[go: up one dir, main page]

JP6973066B2 - Chemical heat storage reactor - Google Patents

Chemical heat storage reactor Download PDF

Info

Publication number
JP6973066B2
JP6973066B2 JP2017253898A JP2017253898A JP6973066B2 JP 6973066 B2 JP6973066 B2 JP 6973066B2 JP 2017253898 A JP2017253898 A JP 2017253898A JP 2017253898 A JP2017253898 A JP 2017253898A JP 6973066 B2 JP6973066 B2 JP 6973066B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
chemical
restraint cover
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017253898A
Other languages
Japanese (ja)
Other versions
JP2019120430A (en
Inventor
美代 望月
崇史 山内
貴範 金子
章博 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017253898A priority Critical patent/JP6973066B2/en
Publication of JP2019120430A publication Critical patent/JP2019120430A/en
Application granted granted Critical
Publication of JP6973066B2 publication Critical patent/JP6973066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、化学反応によって蓄熱する化学蓄熱反応器に関する。 The present invention relates to a chemical heat storage reactor that stores heat by a chemical reaction.

特許文献1に記載の化学蓄熱反応器では、枠部の内部に蓄熱材を収容した蓄熱材層、フィルター、反応媒体拡散層、及び熱交換部が積層されることで化学蓄熱反応器の積層体が形成されており、その積層体が複数個積層されて一体化された積層ユニットが容器内に収容されている。 In the chemical heat storage reactor described in Patent Document 1, a laminated body of the chemical heat storage reactor is formed by laminating a heat storage material layer containing the heat storage material, a filter, a reaction medium diffusion layer, and a heat exchange unit inside the frame portion. Is formed, and a laminated unit in which a plurality of the laminated bodies are laminated and integrated is housed in a container.

特開2014−126293号公報Japanese Unexamined Patent Publication No. 2014-126293

しかしながら、特許文献1に記載の化学蓄熱反応器は、発熱源となる積層ユニットが容器内に収容されているため大型である。
また、蓄熱材を発熱させる際に、蓄熱材に水分を付与すると、蓄熱材が膨張する。蓄熱材に積層された反応媒体拡散層、及び熱交換部が、蓄熱材の膨張圧で変形しないように、積層ユニットは、積層方向の両側に配置された一対のエンドプレート、及び一対のエンドプレートを連結するボルトとナットによって拘束されている。
エンドプレートは、蓄熱材の膨張圧を受けて曲げ変形しないように、厚い金属板で形成する必要があり、重量がある。
However, the chemical heat storage reactor described in Patent Document 1 is large because the laminated unit serving as a heat generating source is housed in the container.
Further, when water is added to the heat storage material when the heat storage material is heated, the heat storage material expands. The stacking unit is a pair of end plates and a pair of end plates arranged on both sides in the stacking direction so that the reaction medium diffusion layer laminated on the heat storage material and the heat exchange portion are not deformed by the expansion pressure of the heat storage material. It is restrained by the bolts and nuts that connect it.
The end plate needs to be formed of a thick metal plate so as not to be bent and deformed by the expansion pressure of the heat storage material, and is heavy.

このように、特許文献1に記載の化学蓄熱反応器は、全体が大型で、かつ厚くて重量のあるエンドプレート部材を用いて積層ユニットを拘束しているため、オフサイト用の熱源として使用する場合においては、移動するときの重量があり、高蓄熱密度で、かつ軽量な化学蓄熱反応器が望まれていた。 As described above, the chemical heat storage reactor described in Patent Document 1 is used as a heat source for off-site because the laminated unit is restrained by using the end plate member which is large in size and thick and heavy as a whole. In some cases, a chemical heat storage reactor that is heavy to move, has a high heat storage density, and is lightweight has been desired.

本願発明の課題は、高蓄熱密度で、かつ軽量な化学蓄熱反応器を得ることにある。 An object of the present invention is to obtain a chemical heat storage reactor having a high heat storage density and a light weight.

請求項1に記載の化学蓄熱反応器は、反応媒体と結合することで発熱し、反応媒体が脱離して蓄熱する蓄熱材と、前記蓄熱材の外面を覆い、前記蓄熱材の通過を制限し、前記反応媒体は通過する微小孔が形成された蓄熱材拘束カバーと、前記蓄熱材拘束カバーで覆われた前記蓄熱材を収容する容器と、を有し、前記蓄熱材拘束カバーで覆われた前記蓄熱材を複数備え、一方の前記蓄熱材拘束カバーと他方の前記蓄熱材拘束カバーとの間に空間が形成され、前記空間が前記反応媒体が通過する反応媒体流路とされており、前記蓄熱材拘束カバーは、一部が前記容器の内面に接触しており、他の一部が隣接する他の前記蓄熱材を覆う前記蓄熱材拘束カバーに接触しているThe chemical heat storage reactor according to claim 1 covers the heat storage material that generates heat when combined with the reaction medium and the reaction medium is desorbed to store heat, and the outer surface of the heat storage material to restrict the passage of the heat storage material. The reaction medium has a heat storage material restraint cover on which micropores to pass through are formed, and a container for accommodating the heat storage material covered with the heat storage material restraint cover, and is covered with the heat storage material restraint cover. A plurality of the heat storage materials are provided, and a space is formed between one of the heat storage material restraint covers and the other heat storage material restraint cover, and the space is used as a reaction medium flow path through which the reaction medium passes. A part of the heat storage material restraint cover is in contact with the inner surface of the container, and another part is in contact with the heat storage material restraint cover covering the other adjacent heat storage material .

請求項1に記載の化学蓄熱反応器では、容器の内部に反応媒体を流すと、反応媒体が、蓄熱材拘束カバーの微小孔を通過して蓄熱材と結合し、蓄熱材が放熱する。これにより、容器の温度が上がり、化学蓄熱反応器を熱源として利用することができる。 In the chemical heat storage reactor according to claim 1, when the reaction medium is flowed inside the container, the reaction medium passes through the micropores of the heat storage material restraint cover and is combined with the heat storage material, and the heat storage material dissipates heat. As a result, the temperature of the container rises, and the chemical heat storage reactor can be used as a heat source.

蓄熱材が反応媒体と結合すると、発熱すると共に膨張しようとする。しかしながら、蓄熱材は、外面を覆う蓄熱材拘束カバーで拘束されているので、膨張が抑えられる。即ち、容器は、蓄熱材の膨張力を受け無くなるため、容器を構成する部材の厚さを薄くすることができる。 When the heat storage material binds to the reaction medium, it generates heat and tries to expand. However, since the heat storage material is restrained by the heat storage material restraint cover that covers the outer surface, expansion is suppressed. That is, since the container is not affected by the expansion force of the heat storage material, the thickness of the members constituting the container can be reduced.

請求項1に記載の化学蓄熱反応器では、従来の化学蓄熱反応器に必要とされていた反応媒体拡散層、熱交換部、及びエンドプレート等の部材が無く、発熱源として必要な最小限の部材で構成することができ、かつ、容器の構成する部材の厚さを薄くできるので、高蓄熱密度で、かつ軽量な化学蓄熱反応器が得られる。なお、蓄熱密度とは、化学蓄熱反応器の内容積に占める蓄熱材の蓄熱量である。 The chemical heat storage reactor according to claim 1 does not have members such as a reaction medium diffusion layer, a heat exchange unit, and an end plate, which are required for a conventional chemical heat storage reactor, and is the minimum required as a heat generation source. Since it can be composed of members and the thickness of the members constituting the container can be reduced, a chemical heat storage reactor having a high heat storage density and a light weight can be obtained. The heat storage density is the amount of heat stored in the heat storage material in the internal volume of the chemical heat storage reactor.

なお、蓄熱材に蓄熱を行う場合には、蓄熱材を加熱して反応媒体を脱離させることで蓄熱を行うことができる。
請求項1に記載の化学蓄熱反応器では、容器の内部に蓄熱材拘束カバーで覆われた蓄熱材が複数備えられているが、蓄熱材拘束カバーの間に空間が形成され、この空間が反応媒体が通過する反応媒体流路となっているため、反応媒体流路を介して各々の蓄熱材に反応媒体を供給することができる。請求項1に記載の化学蓄熱反応器では、蓄熱材拘束カバーの間の空間が反応媒体流路となるので、反応媒体流路を形成するための部材を別途必要とせず、化学蓄熱反応器の軽量化、及び小型化を図ることができる。
また、請求項1に記載の化学蓄熱反応器では、蓄熱材拘束カバーの一部を容器の内面に接触させているため、蓄熱材拘束カバーの一部を容器の内面に接触させない場合に比較して、蓄熱材の熱を効率的に容器に伝達することができ、容器を効率的に加熱することができる。また、蓄熱材拘束カバーの他の一部が、隣接する他の蓄熱材を覆う蓄熱材拘束カバーに接触しているため、容器の内面側から離れた箇所に配置されている蓄熱材の熱を、蓄熱材拘束カバー、及び蓄熱材を介して容器に伝達することができる。
When heat is stored in the heat storage material, the heat can be stored by heating the heat storage material to desorb the reaction medium.
In the chemical heat storage reactor according to claim 1, a plurality of heat storage materials covered with a heat storage material restraint cover are provided inside the container, but a space is formed between the heat storage material restraint covers, and this space reacts. Since it is a reaction medium flow path through which the medium passes, the reaction medium can be supplied to each heat storage material via the reaction medium flow path. In the chemical heat storage reactor according to claim 1, since the space between the heat storage material restraint covers serves as the reaction medium flow path, no separate member for forming the reaction medium flow path is required, and the chemical heat storage reactor can be used. It is possible to reduce the weight and size.
Further, in the chemical heat storage reactor according to claim 1, since a part of the heat storage material restraint cover is in contact with the inner surface of the container, it is compared with the case where a part of the heat storage material restraint cover is not in contact with the inner surface of the container. Therefore, the heat of the heat storage material can be efficiently transferred to the container, and the container can be heated efficiently. Further, since the other part of the heat storage material restraint cover is in contact with the heat storage material restraint cover that covers the other adjacent heat storage materials, the heat of the heat storage material arranged at a position away from the inner surface side of the container is transferred. , The heat storage material restraint cover, and the heat storage material can be transmitted to the container.

請求項2に記載の発明は、請求項1に記載の化学蓄熱反応器において、棒状に形成された前記蓄熱材と、前記蓄熱材の外周面を覆う筒状に形成された前記蓄熱材拘束カバーと、を有する。 The invention according to claim 2 is the chemical heat storage reactor according to claim 1, wherein the heat storage material formed in a rod shape and the heat storage material restraint cover formed in a tubular shape covering the outer peripheral surface of the heat storage material. And have.

請求項2に記載の化学蓄熱反応器では、棒状に形成された蓄熱材の外周面が蓄熱材拘束カバーによって覆われている。このため、径方向外側に膨張しようとする蓄熱材を蓄熱材拘束カバーが拘束し、蓄熱材の径方向の膨張を抑制することができる。 In the chemical heat storage reactor according to claim 2, the outer peripheral surface of the heat storage material formed in a rod shape is covered with the heat storage material restraint cover. Therefore, the heat storage material restraining cover restrains the heat storage material that tends to expand outward in the radial direction, and the radial expansion of the heat storage material can be suppressed.

請求項3に記載の発明は、請求項2に記載の化学蓄熱反応器において、前記蓄熱材は、円柱状に形成され、前記蓄熱材拘束カバーは、円筒状に形成されている。 According to the third aspect of the present invention, in the chemical heat storage reactor according to the second aspect, the heat storage material is formed in a columnar shape, and the heat storage material restraint cover is formed in a cylindrical shape.

請求項3に記載の化学蓄熱反応器では、蓄熱材が円柱状に形成され、蓄熱材拘束カバーが円筒状に形成されているので、円柱状に形成された蓄熱材の膨張力が増大しても、蓄熱材は、初期の円柱形状(断面円形)を保つことができ、状蓄熱材拘束カバーは、初期の円筒形状(断面円形)を保つことができる。 In the chemical heat storage reactor according to claim 3, since the heat storage material is formed in a cylindrical shape and the heat storage material restraining cover is formed in a cylindrical shape, the expansion force of the heat storage material formed in the columnar shape increases. Also, the heat storage material can maintain the initial cylindrical shape (circular cross section), and the heat storage material restraint cover can maintain the initial cylindrical shape (circular cross section).

請求項4に記載の発明は、請求項2または請求項3に記載の化学蓄熱反応器において、前記蓄熱材拘束カバーの両端部の開口部分は、前記容器の壁面に接触して塞がれている。According to a fourth aspect of the present invention, in the chemical heat storage reactor according to the second or third aspect, the openings at both ends of the heat storage material restraint cover are closed in contact with the wall surface of the container. There is.

請求項5に記載の発明は、請求項1〜請求項4の何れか1項に記載の化学蓄熱反応器において、前記容器には、内外を連通可能とする連通部が設けられている。 The invention according to claim 5 is the chemical heat storage reactor according to any one of claims 1 to 4 , wherein the container is provided with a communication portion capable of communicating inside and outside.

請求項5に記載の化学蓄熱反応器では、連通部を介して反応媒体の出入を行うことができる。 In the chemical heat storage reactor according to claim 5, the reaction medium can be taken in and out through the communication unit.

本発明によれば、高蓄熱密度で、かつ軽量な化学蓄熱反応器が得られる、という優れた効果を有する。 According to the present invention, it has an excellent effect that a chemical heat storage reactor having a high heat storage density and a light weight can be obtained.

本発明の一実施形態に係る化学蓄熱反応器を示す斜視図である。It is a perspective view which shows the chemical heat storage reactor which concerns on one Embodiment of this invention. 図1に示す化学蓄熱反応器の2−2線断面図である。FIG. 2 is a cross-sectional view taken along the line 2-2 of the chemical heat storage reactor shown in FIG. (A)は蓄熱体を示す斜視図であり、(B)は蓄熱体の端面を示す側面図である。(A) is a perspective view showing a heat storage body, and (B) is a side view showing an end face of the heat storage body. 図1に示す化学蓄熱反応器の4−4線断面図である。It is a cross-sectional view of line 4-4 of the chemical heat storage reactor shown in FIG. 図1に示す化学蓄熱反応器の5−5線断面図である。FIG. 5 is a cross-sectional view taken along the line 5-5 of the chemical heat storage reactor shown in FIG. 蓄熱材に蓄熱を行う際の化学蓄熱反応器を示す斜視図である。It is a perspective view which shows the chemical heat storage reactor at the time of performing heat storage in a heat storage material. 他の実施形態に係る化学蓄熱反応器を示す断面図である。It is sectional drawing which shows the chemical heat storage reactor which concerns on other embodiment. 更に他の実施形態に係る化学蓄熱反応器を示す断面図である。It is sectional drawing which shows the chemical heat storage reactor which concerns on still another Embodiment.

図1乃至図5にしたがって、本発明の一実施形態に係る化学蓄熱反応器10を説明する。なお、図中に示す矢印Hは装置上下方向(鉛直方向、積層方向)を示し、矢印Wは装置幅方向(水平方向)を示し、矢印Dは装置奥行方向(水平方向)を示す。 The chemical heat storage reactor 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 5. The arrow H shown in the figure indicates the device vertical direction (vertical direction, stacking direction), the arrow W indicates the device width direction (horizontal direction), and the arrow D indicates the device depth direction (horizontal direction).

(化学蓄熱反応器)
化学蓄熱反応器10は、図1、2、4に示す構造の反応容器12を備え、反応容器12の内部に図3に示す蓄熱体50が複数収容されている。
(Chemical heat storage reactor)
The chemical heat storage reactor 10 includes a reaction vessel 12 having the structure shown in FIGS. 1, 2 and 4, and a plurality of heat storage bodies 50 shown in FIG. 3 are housed inside the reaction vessel 12.

(反応容器)
図1に示すように、反応容器12は、箱状に形成されており、矩形の底板14、底板14の各辺から立ち上がる側壁16、18、20、22、矩形の天板24とを備えている。
(Reaction vessel)
As shown in FIG. 1, the reaction vessel 12 is formed in a box shape and includes a rectangular bottom plate 14, side walls 16, 18, 20, 22 rising from each side of the bottom plate 14, and a rectangular top plate 24. There is.

反応容器12の内部は、平面視でコ字状に連結された隔壁26、28、30によって、蓄熱体50を収容する平面視で矩形の蓄熱体収容室32、及び、反応媒体としての蒸気が流れる平面視でコ字状の蒸気流路34が区画されている。

底板14、側壁16、18、20、22、天板24、及び隔壁26、28、30は、ステンレススチール等の金属板で形成されており、互いに溶接、またはロウ付けにて接合されている。
Inside the reaction vessel 12, the partition walls 26, 28, and 30 connected in a U shape in a plan view allow the heat storage body storage chamber 32, which is rectangular in a plan view, to house the heat storage body 50, and steam as a reaction medium. The U-shaped steam flow path 34 is partitioned in a flowing plan view.

The bottom plate 14, the side walls 16, 18, 20, 22, the top plate 24, and the partition walls 26, 28, 30 are made of a metal plate such as stainless steel, and are joined to each other by welding or brazing.

図1、2、4、5に示すように、隔壁26、30には、蓄熱体収容室32と蒸気流路34との間で蒸気を出入させるための孔36が複数形成されている。 As shown in FIGS. 1, 2, 4, and 5, the partition walls 26 and 30 are formed with a plurality of holes 36 for allowing steam to flow in and out between the heat storage body accommodating chamber 32 and the steam flow path 34.

反応容器12の正面に位置する側壁16には、反応容器12の内外へ蒸気を出入させるための配管38が接続されており、配管38の端部には、開閉弁40が取り付けられている。なお、配管38を取り除き、開閉弁40を側壁16に直接取り付けてもよい。 A pipe 38 for allowing steam to flow in and out of the reaction vessel 12 is connected to the side wall 16 located in front of the reaction vessel 12, and an on-off valve 40 is attached to the end of the pipe 38. The pipe 38 may be removed and the on-off valve 40 may be directly attached to the side wall 16.

本実施形態の化学蓄熱反応器10は、以下に説明する蒸発凝縮器42に接続されることで水蒸気が供給されるようになっている。 The chemical heat storage reactor 10 of the present embodiment is connected to the evaporation condenser 42 described below to supply steam.

(蒸発凝縮器)
図1に示すように、開閉弁40には、蒸発凝縮器42に接続される連通路43の端部が、着脱可能に接続される。蒸発凝縮器42は、貯留した水を蒸発させて化学蓄熱反応器10に供給する(水蒸気Wを生成する)蒸発部、化学蓄熱反応器10から受け取った水蒸気Wを凝縮する凝縮部、及び水蒸気Wが凝縮された水を貯留する貯留部、としての各機能を備えている。
(Evaporation condenser)
As shown in FIG. 1, the end of the communication passage 43 connected to the evaporation condenser 42 is detachably connected to the on-off valve 40. The evaporation condenser 42 evaporates the stored water and supplies it to the chemical heat storage reactor 10 (generates steam W), a condensing unit that condenses the steam W received from the chemical heat storage reactor 10, and the steam W. Has each function as a storage unit for storing condensed water.

また、蒸発凝縮器42は、内部に水が貯留される容器44を備えており、この容器44内には、水蒸気Wを凝縮する、又は水を蒸発するのに用いる熱媒流路46の一部が配置されている。さらに、熱媒流路46は、容器44内における少なくとも気相部44Aを含む部分で熱交換を行うように配置されている。そして、凝縮時には低温媒体、蒸発時には中温媒体が、熱媒流路46を流れるようになっている。 Further, the evaporation condenser 42 includes a container 44 in which water is stored, and one of the heat medium flow paths 46 used for condensing the water vapor W or evaporating the water in the container 44. The part is arranged. Further, the heat medium flow path 46 is arranged so as to perform heat exchange in the portion of the container 44 including at least the gas phase portion 44A. A low temperature medium flows through the heat medium flow path 46 during condensation and a medium temperature medium flows through the heat medium flow path 46 during evaporation.

なお、蒸発凝縮器42と化学蓄熱反応器10とを連通させるための連通路43は、蒸発凝縮器42と化学蓄熱反応器10との連通、非連通を切り替えるための開閉弁48を備えている。 The communication passage 43 for communicating the evaporation condenser 42 and the chemical heat storage reactor 10 is provided with an on-off valve 48 for switching between communication and non-communication between the evaporation condenser 42 and the chemical heat storage reactor 10. ..

(蓄熱成形体の構成)
図3に示すように、本実施形態の蓄熱体50は、円柱状に形成された蓄熱成形体54と、蓄熱成形体54の外周を覆う円筒状の蓄熱材拘束カバー52とを含んで構成されている。
蓄熱成形体54には、一例として、アルカリ土類金属の酸化物の1つである酸化カルシウム(CaO:蓄熱材の一例)の成形体が用いられている。この成形体は、例えば、酸化カルシウム粉体をバインダ(例えば粘土鉱物等)と混練し、焼成することで、略矩形ブロック状に形成されている。
(Structure of heat storage molded body)
As shown in FIG. 3, the heat storage body 50 of the present embodiment includes a heat storage molded body 54 formed in a columnar shape and a cylindrical heat storage material restraining cover 52 that covers the outer periphery of the heat storage molded body 54. ing.
As an example, the heat storage molded body 54 uses a molded body of calcium oxide (CaO: an example of a heat storage material), which is one of the oxides of alkaline earth metals. This molded body is formed into a substantially rectangular block shape, for example, by kneading calcium oxide powder with a binder (for example, clay mineral or the like) and firing it.

ここで、蓄熱成形体54は、水和に伴って膨張して放熱(発熱)し、脱水に伴って蓄熱(吸熱)するものであり、以下に示す反応で放熱、蓄熱を可逆的に繰り返し得る構成とされている。 Here, the heat storage molded body 54 expands and dissipates heat (heat generation) with hydration, and stores heat (heat absorption) with dehydration, and can reversibly repeat heat dissipation and heat storage by the reaction shown below. It is said to be composed.

CaO + HO ⇔ Ca(OH)
この式に蓄熱量、発熱量Qを併せて示すと、
CaO + H2O → Ca(OH) + Q
Ca(OH)2 + Q → CaO + H
となる。
CaO + H 2 O ⇔ Ca (OH) 2
When the heat storage amount and the calorific value Q are shown together in this formula,
CaO + H2O → Ca (OH) 2 + Q
Ca (OH) 2 + Q → CaO + H 2 O
Will be.

なお、一例として、蓄熱成形体54の1kg当たりの蓄熱容量は、1.86[MJ/kg]とされている。 As an example, the heat storage capacity per 1 kg of the heat storage molded body 54 is 1.86 [MJ / kg].

また、本実施形態において、蓄熱成形体54を構成する蓄熱材の粒径とは、蓄熱材が粉体の場合はその平均粒径、粒状の場合は造粒前の粉体の平均粒径とする。これは、粒が崩壊する場合、前工程の状態に戻ると推定されるためである。 Further, in the present embodiment, the particle size of the heat storage material constituting the heat storage molded body 54 is the average particle size of the heat storage material when it is powder, and the average particle size of the powder before granulation when the heat storage material is granular. do. This is because it is presumed that if the grains collapse, they will return to the state of the previous process.

蓄熱成形体54の外周を覆う蓄熱材拘束カバー52は、一例としてφ200〔μm〕の微小貫通孔(図示せず)が、全面に多数形成された金属材料からなるエッチングフィルターである。エッチングフィルターは、蓄熱成形体54を構成する蓄熱材の平均粒径より小さいろ過精度を有している。これにより、エッチングフィルターは、蓄熱成形体54を構成する蓄熱材の平均粒径より小さい流路を水蒸気が通過するのを許容する一方、平均粒径よりも大きい蓄熱材の通過を制限するようになっている。 The heat storage material restraint cover 52 that covers the outer periphery of the heat storage molded body 54 is, for example, an etching filter made of a metal material in which a large number of minute through holes (not shown) of φ200 [μm] are formed on the entire surface. The etching filter has a filtration accuracy smaller than the average particle size of the heat storage material constituting the heat storage molded body 54. As a result, the etching filter allows water vapor to pass through a flow path smaller than the average particle size of the heat storage material constituting the heat storage molded body 54, while restricting the passage of the heat storage material larger than the average particle size. It has become.

ろ過精度とは、ろ過効率が50〜98%となる粒子径のことであり、ろ過効率とは、ある粒子径の粒子に対する除去効率である。なお、蓄熱材拘束カバー52は、メッシュで形成されていてもよい。 The filtration accuracy is the particle size at which the filtration efficiency is 50 to 98%, and the filtration efficiency is the removal efficiency for particles having a certain particle size. The heat storage material restraint cover 52 may be formed of a mesh.

図2、及び図4に示すように、本実施形態では、長手方向を化学蓄熱反応器10の奥行方向と平行にして、蓄熱体収容室32の内部に、化学蓄熱反応器10の幅方向に5本、上下に二段並べて収容している。 As shown in FIGS. 2 and 4, in the present embodiment, the longitudinal direction is parallel to the depth direction of the chemical heat storage reactor 10, and the inside of the heat storage body storage chamber 32 is in the width direction of the chemical heat storage reactor 10. Five of them are housed side by side in two stages.

なお、蓄熱体50は、円柱形状とされているので、蓄熱体収容室32の内部に上記の様に並べることで、蓄熱体50の間に蒸気流路となる空間56が形成される。これら空間56は、隔壁26、30の孔36と連通している。 Since the heat storage body 50 has a cylindrical shape, by arranging the heat storage body 50 inside the heat storage body storage chamber 32 as described above, a space 56 serving as a steam flow path is formed between the heat storage bodies 50. These spaces 56 communicate with the holes 36 of the partition walls 26 and 30.

図4に示すように、上の段に配置される蓄熱体50の外周面(蓄熱材拘束カバー52の外周面)の上部は、反応容器12の天板24に接触している。また、下の段に配置される蓄熱体50の外周面(蓄熱材拘束カバー52の外周面)の下部は反応容器12の底板14に接触している。 As shown in FIG. 4, the upper portion of the outer peripheral surface (outer peripheral surface of the heat storage material restraint cover 52) of the heat storage body 50 arranged in the upper stage is in contact with the top plate 24 of the reaction vessel 12. Further, the lower portion of the outer peripheral surface (outer peripheral surface of the heat storage material restraint cover 52) of the heat storage body 50 arranged in the lower stage is in contact with the bottom plate 14 of the reaction vessel 12.

図2、及び図4に示すように、幅方向に隣接する蓄熱体50は、外周面の側部が互いに接触し、幅方向最外側に配置される蓄熱体50の側部は、隔壁26、30に接触しており、各蓄熱体50の長手方向端部は隔壁28、及び側壁20に接触している。これにより、複数の蓄熱体50は、蓄熱体収容室32の内部で動かないように拘束されている。 As shown in FIGS. 2 and 4, the side portions of the outer peripheral surfaces of the heat storage bodies 50 adjacent to each other in the width direction are in contact with each other, and the side portions of the heat storage body 50 arranged on the outermost side in the width direction are the partition walls 26. It is in contact with 30, and the longitudinal end of each heat storage body 50 is in contact with the partition wall 28 and the side wall 20. As a result, the plurality of heat storage bodies 50 are restrained so as not to move inside the heat storage body storage chamber 32.

(化学蓄熱反応器の作用、効果)
次に、化学蓄熱反応器10の作用、効果について説明する。
化学蓄熱反応器10において蓄熱された熱を蓄熱成形体54から発熱(放熱)させる際には、一例として、図1に示すように、開閉弁40、開閉弁48を開放し、この状態で、蒸発凝縮器42の熱媒流路46に中温媒体を流し、液相部44Bの水を蒸発させる。そして、生成された水蒸気Wが連通路43内を矢印D方向に移動して、反応容器12内に供給される。
(Action and effect of chemical heat storage reactor)
Next, the action and effect of the chemical heat storage reactor 10 will be described.
When the heat stored in the chemical heat storage reactor 10 is generated (heat-dissipated) from the heat storage molded body 54, as an example, as shown in FIG. 1, the on-off valve 40 and the on-off valve 48 are opened, and in this state, the on-off valve 40 and the on-off valve 48 are opened. A medium temperature medium is passed through the heat medium flow path 46 of the evaporation condenser 42 to evaporate the water in the liquid phase portion 44B. Then, the generated steam W moves in the communication passage 43 in the direction of the arrow D and is supplied into the reaction vessel 12.

化学蓄熱反応器10では、供給された水蒸気Wが蒸気流路34、及び隔壁26、30の孔36を通過して蓄熱体収容室32の内部に流入し、空間56を通過した水蒸気Wが蓄熱材拘束カバー52の微細孔を通過して蓄熱成形体54と接触することにより、蓄熱成形体54は、水和反応を生じつつ発熱(放熱)する。この熱は、反応容器12の天板24、及び底板14に伝達され、最終的に天板24、及び底板14が加熱されて温度が上がり、化学蓄熱反応器10を熱源として利用することができる。 In the chemical heat storage reactor 10, the supplied steam W passes through the steam flow path 34 and the holes 36 of the partition walls 26 and 30 and flows into the inside of the heat storage body accommodating chamber 32, and the steam W passing through the space 56 stores heat. By passing through the micropores of the material restraint cover 52 and coming into contact with the heat storage molded body 54, the heat storage molded body 54 generates heat (heat is dissipated) while causing a hydration reaction. This heat is transferred to the top plate 24 and the bottom plate 14 of the reaction vessel 12, and finally the top plate 24 and the bottom plate 14 are heated to raise the temperature, and the chemical heat storage reactor 10 can be used as a heat source. ..

ところで、蓄熱材が反応媒体と結合すると、発熱すると共に膨張しようとする。しかしながら、蓄熱材からなる蓄熱成形体54は、外面を覆う蓄熱材拘束カバー52で拘束されているので、蓄熱成形体54の径方向の膨張が、蓄熱材拘束カバー52の張力負担により抑制される。これにより、反応容器12は、蓄熱材の膨張力を受け難くなり、反応容器12を構成する部材の厚さを薄くすることができる。このように、本実施形態の化学蓄熱反応器10は、従来の化学蓄熱反応器に必要とされていた反応媒体拡散層、熱交換部、及びエンドプレート等の部材が無く、発熱源として必要な最小限の部材で構成することができ、かつ、反応容器12の構成する部材の厚さを薄くできるので、高蓄熱密度で、かつ軽量となり、搬送が容易になる。 By the way, when the heat storage material is combined with the reaction medium, it generates heat and tends to expand. However, since the heat storage molded body 54 made of the heat storage material is restrained by the heat storage material restraint cover 52 that covers the outer surface, the radial expansion of the heat storage molded body 54 is suppressed by the tension load of the heat storage material restraint cover 52. .. As a result, the reaction vessel 12 is less likely to receive the expansion force of the heat storage material, and the thickness of the member constituting the reaction vessel 12 can be reduced. As described above, the chemical heat storage reactor 10 of the present embodiment does not have members such as a reaction medium diffusion layer, a heat exchange unit, and an end plate, which are required for the conventional chemical heat storage reactor, and is required as a heat generation source. Since it can be configured with the minimum number of members and the thickness of the members constituting the reactor 12 can be reduced, the heat storage density is high, the weight is reduced, and the transfer is easy.

本実施形態の蓄熱成形体54は、蓄熱材拘束カバー52で外面のみが覆われており、蓄熱成形体54の長手端部が覆われていないが、蓄熱成形体54が棒状であれば、外周面を拘束すれば、蓄熱成形体54の径方向の膨張を抑制することで、蓄熱成形体54の長手方向の膨張も抑制できる。このため、本実施形態では、蓄熱成形体54の長手端部を蓄熱材拘束カバー52で覆っていない。 In the heat storage molded body 54 of the present embodiment, only the outer surface is covered with the heat storage material restraint cover 52, and the longitudinal end portion of the heat storage molded body 54 is not covered. By restraining the surface, the expansion in the longitudinal direction of the heat storage molded body 54 can be suppressed by suppressing the expansion in the radial direction of the heat storage molded body 54. Therefore, in the present embodiment, the longitudinal end portion of the heat storage molded body 54 is not covered with the heat storage material restraint cover 52.

なお、蓄熱材拘束カバー52の両端をエッチングフィルターで塞ぎ、蓄熱成形体54の両端面を覆う構成としてもよい。即ち、蓄熱成形体54全体をエッチングフィルターで覆ってもよい。 In addition, both ends of the heat storage material restraint cover 52 may be closed with an etching filter to cover both ends of the heat storage molded body 54. That is, the entire heat storage molded body 54 may be covered with an etching filter.

本実施形態では、蓄熱材を発熱させるために、化学蓄熱反応器10を蒸発凝縮器42に接続し、蒸発凝縮器42で発生させた水蒸気を化学蓄熱反応器10の内部に供給したが、本実施形態の化学蓄熱反応器10は、これに限らず、開閉弁40に水タンクを接続し、水タンクの水を化学蓄熱反応器10の内部に注入し、蓄熱材と水とを反応させてもよい。このように、蒸発凝縮器42が無くても化学蓄熱反応器10を簡単に発熱させることができる。 In the present embodiment, in order to generate heat of the heat storage material, the chemical heat storage reactor 10 is connected to the evaporation condenser 42, and the water vapor generated by the evaporation condenser 42 is supplied to the inside of the chemical heat storage reactor 10. The chemical heat storage reactor 10 of the embodiment is not limited to this, and a water tank is connected to the on-off valve 40, water in the water tank is injected into the inside of the chemical heat storage reactor 10, and the heat storage material and water are reacted. May be good. In this way, the chemical heat storage reactor 10 can be easily heated without the evaporation condenser 42.

なお、化学蓄熱反応器10において蓄熱成形体54に熱を蓄熱させる際には、図6に示すように、開閉弁40、及び開閉弁48を開放し、この状態で、反応容器12をヒーター等の熱源を用いて加熱する。これにより、内部の蓄熱成形体54が脱水反応を生じ、この熱が蓄熱成形体54に蓄熱される。蓄熱成形体54から離脱された水蒸気Wは、反応容器12の外部へ排出され、連通路43を矢印E方向に流れて蒸発凝縮器42内に流れ込む。そして、蒸発凝縮器42の気相部44Aにおいて、熱媒流路46を流れる冷媒によって水蒸気Wが冷却され、凝縮された水が容器44の液相部44Bに貯留される。 When heat is stored in the heat storage molded body 54 in the chemical heat storage reactor 10, the on-off valve 40 and the on-off valve 48 are opened as shown in FIG. 6, and in this state, the reaction vessel 12 is heated by a heater or the like. Heat using the heat source of. As a result, the internal heat storage molded body 54 undergoes a dehydration reaction, and this heat is stored in the heat storage molded body 54. The steam W separated from the heat storage molded body 54 is discharged to the outside of the reaction vessel 12, flows through the communication passage 43 in the direction of arrow E, and flows into the evaporation condenser 42. Then, in the gas phase portion 44A of the evaporation condenser 42, the steam W is cooled by the refrigerant flowing through the heat medium flow path 46, and the condensed water is stored in the liquid phase portion 44B of the container 44.

[その他の実施形態]
なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。
[Other embodiments]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments can be taken within the scope of the present invention. That is clear to those skilled in the art.

上記実施形態では、複数の蓄熱体50を図4に示すように、上下水平方向にマトリクス状に積層したが、図7に示すように、上下で位相をずらして千鳥状に積層してもよい。 In the above embodiment, a plurality of heat storage bodies 50 are stacked in a matrix in the vertical and horizontal directions as shown in FIG. 4, but may be stacked in a staggered manner with the phases shifted in the vertical direction as shown in FIG. ..

上記実施形態では、蓄熱材拘束カバー52の断面形状が円形であったが、蓄熱材拘束カバー52の断面形状は、楕円、矩形、多角形等、円形以外であってもよい。例えば、図8に示すように、蓄熱材拘束カバー52の断面形状は、直線状の4辺を有し、角部がアール状に形成された略矩形状であってもよい。これにより、蓄熱材拘束カバー52に平面部が形成されることとなり、隣接する蓄熱材拘束カバー52、天板24、および底板14との接触面積が増え、天板24、および底板14に対して効率的に熱を伝達することができる。 In the above embodiment, the cross-sectional shape of the heat storage material restraint cover 52 is circular, but the cross-sectional shape of the heat storage material restraint cover 52 may be a non-circular shape such as an ellipse, a rectangle, or a polygon. For example, as shown in FIG. 8, the cross-sectional shape of the heat storage material restraint cover 52 may be a substantially rectangular shape having four linear sides and rounded corners. As a result, a flat surface portion is formed on the heat storage material restraint cover 52, and the contact area with the adjacent heat storage material restraint cover 52, the top plate 24, and the bottom plate 14 increases, and the top plate 24 and the bottom plate 14 have a contact area. Heat can be transferred efficiently.

10 化学蓄熱反応器
12 容器(反応容器)
38 配管(連通部)
52 蓄熱材拘束カバー
54 蓄熱材
56 空間(反応媒体流路)
10 Chemical heat storage reactor 12 Container (reaction vessel)
38 Piping (communication part)
52 Heat storage material restraint cover 54 Heat storage material 56 Space (reaction medium flow path)

Claims (5)

反応媒体と結合することで発熱し、反応媒体が脱離して蓄熱する蓄熱材と、
前記蓄熱材の外面を覆い、前記蓄熱材の通過を制限し、前記反応媒体は通過する微小孔が形成された蓄熱材拘束カバーと、
前記蓄熱材拘束カバーで覆われた前記蓄熱材を収容する容器と、
有し、
前記蓄熱材拘束カバーで覆われた前記蓄熱材を複数備え、
一方の前記蓄熱材拘束カバーと他方の前記蓄熱材拘束カバーとの間に空間が形成され、前記空間が前記反応媒体が通過する反応媒体流路とされており、
前記蓄熱材拘束カバーは、一部が前記容器の内面に接触しており、他の一部が隣接する他の前記蓄熱材を覆う前記蓄熱材拘束カバーに接触している、
化学蓄熱反応器。
A heat storage material that generates heat when combined with the reaction medium and desorbs the reaction medium to store heat.
A heat storage material restraining cover that covers the outer surface of the heat storage material, restricts the passage of the heat storage material, and has micropores formed through the reaction medium.
A container for accommodating the heat storage material covered with the heat storage material restraint cover,
Have,
A plurality of the heat storage materials covered with the heat storage material restraint cover are provided.
A space is formed between the heat storage material restraint cover on one side and the heat storage material restraint cover on the other side, and the space is used as a reaction medium flow path through which the reaction medium passes.
A part of the heat storage material restraint cover is in contact with the inner surface of the container, and another part is in contact with the heat storage material restraint cover covering the other adjacent heat storage material.
Chemical heat storage reactor.
棒状に形成された前記蓄熱材と、
前記蓄熱材の外周面を覆う筒状に形成された前記蓄熱材拘束カバーと、
を有する請求項1に記載の化学蓄熱反応器。
The heat storage material formed in the shape of a rod and
The heat storage material restraint cover formed in a cylindrical shape covering the outer peripheral surface of the heat storage material, and the heat storage material restraint cover.
The chemical heat storage reactor according to claim 1.
前記蓄熱材は、円柱状に形成され、
前記蓄熱材拘束カバーは、円筒状に形成されている、
請求項2に記載の化学蓄熱反応器。
The heat storage material is formed in a columnar shape and is formed in a columnar shape.
The heat storage material restraint cover is formed in a cylindrical shape.
The chemical heat storage reactor according to claim 2.
前記蓄熱材拘束カバーの両端部の開口部分は、前記容器の壁面に接触して塞がれている、The openings at both ends of the heat storage material restraint cover are closed in contact with the wall surface of the container.
請求項2または請求項3に記載の化学蓄熱反応器。 The chemical heat storage reactor according to claim 2 or 3.
前記容器には、内外を連通可能とする連通部が設けられている、
請求項1〜請求項4の何れか1項に記載の化学蓄熱反応器。
The container is provided with a communication portion that allows communication between the inside and the outside.
The chemical heat storage reactor according to any one of claims 1 to 4.
JP2017253898A 2017-12-28 2017-12-28 Chemical heat storage reactor Active JP6973066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253898A JP6973066B2 (en) 2017-12-28 2017-12-28 Chemical heat storage reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253898A JP6973066B2 (en) 2017-12-28 2017-12-28 Chemical heat storage reactor

Publications (2)

Publication Number Publication Date
JP2019120430A JP2019120430A (en) 2019-07-22
JP6973066B2 true JP6973066B2 (en) 2021-11-24

Family

ID=67307083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253898A Active JP6973066B2 (en) 2017-12-28 2017-12-28 Chemical heat storage reactor

Country Status (1)

Country Link
JP (1) JP6973066B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456112B2 (en) * 2019-10-09 2024-03-27 株式会社豊田中央研究所 chemical heat storage reactor

Also Published As

Publication number Publication date
JP2019120430A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP5821834B2 (en) Chemical heat storage reactor, chemical heat storage system
JP2012211713A (en) Chemical heat storage reactor, and chemical heat storage system
JP2014181883A (en) Box, chemical heat storage reactor and chemical heat storage system
JP6973066B2 (en) Chemical heat storage reactor
JP2014185782A (en) Filter, chemical heat storage reactor, and chemical heat storage system
JP6798115B2 (en) Chemical heat storage reactor and chemical heat storage system
JP6422283B2 (en) Heat storage container and heat storage device provided with heat storage container
JP6578747B2 (en) Reaction vessel, reactor, heat storage system
JP6400925B2 (en) Heat storage system
JP6930405B2 (en) Chemical heat storage reactor
JP6657807B2 (en) Reactor, heat storage system, restraint frame
JP6428413B2 (en) Chemical heat storage reactor, chemical heat storage system
JP6838450B2 (en) Chemical heat storage reactor
JP6511974B2 (en) Chemical heat storage reactor, chemical heat storage system
JP6988675B2 (en) Chemical heat storage reactor
JP6973253B2 (en) Chemical heat storage reactor
JP6988664B2 (en) Chemical heat storage reactor
JP2017138039A (en) Method for manufacturing reactor body
JP5719662B2 (en) Reactor
JP6578889B2 (en) Reactor, heat storage system
JP2017096552A (en) Chemical heat storage reactor, chemical heat storage system and method for producing chemical heat storage reactor
JP6743607B2 (en) Chemical heat storage reactor and chemical heat storage system
JP6733482B2 (en) Chemical heat storage reactor and chemical heat storage system
JP6777984B2 (en) Chemical heat storage reactor and chemical heat storage system
JP6593153B2 (en) Chemical heat storage reactor and chemical heat storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6973066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150