Jであることから、150J以上を合格とした。この場合、平均有効結晶粒径は7.0μm以下であることが必要である。旧オーステナイト円相当粒径が微細化すると、最終的な組織も微細化する。図5には、焼入れ、焼戻し後の平均有効結晶粒径と、焼入れ、焼戻し後の鋼板を用いて推定した、旧オーステナイト円相当粒径の関係を示す。なお、ここで、平均有効結晶粒径とは、熱処理をすべて終了した鋼板の板厚中央部から採取した試料について、機械研磨およびひずみ除去のための化学研磨あるいは電解研磨、あるいはコロイダルシリカ等による研磨を行ったのち、EBSD(Electron Backscatter Diffraction Pattern)により測定したデータから、方位差15°以上の界面を粒界と定義して算出した円相当直径である。 By refining the average effective crystal grain size, the toughness after strain aging is improved. FIG. 4 shows the relationship between the toughness after strain aging and the average effective crystal grain size. In the steel sheet of the present invention, from the viewpoint of high safety, the absorbed energy of the Charpy test at a test temperature of 253 ° C., which was carried out by collecting a test piece after applying a strain of 6% and then heat-treating at 200 ° C. for 1 hour. Is often required in terms of specifications, and the maximum value is 150J, so 150J or more was accepted. In this case, the average effective crystal grain size needs to be 7.0 μm or less. When the particle size equivalent to the old austenite circle becomes finer, the final structure also becomes finer. FIG. 5 shows the relationship between the average effective crystal grain size after quenching and tempering and the grain size equivalent to the old austenite circle estimated using the steel sheet after quenching and tempering. Here, the average effective crystal grain size is the chemical polishing or electrolytic polishing for mechanical polishing and strain removal, or polishing with colloidal silica or the like for a sample collected from the central portion of the plate thickness of a steel plate that has been completely heat-treated. The diameter is equivalent to a circle calculated by defining an interface having an orientation difference of 15 ° or more as a grain boundary from the data measured by EBSD (Electron Backscatter Diffraction Pattern).

前述の図4のように、試験温度−253℃のシャルピー試験の吸収エネルギーが150Jを達成するために必要な平均有効結晶粒径は最大7.0μmであることから、図5では平均有効結晶粒径7.0μm以下を合格とした。この場合、焼入れ加熱時の旧オーステナイト粒径は20μm以下であることが必要である。 As shown in FIG. 4, the average effective crystal grain size required to achieve an absorption energy of 150 J in the Charpy test at a test temperature of -253 ° C is a maximum of 7.0 μm. Therefore, in FIG. 5, the average effective crystal grain is shown. A diameter of 7.0 μm or less was regarded as acceptable. In this case, the particle size of the old austenite at the time of quenching and heating needs to be 20 μm or less.

以下に鋼板の合金元素の範囲を規定する。
Cは、強度確保に必須の元素であるため、その添加量を0.02%以上とする。しかし、一方でC量の増大は靱性低下を招くため、その上限を0.12%とする。
The range of alloying elements of steel sheets is specified below.
Since C is an element essential for ensuring strength, the amount added thereof should be 0.02% or more. However, on the other hand, an increase in the amount of C causes a decrease in toughness, so the upper limit is set to 0.12%.

Siは、強度確保に必須の元素であるため、その添加量を0.02%以上とする。しかし、一方で0.35%超のSi添加は靭性や溶接性の低下を招くためその上限を0.35%とする。 Since Si is an element essential for ensuring strength, the amount of Si added should be 0.02% or more. However, on the other hand, the addition of Si exceeding 0.35% causes deterioration of toughness and weldability, so the upper limit is set to 0.35%.

Mnは、強度増大に有効な元素であり、最低でも0.10%以上の添加が必要となるが、逆に1.50%を超えて添加すると焼戻し脆化感受性が高くなって靭性が低下する。よって、Mnの添加量を0.10%以上1.50%以下と規定する。 Mn is an element effective for increasing strength, and it is necessary to add at least 0.10% or more, but conversely, if it is added in excess of 1.50%, tempering embrittlement sensitivity increases and toughness decreases. .. Therefore, the amount of Mn added is defined as 0.10% or more and 1.50% or less.

Pは、0.0010%未満とするには精錬負荷の増大により生産性が大幅に低下し、好ましくない。また0.0100%を超えると焼戻し脆化により靭性が低下する。よって、Pの添加量を0.0010%以上0.0100%以下と規定する。 If P is less than 0.0010%, the productivity is significantly reduced due to an increase in the refining load, which is not preferable. If it exceeds 0.0100%, the toughness decreases due to temper embrittlement. Therefore, the amount of P added is defined as 0.0010% or more and 0.0100% or less.

Sは、0.0001%未満では精錬負荷の増大により生産性が大幅に低下し、好ましくない。また0.0035%を超えると靱性が低下する。よって、Sの添加量を0.0001%以上0.0035%以下と規定する。 If S is less than 0.0001%, the productivity is significantly reduced due to an increase in the refining load, which is not preferable. If it exceeds 0.0035%, the toughness decreases. Therefore, the amount of S added is defined as 0.0001% or more and 0.0035% or less.

Niは、下限については靭性確保のため、最低でも10.0%超の添加が必要となる。また、15.0%超では製造コストが大幅に増大する。よって、Niの添加量を10.0%超15.0%以下と規定する。 Ni needs to be added at least 10.0% or more in order to secure toughness at the lower limit. Moreover, if it exceeds 15.0%, the manufacturing cost will increase significantly. Therefore, the amount of Ni added is specified to be more than 10.0% and 15.0% or less.

Alは、脱酸に有効な元素であり、最低でも0.002%以上の添加が必要となるが、逆に0.090%を超えて添加すると溶鋼再酸化を通じたアルミナクラスター形成を通じて靭性が低下する。よって、Alの添加量を0.002%以上0.090%以下と規定する。 Al is an element effective for deoxidation, and it is necessary to add at least 0.002% or more, but conversely, if it is added in excess of 0.090%, the toughness decreases through the formation of alumina clusters through the reoxidation of molten steel. do. Therefore, the amount of Al added is defined as 0.002% or more and 0.090% or less.

Nは、下限については材質特性上、特に規定はないものの、0.0001%未満では精錬負荷の増大によって生産性が著しく低下するため0.0001%以上とする。し、また0.0070%を超える添加では靭性が低下するため上限は0.0070%とする。よって、Nの添加量を0.0001%以上0.0070%以下と規定する。 The lower limit of N is not particularly specified due to the material characteristics, but if it is less than 0.0001%, the productivity is significantly reduced due to the increase in the refining load, so it is set to 0.0001% or more. However, if the addition exceeds 0.0070%, the toughness decreases, so the upper limit is 0.0070%. Therefore, the amount of N added is defined as 0.0001% or more and 0.0070% or less.

T−Oは、成分中の酸素の総量であり、下限については材質特性上、特に規定はないものの、0.0001%未満では精錬負荷の増大によって生産性が著しく低下するため0.0001%以上とする。0.0030%を超えて添加するとアルミナクラスター形成を通じて靭性が低下するため上限は0.0030%とする。よって、T−Oの添加量を0.0001%以上0.0030%以下とする。 TO is the total amount of oxygen in the components, and the lower limit is not specified in terms of material characteristics, but if it is less than 0.0001%, the productivity will be significantly reduced due to the increase in refining load, so 0.0001% or more. And. If it is added in excess of 0.0030%, the toughness decreases through the formation of alumina clusters, so the upper limit is 0.0030%. Therefore, the amount of TO added is set to 0.0001% or more and 0.0030% or less.

なお、本発明では、さらに強度に影響するものとして、以下の元素を添加することができる。
Cuは、強度確保のため、最低でも0.01%以上の添加が必要となるが、2.00%を超えると靭性が低下する。よって、Cuの添加量を0.01%以上2.00%以下と規定する。
In the present invention, the following elements can be added as those that further affect the strength.
Cu needs to be added at least 0.01% or more in order to secure the strength, but if it exceeds 2.00%, the toughness decreases. Therefore, the amount of Cu added is defined as 0.01% or more and 2.00% or less.

Crは、焼入性の確保し、強度に影響を与える元素であり、最低でも0.01%以上の添加が必要となるが、逆に5.00%を超えて添加すると靭性と溶接性が低下する。よって、Crの添加量を0.01%以上5.00%以下と規定する。 Cr is an element that ensures hardenability and affects strength, and it is necessary to add at least 0.01% or more, but conversely, if it is added in excess of 5.00%, toughness and weldability will be improved. descend. Therefore, the amount of Cr added is defined as 0.01% or more and 5.00% or less.

Moは、強度確保および焼戻し脆化の軽減に有効な元素であり、最低でも0.01%の添加が必要となるが、逆に1.00%を超えて添加すると靭性と溶接性が低下する。よって、Moの添加量を0.01%以上1.00%以下と規定する。 Mo is an element effective for ensuring strength and reducing tempering embrittlement, and it is necessary to add at least 0.01%, but conversely, if it is added in excess of 1.00%, toughness and weldability deteriorate. .. Therefore, the amount of Mo added is defined as 0.01% or more and 1.00% or less.

Bは、焼入性の向上に有効で強度に影響を与える元素である。0.0002%未満ではその効果が小さく、0.0500%を超える添加では靭性が低下する。よって、Bの添加量を0.0002%以上0.0500%以下と規定する。 B is an element that is effective in improving hardenability and affects strength. If it is less than 0.0002%, the effect is small, and if it is added more than 0.0500%, the toughness is lowered. Therefore, the amount of B added is defined as 0.0002% or more and 0.0500% or less.

Nbは強度確保に有効な元素である。0.001%未満の添加では効果が小さく、0.050%超の添加では靱性の低下を招く。よって、Nbの添加量を0.001%以上0.050%以下と規定する。 Nb is an element effective for ensuring strength. Additions of less than 0.001% have a small effect, and additions of more than 0.050% result in a decrease in toughness. Therefore, the amount of Nb added is defined as 0.001% or more and 0.050% or less.

Tiは、強度確保に有効な元素である。0.001%未満の添加では効果が小さく、0.050%超の添加では靭性の低下を招く。よって、Tiの添加量を0.001%以上0.050%以下と規定する。 Ti is an element effective for ensuring strength. Additions of less than 0.001% have a small effect, and additions of more than 0.050% result in a decrease in toughness. Therefore, the amount of Ti added is defined as 0.001% or more and 0.050% or less.

Vは、強度確保に有効な元素である。0.001%未満の添加では効果が小さく、0.050%超の添加では靱性の低下を招く。よって、Vの添加量を0.001%以上0.050%以下と規定する。 V is an element effective for ensuring strength. Additions of less than 0.001% have a small effect, and additions of more than 0.050% result in a decrease in toughness. Therefore, the amount of V added is defined as 0.001% or more and 0.050% or less.

Caは、結晶粒径に影響を与え、強度に影響する元素であると共に、ノズル閉塞防止に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0300%超の添加では靭性の低下を招く。よって、Caの添加量を0.0003%以上0.0300%以下と規定する。 Ca is an element that affects the crystal grain size, affects the strength, and is an effective element for preventing nozzle blockage. Additions of less than 0.0003% have a small effect, and additions of more than 0.0300% result in a decrease in toughness. Therefore, the amount of Ca added is defined as 0.0003% or more and 0.0300% or less.

Mgは、強度に影響を与え、靱性向上に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0300%超の添加では靭性の低下を招く。よって、Mgの添加量を0.0003%以上0.0300%以下と規定する。 Mg is an element that affects strength and is effective in improving toughness. Additions of less than 0.0003% have a small effect, and additions of more than 0.0300% result in a decrease in toughness. Therefore, the amount of Mg added is specified to be 0.0003% or more and 0.0300% or less.

REMは、強度に影響を与え、靱性向上に有効な元素である。0.0003%未満の添加ではその効果が小さく、0.0300%超の添加では靭性の低下を招く。よって、REMの添加量を0.0003%以上0.0300%以下と規定する。 REM is an element that affects strength and is effective in improving toughness. Additions of less than 0.0003% have a small effect, and additions of more than 0.0300% result in a decrease in toughness. Therefore, the amount of REM added is specified to be 0.0003% or more and 0.0300% or less.

なお、鋼板および溶接材料を製造する上で、添加合金を含めた使用原料または溶製中に炉材等から溶出する不可避的不純物として混入しうる、Zn、Sn、Sb等も0.002%未満の混入であれば何ら本発明の効果を損なうものではない。 In manufacturing steel sheets and welding materials, Zn, Sn, Sb, etc., which can be mixed as unavoidable impurities eluted from the furnace material, etc. during the raw materials used including additive alloys or melting, are also less than 0.002%. If it is mixed with the above, the effect of the present invention is not impaired.

次に本発明の鋼板の製造方法について記載する。
鋼板は、連続鋳造で製造されたスラブを前記の方法で熱間圧延する方法で製造されるが、前記以外に、一般的にマルテンサイトを主体とする組織を微細化するために実施する下記の条件も必要になる。熱間圧延工程のA工程において、鋼片の加熱温度は、1300℃超ではオーステナイトの粒成長により変態後のマルテンサイトを主体とする組織が粗大化すること、850℃未満では熱間圧延が困難になることから、850℃以上1300℃以下とする。
熱間圧延は、前述図1、図2での説明のように、圧下比4以上で行い、仕上げ1パス前温度を、その後の冷却が空冷の場合は600℃以上850℃以下、水冷の場合は600℃以上900℃以下とする。
Next, the method for manufacturing the steel sheet of the present invention will be described.
The steel sheet is manufactured by a method of hot rolling a slab manufactured by continuous casting by the above method, but in addition to the above, the following generally carried out to miniaturize a structure mainly composed of martensite. Conditions are also needed. In step A of the hot rolling process, when the heating temperature of the steel pieces exceeds 1300 ° C, the structure mainly composed of martensite after transformation becomes coarse due to the grain growth of austenite, and when the temperature is lower than 850 ° C, hot rolling is difficult. Therefore, the temperature is set to 850 ° C or higher and 1300 ° C or lower.
Hot rolling is performed at a reduction ratio of 4 or more as described in FIGS. 1 and 2 above, and the temperature before finishing 1 pass is set to 600 ° C or higher and 850 ° C or lower when the subsequent cooling is air cooling, and when water cooling. Is 600 ° C. or higher and 900 ° C. or lower.

熱間圧延後に水冷を行う場合、水冷時の冷却速度を200℃/s超とすることは設備コストが高くなることから、水冷時の冷却速度は200℃/s以下とすることが好ましい。なお、圧延後に水冷を実施する場合、常温まで水冷することのほかに、水冷を途中停止することができる。水冷停止温度が150℃未満では、温度が不均一になり材質がばらつくこと、水冷停止温度が550℃超では、組織が粗大化することから、水冷停止温度を150℃以上550℃以下とすることも好ましい。 When water cooling is performed after hot rolling, it is preferable that the cooling rate during water cooling is 200 ° C / s or less because the equipment cost increases if the cooling rate during water cooling exceeds 200 ° C / s. When water cooling is performed after rolling, water cooling can be stopped halfway in addition to water cooling to room temperature. If the water cooling stop temperature is less than 150 ° C, the temperature becomes uneven and the material varies, and if the water cooling stop temperature exceeds 550 ° C, the structure becomes coarse. Therefore, the water cooling stop temperature should be 150 ° C or higher and 550 ° C or lower. Is also preferable.

熱間圧延工程後、即ちA工程後は、焼入工程であるB工程を行う。焼入れ時の600℃以上750℃以下の昇温速度は、前述図3での説明のように、0.3℃/s以上とする。焼入れ時の最高加熱温度は、680℃未満では未変態組織が残存して靭性が低下し、830℃超では焼入れ加熱時の旧オーステナイトが粗大化して靭性が低下する。よって、焼入れ時の最高加熱温度を680℃以上830℃以下とする。
焼入れ加熱時の保持時間は、5分以下では材質が不均一になり、100分以上では組織が粗大化して靭性が低下する。よって、焼入れ加熱時の保持時間を5分以上100分以下とする。
After the hot rolling step, that is, after the A step, the B step, which is a quenching step, is performed. The rate of temperature rise of 600 ° C. or higher and 750 ° C. or lower during quenching is 0.3 ° C./s or higher as described in FIG. If the maximum heating temperature during quenching is less than 680 ° C, untransformed structure remains and the toughness decreases, and if it exceeds 830 ° C, the old austenite during quench heating becomes coarse and the toughness decreases. Therefore, the maximum heating temperature at the time of quenching is set to 680 ° C. or higher and 830 ° C. or lower.
When the holding time during quenching and heating is 5 minutes or less, the material becomes non-uniform, and when it is 100 minutes or more, the structure becomes coarse and the toughness decreases. Therefore, the holding time during quenching and heating is set to 5 minutes or more and 100 minutes or less.

なお、必要に応じて、焼入れと焼戻しの間に、中間熱処理を行うことができる。中間熱処理の加熱温度が580℃未満の場合、靭性低下し、720℃超では、中間熱処理によるオーステナイト安定化による靭性改善効果が殆ど得られないことから、中間熱処理の加熱温度を580℃以上720℃以下とすることが好ましい。 If necessary, an intermediate heat treatment can be performed between quenching and tempering. When the heating temperature of the intermediate heat treatment is less than 580 ° C, the toughness decreases, and when it exceeds 720 ° C, the effect of improving the toughness by stabilizing austenite by the intermediate heat treatment is hardly obtained. Therefore, the heating temperature of the intermediate heat treatment is 580 ° C or higher and 720 ° C. The following is preferable.

中間熱処理の保持時間は、5分未満では逆変態がほとんど進まずに焼入れ加熱時の旧オーステナイト安定化による靭性改善効果がほとんど得られず、100分超では逆に焼入れ加熱時の旧オーステナイト分率が高くなり不安定化して靭性低下することから、中間熱処理の保持時間を5分以上100分以下とする。 If the retention time of the intermediate heat treatment is less than 5 minutes, the reverse transformation hardly progresses, and the effect of improving the toughness by stabilizing the old austenite during quenching and heating is hardly obtained. The retention time of the intermediate heat treatment is set to 5 minutes or more and 100 minutes or less because the toughness is lowered due to destabilization.

焼戻し工程であるC工程は、500℃未満では、焼戻し脆化により靭性が低下し、660℃超では靭性が低下することから、500℃以上660℃以下で実施するのが望ましい。また、焼戻しの保持時間は、5分未満では十分な効果が得られる靭性が低下し、100分以上では生産性が低下することから、5分以上100分以下とするのが望ましい。
なお、本発明の鋼の引張強さは、当該の分野で求められる引張強さ690MPa以上900MPa以下の範囲とする。
The C step, which is a tempering step, is preferably carried out at 500 ° C. or higher and 660 ° C. or lower because the toughness is lowered due to tempering embrittlement at a temperature lower than 500 ° C. and the toughness is lowered at a temperature higher than 660 ° C. Further, the tempering holding time is preferably 5 minutes or more and 100 minutes or less because the toughness at which a sufficient effect can be obtained decreases when the tempering time is less than 5 minutes and the productivity decreases when the tempering time is 100 minutes or more.
The tensile strength of the steel of the present invention is in the range of the tensile strength of 690 MPa or more and 900 MPa or less required in the art.

種々の化学成分、製造条件で製造した板厚15、50mmの鋼板について、引張試験およびシャルピー衝撃試験を実施した。鋼板の化学成分、旧オーステナイト円相当粒径、平均有効結晶粒径、板厚を表2−1に、熱間圧延条件、熱処理条件、機械的特性の評価結果を表2−2に示す。焼入れ、中間熱処理、焼戻しの最高加熱温度における保持時間は、板厚15mmでは20分、板厚50mmでは40分とした。 Tensile tests and Charpy impact tests were carried out on steel sheets having a thickness of 15 and 50 mm manufactured under various chemical components and manufacturing conditions. Table 2-1 shows the chemical composition of the steel sheet, the particle size equivalent to the old austenite circle, the average effective crystal grain size, and the plate thickness, and Table 2-2 shows the evaluation results of hot rolling conditions, heat treatment conditions, and mechanical properties. The holding time at the maximum heating temperature for quenching, intermediate heat treatment, and tempering was 20 minutes for a plate thickness of 15 mm and 40 minutes for a plate thickness of 50 mm.

引張試験はJIS Z 2241に記載の金属材料引張試験方法に基づいて行った。試験片は、板厚の1/4だけ鋼板表面から内部に入った部位において、試験片の長手方向が圧延方向と垂直になるように採取した。常温で2本の試験を行った。常温で2本の試験を行い,引張強さの平均値が690MPa以上900MPa以下を合格とした。 The tensile test was performed based on the metal material tensile test method described in JIS Z 2241. The test piece was collected so that the longitudinal direction of the test piece was perpendicular to the rolling direction at a portion that entered the inside from the surface of the steel sheet by 1/4 of the plate thickness. Two tests were performed at room temperature. Two tests were conducted at room temperature, and the average tensile strength was 690 MPa or more and 900 MPa or less.

シャルピー衝撃試験は、予め6%のひずみを常温で付与した後、200℃で1hrの熱処理を行った鋼板から、2mmVノッチ試験片のフルサイズ試験片を、板厚の1/4だけ鋼板表面から内部に入った部位において、試験片の長手方向が圧延方向と垂直になるように、またノッチの前縁を結ぶ線が板厚方向に平行になるように採取した。試験温度−253℃で3本の試験を行い、3本の平均値が150J以上を合格とした。 In the Charpy impact test, a full-size test piece of a 2 mm V notch test piece was applied from the surface of the steel sheet by applying a strain of 6% at room temperature in advance and then heat-treated at 200 ° C. for 1 hr. At the inside, the test piece was sampled so that the longitudinal direction of the test piece was perpendicular to the rolling direction and the line connecting the front edges of the notches was parallel to the plate thickness direction. Three tests were conducted at a test temperature of -253 ° C, and the average value of the three was 150 J or more.

Figure 0006984320
Figure 0006984320

Figure 0006984320
Figure 0006984320

実施例1〜30に示すように、本発明に規定した成分および製造方法で鋼板を製造することにより、優れた引張強度および靭性の鋼板が得られた。
以上の実施例から、本発明により製造された鋼材である発明例実施例1〜30の鋼板は、引張強度および靭性に優れた鋼板鋼材であることは明白である。
As shown in Examples 1 to 30, a steel sheet having excellent tensile strength and toughness was obtained by manufacturing the steel sheet by the components and the manufacturing method specified in the present invention.
From the above examples, it is clear that the steel sheets of Invention Examples Examples 1 to 30, which are the steel materials manufactured by the present invention, are steel sheets having excellent tensile strength and toughness.

Claims (7)

鋼が、質量%で、
C :0.02%以上0.12%以下、
Si:0.02%以上0.35%以下、
Mn:0.10%以上1.50%以下、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
Ni:10.0%超15.0%以下、
Al:0.002%以上0.090%以下、
N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成であり、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下であり、引張強さが690MPa以上900MPa以下であることを特徴とする,ニッケル含有鋼板。
Steel is by mass%,
C: 0.02% or more and 0.12% or less,
Si: 0.02% or more and 0.35% or less,
Mn: 0.10% or more and 1.50% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% or more and 0.0035% or less,
Ni: More than 10.0% and less than 15.0%,
Al: 0.002% or more and 0.090% or less,
N: 0.0001% or more and 0.0070% or less,
TO: Steel composition containing 0.0001% or more and 0.0030% or less, the balance being Fe and unavoidable impurities, the particle size equivalent to the old austenite circle is 20 μm or less, and the effective crystal grain size is 7. A nickel-containing steel sheet having a tensile strength of 690 MPa or more and 900 MPa or less, which is 0.0 μm or less.
さらに質量%で、
Cu:0.01%以上2.00%以下、
Cr:0.01%以上5.00%以下、
Mo:0.01%以上1.00%以下、
B:0.0002%以上0.0500%以下、
Nb:0.001%以上0.050%以下、
Ti:0.001%以上0.050%以下、
V:0.001%以上0.050%以下、
Ca:0.0003%以上0.0300%以下、
Mg:0.0003%以上0.0300%以下、
REM:0.0003%以上0.0300%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする、請求項1に記載のニッケル含有鋼板。
In addition, by mass%,
Cu: 0.01% or more and 2.00% or less,
Cr: 0.01% or more and 5.00% or less,
Mo: 0.01% or more and 1.00% or less,
B: 0.0002% or more and 0.0500% or less,
Nb: 0.001% or more and 0.050% or less,
Ti: 0.001% or more and 0.050% or less,
V: 0.001% or more and 0.050% or less,
Ca: 0.0003% or more and 0.0300% or less,
Mg: 0.0003% or more and 0.0300% or less,
REM: The nickel-containing steel sheet according to claim 1, wherein the steel composition contains any one or more of 0.0003% or more and 0.0300% or less, and the balance is composed of Fe and unavoidable impurities. ..
質量%で、
C :0.02%以上0.12%以下、
Si:0.02%以上0.35%以下、
Mn:0.10%以上1.50%以下、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
Ni:10.0%超15.0%以下、
Al:0.002%以上0.090%以下、
N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である鋳片あるいは鋼片を、下記(A)〜(C)の工程を経て、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下である鋼板とすることを特徴とする、ニッケル含有鋼板の製造方法。
(A)前記鋳片あるいは鋼片に、加熱温度が850℃以上1300℃以下、圧下比が4以上および仕上圧延1パス前入側温度が600℃以上850℃以下である圧延を施して鋼板となし、その後空冷する熱間圧延工程;
(B)前記熱間圧延工程により得られた鋼板に、550℃以上700℃以下の温度域における昇温速度を0.3℃/s以上として加熱し、680℃以上830℃以下の温度域に5分以上100分以下保持し、次いで急冷する焼入工程;および
(C)前記焼入工程により得られた鋼板を500℃以上660℃以下の温度域で5分以上100分以下保持する焼戻し工程。
By mass%,
C: 0.02% or more and 0.12% or less,
Si: 0.02% or more and 0.35% or less,
Mn: 0.10% or more and 1.50% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% or more and 0.0035% or less,
Ni: More than 10.0% and less than 15.0%,
Al: 0.002% or more and 0.090% or less,
N: 0.0001% or more and 0.0070% or less,
TO: A slab or steel piece containing 0.0001% or more and 0.0030% or less and having a steel composition in which the balance is Fe and unavoidable impurities is subjected to the following steps (A) to (C). A method for producing a nickel-containing steel sheet, which comprises a steel sheet having a particle size equivalent to the old austenite circle of 20 μm or less and an effective crystal grain size of 7.0 μm or less.
(A) The slab or steel slab is rolled into a steel sheet having a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, a rolling reduction ratio of 4 or higher, and a finish rolling 1-pass front entry side temperature of 600 ° C. or higher and 850 ° C. or lower. None, then hot rolling process with air cooling;
(B) The steel plate obtained by the hot rolling step is heated at a temperature rise rate of 0.3 ° C./s or more in a temperature range of 550 ° C. or higher and 700 ° C. or lower to a temperature range of 680 ° C. or higher and 830 ° C. or lower. Quenching step of holding for 5 minutes or more and 100 minutes or less and then quenching; and (C) Tempering step of holding the steel plate obtained by the quenching step in a temperature range of 500 ° C. or more and 660 ° C. or less for 5 minutes or more and 100 minutes or less. ..
質量%で、
C :0.02%以上0.12%以下、
Si:0.02%以上0.35%以下、
Mn:0.10%以上1.50%以下、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
Ni:10.0%超15.0%以下、
Al:0.002%以上0.090%以下、
N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である鋳片あるいは鋼片を、下記(A)〜(C)の工程を経て、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下である鋼板とすることを特徴とする、ニッケル含有鋼板の製造方法。
(A)前記鋳片あるいは鋼片に、加熱温度が850℃以上1300℃以下、圧下比が4以上および仕上圧延1パス前入側温度が600℃以上900℃以下である圧延を施して鋼板となし、その後、冷却速度200℃/s以下で水冷する熱間圧延工程;
(B)前記熱間圧延工程により得られた鋼板に、550℃以上700℃以下の温度域における昇温速度を0.3℃/s以上として加熱し、680℃以上830℃以下の温度域に5分以上100分以下保持し、次いで急冷する焼入工程;および
(C)前記焼入工程により得られた鋼板を500℃以上660℃以下の温度域で5分以上100分以下保持する焼戻し工程。
By mass%,
C: 0.02% or more and 0.12% or less,
Si: 0.02% or more and 0.35% or less,
Mn: 0.10% or more and 1.50% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% or more and 0.0035% or less,
Ni: More than 10.0% and less than 15.0%,
Al: 0.002% or more and 0.090% or less,
N: 0.0001% or more and 0.0070% or less,
TO: A slab or steel piece containing 0.0001% or more and 0.0030% or less and having a steel composition in which the balance is Fe and unavoidable impurities is subjected to the following steps (A) to (C). A method for producing a nickel-containing steel sheet, which comprises a steel sheet having a particle size equivalent to the old austenite circle of 20 μm or less and an effective crystal grain size of 7.0 μm or less.
(A) The slab or steel slab is rolled into a steel sheet having a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, a rolling reduction ratio of 4 or higher, and a finish rolling 1-pass front entry side temperature of 600 ° C. or higher and 900 ° C. or lower. None, then hot rolling process with water cooling at a cooling rate of 200 ° C / s or less;
(B) The steel plate obtained by the hot rolling step is heated at a temperature rise rate of 0.3 ° C./s or more in a temperature range of 550 ° C. or higher and 700 ° C. or lower to a temperature range of 680 ° C. or higher and 830 ° C. or lower. Quenching step of holding for 5 minutes or more and 100 minutes or less and then quenching; and (C) Tempering step of holding the steel plate obtained by the quenching step in a temperature range of 500 ° C. or more and 660 ° C. or less for 5 minutes or more and 100 minutes or less. ..
質量%で、
C :0.02%以上0.12%以下、
Si:0.02%以上0.35%以下、
Mn:0.10%以上1.50%以下、
P:0.0010%以上0.0100%以下、
S:0.0001%以上0.0035%以下、
Ni:10.0%超15.0%以下、
Al:0.002%以上0.090%以下、
N:0.0001%以上0.0070%以下、
T−O:0.0001%以上0.0030%以下を含有し、残部がFe及び不可避的不純物からなる鋼組成である鋳片あるいは鋼片を、下記(A)〜(C)の工程を経て、旧オーステナイト円相当粒径が20μm以下であり、有効結晶粒径が7.0μm以下である鋼板とすることを特徴とする、ニッケル含有鋼板の製造方法。
(A)前記鋳片あるいは鋼片に、加熱温度が850℃以上1300℃以下、圧下比が4以上および仕上圧延1パス前入側温度が600℃以上900℃以下である圧延を施して鋼板となし、その後、水冷停止温度を150℃以上550℃以下とする水冷を行う熱間圧延工程;
(B)前記熱間圧延工程により得られた鋼板に、550℃以上700℃以下の温度域における昇温速度を0.3℃/s以上として加熱し、680℃以上830℃以下の温度域に5分以上100分以下保持し、次いで急冷する焼入工程;および
(C)前記焼入工程により得られた鋼板を500℃以上660℃以下の温度域で5分以上100分以下保持する焼戻し工程。
By mass%,
C: 0.02% or more and 0.12% or less,
Si: 0.02% or more and 0.35% or less,
Mn: 0.10% or more and 1.50% or less,
P: 0.0010% or more and 0.0100% or less,
S: 0.0001% or more and 0.0035% or less,
Ni: More than 10.0% and less than 15.0%,
Al: 0.002% or more and 0.090% or less,
N: 0.0001% or more and 0.0070% or less,
TO: A slab or steel piece containing 0.0001% or more and 0.0030% or less and having a steel composition in which the balance is Fe and unavoidable impurities is subjected to the following steps (A) to (C). A method for producing a nickel-containing steel sheet, which comprises a steel sheet having a particle size equivalent to the old austenite circle of 20 μm or less and an effective crystal grain size of 7.0 μm or less.
(A) The slab or steel slab is rolled into a steel sheet having a heating temperature of 850 ° C. or higher and 1300 ° C. or lower, a rolling reduction ratio of 4 or higher, and a finish rolling 1-pass front entry side temperature of 600 ° C. or higher and 900 ° C. or lower. None, and then a hot rolling step of water cooling with a water cooling stop temperature of 150 ° C or higher and 550 ° C or lower;
(B) The steel plate obtained by the hot rolling step is heated at a temperature rise rate of 0.3 ° C./s or more in a temperature range of 550 ° C. or higher and 700 ° C. or lower to a temperature range of 680 ° C. or higher and 830 ° C. or lower. Quenching step of holding for 5 minutes or more and 100 minutes or less and then quenching; and (C) Tempering step of holding the steel plate obtained by the quenching step in a temperature range of 500 ° C. or more and 660 ° C. or less for 5 minutes or more and 100 minutes or less. ..
焼き入れと焼き戻しの間に、加熱温度範囲が580℃以上720℃以下、保持時間が5分以上100分以下の中間熱処理を行うことを特徴とする、請求項3乃至5のいずれか1項に記載のニッケル含有鋼板の製造方法。 Any one of claims 3 to 5, wherein an intermediate heat treatment having a heating temperature range of 580 ° C. or higher and 720 ° C. or lower and a holding time of 5 minutes or longer and 100 minutes or shorter is performed between quenching and tempering. The method for manufacturing a nickel-containing steel sheet according to. さらに質量%で、
Cu:0.01%以上2.00%以下、
Cr:0.01%以上5.00%以下、
Mo:0.01%以上1.00%以下、
B:0.0002%以上0.0500%以下、
Nb:0.001%以上0.050%以下、
Ti:0.001%以上0.050%以下、
V:0.001%以上0.050%以下、
Ca:0.0003%以上0.0300%以下、
Mg:0.0003%以上0.0300%以下、
REM:0.0003%以上0.0300%以下のいずれか1種以上を含有し、残部がFe及び不可避的不純物からなる鋼組成であることを特徴とする請求項3乃至6のいずれか1項に記載のニッケル含有鋼板の製造方法。
In addition, by mass%,
Cu: 0.01% or more and 2.00% or less,
Cr: 0.01% or more and 5.00% or less,
Mo: 0.01% or more and 1.00% or less,
B: 0.0002% or more and 0.0500% or less,
Nb: 0.001% or more and 0.050% or less,
Ti: 0.001% or more and 0.050% or less,
V: 0.001% or more and 0.050% or less,
Ca: 0.0003% or more and 0.0300% or less,
Mg: 0.0003% or more and 0.0300% or less,
REM: Any one of claims 3 to 6, wherein the steel composition contains at least one of 0.0003% or more and 0.0300% or less, and the balance is Fe and unavoidable impurities. The method for manufacturing a nickel-containing steel sheet according to.
JP2017210528A 2017-10-31 2017-10-31 Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method Active JP6984320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210528A JP6984320B2 (en) 2017-10-31 2017-10-31 Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210528A JP6984320B2 (en) 2017-10-31 2017-10-31 Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019081931A JP2019081931A (en) 2019-05-30
JP6984320B2 true JP6984320B2 (en) 2021-12-17

Family

ID=66671089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210528A Active JP6984320B2 (en) 2017-10-31 2017-10-31 Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6984320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196813B (en) * 2021-12-06 2023-09-26 山西太钢不锈钢股份有限公司 Heat treatment process for pre-hardening of 3Cr13 die steel medium plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557993B2 (en) * 1990-01-25 1996-11-27 川崎製鉄株式会社 Low temperature thin nickel steel plate with excellent weld toughness
JP2562771B2 (en) * 1992-10-07 1996-12-11 新日本製鐵株式会社 Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking
JPH0827517A (en) * 1994-07-15 1996-01-30 Nippon Steel Corp Heat treatment method for 9% Ni steel with excellent yield strength and toughness
JP4039268B2 (en) * 2003-02-21 2008-01-30 Jfeスチール株式会社 Method for producing Ni-containing steel with excellent strength and low temperature toughness
JP6620660B2 (en) * 2016-04-25 2019-12-18 日本製鉄株式会社 Ni steel for liquid hydrogen
JP6620662B2 (en) * 2016-04-25 2019-12-18 日本製鉄株式会社 Ni steel for liquid hydrogen
JP6760056B2 (en) * 2016-12-28 2020-09-23 日本製鉄株式会社 Ni steel for liquid hydrogen

Also Published As

Publication number Publication date
JP2019081931A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP5020572B2 (en) High strength thin steel sheet with excellent delayed fracture resistance after forming
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP6984319B2 (en) Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP6573059B1 (en) Nickel-containing steel sheet
JP6417252B2 (en) Martensitic stainless steel for brake disc and its manufacturing method
KR20210095189A (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6837372B2 (en) High-strength cold-rolled steel sheet with excellent formability and its manufacturing method
JP6811694B2 (en) Steel plate and its manufacturing method
CN111094612B (en) Hot-rolled steel sheet and method for producing same
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
JP7095424B2 (en) Low yield specific thickness steel sheet
JP2019014933A (en) Steel sheet and method of producing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
US20190093192A1 (en) Ti-CONTAINING FERRITIC STAINLESS STEEL SHEET, MANUFACTURING METHOD, AND FLANGE
CN116018418A (en) Steel sheet and method for manufacturing steel sheet
JP5157257B2 (en) Low yield ratio steel sheet
JP6798557B2 (en) steel
EP3231886B1 (en) Complex-phase steel sheet with excellent formability and manufacturing method therefor
JP6984320B2 (en) Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
KR102412013B1 (en) hot rolled steel
JP5206351B2 (en) Steel sheet and manufacturing method thereof
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R151 Written notification of patent or utility model registration

Ref document number: 6984320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151