[go: up one dir, main page]

JP6981459B2 - センサ誤差補正装置 - Google Patents

センサ誤差補正装置 Download PDF

Info

Publication number
JP6981459B2
JP6981459B2 JP2019190566A JP2019190566A JP6981459B2 JP 6981459 B2 JP6981459 B2 JP 6981459B2 JP 2019190566 A JP2019190566 A JP 2019190566A JP 2019190566 A JP2019190566 A JP 2019190566A JP 6981459 B2 JP6981459 B2 JP 6981459B2
Authority
JP
Japan
Prior art keywords
error
acceleration
vehicle
rate
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190566A
Other languages
English (en)
Other versions
JP2021067472A (ja
Inventor
大輝 森
徳祥 鈴木
義和 服部
豪軌 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019190566A priority Critical patent/JP6981459B2/ja
Publication of JP2021067472A publication Critical patent/JP2021067472A/ja
Application granted granted Critical
Publication of JP6981459B2 publication Critical patent/JP6981459B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)

Description

本発明は、センサ誤差補正装置に係り、特に、自車両の位置推定に用いるセンサの誤差を修正するセンサ誤差補正装置に関する。
車両の姿勢角及び位置に係る情報は、運転支援技術及び予防安全技術にとって最も重要な情報である。例えば、車体のロール角及びピッチ角は、重力加速度成分を補償する制御入力(操舵角、アクセル及びブレーキ)を決定する際に活用でき、より安定した車両の制御が可能になる。さらに、位置推定は車両の位置制御には必要不可欠である。
車両の位置推定においては、GPS(Global Positioning System)装置等により、現在位置を直接推定するのみならず、走行時の車両の挙動を示す3軸の角速度(ピッチレート、ロールレート、ヨーレート)と3軸の加速度(前後加速度、横加速度、上下加速度)とが検出可能なIMU(Inertial Measurement Unit:慣性計測装置)、車速センサ及び操舵角センサ等の車両自身の状態を検知する各種センサで検出した自車両の移動の蓄積に基づいて自車両の位置を推定する場合がある。
IMUは、いわゆるゼロ点誤差であるゼロ点バイアスが補正されないと、角速度及び加速度を正確に検出することができない。航空機の分野では、GPSによって検出した位置情報により、IMUのゼロ点バイアスを補正する技術が存在する。しかしながら、遮蔽物が存在しない空中を飛翔する航空機と異なり、地上を走行する車両は、大きな建造物の近く又はトンネル等のGPS衛星からの電波が遮蔽される場所を通過する場合があり、かかる場合にはIMUのゼロ点バイアスの補正が困難となる。また、GPSによってIMUのゼロ点バイアスを精度よく補正するには、事前にGPSアンテナ及びIMUの各々のキャリブレーションが精度よく行われていることを要する。
特許文献1には、車速センサ及びヨーレートセンサの補正をGPSで検出したドップラー速度で補正する速度推定装置の発明が開示されている。
特許文献2には、GPSとIMUとの出力差より、各々の誤差量を推定し、自車両の位置および自車両の方位の推定精度を向上させる慣性航法の方法の発明が開示されている。
特開2013−113789号公報 特開平6−317428号公報
しかしながら、特許文献1に記載の発明は、使用可能な場合がGPS衛星からの電波が受信可能な地理的条件下に限定される上に、ヨーレート及び車速の推定が主であり、慣性センサのピッチレート、ロールレート、前後加速度、横加速度及び上下加速度の5つの情報は補正できないという問題があった。
特許文献2に記載の発明は、IMUの誤差推定を高精度で行うには、高精度なGPS情報が必要だが、現在はそのようなサービスは少ないという問題があった。また、使用するIMUは、航空機や船舶に用いられる高精度IMUが想定されており、MEMS(Micro Electro Mechanical Systems)によって量産されたIMUでは同じアルゴリズムを用いても同等の性能が得られず、位置の推定値が不安定になるという問題があった。
本発明は、上記問題に鑑みてなされたものであり、IMUが検出したピッチレート、ロールレート、前後加速度、横加速度及び上下加速度の各々の誤差を推定可能なセンサ誤差補正装置を実現することを目的とする。
上記目的を達成するために、請求項1に記載のセンサ誤差補正装置は、走行時の車両の挙動を示すピッチレート、ロールレート及びヨーレートの3軸の角速度と、前後加速度、横加速度及び上下加速度の3軸の加速度とを検出可能な慣性計測装置と、前記3軸の角速度を用いた姿勢角の変化率に関する運動方程式と、前記3軸の角速度を用いた前記3軸の加速度に関する運動方程式とに基づき、前記車両の運動パターンに応じて、前記慣性計測装置が検出したピッチレート、ロールレート、前後加速度、横加速度及び上下加速度の各々の誤差を推定する誤差推定部と、を含んでいる。
また、請求項2に記載のセンサ誤差補正装置は、前記車両の運動パターンは前記車両のヨーレートであり、前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記慣性計測装置が検出したピッチレート及びロールレートの各々の誤差を推定し、前記車両のヨーレートが大きい場合に、前記慣性計測装置が検出した前後加速度、横加速度及び上下加速度の各々の誤差を推定する。
また、請求項3に記載のセンサ誤差補正装置では、前記誤差補正部は、前後速度を検出する車速検出部と、外部情報に基づいて、前記車速検出部が検出した前後速度の誤差と、前記慣性計測装置が検出したヨーレートの誤差とを補正する補正部と、前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記車両のロールレート及びピッチレートが、前記慣性計測装置が検出した前後加速度及び横加速度の各々の微分値と、前記補正部により補正された前後速度及びヨーレートとで表されることに基づき前記慣性計測装置が検出したピッチレート及びロールレートの各々の誤差を推定する。
また、請求項4に記載のセンサ誤差補正装置では、前後速度を検出する車速検出部と、外部情報に基づいて、前記車速検出部が検出した前後速度の誤差と、前記慣性計測装置が検出したヨーレートの誤差とを補正する補正部と、前記誤差推定部は、前記車両のヨーレートが大きい場合に、前後加速度、横加速度及び上下加速度が、前記車両のロールレート及びピッチレートと、前記慣性計測装置が検出した前後加速度及び横加速度の各々の微分値と、前記補正部により補正された前後速度及びヨーレートとで表されることに基づき、前記慣性計測装置が検出した前後加速度、横加速度及び上下加速度の各々の誤差を推定する。
また、請求項5に記載のセンサ誤差補正装置では、前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記車両のロールレートが、前記慣性計測装置が検出した横加速度の微分値から前記補正部により補正された前後速度と前記補正されたヨーレートの微分値との積を減算して得た値と重力加速度との商で表されることに基づき前記慣性計測装置が検出したロールレートの誤差を推定する。
また、請求項6に記載のセンサ誤差補正装置では、前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記車両のピッチレートが、前記慣性計測装置が検出した前後加速度の微分値から前記補正部により補正された前後速度の2階微分値を減算して得た値と重力加速度との商で表されることに基づき前記慣性計測装置が検出したピッチレートの誤差を推定する。
また、請求項7に記載のセンサ誤差補正装置では、前記誤差推定部は、前記車両のヨーレートが大きい場合に、前後加速度が、ロールレートと重力加速度との積から、前記慣性計測装置が検出した横加速度の微分値を減算し、前記補正部により補正されたヨーレートの微分値と前記補正された前後速度との積を加算し、前記補正されたヨーレートと前記補正された前後速度の微分値との積を加算して得た値と前記補正されたヨーレートとの商で表されることに基づき前記慣性計測装置が検出した前後加速度の誤差を推定し、横加速度が、ピッチレートと重力加速度との積から、前記慣性計測装置が検出した前後加速度の微分値を減算し、前記補正された前後速度の2階微分値を加算し、前記補正されたヨーレートの二乗と前記補正された前後速度との積を加算して得た値と前記補正されたヨーレートとの商で表されることに基づき前記慣性計測装置が検出した横加速度の誤差を推定し、上下加速度が、重力加速度からロールレートと前記補正された前後速度との積を減算して得た値で表されることに基づき前記慣性計測装置が検出した上下加速度の誤差を推定する。
また、請求項8に記載のセンサ誤差補正装置では、前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記慣性計測装置が検出したロールレートの誤差及びピッチレートの誤差を含む状態量の予測値を算出し、ロールレートの誤差及びピッチレートの誤差を仮定した、前記慣性計測装置が検出したロールレート及びピッチレートの観測値に対する観測方程式を用いて、前記状態量の予測値から、前記慣性計測装置が検出した観測値の予測値を算出する第1事前推定部と、前記車両のヨーレートが小さい場合に、前記慣性計測装置が検出して出力した前記観測値と、前記第1事前推定部が算出した前記観測値の予測値との差分に基づいて、前記第1事前推定部によって算出した前記状態量の予測値を補正する第1状態推定部と、前記車両のヨーレートが大きい場合に、前記慣性計測装置が検出した前後加速度の誤差、横加速度の誤差、及び上下加速度の誤差を含む状態量の予測値を算出し、前後加速度の誤差、横加速度の誤差、及び上下加速度の誤差を仮定した、前記慣性計測装置が検出した前後加速度、横加速度、及び上下加速度の観測値に対する観測方程式を用いて、前記状態量の予測値から、前記慣性計測装置が検出した観測値の予測値を算出する第2事前推定部と、前記車両のヨーレートが大きい場合に、前記慣性計測装置が検出して出力した前記観測値と、前記第2事前推定部が算出した前記観測値の予測値との差分に基づいて、前記第2事前推定部によって算出した前記状態量の予測値を補正する第2状態推定部と、を含んでいる。
本発明によれば、IMUが検出したピッチレート、ロールレート、前後加速度、横加速度及び上下加速度の各々の誤差を推定可能なセンサ誤差補正装置を実現できるという効果を奏する。
本発明の実施の形態に係るセンサ誤差補正装置の一例を示したブロック図である。 本発明の実施の形態における座標系を示した概略図である。 本発明の実施の形態における変数の一例を示した説明図である。 本発明乗実施の形態に係る演算装置の一例を示した概略図である。 本発明の実施の形態に係る演算装置の第1推定部の機能ブロック図の一例である。 事前推定部の機能ブロック図の一例である。 フィルタリング部の機能ブロック図の一例である。
以下、図面を参照して本発明の実施の形態を詳細に説明する。図1に示すように、本実施の形態に係るセンサ誤差補正装置10は、後述する演算装置14の演算に必要なデータ及び演算装置14による演算結果を記憶する記憶装置18と、車両が備えたセンシング装置及びGPS等によって取得した車両周辺の情報から車両の現在位置及び現在のヨー角(方位角)を算出する位置計測装置20と、位置計測装置20が算出した車両の現在位置及び現在のヨー角、車速センサ24が検出した車両前後速度、IMU26が検出した車両の方位角の角速度及び加速度、並びに操舵角センサが検出した車両の操舵角が入力される入力装置12と、入力装置12から入力された入力データ及び記憶装置18に記憶されたデータに基づいて車両位置の推定の演算を行なうコンピュータ等で構成された演算装置14と、演算装置14で演算された車両の位置等を表示するCRT又はLCD等で構成された表示装置16と、で構成されている。
本実施の形態に係る位置計測装置20のセンシング装置は、一例として、車載カメラ等の撮像装置、LIDAR(Light Detection and Ranging)及びソナーのいずれかである。車載カメラ等の撮像装置を車載のセンシング装置とした場合は、一例として、当該撮像装置で取得した車両周辺の画像情報を解析して道路の白線等を検出する。LIDARを車載のセンシング装置とした場合は、一例として、車両周辺に照射したパルス状のレーザの散乱光から道路の白線等を検出する。ソナーを車載のセンシング装置とした場合は、一例として、アスファルトの路面とペイントされた白線との、超音波の反射率の差を利用して、当該白線を識別する。また、位置計測装置20はGPSにより、車両200の緯度及び経度の各々の方向の速度情報を含む測位情報を取得可能に構成されている。
続いて、車両200の挙動に係る座標系を図2に示したように定義する。地球座標系204は地球平面を基準として重力加速度方向とzeとが平行で、yeが北方向を向いている座標系である。路面座標系206は、zrが車両200の重心を通り路面に垂直な方向に向き、xrは車両進行方向に向いている座標系である。車体座標系208は車体バネ上に固定された座標系で、zvは車体鉛直上方向、xvは車体進行方向を向いている。従って、車両200の前後方向は、車体座標系208のx軸に平行な方向となる。本実施の形態では、車体座標系208の基準点を車両200の重心ではなく、車両200の後輪の車軸の車幅方向の中心とする。
また、オイラー姿勢角であるロール角φ、ピッチ角θ及びヨー角ψは、地球座標系204に対して、図2に示したように定義される。例えば、ロール角φはx軸まわりの回転角であり、ピッチ角θは、y軸まわりの回転角であり、ヨー角ψは、z軸まわりの回転角である。また、ロール角φ、ピッチ角θ及びヨー角ψの各々は、右ネジの方向(図2では、各々の矢印方向)の回転で正の値を示す。本実施の形態では、便宜上、後述するヨー角偏差は基準座標系を路面座標系206とし、さらに、本来は地球座標系204に対して定義されるオイラー姿勢角を、車体座標系208に対して、ロール角φv、ピッチ角θv及びヨー角ψvと定義する。以後、単に、ロール角φ、ピッチ角θ及びヨー角ψと記した場合は、基本的に、車体座標系208に対して定義された姿勢角であるとする。
図3は、本実施の形態における変数の一例を示した説明図である。本実施の形態では、車両200の前後速度U、車両200の横速度V及び車両200の上下速度Wの各々を定義する。Uはx軸、Vはy軸及びWはz軸に各々平行する。
また、車両200のロール角φ、ピッチ角θ、ヨー角ψに対応するIMU26の出力値は、角速度であるロールレートP、ピッチレートQ、ヨーレートRと定義する。
従来はIMU26、ジャイロセンサ等の精度が不十分であったこともあり、ヨーレートRの推定にも車両運動モデルを活用していた。しかし近年、安価なIMU26に用いられるMEMSジャイロの精度が向上していると共に、車速センサ及び操舵角センサ等の複数センサが車両200に搭載されることで特にヨーレートRについては補正が容易になった。
本実施の形態では、車両運動モデルのヨーレートは使用せず、IMU26が検出したヨーレートRの値を後述するように補正して使用する。
図4は、演算装置14の一例を示した概略図である。本実施の形態に係る演算装置14は、GPSの測位情報又はセンシング装置が検出した車両20の位置情報によりIMU26が検出したヨーレートR及び車速センサ24が検出した車両200の前後速度Uを補正するGPS補正部42と、IMU26が検出したロールレートP及びピッチレートQの各々の誤差を推定する第1推定部44と、IMU26が検出した車両200の進行方向(x軸方向)の前後加速度、車両200の横方向(y軸方向)の横加速度及び車両200の上下方向の上下加速度の各々の誤差を推定する第2推定部46と、を含む。演算装置14は、車両200の位置推定の演算を行うが、本実施の形態では、位置推定の演算に用いるIMU26の検出値のゼロ点誤差を推定する場合に特化した説明を行い、位置推定の演算について詳細な説明は省略する。
ヨーレートRは、鉛直軸であるz軸周りの回転運動の角速度であるから、x軸及びy軸を含む平面座標系での回転運動の角速度である。また、車両200の前後速度Uも、ヨーレートRと同様にx軸及びy軸を含む平面座標系での運動に係る変化量である。GPSを用いると、平面座標系での運動による車両200の位置の変化を精度よく検出できるので、GPS補正部42では、GPSによって得た測位情報に基づいて車速センサ24が検出した前後速度U及びIMU26が検出したヨーレートRを補正する。衛星からの電波が遮蔽される等によりGPSによる測位情報を得られない場合、GPS補正部42では、車載カメラ等の撮像装置、LIDAR(Light Detection and Ranging)及びソナー等のセンシング装置によって得た車両200の位置情報に基づいて車速センサ24が検出した前後速度U及びIMU26が検出したヨーレートRを補正する。
第1推定部44では、状態方程式f(x)を用いてIMU26が検出したピッチレート、ロールレートの各々の誤差を推定する。第2推定部46では、第1推定部44とは別の状態方程式f(x)を用いてIMU26が検出した前後加速度、横加速度及び上下加速度の各々の誤差を推定する。状態方程式f(x)を用いた第1推定部44及び第2推定部46での処理は、後述する。
続いて、姿勢角推定部40における処理について説明する。本実施の形態では、下記の式(1)により、車両200の姿勢角の変化率である姿勢角の角速度を定義する。式(1)は、ピッチレートPv、ロールレートQv及びヨーレートRvの3軸の角速度に係る方程式である。
Figure 0006981459
さらに上記式(1)及び重力加速度gとに基づくと、IMU26による各軸の加速度は下記の式で表される。なお、下記の式(2)は、ロールレートPv、ピッチレートQv、ヨーレートRv、前後速度Uv、横速度Vv及び上下速度Wvの各変数を含む、前後加速度Ax、横加速度Ay及び上下加速度Azの3軸の加速度に係る方程式である。上記の式(1)と下記の式(2)とを用いることにより、前後加速度Ax、横加速度Ay、上下加速度Az、ピッチレートPv、ロールレートQv及びヨーレートRvに係る6自由度の車両の平面運動を記述できる。
Figure 0006981459
上記の式(1)、(2)が成立するという条件の下、IMU26の出力のゼロ点誤差の推定を行う。ただし、車両200が常に路面上を走行することを鑑みると、式(2)において、横速度Vv及び上下速度Wvの各々の長時間での平均値は0になると仮定できる。従って、横速度Vv及び上下速度Wv、並びに横速度Vvの微分値及び上下速度Wvの微分値を各々0とみなすと、上記の式(2)は、下記の式(3)のようになる。
Figure 0006981459
また、車両姿勢角であるロール角φv及びピッチ角θvの各々が十分に小さいと仮定すると、sinφv≒φv、cosφv≒1、sinθv≒θv、cosθv≒1とみなすことが可能なので、式(1)、(3)は、下記の式(4)のように縮退される。
Figure 0006981459
前述のように、車両200の運動パターンであるヨーレートRvは、GPS補正部42で補正されるので、補正済みの既知情報として扱える。また、IMU26による前後加速度Axの微分値、及び横加速度Ayの微分値の各々はゼロ点誤差を含まず既知情報として扱えるので、上記の式(4)から、下記の式(5)、(6)、(7)が導かれる。式(5)、(6)、(7)において、左辺は既知な変数のみを含み、右辺は未知の変数を含む。
Figure 0006981459
上記の式(5)、(6)、(7)において、未知の変数はロールレートPv、ピッチレートQv、前後加速度Ax、横加速度Ay、上下加速度Azの5つである。3つの線形方程式に対して未知の変数が5つ存在するので、式(5)、(6)、(7)から一意に5つの変数を算出することはできない。従って、車両200の走行条件によって推定する変数を変化させる。例えば、ヨーレートRvが十分に小さい場合を想定し、Rv≒0とすると、上記の式(5)、(6)、(7)は、下記の式(8)、(9)のようになる。
Figure 0006981459
式(8)、(9)では未知の変数は角速度であるロールレートPv及びピッチレートQvのみになるので、ロールレートPv及びピッチレートQvの各々を推定することができ、ロールレートP及びピッチレートQの各々のゼロ点誤差を推定することが可能になる。角速度のゼロ点誤差の推定が完了すると、式(5)、(6)、(7)における未知の変数は加速度のみになるので、ヨーレートRvが大きい走行区間を想定して、前後加速度Ax、横加速度Ay、上下加速度Azの各々の値を算出する。
以上の計算プロセスをまとめると下記のようになる。まず、ヨーレートRv≒0の走行条件において、ロールレートPv及びピッチレートQvの各々を下記の式(10)を用いて推定し、推定されたロールレートPv及びピッチレートQvと、IMU26が検出したピッチレートPs、ロールレートQsとの差分を、ロールレートP及びピッチレートQの各々のゼロ点誤差として推定する。式(10)は、加速度センサであるIMU26の出力の微分値と、補正済みの車両200の前後速度Uvと、ゼロ点誤差を補正済みのヨーレートRvとで表される。より具体的には、ロールレートPvは、IMU26が検出した横加速度Ayの微分値から補正済みの前後速度Uvとゼロ点誤差を補正済みのヨーレートRvの微分値との積を減算して得た値と重力加速度gとの商で表されることを示す。また、ピッチレートQvは、IMU26が検出した前後加速度Axの微分値から補正済みの前後速度Uvの2階微分値を減算して得た値と重力加速度gとの商で表される。
Figure 0006981459
次いで、ヨーレートRvが大きい区間で前後加速度Ax、横加速度Ay、上下加速度Azの各々の値を下記の式(11)を用いて算出し、推定された前後加速度Ax、横加速度Ay、上下加速度Azと、IMU26が検出した前後加速度A、横加速度A、上下加速度Aとの差分を、前後加速度A、横加速度A、上下加速度Aの各々のゼロ点誤差として推定する。式(10)は、上記の式(10)等に基づいて補正されたロールレートPv及びピッチレートQvと、加速度センサであるIMU26の出力の微分値と、補正済みの前後速度Uvと、ゼロ点誤差を補正済みのヨーレートRvとで表される。
Figure 0006981459
上記の式(11)は、より具体的には、前後加速度Axは、誤差を補正したロールレートPvと重力加速度gとの積から、IMU26が検出した横加速度Ayの微分値を減算し、誤差を補正したヨーレートRvの微分値と補正済みの前後速度Uvとの積を加算し、誤差を補正したヨーレートRvと補正済みの前後速度Uvの微分値との積を加算して得た値と誤差を補正したヨーレートRvとの商で表されることを示している。また、上記の式(11)は、横加速度Ayは、誤差を補正したピッチレートQvと重力加速度gとの積から、補正済みの前後加速度Axの微分値を減算し、補正済みの前後速度Uvの2階微分値を加算し、誤差を補正したヨーレートRvの二乗と補正済みの前後速度Uvとの積を加算して得た値と誤差を補正したヨーレートRvとの商で表されることを示している。また、上記の式(11)は、上下加速度Azは、重力加速度gから誤差を補正したロールレートRvと補正済みの前後速度Uvとの積を減算して得た値で表されることを示している。
式(10)を用いた処理は第1推定部44で、式(11)を用いた処理は第2推定部で、各々実行される処理に相当する。
変形例では、状態量である変数xと状態方程式f(x)とに基づき、非線形方程式を扱うことが可能なアンセンティッドカルマンフィルタ(以下、「UKF」と略記)を用いた演算により、上記のような方程式の縮退を行わずに、IMU26のゼロ点誤差の推定を行う。
以下に、変形例における、第1推定部44で行われるUKFを用いた角速度誤差推定について説明する。UKFを用いる場合も、式(10)を用いる場合と同様に、第1推定部44は、ヨーレートRvが十分に小さい走行条件において、IMU26が検出したロールレートPv及びピッチレートQvのゼロ点誤差を推定する。UKFを用いた角速度誤差推定に係る状態変数xgを下記の式(12)のように定義する。下記の式(12)中のε1はロールレートPvのゼロ点誤差、ε2はピッチレートQvのゼロ点誤差である。
Figure 0006981459
上記の状態量xgに対して、dx/dt=fg(xg)の関係が成り立つ状態方程式fg(xg)を下記の式(13)、(14)、(15)のように立式する。式(14)、(15)は、上述の式(1)に含まれる状態方程式である。
Figure 0006981459
また、各状態量xgに対するシステムノイズQgを下記のように定義する。本実施の形態では、Uvの微分、Pv、Qv、Rv、ε1、ε2については、白色ノイズによって駆動されるランダムウォークモデルとし、1次のマルコフモデルを採用してもよい。
Figure 0006981459
次に観測量を下記のように観測行列として定義する。式(16)の右辺のUsは車速センサ24が検出した車速の値であり、P、Qs、Rsの各々は角速度センサとして機能するIMU26が検出したロールレート、ピッチレート、ヨーレートの各々の値である。また、Ax、Ayの各々は加速度センサとして機能するIMU26が検出した前後加速度、横加速度の各々の値である。
Figure 0006981459
本実施の形態では、IMU26が検出したヨーレートRsはGPS等によってゼロ点誤差が補正可能なので、ロールレートPとピッチレートQsとにゼロ点誤差が存在すると仮定する。従って、観測値であるロールレートPとピッチレートQsとに対する観測方程式hg(xg)は、下記の式(17)、(18)のようになる。前述のように、ε1はロールレートPのゼロ点誤差、ε2はピッチレートQsのゼロ点誤差である。
Figure 0006981459
ただし、各観測量に対する観測ノイズRgを下記のように定義する。
Figure 0006981459
UKFでは、式(13)、(14)、(15)で示した状態方程式fg(xg)の各々を離散化して使用する。従って、関数fg(xg)の入出力関係を、時間t=k、k−1に対して、xg(k)=fg(xg(k−1))となる形で使用する。
図5は、本実施の形態に係る演算装置14の第1推定部44の機能ブロック図の一例である。図5に示したように、第1推定部44は、状態方程式fg(xg)と観測方程式hg(xg)とを用いて、IMU26の検出値を推定する事前推定部102と、事前推定部102が出力した事前推定値を、IMU26の検出値を用いて補正するフィルタリング部104と、を含む。
カルマンフィルタは線形・非線形を含め種々の手法が提案されている。本実施の形態では、前述のように状態方程式fg(xg)が非線形である事を踏まえ、非線形カルマンフィルタを活用する例を示す。中でも状態方程式fg(xg)についての線形化を要さず、かつ計算負荷が比較的小さいUKFを一例として採用する。状態方程式fg(xg)が線形の場合は、線形カルマンフィルタを用いてもよいし、UKF以外の非線形カルマンフィルタを用いてもよい。
図6は、事前推定部102の機能ブロック図の一例である。図6に示したように、事前推定部102は、第1アンセンティッド変換部102Aと第2アンセンティッド変換部102Bとを含む。
第1アンセンティッド変換部102Aは、状態方程式fg(xg)に基づいて状態量を更新する1回目のアンセンティッド変換(Unscented transfer)を行って、xgの平均及びxgの共分散行列を出力する。
第2アンセンティッド変換部102Bは、第1アンセンティッド変換部102Aが出力した状態量xgの平均及び状態量xgの共分散行列を用いて、観測方程式hg(xg)に従って、対応する観測量ygに変換する2回目のアンセンティッド変換を行う。
なお、アンセンティッド変換の目的は、ある非線形関数y=f(x)による変換において、下記の観測量yの平均及び共分散行列を精度よく求めることにある。
Figure 0006981459
従って、本実施の形態は、平均値と標準偏差とに対応する2n+1個のサンプル(シグマポイント)を用いて、確率密度関数を近似することを特徴とする。
図6に示したように、第1アンセンティッド変換部102Aは、シグマポイント重み係数部102A1と、関数変換部102A2と、U変換部102A3と、を含む。また、第2アンセンティッド変換部102Bは、シグマポイント重み係数部102B1と、関数変換部102B2と、U変換部102B3と、を含む。
第1アンセンティッド変換部102Aのシグマポイント重み係数部102A1及び第2アンセンティッド変換部102Bのシグマポイント重み係数部102B1では、シグマポイントXi:i=0、1、2、…2nが、下記のように選択される。

Figure 0006981459
ただし、スケーリングファクタκは、κ≧0となるように選択する。また、シグマポイントに対する重みは下記のように定義する。
Figure 0006981459
第1アンセンティッド変換部102Aの関数変換部102A2における、非線形関数f(x)による各シグマポイントの変換は下記のようになる。下記は、第1アンセンティッド変換部102Aの関数変換部102A2での状態方程式fg(x)による変換だが、第2アンセンティッド変換部102Bの関数変換部102B2での観測方程式hg(x)を用いた変換では、観測値が得られる。
Figure 0006981459
第1アンセンティッド変換部102AのU変換部102A3では、関数fg(xg)によって変換された値と、前述の重み係数とを用いて、下記のように状態量xgの平均値と状態量xgの共分散行列を算出する。なお、下記式中のQgはシステムノイズである。
Figure 0006981459
第2アンセンティッド変換部102BのU変換部102B3では、下記の計算を行う。
Figure 0006981459
図7は、フィルタリング部104の機能ブロック図の一例である。フィルタリング部104では、U変換部102B3で計算された、状態量の事前予測値に対応する観測値と、実際に観測された観測値との差を比較し、状態量の予測値を補正する処理を行う。
状態量の予測値を実際に観測された値でフィードバックする処理はカルマンゲイン(Kalman Gain)と呼ばれ、次式で計算される。なお、次式のRgは観測ノイズである。
Figure 0006981459
次に、このカルマンゲインを用いて、状態量の事前予測値を補正する処理を次のように行う。
Figure 0006981459
以上の事前推定部102及びフィルタリング部104の処理を各タイムステップごとに繰り返すことにより、ロールレートPv及びピッチレートQvの推定値を算出することにより、IMU26が検出したロールレートPのゼロ点誤差ε1及びピッチレートQsのゼロ点誤差ε2を推定することができる。
IMU26が検出したロールレートPのゼロ点誤差ε1及びピッチレートQsのゼロ点誤差ε2を推定する場合、フィルタリング部104が出力したxg(k)、Pxg(k)を前回値として事前推定部102に入力し、上述のように2段階のアンセンティッド変換を行って状態量の事前予測値及び対応する観測値を計算する。計算した状態量の予測値は、フィルタリング部104でカルマンゲイン及び実際に観測された最新の観測値を用いて補正される。フィルタリング部104が出力したxg(k)、Pxg(k)は、記憶装置18に一時的にホールドし、記憶装置18にホールドしたxg(k)、Pxg(k)を前回値として事前推定部102に入力する。
第1推定部44は、ヨーレートRvが十分に小さい走行条件において、この状態量の事前予測値の計算と実際に観測された最新の値での補正を繰り返すことにより、IMU26が検出したロールレートPのゼロ点誤差ε1及びピッチレートQsのゼロ点誤差ε2を推定する。UKFを用いることにより、非線形の方程式を近似によって縮退することを要しないので、ロールレートPのゼロ点誤差ε1及びピッチレートQsのゼロ点誤差ε2を精度よく推定できる。
続いて、第2推定部46におけるUKFを用いた加速度誤差推定について説明する。UKFを用いる場合も、式(11)を用いる場合と同様に、第2推定部46は、車両200が旋回中等のヨーレートRvが比較的大きい走行条件において、IMU26が検出した前後加速度Ax及び横加速度Ayのゼロ点誤差を推定する。
UKFを用いた角速度誤差推定に係る状態変数xaを下記の式(19)のように定義する。下記の式(19)中のε3は前後加速度Axのゼロ点誤差、ε4は横加速度Ayのゼロ点誤差、ε5は上下加速度Azのゼロ点誤差である。
Figure 0006981459
上記の状態量xaに対して、dx/dt=fa(xa)の関係が成り立つ状態方程式fa(xa)を下記の式(20)、(21)、(22)のように立式する。式(21)、(22)は、上述の式(1)に含まれる状態方程式である。
Figure 0006981459
また、各状態量xaに対するシステムノイズQaを下記のように定義する。本実施の形態では、Uvの微分、Pv、Qv、Rv、ε3、ε4、ε5については、白色ノイズによって駆動されるランダムウォークモデルとし、1次のマルコフモデルを採用してもよい。
Figure 0006981459
次に観測量を下記のように観測行列として定義する。式(23)の右辺のUsは車速センサ24が検出した車速の値であり、P、Qs、Rsの各々は角速度センサとして機能するIMU26が検出したロールレート、ピッチレート、ヨーレートの各々の値である。また、Ax、Ayの各々は加速度センサとして機能するIMU26が検出した前後加速度、横加速度の各々の値である。
Figure 0006981459
観測値である前後加速度Ax、横加速度Ay、上下加速度Azに対する観測方程式ha(xa)は、下記の式(24)、(25)、(26)のようになる。前述のように、ε3は前後加速度Axのゼロ点誤差、ε4は横加速度Ayのゼロ点誤差、ε5は上下加速度Azのゼロ点誤差である。
Figure 0006981459
ただし、各観測量に対する観測ノイズRaを下記のように定義する。
Figure 0006981459
以上の状態方程式である式(20)、(21)、(22)、観測方程式である式(24)、(25)、(26)を用いて、上述の角速度誤差推定の場合と同様にUKFにより加速度誤差推定を行う。
第2推定部46は、ヨーレートRvが比較的大きい走行条件において、この状態量の事前予測値の計算と実際に観測された最新の値での補正を繰り返すことにより、IMU26が検出した前後加速度Axのゼロ点誤差ε、横加速度Ayのゼロ点誤差ε、上下加速度Azのゼロ点誤差εを推定する。UKFによる演算は、上述の角速度誤差推定の場合と同様なので、詳細な説明は省略する。UKFを用いることにより、非線形の方程式を近似によって縮退することを要しないので、角速度の誤差及び加速度の誤差を精度よく推定できる。
以上説明したように、本実施の形態に係るセンサ誤差補正装置によれば、ロールレートPのゼロ点誤差ε1、ピッチレートQsのゼロ点誤差ε2、前後加速度Axのゼロ点誤差ε3、横加速度Ayのゼロ点誤差ε4及び上下加速度Azのゼロ点誤差ε5を精度よく推定できる。ゼロ点誤差を補正したロールレートPv、ピッチレートQv、ヨーレートRv、前後加速度Ax、横加速度Ay及び上下加速度Azを用いることにより、車両200の位置推定の精度を向上させることが可能となる。
また、本実施の形態に係るセンサ誤差補正装置10は、非線形モデルであるUKFを用いるので、IMU26が検出した値の直接微分又は近似を用いることを要しない。従って、本実施の形態に係るセンサ誤差補正装置10は、IMU26が検出した角速度及び加速度のゼロ点誤差を高精度で推定することができる。
10 センサ誤差補正装置
12 入力装置
14 演算装置
16 表示装置
18 記憶装置
20 位置計測装置
24 車速センサ
40 姿勢角推定部
42 GPS補正部
44 第1推定部
46 第2推定部
102 事前推定部
104 フィルタリング部
200 車両

Claims (8)

  1. 走行時の車両の挙動を示すピッチレート、ロールレート及びヨーレートの3軸の角速度と、前後加速度、横加速度及び上下加速度の3軸の加速度とを検出可能な慣性計測装置と、
    前記3軸の角速度を用いた姿勢角の変化率に関する運動方程式と、前記3軸の角速度を用いた前記3軸の加速度に関する運動方程式とに基づき、前記車両の運動パターンに応じて、前記慣性計測装置が検出したピッチレート、ロールレート、前後加速度、横加速度及び上下加速度の各々の誤差を推定する誤差推定部と、
    を含むセンサ誤差補正装置。
  2. 前記車両の運動パターンは前記車両のヨーレートであり、
    前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記慣性計測装置が検出したピッチレート及びロールレートの各々の誤差を推定し、前記車両のヨーレートが大きい場合に、前記慣性計測装置が検出した前後加速度、横加速度及び上下加速度の各々の誤差を推定する請求項1に記載のセンサ誤差補正装置。
  3. 前後速度を検出する車速検出部と、
    外部情報に基づいて、前記車速検出部が検出した前後速度の誤差と、前記慣性計測装置が検出したヨーレートの誤差とを補正する補正部と、
    前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記車両のロールレート及びピッチレートが、前記慣性計測装置が検出した前後加速度及び横加速度の各々の微分値と、前記補正部により補正された前後速度及びヨーレートとで表されることに基づき前記慣性計測装置が検出したピッチレート及びロールレートの各々の誤差を推定する請求項2に記載のセンサ誤差補正装置。
  4. 前後速度を検出する車速検出部と、
    外部情報に基づいて、前記車速検出部が検出した前後速度の誤差と、前記慣性計測装置が検出したヨーレートの誤差とを補正する補正部と、
    前記誤差推定部は、前記車両のヨーレートが大きい場合に、前後加速度、横加速度及び上下加速度が、前記車両のロールレート及びピッチレートと、前記慣性計測装置が検出した前後加速度及び横加速度の各々の微分値と、前記補正部により補正された前後速度及びヨーレートとで表されることに基づき、前記慣性計測装置が検出した前後加速度、横加速度及び上下加速度の各々の誤差を推定する請求項2又は3に記載のセンサ誤差補正装置。
  5. 前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記車両のロールレートが、前記慣性計測装置が検出した横加速度の微分値から前記補正部により補正された前後速度と前記補正されたヨーレートの微分値との積を減算して得た値と重力加速度との商で表されることに基づき前記慣性計測装置が検出したロールレートの誤差を推定する請求項3又は4に記載のセンサ誤差補正装置。
  6. 前記誤差推定部は、前記車両のヨーレートが小さい場合に、前記車両のピッチレートが、前記慣性計測装置が検出した前後加速度の微分値から前記補正部により補正された前後速度の2階微分値を減算して得た値と重力加速度との商で表されることに基づき前記慣性計測装置が検出したピッチレートの誤差を推定する請求項3又は4に記載のセンサ誤差補正装置。
  7. 前記誤差推定部は、前記車両のヨーレートが大きい場合に、前後加速度が、ロールレートと重力加速度との積から、前記慣性計測装置が検出した横加速度の微分値を減算し、前記補正部により補正されたヨーレートの微分値と前記補正された前後速度との積を加算し、前記補正されたヨーレートと前記補正された前後速度の微分値との積を加算して得た値と前記補正されたヨーレートとの商で表されることに基づき前記慣性計測装置が検出した前後加速度の誤差を推定し、横加速度が、ピッチレートと重力加速度との積から、前記慣性計測装置が検出した前後加速度の微分値を減算し、前記補正された前後速度の2階微分値を加算し、前記補正されたヨーレートの二乗と前記補正された前後速度との積を加算して得た値と前記補正されたヨーレートとの商で表されることに基づき前記慣性計測装置が検出した横加速度の誤差を推定し、上下加速度が、重力加速度からロールレートと前記補正された前後速度との積を減算して得た値で表されることに基づき前記慣性計測装置が検出した上下加速度の誤差を推定する請求項4に記載のセンサ誤差補正装置。
  8. 前記誤差推定部は、
    前記車両のヨーレートが小さい場合に、前記慣性計測装置が検出したロールレートの誤差及びピッチレートの誤差を含む状態量の予測値を算出し、ロールレートの誤差及びピッチレートの誤差を仮定した、前記慣性計測装置が検出したロールレート及びピッチレートの観測値に対する観測方程式を用いて、前記状態量の予測値から、前記慣性計測装置が検出した観測値の予測値を算出する第1事前推定部と、
    前記車両のヨーレートが小さい場合に、前記慣性計測装置が検出して出力した前記観測値と、前記第1事前推定部が算出した前記観測値の予測値との差分に基づいて、前記第1事前推定部によって算出した前記状態量の予測値を補正する第1状態推定部と、
    前記車両のヨーレートが大きい場合に、前記慣性計測装置が検出した前後加速度の誤差、横加速度の誤差、及び上下加速度の誤差を含む状態量の予測値を算出し、前後加速度の誤差、横加速度の誤差、及び上下加速度の誤差を仮定した、前記慣性計測装置が検出した前後加速度、横加速度、及び上下加速度の観測値に対する観測方程式を用いて、前記状態量の予測値から、前記慣性計測装置が検出した観測値の予測値を算出する第2事前推定部と、
    前記車両のヨーレートが大きい場合に、前記慣性計測装置が検出して出力した前記観測値と、前記第2事前推定部が算出した前記観測値の予測値との差分に基づいて、前記第2事前推定部によって算出した前記状態量の予測値を補正する第2状態推定部と、
    を含む請求項1に記載のセンサ誤差補正装置。


JP2019190566A 2019-10-17 2019-10-17 センサ誤差補正装置 Active JP6981459B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190566A JP6981459B2 (ja) 2019-10-17 2019-10-17 センサ誤差補正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190566A JP6981459B2 (ja) 2019-10-17 2019-10-17 センサ誤差補正装置

Publications (2)

Publication Number Publication Date
JP2021067472A JP2021067472A (ja) 2021-04-30
JP6981459B2 true JP6981459B2 (ja) 2021-12-15

Family

ID=75636979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190566A Active JP6981459B2 (ja) 2019-10-17 2019-10-17 センサ誤差補正装置

Country Status (1)

Country Link
JP (1) JP6981459B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185856A1 (ja) * 2023-03-07 2024-09-12 住友精密工業株式会社 角速度センサの補正方法、角速度センサの補正プログラム、および、角速度センサシステム
CN116552598B (zh) * 2023-07-10 2023-11-07 西南交通大学 一种永磁轨道不平顺检测装置及方法

Also Published As

Publication number Publication date
JP2021067472A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
JP7036080B2 (ja) 慣性航法装置
CN112629538B (zh) 基于融合互补滤波和卡尔曼滤波的舰船水平姿态测量方法
US9921065B2 (en) Unit and method for improving positioning accuracy
JP4781300B2 (ja) 位置検出装置および位置検出方法
JP6094026B2 (ja) 姿勢判定方法、位置算出方法及び姿勢判定装置
JP5328252B2 (ja) ナビゲーションシステムの位置検出装置および位置検出方法
JP7073052B2 (ja) ビークルの角度位置を測定するシステムおよび方法
JP5164645B2 (ja) カルマンフィルタ処理における繰り返し演算制御方法及び装置
JP6981459B2 (ja) センサ誤差補正装置
JP2014240266A (ja) センサドリフト量推定装置及びプログラム
JP4149913B2 (ja) 慣性オドメータ補正による統合慣性vms航法
Park Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion
CN113074757A (zh) 车载惯导安装误差角的标定方法
JP7028223B2 (ja) 自己位置推定装置
JP7206883B2 (ja) ヨーレート補正装置
Alaeiyan et al. GPS/INS integration via faded memory Kalman filter
WO2024052506A1 (en) Method and system for determining initial heading angle
JP2020097316A (ja) 車体姿勢角推定装置
Onunka et al. USV attitude estimation: an approach using quaternion in direction cosine matrix
JP2011080857A (ja) 角速度算出装置、ナビゲーション装置、角速度算出方法
JP7206875B2 (ja) 車両横速度推定装置
CN111284496B (zh) 用于自动驾驶车辆的车道追踪方法及系统
JP2021142969A (ja) センサ誤差補正装置
KR102044027B1 (ko) Gps를 이용한 차량 기울기 산출 장치 및 그것의 동작 방법
Wachsmuth et al. Development of an error-state Kalman Filter for Emergency Maneuvering of Trucks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6981459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150