[go: up one dir, main page]

JP6970542B2 - Coating composition for forming water- and oil-repellent film and water- and oil-repellent film - Google Patents

Coating composition for forming water- and oil-repellent film and water- and oil-repellent film Download PDF

Info

Publication number
JP6970542B2
JP6970542B2 JP2017131596A JP2017131596A JP6970542B2 JP 6970542 B2 JP6970542 B2 JP 6970542B2 JP 2017131596 A JP2017131596 A JP 2017131596A JP 2017131596 A JP2017131596 A JP 2017131596A JP 6970542 B2 JP6970542 B2 JP 6970542B2
Authority
JP
Japan
Prior art keywords
water
oil
repellent
parts
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017131596A
Other languages
Japanese (ja)
Other versions
JP2019014790A (en
Inventor
俊巳 福井
一子 鈴木
瞳 三木
幸夫 長谷川
孝 迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Miyoshi Kasei Inc
Original Assignee
Kansai Research Institute KRI Inc
Miyoshi Kasei Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc, Miyoshi Kasei Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2017131596A priority Critical patent/JP6970542B2/en
Publication of JP2019014790A publication Critical patent/JP2019014790A/en
Application granted granted Critical
Publication of JP6970542B2 publication Critical patent/JP6970542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、撥水性、撥油性を発現可能なフッ素を含まない撥水撥油性膜形成用塗布組成物及び撥水撥油性膜に関する。 The present invention relates to a coating composition for forming a water-repellent and oil-repellent film that does not contain fluorine and can exhibit water-repellent and oil-repellent properties, and a water- and oil-repellent film.

これまで撥水性、撥油性を発現するために、フルオロアルキル基のようなフッ素を含む官能基の導入が一般に行われている。特許文献1によれば、フルオロアルキル基を含むシルセスキオキサンが撥水撥油性に優れた表面処理剤として有効あることが開示されている。また、特許文献2によれば、ペンタフルオロスルファニル基を有する重合性化合物が撥水撥油性を付与できる化合物として開示されている。
フッ素を含まない撥水撥油性の検討も行われており、例えば、特許文献3によれば、オクタデシル基のような長鎖炭化水素を導入する事で撥水撥油性が付与できることが開示されている。
さらに、本発明者らは、フッ素を含まない撥水撥油膜に関して特許文献4の特許出願をし、フッ素を含まない撥水撥油性膜形成用塗布組成物に関して特許文献5の特許出願をしている。
So far, in order to exhibit water repellency and oil repellency, introduction of a functional group containing fluorine such as a fluoroalkyl group has been generally performed. According to Patent Document 1, silsesquioxane containing a fluoroalkyl group is disclosed to be effective as a surface treatment agent having excellent water and oil repellency. Further, according to Patent Document 2, a polymerizable compound having a pentafluorosulfanil group is disclosed as a compound capable of imparting water and oil repellency.
Studies on water-repellent and oil-repellent properties that do not contain fluorine have also been conducted. For example, according to Patent Document 3, it is disclosed that water- and oil-repellent properties can be imparted by introducing a long-chain hydrocarbon such as an octadecyl group. There is.
Further, the present inventors have filed a patent application for Patent Document 4 regarding a fluorine-free water-repellent oil-repellent film, and a patent application for Patent Document 5 regarding a coating composition for forming a fluorine-free water-repellent oil-repellent film. There is.

特開2012−1724号公報.Japanese Unexamined Patent Publication No. 2012-1724. 特開2010−222279号公報Japanese Unexamined Patent Publication No. 2010-22279 特開2011−148718号公報Japanese Unexamined Patent Publication No. 2011-148718 特開2015−44983号公報Japanese Unexamined Patent Publication No. 2015-44983 特開2016−30763号公報Japanese Unexamined Patent Publication No. 2016-30763

撥水性、撥油性の発現にフッ素を含む官能基の適用が最も有効であるが、フッ素を含む撥水撥油膜の分解、廃棄における環境へのフッ素の拡散が問題となっており、フッ素を含まない撥水撥油材料の開発が求められている。
本発明者らは、特許文献4及び特許文献5に係る撥水撥油材料の特許出願をしているが、より高性能の撥水撥油材料、特に、高い撥油性能を発揮する撥水撥油材料が求められている。
The application of a functional group containing fluorine is the most effective for developing water repellency and oil repellency, but the decomposition of the water-repellent oil-repellent film containing fluorine and the diffusion of fluorine into the environment during disposal have become problems, and the fluorine is contained. There is a need to develop non-water- and oil-repellent materials.
The present inventors have filed patent applications for water-repellent and oil-repellent materials according to Patent Documents 4 and 5, but higher-performance water- and oil-repellent materials, particularly water-repellent materials that exhibit high oil-repellent performance. Oil repellent materials are required.

本発明の撥水撥油材料は、環境汚染の一因となるフッ素原子を含まずに優れた撥水性、撥油性を発現することが可能な撥水撥油材料であって、以下の特徴を有する撥水撥油材料である。 The water- and oil-repellent material of the present invention is a water- and oil-repellent material capable of exhibiting excellent water and oil repellency without containing fluorine atoms that contribute to environmental pollution, and has the following features. It is a water- and oil-repellent material.

〔1〕 複数のイソシアネート基を有する化合物、イソシアネート基と反応する複数の官能基を有する変性シリコーン化合物、ポリエチレングリコール及び架橋剤を含むことを特徴とする撥水撥油性膜形成用塗布組成物。
〔2〕 前記変性シリコーン化合物が、両末端水酸基変性シリコーン化合物を主成分とし、さらに両末端アミン変性シリコーン化合物を含むことを特徴とする前記〔1〕に記載の撥水撥油性膜形成用塗布組成物。
〔3〕 前記〔1〕又は前記〔2〕に記載の撥水撥油性膜形成用塗布組成物の硬化物であって、親水性ドメインが撥水性ドメインの最表面に分散して存在して形成されたことを特徴とする撥水撥油性膜。
[1] A coating composition for forming a water- and oil-repellent film, which comprises a compound having a plurality of isocyanate groups, a modified silicone compound having a plurality of functional groups reacting with the isocyanate group, polyethylene glycol and a cross-linking agent.
[2] The coating composition for forming a water-repellent oil-repellent film according to the above [1], wherein the modified silicone compound contains a both-terminal hydroxyl-modified silicone compound as a main component and further contains both-terminal amine-modified silicone compounds. thing.
[3] A cured product of the coating composition for forming a water-repellent oil-repellent film according to the above [1] or [2], wherein the hydrophilic domain is dispersed and present on the outermost surface of the water-repellent domain. A water- and oil-repellent film characterized by being made.

本発明で得られるフッ素を含まない撥水撥油材料は、フッ素を含まないことにより環境負荷が非常に小さな材料となる。また、従来得ることのできなかった撥水撥油性を向上すること、特に高い撥水性能を維持してより高い撥油性能を実現することができた。 The fluorine-free water-repellent and oil-repellent material obtained in the present invention is a material having a very small environmental load because it does not contain fluorine. In addition, it was possible to improve the water-repellent and oil-repellent properties that could not be obtained in the past, and to maintain particularly high water-repellent performance and realize higher oil-repellent performance.

本発明の撥水撥油性膜形成用塗布組成物は、複数のイソシアネート基を有する化合物、イソシナネート基と反応する複数の官能基を有する変性シリコーン化合物、ポリエチレングリコール及び架橋剤を含むことを特徴とする。 The coating composition for forming a water- and oil-repellent film of the present invention is characterized by containing a compound having a plurality of isocyanate groups, a modified silicone compound having a plurality of functional groups reacting with an isocyanate group, polyethylene glycol and a cross-linking agent. ..

複数のイソシアネート基を有する化合物としては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、変性ジフェニルメタンジイソシアネート(変性MDI)、水添化キシリレンジイソシアネート(H−XDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HMDI)、トリメチルヘキサメチレンジイソシアネート(TMHMDI)、テトラメチルキシリレンジイソシアネート(m−TMXDI)、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート(NBDI)、1,3−ビス(イソシアネートメチル)シクロヘキサン(H6XDI)、1,5−ナフタレンジイソシアネート、ジシクロヘキシルジイソシアネート(H12MDI)等が挙げられる。これらのイソシアネート化合物は単独、もしくは二種類以上組み合わせて使用しても良く、アダクト体,ビュレット体,イソシアヌレート体のプレポリマーとして使用してもよい。 Examples of the compound having a plurality of isocyanate groups include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), modified diphenylmethane diisocyanate (modified MDI), hydrogenated xylylene diisocyanate (H-XDI), and xylylene diisocyanate (XDI). ), Hexamethylene diisocyanate (HMDI), trimethylhexamethylene diisocyanate (TMHMDI), tetramethylxylylene diisocyanate (m-TMXDI), isophorone diisocyanate (IPDI), norbornene diisocyanate (NBDI), 1,3-bis (isocyanatemethyl) cyclohexane (H6XDI), 1,5-naphthalenediisocyanate, dicyclohexyldiisocyanate (H12MDI) and the like can be mentioned. These isocyanate compounds may be used alone or in combination of two or more, or may be used as a prepolymer of an adduct, a burette, or an isocyanurate.

イソシアネート基と反応する複数の官能基を有する変性シリコーン化合物としては、官能基はシリコーンの直鎖の末端又は側鎖の末端に複数官能基を有する者であれば良いが、好ましくは両末端水酸基変性シリコーン化合物及び両末端アミン変性シリコーン化合物を挙げることができる。 The modified silicone compound having a plurality of functional groups that reacts with the isocyanate group may be any compound having a plurality of functional groups at the linear end or the end of the side chain of the silicone, but is preferably modified with hydroxyl groups at both ends. Examples thereof include silicone compounds and both-terminal amine-modified silicone compounds.

ポリエチレングリコールは、各種分子量の市販のポリエチレングリコールを用いることができる。その中でも、平均分子量が200〜4000程度のポリエチレングリコールを用いることが好ましい。 As the polyethylene glycol, commercially available polyethylene glycol having various molecular weights can be used. Among them, it is preferable to use polyethylene glycol having an average molecular weight of about 200 to 4000.

架橋剤は、前記イソシアネート基を有する化合物、前記変性シリコーン化合物及びポリエチレングリコールと反応する基を有する化合物であれば良いが、特に、エポキシ基を有する化合物であることが好ましい。 The cross-linking agent may be any compound having an isocyanate group, the modified silicone compound and a compound having a group reacting with polyethylene glycol, and a compound having an epoxy group is particularly preferable.

本発明の撥水撥油性膜形成用塗布組成物は、撥水撥油性膜を形成するために組成物中に前記イソシアネート基を有する化合物、前記変性シリコーン化合物、前記ポリエチレングリコール及び前記架橋剤を含んでいるが、前記イソシアネート基を有する化合物が、前記変性シリコーン化合物、前記ポリエチレングリコール及び前記架橋剤とそれぞれ反応し、前記架橋剤が、前記変性シリコーン化合物及び前記ポリエチレングリコールと反応する。 The coating composition for forming a water-repellent oil-repellent film of the present invention contains the compound having an isocyanate group, the modified silicone compound, the polyethylene glycol and the cross-linking agent in the composition in order to form the water-repellent oil-repellent film. However, the compound having an isocyanate group reacts with the modified silicone compound, the polyethylene glycol and the cross-linking agent, respectively, and the cross-linking agent reacts with the modified silicone compound and the polyethylene glycol.

撥水撥油性膜形成用塗布組成物を構成する各成分の割合は、以下のようになるよう混合するのが好ましい。
前記イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する前記変性シリコーン化合物と前記ポリエチレングリコールの水酸基(−OH)とアミノ基(−NH)総量が、当量比で{(−OH)+(−NH)}/(−NCO)=2〜20になるように、好ましくは、2〜11になるようにし、かつ、前記変性シリコーン化合物が前記変性シリコーン化合物と前記ポリエチレングリコールの合計に対して、重量%で2〜10%の範囲になるようにして配合するのが好ましい。
The ratio of each component constituting the coating composition for forming a water- and oil-repellent film is preferably mixed as follows.
The total amount of the hydroxyl group (-OH) and amino group (-NH 2 ) of the modified silicone compound and the polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is {(-OH) + (-) in an equivalent ratio. NH 2 )} / (-NCO) = 2 to 20, preferably 2 to 11, and the modified silicone compound is relative to the total of the modified silicone compound and the polyethylene glycol. It is preferable to mix the mixture in the range of 2 to 10% by weight.

そして、架橋剤は、複数のイソシアネート基を有する化合物、イソシアネート基と反応する複数の官能基を有する変性シリコーン化合物、ポリエチレングリコール及び架橋剤の合計重量の3〜15重量%、好ましくは4〜10重量%の割合で加える。 The cross-linking agent is 3 to 15% by weight, preferably 4 to 10% by weight, based on the total weight of the compound having a plurality of isocyanate groups, the modified silicone compound having a plurality of functional groups reacting with the isocyanate groups, polyethylene glycol and the cross-linking agent. Add at a rate of%.

更には、本発明の撥水撥油性膜形成用塗布組成物には、撥水撥油性膜形成用塗布組成物中の化合物の反応を促進するための硬化触媒や反応開始剤を添加しても良い。 Further, even if a curing catalyst or a reaction initiator for accelerating the reaction of the compound in the coating composition for forming a water-repellent oil-repellent film is added to the coating composition for forming a water-repellent oil-repellent film of the present invention. good.

硬化触媒としては、公知の硬化触媒を広く用いることができ、特に制限はないが、例えば、有機金属化合物や第3級アミン類が挙げられ、特に有機錫系触媒、有機チタン系触媒、有機ジルコニウム化合物系触媒を用いることが好ましい。前記有機金属化合物としては、スタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジオクチル錫ジラウレート、オクチル酸ニッケル、ナフテン酸ニッケル、オクチル酸コバルト、ナフテン酸コバルト、オクチル酸ビスマス、ナフテン酸ビスマス、ジルコニウムテトラアセチルアセトネート、ジルコニウムテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)等が挙げられる。これらを1種または2種以上を組み合わせて使用することができる。硬化触媒の使用量は特に限定される訳ではないが、前記イソシアネート基を有する化合物の質量100質量部に対して0.01〜3質量部であることが好ましい。 As the curing catalyst, known curing catalysts can be widely used, and there are no particular restrictions, but examples thereof include organometallic compounds and tertiary amines, and in particular, organotin catalysts, organotitanium catalysts, and organic zirconium. It is preferable to use a compound catalyst. Examples of the organic metal compound include stanus diacetate, stanus dioctate, stanus dilaurate, stanus dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyltin dilaurate, nickel octylate, and the like. Nickel naphthenate, cobalt octylate, cobalt naphthenate, bismuth octylate, bismuth naphthenate, zirconium tetraacetylacetonate, zirconiumtetraacetylacetonate, titanium diisopropoxybis (ethylacetacetate), zirconium dibutoxybis (ethylacetate) Acetate) and the like. These can be used alone or in combination of two or more. The amount of the curing catalyst used is not particularly limited, but is preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the compound having an isocyanate group.

前記反応開始剤としては、カチオン重合開始剤及びラジカル重合開始剤から選択されるが、カチオン重合開始剤を用いることが好ましい。前記カチオン重合開始剤としては、公知のカチオン重合開始剤を広く用いることができる。
前記反応開始剤の使用量は特に限定される訳ではないが、前記架橋剤の質量100質量部に対して0.1〜5質量部であることが好ましい。
The reaction initiator is selected from a cationic polymerization initiator and a radical polymerization initiator, but it is preferable to use a cationic polymerization initiator. As the cationic polymerization initiator, a known cationic polymerization initiator can be widely used.
The amount of the reaction initiator used is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the cross-linking agent.

市販のカチオン開始剤の例としては、例えば、アデカオプトンCP77」、「アデカオプトンCP66」(以上、(株)ADEKA製)、「CI−2639」、「CI−2624」(以上、日本曹達(株)製)、「サンエイドSI−45」「サンエイドSI−60L」、「サンエイドSI−80L」、「サンエイドSI−100L」(以上、三新化学工業(株)製)、イルガキュア250(チバ・スペシャリティ・ケミカルズ(株)製)等が挙げられる。これらを1種または2種以上を組み合わせて使用することができる。 Examples of commercially available cation initiators include, for example, Adeka Opton CP77, Adeka Opton CP66 (above, manufactured by ADEKA Corporation), "CI-2339", and "CI-2624" (above, manufactured by Nippon Soda Corporation). ), "Sun Aid SI-45", "Sun Aid SI-60L", "Sun Aid SI-80L", "Sun Aid SI-100L" (all manufactured by Sanshin Chemical Industry Co., Ltd.), Irgacure 250 (Ciba Specialty Chemicals) Co., Ltd.) and the like. These can be used alone or in combination of two or more.

本発明の撥水撥油性膜形成用塗布組成物が液体である場合は、そのままあるいは溶媒で希釈することにより撥水撥油性膜形成用塗布液(以下適宜「本発明の塗布液」という。)として用いることができる。
本発明の撥水撥油性膜形成用塗布組成物が、個体あるいは粘性の高い液体である場合は、溶媒に溶かして撥水撥油性膜形成用塗布液として用いることができる。本発明の撥水撥油性膜形成用塗布組成物の溶液の濃度は、撥水撥油性膜の薄膜を作製する場合、1wt%〜90wt%程度であることが望ましい。
When the coating composition for forming a water-repellent oil-repellent film of the present invention is a liquid, the coating liquid for forming a water-repellent oil-repellent film is appropriately referred to as "coating liquid of the present invention" as it is or by diluting with a solvent. Can be used as.
When the coating composition for forming a water-repellent oil-repellent film of the present invention is a solid or a highly viscous liquid, it can be dissolved in a solvent and used as a coating liquid for forming a water-repellent oil-repellent film. The concentration of the solution of the coating composition for forming a water-repellent oil-repellent film of the present invention is preferably about 1 wt% to 90 wt% when a thin film of the water-repellent oil-repellent film is produced.

前記溶媒としては、アセトン、クロロホルム、エタノール、イソプロパノール、メタノール、トルエン、テトラヒドロフラン(THF)、水、ベンゼン、ベンジルアルコール、1,4−ジオキサン、プロパノール、四塩化炭素、シクロヘキサン、シクロヘキサノン、塩化メチレン、フェノール、ピリジン、トリクロロエタン、酢酸、酢酸エチル、酢酸ブチル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、アセトニトリル、N−メチルモルホリン−N−オキシド、ブチレンカーボネート、1,4−ブチロラクトン、ジエチルカーボネート、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジオキソラン、エチルメチルカーボネート、メチルホルマート、3−メチルオキサゾリジン−2−オン、メチルプロピオネート、2−メチルテトラヒドロフラン、スルホランを用いることができる。 Examples of the solvent include acetone, chloroform, ethanol, isopropanol, methanol, toluene, tetrahydrofuran (THF), water, benzene, benzyl alcohol, 1,4-dioxane, propanol, carbon tetrachloride, cyclohexane, cyclohexanone, methylene chloride, phenol, and the like. Pyridine, trichloroethane, acetic acid, ethyl acetate, butyl acetate, N, N-dimethylformamide, dimethylsulfoxide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethylcarbonate, acetonitrile, N- Methylmorpholine-N-oxide, butylene carbonate, 1,4-butylolactone, diethyl carbonate, diethyl ether, 1,2-dimethoxyethane, 1,3-dimethyl-2-imidazolidinone, 1,3-dioxolane, ethylmethylcarbonate , Methylformate, 3-methyloxazolidin-2-one, methylpropionate, 2-methyltetratetra, sulfolane can be used.

本発明の塗布液は、前記撥水撥油性膜形成用塗布組成物を混合し、場合によっては溶媒に溶かした後、撹拌して得られる。撹拌は、室温によっても行うことができるが、長時間を要するので、40℃から80℃に加温して行うことが好ましい。
撹拌時間としては、温度および組成物の組み合わせによって異なるが、通常、40〜60℃に加温した場合は、1時間以上24時間程度である。好ましくは、3時間から24時間である。時間が短いと後述する親水性ドメインと撥水性マトリックスのドメインマトリックス形成が不十分のため撥水撥油効果が十分に得られない。また、時間が長すぎてもドメインマトリックス形状が大きくなり過ぎ撥水撥油効果のある親水性ドメインと撥水性マトリックスの相分離構造が得られない。
The coating liquid of the present invention is obtained by mixing the above-mentioned coating composition for forming a water- and oil-repellent film, dissolving it in a solvent in some cases, and then stirring it. Although stirring can be performed at room temperature, it takes a long time, so it is preferable to heat the mixture to 40 ° C to 80 ° C.
The stirring time varies depending on the combination of temperature and composition, but is usually about 1 hour or more and 24 hours when heated to 40 to 60 ° C. It is preferably 3 to 24 hours. If the time is short, the water- and oil-repellent effect cannot be sufficiently obtained because the domain matrix formation of the hydrophilic domain and the water-repellent matrix described later is insufficient. Further, if the time is too long, the domain matrix shape becomes too large, and a phase-separated structure of the hydrophilic domain having a water-repellent and oil-repellent effect and the water-repellent matrix cannot be obtained.

本発明の撥水撥油性膜は、本発明の塗布液を基板上に塗布することにより、前述の化合物群が自己組織化により、親水性ドメインと撥水性ドメインの相に分散して形成される。
自己組織化とは、比較的小さな分子が自然に集まって高次構造を構築するものである。例えば、結晶やミセル、単分子膜、メソポーラス構造化等が挙げられる。本発明の自己組織化で形成される相は、親水性ドメインと撥水性ドメインである。
The water- and oil-repellent film of the present invention is formed by applying the coating liquid of the present invention on a substrate, and the above-mentioned compound group is dispersed in a phase of a hydrophilic domain and a water-repellent domain by self-assembly. ..
Self-organization is the natural assembly of relatively small molecules to build higher-order structures. For example, crystals, micelles, monolayers, mesoporous structuring and the like can be mentioned. The phases formed by the self-assembly of the present invention are the hydrophilic domain and the water repellent domain.

本発明では、本発明の塗布液を基板上に塗布することにより、極性の違いにより相分離構造を形成するものである。この時、塗布液中の化合物を硬化処理をすることにより撥水撥油性膜を形成させることができる。
すなわち、本発明の撥水撥油性膜は、前記〔1〕又は前記〔2〕に記載の撥水撥油性膜形成用塗布組成物の硬化物であって、親水性ドメインが撥水性ドメインの最表面に分散して存在して形成されたことを特徴とする。
In the present invention, the coating liquid of the present invention is applied onto a substrate to form a phase-separated structure due to the difference in polarity. At this time, a water- and oil-repellent film can be formed by curing the compound in the coating liquid.
That is, the water-repellent oil-repellent film of the present invention is a cured product of the coating composition for forming the water-repellent oil-repellent film according to the above [1] or [2], and the hydrophilic domain is the most water-repellent domain. It is characterized by being dispersed and present on the surface.

本発明の撥水撥油性膜は、フッ素含有官能基を含まないものであり、親水性ドメインが撥水性ドメイン中分散して存在する構造により、単一物質のみで達成可能な撥油特性を超える撥水撥油性を発現するものである。 The water- and oil-repellent membrane of the present invention does not contain a fluorine-containing functional group, and the structure in which hydrophilic domains are dispersed in the water-repellent domain exceeds the oil-repellent properties that can be achieved with only a single substance. It develops water and oil repellency.

本発明の撥水撥油性膜は、親水性ドメインが撥水性ドメイン中に分散する構成が最表面に形成されることでその特性が発現される。更には、最表面の親水性、撥水性の構成比率や形状が後述の形態を満足するのが好ましい。 The water- and oil-repellent film of the present invention exhibits its characteristics by forming a structure in which the hydrophilic domain is dispersed in the water-repellent domain on the outermost surface. Further, it is preferable that the composition ratio and shape of the hydrophilicity and water repellency of the outermost surface satisfy the morphology described later.

すなわち、本発明の撥水撥油性膜は、膜表面における親水ドメイン面積が20から70%が好ましい。20%に満たない場合は目的とする撥油性を得ることが出来ない。70%を超える場合、親水性が高くなり目的とする撥水性を発現する事が出来ない。好ましくは、30から60%である。 That is, the water- and oil-repellent film of the present invention preferably has a hydrophilic domain area of 20 to 70% on the film surface. If it is less than 20%, the desired oil repellency cannot be obtained. If it exceeds 70%, the hydrophilicity becomes high and the desired water repellency cannot be exhibited. It is preferably 30 to 60%.

本発明での親水性ドメインと撥水性ドメインの面積は、走査型プローブ顕微鏡の位相モードによる測定により得られデータの位相の異なる状態により測定する。(位相差が小さい状態が撥水、位相差が大きい状態が親水)。すなわち、位相の異なる状態をイメージングした後、親水性ドメイン面積比率は、異なる位相像の面積比率により算出することができる。 The areas of the hydrophilic domain and the water-repellent domain in the present invention are measured by the phase mode measurement of the scanning probe microscope and are measured by the different phases of the data. (Water repellent when the phase difference is small, hydrophilic when the phase difference is large). That is, after imaging the states having different phases, the hydrophilic domain area ratio can be calculated from the area ratios of the different phase images.

本発明の親水性ドメインの形状は特に限定されない。親水性ドメインの形状は、相分離による自己組織化により形成され、粒子状(球状、楕円球状及びその変形した形状)、繊維状等の形状をとる。親水性ドメインのサイズは5から100nmである事が好ましい。5nmに満たない場合は目的とする撥油性を得ることが出来ない。100nmを超える場合、親水性が高くなり目的とする撥水性を発現する事が出来ない。好ましくは、8から50nmである。 The shape of the hydrophilic domain of the present invention is not particularly limited. The shape of the hydrophilic domain is formed by self-organization by phase separation, and takes the shape of particles (spherical, elliptical spherical and its deformed shape), fibrous and the like. The size of the hydrophilic domain is preferably 5 to 100 nm. If it is less than 5 nm, the desired oil repellency cannot be obtained. If it exceeds 100 nm, the hydrophilicity becomes high and the desired water repellency cannot be exhibited. It is preferably 8 to 50 nm.

親水性ドメインとしては、極性を有し表面自由エネルギーを大きくする効果を有する親水性の極性を有する基及び反応により極性基が結合したものが集まったものである。極性を有する基としては、例えば、イソシアネート基、ヒドロキシル基、アミノ基、(メタ)アクロイル基、エポキシ基、チオール基、カルボキシル基、酸無水物変性基、シアノ基が挙げられ、反応により極性基が結合したものとしては、例えば、アミド結合、ウレタン結合、ウレア結合、ペプチド結合、エーテル結合、エステル結合、スルフィド結合、チオエステル結合等が挙げられる。 As the hydrophilic domain, a group having a hydrophilic polarity having an effect of increasing the surface free energy and a group having a polar group bonded by a reaction are collected. Examples of the polar group include an isocyanate group, a hydroxyl group, an amino group, a (meth) acloyl group, an epoxy group, a thiol group, a carboxyl group, an acid anhydride-modified group and a cyano group, and the polar group is formed by the reaction. Examples of the bonded group include an amide bond, a urethane bond, a urea bond, a peptide bond, an ether bond, an ester bond, a sulfide bond, a thioester bond and the like.

撥水性ドメインとしては、極性が低く表面自由エネルギーを小さくする効果を有する非極性基及び反応により非極性基が結合したものが集まったものである。非極性基を有する基としては、例えば、ビニル基、脂肪族炭化水素基(アルキル基、シクロアルキル基、アルケニル基、アルケニレン基、アルコキシ基、アダマンチル基)、芳香族炭化水素基(アリール基、アラルキル基、アリーレン基)が挙げられ、反応により非極性基が結合したものとしては、炭素−ケイ素結合、シロキサン結合、アルカン、シクロアルカン等が挙げられる。
これらは、単独、もしくは二種類以上組み合わせでドメインを形成する。
The water-repellent domain is a collection of non-polar groups having low polarity and having an effect of reducing the surface free energy and those to which non-polar groups are bonded by a reaction. Examples of the group having a non-polar group include a vinyl group, an aliphatic hydrocarbon group (alkyl group, cycloalkyl group, alkenyl group, alkenylene group, alkoxy group, adamantyl group), and aromatic hydrocarbon group (aryl group, aralkyl group). Group, arylene group), and examples of the non-polar group bonded by the reaction include carbon-silicon bond, siloxane bond, alkane, cycloalkane and the like.
These form a domain alone or in combination of two or more.

本発明の撥水撥油性膜は、撥水性ドメインに親水性ドメインを分散させてあることを特徴とし、撥水性組成物に対して親水性組成物を後記する割合で混合することによって生産することが可能である。親水性組成物の混合割合は、撥水性組成物に対して50%以下であればよいが、少なくとも撥水撥油性膜の表面において親水性ドメインの面積が2%以上になるように混合する必要がある。 The water- and oil-repellent film of the present invention is characterized in that the hydrophilic domain is dispersed in the water-repellent domain, and is produced by mixing the hydrophilic composition with the water-repellent composition at the ratio described later. Is possible. The mixing ratio of the hydrophilic composition may be 50% or less with respect to the water-repellent composition, but it is necessary to mix at least so that the area of the hydrophilic domain is 2% or more on the surface of the water-repellent oil-repellent film. There is.

本発明の塗布液は、従来既知の方法により被処理物に塗布することができる。本発明の塗布液をそのまま基材へ浸漬塗布、スプレー塗布、泡塗布などのような既知の方法により塗布させても良いし、塗布した後加熱や紫外線照射等により硬化固定化しても良い。又は、撥水撥油性膜形成用塗布組成物を有機溶剤または水に分散して希釈して塗布液とした後、既知の方法により基材の表面に塗布後、乾燥させ、加熱や紫外線照射等により硬化固定化させても良い。好ましくは、本発明の塗布液に適当な架橋剤を加えて混合してから既知の方法により基材の表面に塗布後、硬化固化を行うのがよい。 The coating liquid of the present invention can be applied to an object to be treated by a conventionally known method. The coating liquid of the present invention may be directly applied to the substrate by a known method such as dip coating, spray coating, foam coating, etc., or may be cured and fixed by heating, ultraviolet irradiation, or the like after coating. Alternatively, the coating composition for forming a water- and oil-repellent film is dispersed in an organic solvent or water and diluted to obtain a coating liquid, which is then applied to the surface of the substrate by a known method, dried, heated, irradiated with ultraviolet rays, or the like. It may be cured and fixed by. Preferably, an appropriate cross-linking agent is added to the coating liquid of the present invention, mixed, coated on the surface of the substrate by a known method, and then cured and solidified.

本発明の撥水撥油性膜形成用塗布液に架橋剤を加えて架橋することにより、3次元網目構造が構築され機械的特性や耐熱性が向上する。さらに、本発明の撥水撥油性膜形成用塗布液に他の紫外線吸収剤、熱戦吸収材、抗菌剤、帯電防止剤、塗料定着剤、などの機能性成分や着色のための顔料、染料を添加して併用することも可能である。 By adding a cross-linking agent to the coating liquid for forming a water-repellent oil-repellent film of the present invention and cross-linking, a three-dimensional network structure is constructed and mechanical properties and heat resistance are improved. Further, the coating liquid for forming a water- and oil-repellent film of the present invention is provided with other functional components such as ultraviolet absorbers, heat-resistant absorbents, antibacterial agents, antistatic agents, paint fixing agents, and pigments and dyes for coloring. It can also be added and used in combination.

本発明の実施例について具体的に説明するが、実施例が本発明を限定するものではない。(「部」は「重量部」を意味し、「%」は「重量%」を意味する。) Examples of the present invention will be specifically described, but the examples do not limit the present invention. ("Parts" means "parts by weight" and "%" means "% by weight".)

〈熱硬化性組成物溶液の調整〉
〔実施例1〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン12部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン0.4部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂26部(YDCN−700−2:東都化成製)、熱開始剤0.8部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で3時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を237部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約4当量に相当する。
<Preparation of thermosetting composition solution>
[Example 1]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 12 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Biz (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 0. Mix 4 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.). Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 26 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), thermal initiator 0.8 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 3 hours. Then, 237 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 4 equivalents.

〔実施例2〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン19部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン0.6部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂35部(YDCN−700−2:東都化成製)、熱開始剤1.1部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で3時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を356部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約6当量に相当する。
[Example 2]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 19 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Bis (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 0. Mix 6 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.). Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 35 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), thermal initiator 1.1 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 3 hours. Then, 356 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 6 equivalents.

〔実施例3〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン31部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン0.9部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂55部(YDCN−700−2:東都化成製)、熱開始剤1.7部(サンエイドSI−60L:三新化学工業製)を混合し、20%になるようTHF溶液に溶解し、50℃で24時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を593部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約10当量に相当する。
[Example 3]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 31 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Bis (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 0. 9 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed. Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 55 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), heat initiator 1.7 Part (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) was mixed, dissolved in a THF solution to 20%, and stirred at 50 ° C. for 24 hours. Then, 593 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 10 equivalents.

〔実施例4〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン37部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン1.1部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂35部(YDCN−700−2:東都化成製)、熱開始剤1.1部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で5時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を330部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約6当量に相当する。
[Example 4]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 37 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Biz (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 1. 1 part (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.) is mixed. Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 35 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), thermal initiator 1.1 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 5 hours. Then, 330 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 6 equivalents.

〔実施例5〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン8部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン0.2部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂36部(YDCN−700−2:東都化成製)、熱開始剤1.1部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で5時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を372部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約6当量に相当する。
[Example 5]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 8 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Bis (4-hydroxybutyl) ttramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 0. Mix 2 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.). Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 36 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), thermal initiator 1.1 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 5 hours. Then, 372 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 6 equivalents.

〔実施例6〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン61部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン1.9部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂54部(YDCN−700−2:東都化成製)、熱開始剤1.6部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で5時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を550部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約10当量に相当する。
[Example 6]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 61 parts of hydroxyl-terminated polysiloxane at both ends (1,3-Biz (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and amine-modified polysiloxane at both ends 1. 9 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed. Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 54 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), heat initiator 1.6 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 5 hours. Then, 550 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 10 equivalents.

〔実施例7〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン13部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン0.4部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂56部(YDCN−700−2:東都化成製)、熱開始剤1.7部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で5時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を620部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約10当量に相当する。
[Example 7]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 13 parts of hydroxyl-terminated polysiloxane at both ends (1,3-Biz (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and amine-modified polysiloxane at both ends 0. Mix 4 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.). Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 56 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), heat initiator 1.7 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 5 hours. Then, 620 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 10 equivalents.

〔実施例8〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン19部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン0.6部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂35部(YDCN−700−2:東都化成製)、熱開始剤1.1部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で3時間撹拌した。その後、ポリエチレングリコール(PEG#400:ナカライテスク製)を356部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約2.7当量に相当する。
[Example 8]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 19 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Bis (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 0. Mix 6 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.). Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 35 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), thermal initiator 1.1 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 3 hours. Then, 356 parts of polyethylene glycol (PEG # 400: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 2.7 equivalents.

〔実施例9〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン66部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン1.98部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂109部(YDCN−700−2:東都化成製)、熱開始剤3.3部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で5時間撹拌した。その後、ポリエチレングリコール(PEG#4000:ナカライテスク製)を1248部加え熱硬化性組成物溶液とした。
この溶解液は、イソシアネート基を有する化合物のイソシアネート基(−NCO)に対する変性シリコーン化合物とポリエチレングリコールの水酸基(−OH)とアミノ基(−NH2)総量が、当量比[{(−OH)+(−NH2)}/(−NCO)]で約4当量に相当する。
[Example 9]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 66 parts of both-terminal hydroxyl-modified polysiloxane (1,3-Biz (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and both-terminal amine-modified polysiloxane 1. 98 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed. Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 109 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), thermal initiator 3.3 Parts (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) were mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, and the mixture was stirred at 50 ° C. for 5 hours. Then, 1248 parts of polyethylene glycol (PEG # 4000: manufactured by Nacalai Tesque) was added to prepare a thermosetting composition solution.
In this solution, the total amount of the hydroxyl group (-OH) and amino group (-NH2) of the modified silicone compound and polyethylene glycol with respect to the isocyanate group (-NCO) of the compound having an isocyanate group is the equivalent ratio [{(-OH) + ( -NH2)} / (-NCO)] corresponds to about 4 equivalents.

〔比較例1〕
イソシアネート化合物100部(D−101:三井化学ポリウレタン製)と両末端水酸基変性ポリシロキサン49部(1,3−Bis(4−hydroxybutyl)tetramethyldisiloxane:東京化成工業製)と両末端アミン変性ポリシロキサン1.5部(KF−8010:信越化学工業製)を混合する。ついで硬化触媒:4価のスズ化合物0.8部(No.918:三共有機合成製)と架橋成分:ノボラック樹脂10部(YDCN−700−2:東都化成製)、熱開始剤0.3部(サンエイドSI−60L:三新化学工業製)を混合し、後で加えるポリエチレングリコールを含む溶質の合計が20%になるようTHF溶液に溶解し、50℃で4時間撹拌したのち熱硬化性組成物溶液とした。
[Comparative Example 1]
100 parts of isocyanate compound (D-101: manufactured by Mitsui Chemicals Polyurethane), 49 parts of hydroxyl-terminated polysiloxane at both ends (1,3-Biz (4-hydroxybutyl) tetramethyldisiloxane: manufactured by Tokyo Chemical Industry) and amine-modified polysiloxane at both ends 1. Mix 5 parts (KF-8010: manufactured by Shin-Etsu Chemical Co., Ltd.). Next, curing catalyst: 0.8 part of tetravalent tin compound (No. 918: manufactured by Sanko Machinery Co., Ltd.) and cross-linking component: 10 parts of Novorak resin (YDCN-700-2: manufactured by Toto Kasei), heat initiator 0.3 Part (Sun Aid SI-60L: manufactured by Sanshin Chemical Industry Co., Ltd.) was mixed, dissolved in a THF solution so that the total amount of the solute containing polyethylene glycol added later was 20%, stirred at 50 ° C. for 4 hours, and then thermosetting. The composition solution was used.

〈膜状硬化物作製〉
実施例1から8と比較例1で得られた熱硬化性組成物溶液をシリコンウェハ基板上にキャストし、180℃で4時間加熱硬化し、厚さ2μmの透明な膜状硬化物を得た。
<Making a film-like cured product>
The thermosetting composition solutions obtained in Examples 1 to 8 and Comparative Example 1 were cast on a silicon wafer substrate and heat-cured at 180 ° C. for 4 hours to obtain a transparent film-like cured product having a thickness of 2 μm. ..

〈膜状硬化物の撥水撥油性評価〉
実施例1から8と比較例1で得られた膜状硬化物の接触角を接触角計(協和界面科学株式会社製 Drop Master、解析ソフトウェア FAMAS)により測定した。滴下液は撥油性評価にオレイン酸(OA)とn−ヘキサデカン(HD)、撥水性評価に蒸留水(DW)を用いた。滴下量は2μLで行い、測定液が膜に着滴1秒後の接触角を測定した。結果を表1に示す。
<Evaluation of water and oil repellency of film-like cured products>
The contact angles of the film-like cured products obtained in Examples 1 to 8 and Comparative Example 1 were measured by a contact angle meter (Drop Master manufactured by Kyowa Interface Science Co., Ltd., analysis software FAMAS). Oleic acid (OA) and n-hexadecane (HD) were used for the evaluation of oil repellency, and distilled water (DW) was used for evaluation of water repellency. The dropping amount was 2 μL, and the contact angle 1 second after the measuring solution was dropped on the membrane was measured. The results are shown in Table 1.

Figure 0006970542
Figure 0006970542

実施例1から3は、OA接触角が100°以上得られた。PEG未添加の比較例1のOA接触角が低い値であったのと比べ、PEGの過剰添加により優れた撥油性を有することが分かる。
実施例4から7でOA接触角が100°以上得られ、親水成分が未添加の比較例1のOA接触角が低いことから、疎水成分に対し親水性成分の比率が多い方が撥油性を有することが分かる。
実施例8では、オレイン酸の接触角が100°以上得られた。PEGの分子量が1000でも400と同様に優れた撥油性を有することが分かる。
また、実施例2と9では、n−ヘキサデカン接触角が49°、59°と比較例1に示された39°に比べ大きな値が得られることが確認された。
以上に示すように、本発明の撥水撥油性膜形成用塗布組成物はこれまでのフッ素フリー材料では到達できなかった撥水性を維持した状態でオレイン酸やn−ヘキサデカンに対する大きな接触角、言い換えれば撥油特性を得る事が可能であった。
In Examples 1 to 3, an OA contact angle of 100 ° or more was obtained. It can be seen that the excessive addition of PEG has excellent oil repellency, as compared with the low OA contact angle of Comparative Example 1 in which PEG was not added.
Since the OA contact angle of 100 ° or more was obtained in Examples 4 to 7 and the OA contact angle of Comparative Example 1 to which the hydrophilic component was not added was low, the one having a large ratio of the hydrophilic component to the hydrophobic component was more oil repellent. It turns out that it has.
In Example 8, the contact angle of oleic acid was 100 ° or more. It can be seen that even if the molecular weight of PEG is 1000, it has excellent oil repellency as well as 400.
Further, in Examples 2 and 9, it was confirmed that the n-hexadecane contact angles were 49 ° and 59 °, which were larger values than 39 ° shown in Comparative Example 1.
As shown above, the coating composition for forming a water- and oil-repellent film of the present invention has a large contact angle with oleic acid and n-hexadecane while maintaining water repellency, which was not possible with conventional fluorine-free materials, in other words. It was possible to obtain oil-repellent properties.

本発明のフッ素含まない撥水撥油材料は、透明性、防汚性、撥水撥油性、表面滑り性、耐擦傷性及び耐熱性等の特性を有し、光ファイバーの鞘材、ガラスフィルター用保護膜、太陽電池等の光学材料関係、ガラストップコンロ、IHヒータ用天板、摺動表面処理膜等の耐熱性と耐摩耗性が求められる各用途に好適であるのに加えて、化粧用用途にも好適である。
The fluorine-free water- and oil-repellent material of the present invention has properties such as transparency, stain resistance, water- and oil-repellent properties, surface slipperiness, scratch resistance and heat resistance, and is used for optical fiber sheath materials and glass filters. In addition to being suitable for various applications that require heat resistance and wear resistance, such as protective films, optical materials such as solar cells, glass top stoves, top plates for IH heaters, and sliding surface treatment films, for cosmetics. It is also suitable for applications.

Claims (2)

複数のイソシアネート基を有する化合物、イソシアネート基と反応する複数の官能基を有する変性シリコーン化合物、ポリエチレングリコール及び架橋剤を含む撥水撥油性膜形成用塗布組成物であって、
前記変性シリコーン化合物が、末端水酸基変性シリコーン化合物を主成分とし、さらに両末端アミン変性シリコーン化合物を含み、
前記イソシアネート基を有する化合物100質量部に対して、前記水酸基変性シリコーン化合物が8〜66質量部、前記両末端アミン変性シリコーン化合物が0.2〜1.98質量部、前記ポリエチレングリコールが237〜1248質量部及び架橋剤が26〜109質量部であることを特徴とする撥水撥油性膜形成用塗布組成物。
A coating composition for forming a water-repellent oil-repellent film , which comprises a compound having a plurality of isocyanate groups, a modified silicone compound having a plurality of functional groups reacting with the isocyanate group, polyethylene glycol and a cross-linking agent.
The modified silicone compound contains a terminal hydroxyl group-modified silicone compound as a main component and further contains both terminal amine-modified silicone compounds.
The hydroxyl group-modified silicone compound is 8 to 66 parts by mass, the both-terminal amine-modified silicone compound is 0.2 to 1.98 parts by mass, and the polyethylene glycol is 237 to 1248 parts by mass with respect to 100 parts by mass of the compound having an isocyanate group. A coating composition for forming a water- and oil-repellent film , which comprises 26 to 109 parts by mass and a cross-linking agent.
請求項1に記載の撥水撥油性膜形成用塗布組成物の硬化物であって、親水性ドメインが撥水性ドメインの最表面に分散して存在して形成されたことを特徴とする撥水撥油性膜。 A cured product of the coating composition for forming a water-repellent oil-repellent film according to claim 1, wherein the hydrophilic domains are dispersed and present on the outermost surface of the water-repellent domain. Oil repellent film.
JP2017131596A 2017-07-05 2017-07-05 Coating composition for forming water- and oil-repellent film and water- and oil-repellent film Active JP6970542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017131596A JP6970542B2 (en) 2017-07-05 2017-07-05 Coating composition for forming water- and oil-repellent film and water- and oil-repellent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131596A JP6970542B2 (en) 2017-07-05 2017-07-05 Coating composition for forming water- and oil-repellent film and water- and oil-repellent film

Publications (2)

Publication Number Publication Date
JP2019014790A JP2019014790A (en) 2019-01-31
JP6970542B2 true JP6970542B2 (en) 2021-11-24

Family

ID=65358437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131596A Active JP6970542B2 (en) 2017-07-05 2017-07-05 Coating composition for forming water- and oil-repellent film and water- and oil-repellent film

Country Status (1)

Country Link
JP (1) JP6970542B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277222A (en) * 1987-02-16 1988-11-15 Sanyo Chem Ind Ltd Curing resin
JPH08311153A (en) * 1995-05-23 1996-11-26 Toppan Printing Co Ltd Urethane (meth)acrylic prepolymer, polymerizable prepolymer emulsifying agent and active energy ray-curing type aqueous resin composition
CA2515461C (en) * 2003-02-04 2012-04-10 Toray Industries, Inc. A moisture-permeable, waterproof film, a composite material, and a method for manufacturing thereof
JP2005154520A (en) * 2003-11-21 2005-06-16 Daikin Ind Ltd Non-adhesive surface structure
JP2010217606A (en) * 2009-03-17 2010-09-30 Ricoh Co Ltd Carrier for electrophotography and two-component developer
CN102959025A (en) * 2010-06-28 2013-03-06 共荣社化学株式会社 Orientation modifier for brightening pigment
JP6263099B2 (en) * 2013-07-31 2018-01-17 株式会社Kri Water / oil repellent film-like cured product
US10266723B2 (en) * 2014-05-30 2019-04-23 The Boeing Company Ice adhesion reducing polymers
JP6219789B2 (en) * 2014-07-25 2017-10-25 株式会社Kri Water- and oil-repellent film-forming coating composition and coating liquid, and water- and oil-repellent film
CN108137761A (en) * 2015-12-22 2018-06-08 日本合成化学工业株式会社 Active energy ray-curable resin composition, active energy ray curable emulsion compositions and coating agent composition

Also Published As

Publication number Publication date
JP2019014790A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
Zheng et al. UV-curable antismudge coatings
Oaten et al. Silsesquioxane− Urethane hybrid for thin film applications
Seeni Meera et al. Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol–gel process
Zhao et al. Synthesis of a waterborne polyurethane-fluorinated emulsion and its hydrophobic properties of coating films
Wei et al. High-performance bio-based polyurethane antismudge coatings using castor oil-based hyperbranched polyol as superior cross-linkers
Bender et al. Hard yet flexible transparent omniphobic GPOSS coatings modified with perfluorinated agents
Lai et al. Facile preparation of a transparent and rollable omniphobic coating with exceptional hardness and wear resistance
Hu et al. Silicone-infused antismudge nanocoatings
KR101335772B1 (en) High energy ray-curable composition
Bertolucci et al. Wetting Behavior of Films of New Fluorinated Styrene− Siloxane Block Copolymers
Ming et al. Low surface energy polymeric films from solventless liquid oligoesters and partially fluorinated isocyanates
Qiu et al. Preparation, characterization and properties of UV-curable waterborne polyurethane acrylate/SiO 2 coating
Khan et al. Simple design for durable and clear self-cleaning coatings
JP6219789B2 (en) Water- and oil-repellent film-forming coating composition and coating liquid, and water- and oil-repellent film
Zhang et al. Synthesis and surface migration of polydimethylsiloxane and perfluorinated polyether in modified waterborne polyurethane
Wang et al. Environmentally friendly plant‐based waterborne polyurethane for hydrophobic and heat‐resistant films
Demir et al. Toward a long-chain perfluoroalkyl replacement: Water and oil repellency of polyethylene terephthalate (PET) films modified with perfluoropolyether-based polyesters
Zhang et al. Surface-enriched amphiphilic polysiloxane coating with superior antifouling ability and strong substrate adhesion
Wen et al. Construction of a fluorine-free anti-smudge waterborne polyurethane coating
Chakrabarty et al. PDMS–fluorous polyoxetane–PDMS triblock hybrid elastomers: tough and transparent with novel bulk morphologies
Du et al. Synthesis, surface activities, and aggregation behaviors of butynediol-ethoxylate modified polysiloxanes
CN109804029A (en) Thin worm property and ice-phobic composition with liquid additive
Zheng et al. Surface and bulk properties of waterborne polyurethane modified with fluorinated siloxane
Fu et al. Robust and highly transparent photocurable fluorinated polyurethane coating prepared via thiol-click reactions and what essentially influences omniphobic coating’s anti-graffiti properties
HyeLin et al. Preparation and properties of crosslinkable waterborne polyurethane and polyurethane-acrylic hybrid emulsions and their crosslinked polymers

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211029

R150 Certificate of patent or registration of utility model

Ref document number: 6970542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250