[go: up one dir, main page]

JP6967894B2 - Manufacturing method of cell-to-cell connection member - Google Patents

Manufacturing method of cell-to-cell connection member Download PDF

Info

Publication number
JP6967894B2
JP6967894B2 JP2017131785A JP2017131785A JP6967894B2 JP 6967894 B2 JP6967894 B2 JP 6967894B2 JP 2017131785 A JP2017131785 A JP 2017131785A JP 2017131785 A JP2017131785 A JP 2017131785A JP 6967894 B2 JP6967894 B2 JP 6967894B2
Authority
JP
Japan
Prior art keywords
cell
protective film
oxide
film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017131785A
Other languages
Japanese (ja)
Other versions
JP2018010871A (en
Inventor
孝之 中尾
修一 井上
英正 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2018010871A publication Critical patent/JP2018010871A/en
Application granted granted Critical
Publication of JP6967894B2 publication Critical patent/JP6967894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池用セルに用いられるセル間接続部材の製造方法に関する。 The present invention relates to a method for manufacturing an intercell connection member used in a cell for a solid oxide fuel cell.

固体酸化物形燃料電池(以下、適宜「SOFC」と記載する。)用セルは、電解質層の一方面側に空気極を接合すると共に、同電解質層の他方面側に燃料極を接合してなる単セルを、空気極又は燃料極に対して電子の授受を行う一対の電子伝導性のセル間接続部材により挟み込んで積層した構造を有する。そして、このようなSOFC用セルでは、例えば700℃〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用できる。 In a cell for a solid oxide fuel cell (hereinafter, appropriately referred to as "SOFC"), an air electrode is bonded to one surface side of the electrolyte layer, and a fuel electrode is bonded to the other surface side of the electrolyte layer. It has a structure in which a single cell is sandwiched between a pair of electron-conducting cell-to-cell connecting members that transfer electrons to and from an air electrode or a fuel electrode. In such an SOFC cell, for example, the SOFC cell operates at an operating temperature of about 700 ° C. to 900 ° C., and a pair of electrodes are moved along with the movement of oxide ions from the air electrode side to the fuel electrode side via the electrolyte membrane. An electromotive force is generated during this period, and the electromotive force can be taken out and used.

このようなSOFC用セルで利用されるセル間接続部材は、電子伝導性及び耐熱性に優れたCrを含有するステンレス合金等の金属基材を用いて製作される。ところが、SOFC用セルに用いられる金属基材には、高温作動条件下にて耐酸化被膜であるCr23が形成される。この酸化被膜は高抵抗な層であり、燃料電池の発電出力を低下させたり、Crの蒸発により燃料電池の空気極と反応し、電極性能を著しく低下させたりする等の耐久性への問題がある。 The cell-to-cell connection member used in such an SOFC cell is manufactured by using a metal base material such as a stainless alloy containing Cr, which is excellent in electron conductivity and heat resistance. However, Cr 2 O 3 which is an oxidation resistant film is formed on the metal base material used for the SOFC cell under high temperature operating conditions. This oxide film is a high-resistance layer, and has problems with durability such as reducing the power generation output of the fuel cell and reacting with the air electrode of the fuel cell due to the evaporation of Cr to significantly reduce the electrode performance. be.

上述したような、Crの形成を抑制すること、及び、Crの蒸発による飛散を防止すること等の対策のため、金属基材の表面に電子伝導性の高いセラミックスコーティングを保護膜として形成することが行われている。このようなセラミックスコーティングを施すことで、金属基材の材料として、安価なステンレス鋼材を使用することができるようになった。 As described above, in order to suppress the formation of Cr 2 O 3 and prevent scattering due to evaporation of Cr, a ceramic coating having high electron conductivity is used as a protective film on the surface of the metal substrate. Forming is being done. By applying such a ceramic coating, it has become possible to use an inexpensive stainless steel material as a material for a metal base material.

特許文献1には、Crを含有するステンレス合金等の金属基材を用いて製作されるセル間接続部材と空気極とを接合した状態で焼成する焼成処理を行うにあたり、その合金又は酸化物におけるCr(VI)の酸化物の生成を抑制するCr(VI)酸化物抑制状態とすることが記載されている。このCr(VI)酸化物抑制状態とするためには、焼成処理を行う前に、合金又は酸化物の表面に、標準生成自由エネルギーがWO3以下である酸化物からなるn型半導体被膜を形成する被膜形成処理を行うことが記載されている。 Patent Document 1 describes a firing process for firing a cell-to-cell connecting member manufactured using a metal base material such as a stainless alloy containing Cr in a state where the air electrode is joined, in the alloy or oxide. It is described that the Cr (VI) oxide is suppressed to suppress the formation of Cr (VI) oxide. In order to suppress the Cr (VI) oxide, an n-type semiconductor film made of an oxide having a standard free energy of WO 3 or less is formed on the surface of the alloy or oxide before the firing treatment. It is described that the film forming treatment is performed.

国際公開第2007/083627号International Publication No. 2007/083627

Hideto Kurokawa et al., “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168 (2004) 13-21Hideto Kurokawa et al., “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168 (2004) 13-21

金属基材として用いられるステンレス合金には主成分のFe、Crの他に、耐熱性や耐食性の付与のために様々な元素が添加されている。これらの微量な添加元素が、金属基材とその表面に形成される保護膜との界面の近傍の酸素ポテンシャルによって、金属基材の内部に酸化物の膜状領域を形成するという問題が報告されている(非特許文献1)。この文献では、金属基材の内部にMnとCrの複合酸化物(スピネル化合物)が形成され、Crリッチな組成では高抵抗な層として存在することが報告されている。 In addition to the main components Fe and Cr, various elements are added to the stainless alloy used as a metal base material in order to impart heat resistance and corrosion resistance. It has been reported that these trace amounts of additive elements form a film-like region of oxide inside the metal substrate due to the oxygen potential near the interface between the metal substrate and the protective film formed on the surface thereof. (Non-Patent Document 1). In this document, it is reported that a composite oxide (spinel compound) of Mn and Cr is formed inside a metal substrate and exists as a highly resistant layer in a Cr-rich composition.

また、金属基材が、Si及びAl及びTiを含むステンレス鋼を用いて構成される場合、その金属基材に含まれるAl、Si、Ti等がエリンガム図に従い、金属内部に絶縁性の高い酸化被膜として形成され、金属基材中の電子導電性が低下する、即ち、発電性能が低下することが懸念される。 When the metal base material is made of stainless steel containing Si and Al and Ti, Al, Si, Ti and the like contained in the metal base material are oxidized inside the metal with high insulating properties according to the Eringham diagram. It is formed as a film, and there is a concern that the electron conductivity in the metal substrate is lowered, that is, the power generation performance is lowered.

本発明は上述の課題に鑑みてなされたものであり、その目的は、発電性能の高い固体酸化物形燃料電池用セルのセル間接続部材の製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing an cell-to-cell connection member of a solid oxide fuel cell for a solid oxide fuel cell having high power generation performance.

上記目的を達成するための本発明に係るセル間接続部材の製造方法の特徴構成は、固体酸化物形燃料電池用セルに用いられるセル間接続部材の製造方法であって、
Si及びAl及びTiを含むステンレス鋼を用いて構成される金属基材の表面に、MnとCoとを含有するスピネル型金属酸化物を主材料とする保護膜材料層を湿式成膜する成膜工程と、
前記成膜工程によって前記保護膜材料層が成膜された前記金属基材に対して1000℃よりも高い温度で大気雰囲気下で熱処理を施すことで、前記保護膜材料層を焼結させて前記金属基材に保護膜を形成する焼結工程とを有する点にある。
The characteristic configuration of the method for manufacturing an inter-cell connecting member according to the present invention for achieving the above object is a method for manufacturing an inter-cell connecting member used in a cell for a solid oxide fuel cell.
A film formation in which a protective film material layer containing a spinel-type metal oxide containing Mn and Co as a main material is wet-deposited on the surface of a metal base material composed of stainless steel containing Si and Al and Ti. Process and
The protective film material layer is sintered by subjecting the metal substrate on which the protective film material layer is formed by the film forming step to a heat treatment at a temperature higher than 1000 ° C. in an atmospheric atmosphere. The point is that it has a sintering step of forming a protective film on a metal base material.

本願発明者らは、Si及びAl及びTiを含むステンレス鋼を用いて構成される金属基材の表面に保護膜を形成するための成膜工程と焼結工程とを行うとき、大気雰囲気下で行う焼結工程での熱処理温度によって、セル間接続部材の電気抵抗の大きさが変化する現象を見出した。そして、成膜工程によって保護膜材料層が成膜された金属基材に対して1000℃よりも高い温度で大気雰囲気下で熱処理を施すことで、金属基材に絶縁性の高いSi,Ti,Alの酸化物が形成されるとしても、その酸化物が電気抵抗の増大をもたらさない分布形態になっていることを確認して、本発明の完成に至った。
即ち、本特徴構成によれば、絶縁性の高いSi,Ti,Alの酸化物が、電気抵抗の増大をもたらさない分布形態になるようにすることで、発電性能の高いSOFC用セルを提供できる。
The inventors of the present application perform a film forming step and a sintering step for forming a protective film on the surface of a metal base material composed of stainless steel containing Si and Al and Ti under an air atmosphere. We have found a phenomenon in which the magnitude of the electrical resistance of the cell-to-cell connecting member changes depending on the heat treatment temperature in the sintering process. Then, the metal substrate on which the protective film material layer is formed by the film forming step is heat-treated at a temperature higher than 1000 ° C. in an atmospheric atmosphere, whereby Si, Ti, which has high insulating properties, is applied to the metal substrate. It was confirmed that even if an oxide of Al is formed, the oxide has a distribution form that does not cause an increase in electrical resistance, and the present invention has been completed.
That is, according to this characteristic configuration, it is possible to provide a cell for SOFC having high power generation performance by allowing the oxides of Si, Ti, and Al having high insulating properties to have a distribution form that does not bring about an increase in electrical resistance. ..

本発明に係るセル間接続部材の製造方法の別の特徴構成は、前記保護膜の主材料が、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)、又は、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)である点にある。ここで、前記保護膜の主材料が、Co1.5Mn1.54又はCo2MnO4であってもよい。 Another characteristic feature of the manufacturing method of intercell connecting member according to the present invention, a main material of the protective layer is comprised of cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) , Or zinc cobalt manganese-based oxide Zn z Co x Mn y O 4 (0 <x, y, z <3, x + y + z = 3). Here, the main material of the protective film may be a Co 1.5 Mn 1.5 O 4 or Co 2 MnO 4.

上記特徴構成によれば、保護膜の熱膨張率と金属基材や空気極の熱膨張率との不一致を小さくでき、SOFC用セルの耐久性を高めることができる。 According to the above-mentioned characteristic configuration, the discrepancy between the coefficient of thermal expansion of the protective film and the coefficient of thermal expansion of the metal substrate or the air electrode can be reduced, and the durability of the SOFC cell can be enhanced.

本発明に係るセル間接続部材の製造方法の更に別の特徴構成は、前記成膜工程において、前記保護膜材料層が電着塗装により形成される点にある。 Yet another characteristic configuration of the method for manufacturing a cell-to-cell connecting member according to the present invention is that the protective film material layer is formed by electrodeposition coating in the film forming step.

上記特徴構成によれば、緻密で強固な保護膜を実現できる。 According to the above characteristic configuration, a dense and strong protective film can be realized.

固体酸化物形燃料電池用セルの概略図である。It is a schematic diagram of the cell for a solid oxide fuel cell. 固体酸化物形燃料電池の作動時の反応の説明図である。It is explanatory drawing of the reaction at the time of operation of a solid oxide fuel cell. セル間接続部材の構造の断面図である。It is sectional drawing of the structure of the cell-to-cell connecting member. 通電試験治具の概略図である。It is a schematic diagram of the energization test jig. 電気抵抗の経時変化を示す通電試験結果のグラフである。It is a graph of the energization test result which shows the time-dependent change of electric resistance. 固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図である。FIG. 3 is an SEM image and an EPMA diagram of a cross section of a solid oxide fuel cell. 固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図である。FIG. 3 is an SEM image and an EPMA diagram of a cross section of a solid oxide fuel cell. 電気抵抗の経時変化を示す通電試験結果のグラフである。It is a graph of the energization test result which shows the time-dependent change of electric resistance.

以下、図面を参照して本発明の実施形態に係る固体酸化物形燃料電池(SOFC)用セルに用いられるセル間接続部材の製造方法について説明する。
図1は固体酸化物形燃料電池用セルの概略図である。図2は固体酸化物形燃料電池の作動時の反応の説明図である。図1及び図2に示すように、SOFC用セルCは、酸素イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸素イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。空気極31とセル間接続部材1とが密着配置されることで、空気極31側の溝2が空気極31に空気を供給するための空気流路2aとして機能する。燃料極32とセル間接続部材1が密着配置されることで、燃料極32側の上記溝2が燃料極32に水素を供給するための燃料流路2bとして機能する。セル間接続部材1はインターコネクタとセルC間を電気的に接続する部材が接続された構成となることもある。
Hereinafter, a method for manufacturing an cell-to-cell connection member used in a solid oxide fuel cell (SOFC) cell according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a solid oxide fuel cell. FIG. 2 is an explanatory diagram of the reaction of the solid oxide fuel cell during operation. As shown in FIGS. 1 and 2, in the SOFC cell C, air made of an oxygen ion-conducting porous body is provided on one side of an electrolyte membrane 30 made of a dense body of an oxygen ion-conducting solid oxide. A single cell 3 formed by joining a pole 31 and joining a fuel pole 32 made of an electron-conducting porous body is provided on the other side of the electrolyte membrane 30.
Further, the SOFC cell C is a pair of electron conductive cells in which the single cell 3 is formed with a groove 2 for transferring electrons to and from the air electrode 31 or the fuel electrode 32 and supplying air and hydrogen. It has a structure in which a gas-sealed body is appropriately sandwiched between cell-to-cell connecting members 1 made of an alloy or an oxide at an outer peripheral edge portion. By arranging the air electrode 31 and the cell-to-cell connecting member 1 in close contact with each other, the groove 2 on the air electrode 31 side functions as an air flow path 2a for supplying air to the air electrode 31. By arranging the fuel electrode 32 and the cell-to-cell connecting member 1 in close contact with each other, the groove 2 on the fuel electrode 32 side functions as a fuel flow path 2b for supplying hydrogen to the fuel electrode 32. The cell-to-cell connection member 1 may have a configuration in which a member that electrically connects the interconnector and the cell C is connected.

上記単セル3を構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO3(例えばM=Mn,Fe,Co,Ni)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用できる。上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用でき、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用できる。 To add a description of the general material used in each element constituting the single cell 3, for example, as the material of the air electrode 31, in LaMO 3 (for example, M = Mn, Fe, Co, Ni). A perovskite-type oxide of (La, AE) MO 3 in which a part of La is replaced with an alkaline earth metal AE (AE = Sr, Ca) can be used. As the material of the fuel electrode 32, a cermet of Ni and yttria-stabilized zirconia (YSZ) can be used, and further, as the material of the electrolyte membrane 30, yttria-stabilized zirconia (YSZ) can be used.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され、他方の面に空気流路2aが形成されるものを利用できる。なお、このような積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。 Then, in a state where the plurality of SOFC cells C are stacked and arranged, the cells are sandwiched by applying a pressing force in the stacking direction by a plurality of bolts and nuts to form a cell stack. In this cell stack, the cell-to-cell connecting members 1 arranged at both ends in the stacking direction may be such that only one of the fuel flow path 2b and the air flow path 2a is formed, and are arranged in the middle of the other. As the cell-to-cell connection member 1, a member in which a fuel flow path 2b is formed on one surface and an air flow path 2a is formed on the other surface can be used. In a cell stack having such a laminated structure, the cell-to-cell connecting member 1 may be referred to as a separator.

セルスタックは、燃料ガス(水素)を供給するマニホールドに、ガラスシール材等の接着材により取り付けられる。ガラスシール材としては、例えば結晶化ガラスが用いられる。ガラスシール材は、マニホールドの接着の他、単セル3とセル間接続部材1の間など、封止(シール)が必要な箇所に用いられる。このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本発明はその他の構造のSOFCについても適用可能である。 The cell stack is attached to a manifold that supplies fuel gas (hydrogen) with an adhesive such as a glass sealant. As the glass sealing material, for example, crystallized glass is used. The glass sealing material is used in places where sealing is required, such as between the single cell 3 and the cell-to-cell connecting member 1, in addition to adhering the manifold. SOFCs having such a cell stack structure are generally called flat plate type SOFCs. In the present embodiment, the flat plate type SOFC will be described as an example, but the present invention can also be applied to SOFCs having other structures.

このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、例えば800℃程度の作動温度で作動する。すると、空気極31において酸素分子O2が電子e-と反応して酸素イオンO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用できる。 When the SOFC provided with the SOFC cell C is operated, as shown in FIG. 2, air is supplied through the air flow path 2a formed in the cell-to-cell connecting member 1 adjacent to the air electrode 31. At the same time, hydrogen is supplied via the fuel flow path 2b formed in the cell-to-cell connecting member 1 adjacent to the fuel electrode 32, and operates at an operating temperature of, for example, about 800 ° C. Then, oxygen molecules O 2 in the air electrode 31 is an electron e - is reacted with oxygen ions O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, provided at the fuel electrode 32 been H 2 reacts with the O 2-H 2 O and e - and that is generated, the electromotive force E is generated between the pair of cell connecting member 1, outside the electromotive force E Can be taken out and used.

〔セル間接続部材〕
図3は、セル間接続部材の構造の断面図である。セル間接続部材1は金属基材11の表面に、後述する保護膜12が形成された構造になっている。そして、セル間接続部材1が、接着層4を間に挟んで単セル3と接合されている。このように、金属基材11の表面に保護膜12を設けることでCr被毒を抑制でき、固体酸化物形燃料電池用セルとして好適である。また、金属基材11の表面には、後述する酸化被膜13が形成される。
[Cell-to-cell connection member]
FIG. 3 is a cross-sectional view of the structure of the cell-to-cell connecting member. The cell-to-cell connection member 1 has a structure in which a protective film 12 described later is formed on the surface of the metal base material 11. Then, the cell-to-cell connecting member 1 is joined to the single cell 3 with the adhesive layer 4 in between. As described above, by providing the protective film 12 on the surface of the metal base material 11, Cr poisoning can be suppressed, which is suitable as a cell for a solid oxide fuel cell. Further, an oxide film 13 described later is formed on the surface of the metal base material 11.

金属基材11の材料としては、電子伝導性および耐熱性の優れた材料であって、Si及びAl及びTiを含むステンレス鋼が用いられる。 As the material of the metal base material 11, stainless steel containing Si, Al, and Ti, which is a material having excellent electronic conductivity and heat resistance, is used.

〔酸化被膜〕
金属基材11の表面には、酸化被膜13が形成される。酸化被膜13は、周囲雰囲気中の酸素によって金属基材11の合金の表面が酸化されて生じる。本実施形態のようにCrを含有するステンレス合金の場合は、酸化被膜13は主にクロミア(Cr23)であり、緻密な被膜として形成される。酸化被膜13は、後述する保護膜12の焼結工程や接着層4の焼き付け等、SOFC用セルCの製造工程における熱処理に伴って形成される。
[Oxide film]
An oxide film 13 is formed on the surface of the metal base material 11. The oxide film 13 is formed by oxidizing the surface of the alloy of the metal base material 11 by oxygen in the ambient atmosphere. In the case of a stainless alloy containing Cr as in the present embodiment, the oxide film 13 is mainly chromium (Cr 2 O 3 ) and is formed as a dense film. The oxide film 13 is formed by heat treatment in the manufacturing process of the SOFC cell C, such as the sintering step of the protective film 12 and the baking of the adhesive layer 4, which will be described later.

〔保護膜〕
金属基材11の表面には、Cr被毒を抑制するため、保護膜12が形成されている。保護膜12は、MnとCoとを含有するスピネル型金属酸化物を主材料とする。例えば、保護膜12の主材料は、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)又は、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)であってもよい。Co1.5Mn1.54又はCo2MnO4であってもよい。尚、「主材料」とは主たる材料であることを意味し、複数の種類の金属酸化物を混合して用いたり、他の成分を混合して用いることも可能である。このような保護膜12を用いることで、保護膜12の熱膨張率と金属基材11や空気極31の熱膨張率との不一致を小さくでき、SOFC用セルCの耐久性を高めることができる。また、保護膜12の主材料がCo2MnO4であるサンプルを用いた実験にて、MnCr24の生成が抑制されることが確認されており、同系統のスピネル型金属酸化物であるCo1.5Mn1.54についても同様の結果となることが強く推認される。従って、このような保護膜12を用いることで、電気抵抗の大きなMnCr24がセル間接続部材1の金属基材11の内部に生成することを抑制して、発電性能の高いSOFC用セルCを提供できる。
〔Protective film〕
A protective film 12 is formed on the surface of the metal base material 11 in order to suppress Cr poisoning. The protective film 12 is mainly made of a spinel-type metal oxide containing Mn and Co. For example, the main material of the protective film 12 is cobalt-manganese-based oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc-cobalt-manganese-based oxide Zn z Co x Mn y O 4. It may be (0 <x, y, z <3, x + y + z = 3). Co 1.5 Mn 1.5 O 4 or Co 2 may be MnO 4. The "main material" means that it is the main material, and it is also possible to use a mixture of a plurality of types of metal oxides or a mixture of other components. By using such a protective film 12, the discrepancy between the coefficient of thermal expansion of the protective film 12 and the coefficient of thermal expansion of the metal base material 11 and the air electrode 31 can be reduced, and the durability of the SOFC cell C can be improved. .. Further, in an experiment using a sample in which the main material of the protective film 12 is Co 2 MnO 4 , it has been confirmed that the formation of MnCr 2 O 4 is suppressed, and it is a spinel-type metal oxide of the same type. It is strongly inferred that the same result will be obtained for Co 1.5 Mn 1.5 O 4. Therefore, by using such a protective film 12, it is possible to suppress the formation of MnCr 2 O 4 having a large electric resistance inside the metal base material 11 of the cell-to-cell connection member 1, and the SOFC cell having high power generation performance is suppressed. C can be provided.

金属基材11への保護膜12の形成方法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等の湿式成膜が例示できる。 As a method for forming the protective film 12 on the metal substrate 11, a screen printing method, a doctor blade method, a spray coating method, an inkjet method, a spin coating method, a dip coating, an electroplating method, an electroless plating method, and an electrodeposition coating method. Wet film formation such as, etc. can be exemplified.

例えば、電着塗装法を適用すれば、下記のような手法で保護膜12を形成できる。
金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行う。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。混合液を用い、金属基材11をプラス、対極としてSUS304の極板にマイナスの極性として通電を行うことによって、金属基材11表面に未硬化の電着塗膜が形成される。電着塗装は、たとえば、混合液を満たした通電槽中に金属基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。電着塗装条件も特に制限されず、金属基材11である金属の種類、混合液の種類、通電槽の大きさおよび形状、得られるセル間接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(混合液温度)10〜40℃程度、印加電圧10V〜450V程度、電圧印加時間1分〜10分程度、混合液の液温10℃〜40℃とすればよい。尚、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、金属基材11に対して、種々前処理を行うこともできる。
For example, if the electrodeposition coating method is applied, the protective film 12 can be formed by the following method.
Metal oxide fine particles are dispersed so as to be 100 g per liter of electrodeposition liquid, and electrodeposition coating is performed using a mixed solution containing an anionic resin such as polyacrylic acid. Here, (metal oxide fine particles: anionic resin) = (1: 1) (mass ratio). An uncured electrodeposition coating film is formed on the surface of the metal substrate 11 by energizing the electrode plate of SUS304 with the metal substrate 11 as a positive polarity and a negative polarity as a counter electrode using a mixed solution. Electrodeposition coating is carried out, for example, by immersing the metal substrate 11 completely or partially in an energizing tank filled with a mixed solution to form an anode and energizing. The electrodeposition coating conditions are also not particularly limited, and are wide depending on various conditions such as the type of the metal as the metal base material 11, the type of the mixed liquid, the size and shape of the energizing tank, and the application of the obtained cell-to-cell connecting member 1. It can be appropriately selected from the range, but usually, the bath temperature (mixed liquid temperature) is about 10 to 40 ° C., the applied voltage is about 10 V to 450 V, the voltage application time is about 1 minute to 10 minutes, and the liquid temperature of the mixed liquid is about 10 ° C. to 40 ° C. And it is sufficient. The film thickness of the electrodeposited coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time. Further, various pretreatments can be performed on the metal base material 11.

この未硬化の電着塗膜が形成された金属基材11に加熱処理することによって、金属基材11表面に硬化した電着塗膜が形成される。
加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。その後、電気炉を使用して例えば1000℃よりも高い温度で大気雰囲気下で熱処理(例えば2時間焼成)し、その後徐冷する。
By heat-treating the metal base material 11 on which the uncured electrodeposition coating film is formed, a cured electrodeposition coating film is formed on the surface of the metal base material 11.
The heat treatment includes pre-drying to dry the electrodeposition coating film and curing heating to cure the electrodeposition coating film, and the curing heating is performed after the pre-drying. Then, using an electric furnace, heat treatment (for example, firing for 2 hours) is performed in an atmospheric atmosphere at a temperature higher than, for example, 1000 ° C., and then slowly cooled.

〔接着層〕
接着層4により、セル間接続部材1と単セル3の空気極31とが接合される。詳しくは、セル間接続部材1の金属基材11の表面に形成された保護膜12と、単セル3の空気極31とが、接着層4により接着・接合されている。接着層4の主材料としては、空気極31と類似のペロブスカイト型酸化物や、スピネル型酸化物が用いられる。たとえばLSCF6428(La0.6Sr0.4Co0.2Fe0.83-δ)が用いられる。
[Adhesive layer]
The adhesive layer 4 joins the cell-to-cell connecting member 1 and the air electrode 31 of the single cell 3. Specifically, the protective film 12 formed on the surface of the metal base material 11 of the cell-to-cell connecting member 1 and the air electrode 31 of the single cell 3 are bonded and bonded by the adhesive layer 4. As the main material of the adhesive layer 4, a perovskite-type oxide similar to the air electrode 31 or a spinel-type oxide is used. For example, LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ ) is used.

〔固体酸化物形燃料電池用セルの製造方法〕
次に固体酸化物形燃料電池用セルCの製造方法について説明する。固体酸化物形燃料電池用セルCの製造方法は、セル間接続部材1を製造する過程(以下の「保護膜形成工程」)と、そのセル間接続部材1を空気極31及び燃料極32と接合する過程(以下の「接合工程」)とを含む。
[Manufacturing method of solid oxide fuel cell]
Next, a method for manufacturing the solid oxide fuel cell C will be described. The method for manufacturing the cell C for a solid oxide fuel cell includes a process of manufacturing the cell-to-cell connecting member 1 (hereinafter, "protective film forming step") and the cell-cell connecting member 1 with an air electrode 31 and a fuel electrode 32. The process of joining (hereinafter referred to as "joining process") is included.

〔保護膜形成工程〕
本発明のセル間接続部材1の製造方法である保護膜形成工程は、成膜工程と焼結工程とを有する。保護膜形成工程では、セル間接続部材1の金属基材11の表面に保護膜12を形成する。
[Protective film forming process]
The protective film forming step, which is the method for manufacturing the cell-to-cell connecting member 1 of the present invention, includes a film forming step and a sintering step. In the protective film forming step, the protective film 12 is formed on the surface of the metal base material 11 of the cell-to-cell connecting member 1.

成膜工程では、Si及びAl及びTiを含むステンレス鋼を用いて構成される金属基材11の表面に、MnとCoとを含有するスピネル型金属酸化物を主材料とする保護膜材料層を湿式成膜する。例えば、金属酸化物の微粉末を含有するスラリーを用いてセル間接続部材1の金属基材11に塗膜(保護膜材料層)を湿式成膜する。湿式成膜は、スラリーに金属基材11を浸けて引き上げる(ディップ)ことで行ってもよいし、電着塗装法により行ってもよいし、先に例示した方法のいずれかを用いてもよい。湿式成膜は、金属基材11の全体に対して行ってもよいし、平板状の金属基材11の一方の面のみに行ってもよい。なお後者の場合、湿式成膜が行われ保護膜12が形成された面が、単セル3の空気極31に接合されることになる。湿式成膜が行われず金属基材11の素材が露出している面が、単セル3の燃料極32に接合されることになる。 In the film forming step, a protective film material layer containing a spinel-type metal oxide containing Mn and Co as a main material is formed on the surface of a metal base material 11 made of stainless steel containing Si and Al and Ti. Wet film formation. For example, a coating film (protective film material layer) is wet-formed on the metal base material 11 of the cell-to-cell connection member 1 using a slurry containing a fine powder of a metal oxide. The wet film formation may be carried out by immersing the metal base material 11 in the slurry and pulling it up (dip), by an electrodeposition coating method, or by using any of the methods exemplified above. .. The wet film formation may be performed on the entire metal substrate 11 or on only one surface of the flat metal substrate 11. In the latter case, the surface on which the protective film 12 is formed by wet film formation is joined to the air electrode 31 of the single cell 3. The surface on which the material of the metal base material 11 is exposed without wet film formation is joined to the fuel electrode 32 of the single cell 3.

焼結工程では、成膜工程によって塗膜(保護膜材料層)が成膜された金属基材11に対して1000℃よりも高い温度で大気雰囲気下で熱処理を施すことで、その塗膜を焼結させて金属基材11に保護膜12を形成する。例えば、塗膜を湿式成膜した金属基材11に熱処理を施して、金属酸化物の微粉末を焼結させて金属基材11の表面に保護膜12を形成する。熱処理は、大気雰囲気下で、例えば1000℃よりも高い温度で2時間行われる。このように、保護膜形成工程の焼結工程における熱処理は、SOFC用セルCの単セル3と金属基材11とを接合しない状態で行われる。つまり、この焼結工程を行って保護膜12を形成した後、後述する接合工程を行う。 In the sintering step, the metal base material 11 on which the coating film (protective film material layer) is formed by the film forming step is heat-treated at a temperature higher than 1000 ° C. in an atmospheric atmosphere to form the coating film. The protective film 12 is formed on the metal base material 11 by sintering. For example, the metal base material 11 on which the coating film is wet-formed is heat-treated to sintered the fine powder of the metal oxide to form the protective film 12 on the surface of the metal base material 11. The heat treatment is performed in an atmospheric atmosphere, for example, at a temperature higher than 1000 ° C. for 2 hours. As described above, the heat treatment in the sintering step of the protective film forming step is performed in a state where the single cell 3 of the SOFC cell C and the metal base material 11 are not bonded. That is, after performing this sintering step to form the protective film 12, a joining step described later is performed.

〔接合工程〕
接合工程では、上記保護膜形成工程(成膜工程及び焼結工程)によって得られたセル間接続部材1と空気極31及び燃料極32とを接着層4を介して接合する。詳しくは、上述の接着層4の材料を含有するペーストをセル間接続部材1に塗布して単セル3と接合し、熱処理を施して焼き付けにより接着層4を形成する。熱処理は通常であれば、燃料電池の作動温度〜950℃の低温で行うが、この温度に限定される訳ではない。
[Joining process]
In the joining step, the cell-to-cell connecting member 1 obtained in the protective film forming step (film forming step and sintering step) is joined to the air electrode 31 and the fuel electrode 32 via the adhesive layer 4. Specifically, the paste containing the material of the adhesive layer 4 described above is applied to the cell-to-cell connecting member 1 to be bonded to the single cell 3, and the adhesive layer 4 is formed by heat treatment and baking. Normally, the heat treatment is performed at a low temperature of the operating temperature of the fuel cell to 950 ° C., but the heat treatment is not limited to this temperature.

〔接着層の焼き付けの温度によるセル間接続部材の電気抵抗・元素分布の変化〕
以上述べたSOFC用セルCの製造方法に沿って実験サンプルを作成し、電気抵抗の経時変化、断面のSEM観察およびEPMA元素分析を行った。
[Changes in electrical resistance and element distribution of cell-to-cell connection members due to the temperature of the adhesive layer baking]
Experimental samples were prepared according to the method for producing SOFC cell C described above, and changes in electrical resistance over time, SEM observation of cross sections, and EPMA elemental analysis were performed.

〔実験サンプルの作成〕
〔実験例1(1000℃):比較例〕
Si及びAl及びTiを含むステンレス鋼の板の表面に、Co2MnO4の微粉末を含有するスラリーを用いてアニオン電着塗装法にて塗膜(保護膜材料層)を成膜した(成膜工程)。その板を1000℃の大気雰囲気下にて2時間加熱する焼結工程を行って、Co2MnO4を主材料とする保護膜を形成した。板の両面にLSCF6428を塗布し、乾燥させ、1000℃で2時間焼き付けを行い、接着層4を模擬した層を形成した。以上の様にして、固体酸化物形燃料電池用セルのセル間接続部材1を模した実験例1のサンプルを作成した。
[Creation of experimental sample]
[Experimental Example 1 (1000 ° C.): Comparative Example]
A coating film (protective film material layer) was formed on the surface of a stainless steel plate containing Si, Al, and Ti by an anionic electrodeposition coating method using a slurry containing a fine powder of Co 2 MnO 4. Membrane process). The plate was subjected to a sintering step of heating the plate in an air atmosphere of 1000 ° C. for 2 hours to form a protective film containing Co 2 MnO 4 as a main material. LSCF6428 was applied to both sides of the plate, dried, and baked at 1000 ° C. for 2 hours to form a layer simulating the adhesive layer 4. As described above, a sample of Experimental Example 1 simulating the cell-to-cell connection member 1 of the solid oxide fuel cell cell was prepared.

〔実験例2(1050℃):実施例〕
焼結工程の処理温度を1050℃に変更し、その他の条件は実験例1と同様にして、実験例2のサンプルを作成した。
[Experimental Example 2 (1050 ° C.): Example]
The processing temperature of the sintering step was changed to 1050 ° C., and the other conditions were the same as in Experimental Example 1 to prepare a sample of Experimental Example 2.

〔実験例3(1075℃):実施例〕
焼結工程の処理温度を1075℃に変更し、その他の条件は実験例1と同様にして、実験例3のサンプルを作成した。
[Experimental Example 3 (1075 ° C.): Example]
The processing temperature of the sintering step was changed to 1075 ° C., and the other conditions were the same as in Experimental Example 1 to prepare a sample of Experimental Example 3.

〔電気抵抗の経時変化〕
実験例1〜3のサンプルについて、電気抵抗値の経時変化を測定した。この通電試験結果を図5のグラフに示す。測定は、図4に示す通電試験治具5に各サンプルをセットし、800℃の環境下、定電流状態にて経時的に電気抵抗を測定して行った。通電試験治具5は、一対の金属板51の間にサンプルを挟んで、ネジ52で固定した構造である。接着層4にPtメッシュ53が接した状態とされ、この一対のPtメッシュ53の間の抵抗値を測定することで、サンプルの抵抗値を測定した。
[Changes in electrical resistance over time]
The changes over time in the electrical resistance values of the samples of Experimental Examples 1 to 3 were measured. The result of this energization test is shown in the graph of FIG. The measurement was carried out by setting each sample on the energization test jig 5 shown in FIG. 4 and measuring the electric resistance over time in an environment of 800 ° C. under a constant current state. The energization test jig 5 has a structure in which a sample is sandwiched between a pair of metal plates 51 and fixed with screws 52. The Pt mesh 53 was in contact with the adhesive layer 4, and the resistance value between the pair of Pt meshes 53 was measured to measure the resistance value of the sample.

上述した保護膜形成工程の一つである焼結工程での熱処理温度を高くすると、保護膜12の緻密化、酸化被膜13の増大により抵抗値に差が出ることが予想されるが、図5に示した結果では、熱処理温度が1000℃及び1050℃のサンプルは初期抵抗値としてほぼ差がなく、熱処理温度が1075℃のサンプルの初期抵抗値は相対的に高い結果となった。抵抗値の経時変化に着目すると、焼結工程を1000℃で行ったサンプルが経時的な抵抗値の増大を特に示し、1050℃、1075℃のサンプルは初期値と比べた抵抗値の増大がほとんど確認されず、相対的に良い結果であった。この結果は、焼結工程を1000℃で行ったサンプルにおいて、酸化被膜13が形成されたことよる抵抗値への影響が大きかったためだと考えられる。 If the heat treatment temperature in the sintering step, which is one of the protective film forming steps described above, is raised, it is expected that the resistance value will differ due to the densification of the protective film 12 and the increase of the oxide film 13. According to the results shown in (1), there was almost no difference in the initial resistance values of the samples having the heat treatment temperatures of 1000 ° C. and 1050 ° C., and the initial resistance values of the samples having the heat treatment temperature of 1075 ° C. were relatively high. Focusing on the change over time in the resistance value, the sample in which the sintering process was performed at 1000 ° C. showed an increase in the resistance value over time, and the sample at 1050 ° C. and 1075 ° C. showed an increase in the resistance value compared to the initial value. It was not confirmed and the result was relatively good. It is considered that this result is due to the fact that the formation of the oxide film 13 had a large effect on the resistance value in the sample obtained by performing the sintering step at 1000 ° C.

図6は、上述した通電試験前での固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA元素マッピング図(以下「EPMA図」と記載する)である。図7は、通電試験後での固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図である。 FIG. 6 is an SEM image of a cross section of the solid oxide fuel cell cell before the above-mentioned energization test and an EPMA element mapping diagram (hereinafter referred to as “EPMA diagram”). FIG. 7 is an SEM image and an EPMA diagram of a cross section of a solid oxide fuel cell cell after an energization test.

各図の左端の列がSEM画像、他の6列がEPMA図(Cr,Si,Ti,Al,Mn,Co)を示している。SEM画像及びEPMA図には、画像の上側から順に金属基材11、酸化被膜13、保護膜12および接合層が表れている。EPMA図では、元素の濃度が高い位置が淡色で示されている。なお4種の元素の濃度スケールは異なっており、異なる元素間で同じ濃さの色が表れていても、同じ濃度であることを意味しない。 The leftmost column of each figure shows the SEM image, and the other 6 columns show the EPMA diagram (Cr, Si, Ti, Al, Mn, Co). In the SEM image and the EPMA diagram, the metal base material 11, the oxide film 13, the protective film 12, and the bonding layer are shown in this order from the upper side of the image. In the EPMA diagram, the positions where the concentration of elements is high are shown in light color. It should be noted that the concentration scales of the four elements are different, and even if the same dark color appears between different elements, it does not mean that they have the same concentration.

SEM画像の視野と、EPMA図の視野とは一致している。例えば、図6の1000℃サンプル(実験例1)のCrのEPMA図には、淡色のCr分布領域が図の下方に存在するが、この領域はSEM画像の酸化被膜13の領域と一致している。これは、酸化被膜13の主成分のクロミア(Cr23)に含有されるCrが、EPMA図に表れているからである。 The field of view of the SEM image and the field of view of the EPMA diagram are in agreement. For example, in the EPMA diagram of Cr of the 1000 ° C. sample (Experimental Example 1) of FIG. 6, a light-colored Cr distribution region exists at the lower part of the diagram, but this region coincides with the region of the oxide film 13 in the SEM image. There is. This is because Cr contained in chromia (Cr 2 O 3 ), which is the main component of the oxide film 13, appears in the EPMA diagram.

図6の通電試験前でのEPMA図を見ると、焼結工程での熱処理温度を1050℃にすることで、保護膜12の緻密度は明らかに上昇し、ほぼ多孔質な領域は存在していないことが分かる。これに対して、焼結工程の熱処理温度を1075℃まで増加させると、酸化被膜13が厚くなった。金属基材11の内部に形成される酸化被膜13については、1000℃のサンプルでは、絶縁性の高いSi,Ti,Alの酸化物の高濃度領域が面方向で比較的連続した層状に広がって形成され、1050℃及び1075℃のサンプルでは面方向で比較的非連続になり、厚さ方向に延びた状態(即ち、厚さ方向に沿った断面で見ると酸化物の高濃度領域が細い状態で厚さ方向に延びて縞状になった状態)に形成されていることが確認された。つまり、酸化被膜13と呼んでいるが、縞状部分以外は相対的に低抵抗な領域になっていると思われる。 Looking at the EPMA diagram before the energization test in FIG. 6, by setting the heat treatment temperature in the sintering step to 1050 ° C., the density of the protective film 12 clearly increased, and an almost porous region existed. It turns out that there is no such thing. On the other hand, when the heat treatment temperature in the sintering step was increased to 1075 ° C., the oxide film 13 became thicker. Regarding the oxide film 13 formed inside the metal substrate 11, in the sample at 1000 ° C., the high concentration region of the highly insulating Si, Ti, Al oxide spreads in a relatively continuous layer in the plane direction. Formed, in the samples at 1050 ° C and 1075 ° C, relatively discontinuous in the plane direction and extended in the thickness direction (that is, the high concentration region of the oxide is thin when viewed in the cross section along the thickness direction). It was confirmed that the metal was formed in a striped state extending in the thickness direction. That is, although it is called the oxide film 13, it seems that the region has a relatively low resistance except for the striped portion.

また、図7の通電試験後でのEPMA図を見ると、1000℃のサンプルでは、酸化被膜13を構成する絶縁性酸化物(Si,Ti,Alの酸化物)の高濃度領域の層が厚くなったことが示されている。その結果、酸化被膜13の厚さ方向での抵抗値が増大したため、図5に示したような抵抗値増大に至ったと考えられる。
これに対して、焼結工程での熱処理温度を1050℃以上にした場合、通電試験後でも酸化被膜13を構成する絶縁性酸化物の高濃度領域は離散的に縞状になると共に、低抵抗な領域も離散的に存在している。その結果、酸化被膜13の内部では厚さ方向での抵抗値の増大が抑制されていると考えられる。
Looking at the EPMA diagram after the energization test in FIG. 7, in the sample at 1000 ° C., the layer of the insulating oxide (oxide of Si, Ti, Al) constituting the oxide film 13 is thick in the high concentration region. It is shown that it has become. As a result, the resistance value of the oxide film 13 in the thickness direction increased, and it is considered that the resistance value increased as shown in FIG.
On the other hand, when the heat treatment temperature in the sintering step is set to 1050 ° C. or higher, the high concentration region of the insulating oxide constituting the oxide film 13 is discretely striped and has low resistance even after the energization test. Regions also exist discretely. As a result, it is considered that the increase in the resistance value in the thickness direction is suppressed inside the oxide film 13.

以上のように、Si及びAl及びTiを含むステンレス鋼を用いて構成される金属基材11の表面に保護膜12を形成するための成膜工程と焼結工程とを行うとき、大気雰囲気下で行う焼結工程での熱処理温度によって、セル間接続部材1の電気抵抗の大きさが変化する現象を見出した。そして、成膜工程によって保護膜材料層が成膜された金属基材11に対して1000℃よりも高い温度で大気雰囲気下で熱処理を施すことで、金属基材11に絶縁性の高いSi,Ti,Alの酸化物が形成されるとしても、その酸化物が電気抵抗の増大をもたらさない分布形態になっていることを確認した。また、酸化物が電気抵抗の増大をもたらさない分布形態になっている状態は、長期に渡る通電試験を経た後でも保たれていた。このように、金属基材11と保護膜12との界面の抵抗を低減するためには、金属基材11の内部に高抵抗な酸化物を面方向で連続して広がる層状には形成させないこと、及び、保護膜12を緻密にすることが好ましいと考えられる。そして、それを達成できるのが、焼結工程の熱処理を大気雰囲気下で1000℃より高い温度で行うこと、更には1000℃より高く且つ1075℃以下の温度で行うことであった。 As described above, when the film forming step and the sintering step for forming the protective film 12 on the surface of the metal base material 11 made of stainless steel containing Si and Al and Ti are performed, the atmosphere is atmospheric. We have found a phenomenon in which the magnitude of the electrical resistance of the cell-to-cell connecting member 1 changes depending on the heat treatment temperature in the sintering step performed in 1. Then, by heat-treating the metal base material 11 on which the protective film material layer is formed by the film forming step at a temperature higher than 1000 ° C. in an atmospheric atmosphere, the metal base material 11 is subjected to highly insulating Si. It was confirmed that even if the oxides of Ti and Al are formed, the oxides have a distribution form that does not cause an increase in electrical resistance. In addition, the state in which the oxide was distributed so as not to increase the electric resistance was maintained even after a long-term energization test. In this way, in order to reduce the resistance at the interface between the metal base material 11 and the protective film 12, high resistance oxides should not be formed in a layered form that continuously spreads in the plane direction inside the metal base material 11. , And it is considered preferable to make the protective film 12 dense. It was possible to achieve this by performing the heat treatment of the sintering step in an atmospheric atmosphere at a temperature higher than 1000 ° C., and further at a temperature higher than 1000 ° C. and 1075 ° C. or lower.

図8は、上述した実験例1〜3と同様に、1000℃及び1050℃及び1075℃で焼結工程を行った3種類のサンプルについて、電気抵抗値の経時変化を測定した結果を示すグラフである。具体的には、図8に示すグラフは、図4に示す通電試験治具5に各サンプルをセットし、900℃の環境下、定電流状態にて経時的に電気抵抗を測定して行った結果を示す。つまり、電気抵抗値の測定中の温度以外の条件は図5と同じであり、電気抵抗値の測定中の温度のみが図5(800℃)と図8(900℃)とで異なる。尚、図8のグラフ中の7300時間付近及び9200時間付近では、一時的にサンプルを900℃以外の温度にして別の試験を行ったためデータが欠損しており、データが不連続になっている。また、1050℃及び1075℃で焼結工程を行ったサンプルに現れている3900時間付近での抵抗値のハンチングは試験装置による影響であり、サンプルの抵抗変化が起こったわけでない。 FIG. 8 is a graph showing the results of measuring the change over time in the electrical resistance values of three types of samples subjected to the sintering steps at 1000 ° C., 1050 ° C., and 1075 ° C. in the same manner as in Experimental Examples 1 to 3 described above. be. Specifically, in the graph shown in FIG. 8, each sample was set in the energization test jig 5 shown in FIG. 4, and the electric resistance was measured over time in a constant current state in an environment of 900 ° C. The result is shown. That is, the conditions other than the temperature during the measurement of the electric resistance value are the same as those in FIG. 5, and only the temperature during the measurement of the electric resistance value is different between FIG. 5 (800 ° C.) and FIG. 8 (900 ° C.). In the graph of FIG. 8, around 7300 hours and around 9200 hours, the data is missing because the sample was temporarily set to a temperature other than 900 ° C. and another test was performed, and the data is discontinuous. .. Further, the hunting of the resistance value around 3900 hours appearing in the samples subjected to the sintering process at 1050 ° C and 1075 ° C is an influence of the test equipment, and the resistance change of the sample does not occur.

図8に示すように、初期抵抗は1050℃で焼結工程を行ったサンプルが最も低く、1075℃のサンプル、1000℃のサンプルの順に高くなる。よって、初期抵抗値に着目すると、1050℃のサンプルが最も良好である。また、抵抗値の経時変化に着目すると、経過時間が2000時間以降になると、どのサンプルも抵抗値が増大していく挙動が確認される。時間経過に伴う抵抗値の増加量、即ち、劣化速度は、1000℃で焼結工程を行ったサンプルが最も大きく、1050℃で焼結工程を行ったサンプル、1075℃で焼結工程を行ったサンプルの順に小さくなる。よって、劣化速度に着目すると、1050℃及び1075℃で焼結工程を行ったサンプルが最も良好である。加えて、1050℃及び1075℃で焼結工程を行ったサンプルは、経過時間が9000時間を超えても、良好な抵抗値を示している。1000℃で焼結工程を行ったサンプルは傾き(劣化速度)が大きくなる変曲点を約4000時間の付近に持つが、これは金属基材11としてのステンレス鋼材の異常酸化が進行することで、抵抗増加速度が大きくなったためだと考えられる。 As shown in FIG. 8, the initial resistance is lowest in the sample subjected to the sintering step at 1050 ° C, and increases in the order of the sample at 1075 ° C and the sample at 1000 ° C. Therefore, focusing on the initial resistance value, the sample at 1050 ° C. is the best. Focusing on the change over time in the resistance value, it is confirmed that the resistance value of each sample increases after 2000 hours. The amount of increase in resistance value with the passage of time, that is, the deterioration rate, was the largest in the sample subjected to the sintering step at 1000 ° C., and the sample subjected to the sintering step at 1050 ° C. was subjected to the sintering step at 1075 ° C. It becomes smaller in the order of the sample. Therefore, focusing on the deterioration rate, the samples subjected to the sintering step at 1050 ° C and 1075 ° C are the best. In addition, the samples subjected to the sintering steps at 1050 ° C and 1075 ° C show good resistance values even when the elapsed time exceeds 9000 hours. The sample subjected to the sintering process at 1000 ° C. has an inflection point where the inclination (deterioration rate) becomes large in the vicinity of about 4000 hours, which is due to the progress of abnormal oxidation of the stainless steel material as the metal substrate 11. It is thought that this is because the resistance increase rate has increased.

以下の表1には、図8のグラフから読み取ることができる各サンプルの劣化速度(抵抗値の増加量)について、経過時間が2000時間〜4000時間の間での劣化速度、経過時間が5000時間〜7000時間の間での劣化速度を示す。1000℃で焼結工程を行ったサンプルでは、経過時間が2000〜4000時間の間の抵抗値増加量(1000時間当たり)は5mΩcmであるが、その後の経過時間が5000〜7000時間の間での抵抗値増加量は8.5mΩcmへと増大し、上述した変曲点を境にして劣化速度が急に大きくなっていることが分かる。これに対して、1050℃及び1075℃で焼結工程を行ったサンプルでは、一貫して劣化速度は小さいままであり、劣化速度が急に大きくなるようなこともない。 In Table 1 below, the deterioration rate (increase in resistance value) of each sample that can be read from the graph of FIG. 8 shows the deterioration rate between 2000 hours and 4000 hours and the elapsed time of 5000 hours. Shows the rate of deterioration between ~ 7000 hours. In the sample subjected to the sintering step at 1000 ° C., the amount of increase in resistance value (per 1000 hours) between 2000 and 4000 hours is 5 mΩcm 2 , but the elapsed time thereafter is between 5000 and 7000 hours. It can be seen that the amount of increase in the resistance value of the above increases to 8.5 mΩcm 2 , and the deterioration rate suddenly increases at the above-mentioned turning point. On the other hand, in the samples subjected to the sintering steps at 1050 ° C and 1075 ° C, the deterioration rate remains consistently low, and the deterioration rate does not suddenly increase.

Figure 0006967894
Figure 0006967894

以上のように、900℃の環境下で電気抵抗値の経時変化を測定した場合も、初期性能、耐久性の観点から、1000℃よりも高い温度で焼結工程を行うことが望ましいことが分かった。 As described above, it was found that it is desirable to perform the sintering process at a temperature higher than 1000 ° C from the viewpoint of initial performance and durability even when the change over time of the electrical resistance value is measured in an environment of 900 ° C. rice field.

補足すると、高温で保護膜12の焼結工程を行った場合、保護膜12の焼結が進行し、緻密な保護膜12を得られることから、金属基材11に対する保護膜12の密着性が高まり、保護膜12による金属基材11からのCr飛散の抑制性能が高まり、保護膜12自体の電子伝導性が向上する(緻密化による電子伝導性の向上する)という効果を期待できる。但し、高温で保護膜12の焼結工程を行った場合、金属基材11の内部に形成される酸化被膜13に関して、Cr酸化被膜の厚みの増大や異常酸化(Feの酸化)、絶縁性酸化物(Si,Ti,Alの酸化物)の異常成長等が生じ、電子伝導性が低下することが懸念される。 Supplementally, when the protective film 12 is sintered at a high temperature, the protective film 12 is sintered and a dense protective film 12 can be obtained. Therefore, the adhesion of the protective film 12 to the metal substrate 11 is improved. It can be expected that the protective film 12 enhances the ability to suppress Cr scattering from the metal base material 11 and improves the electron conductivity of the protective film 12 itself (improves the electron conductivity due to densification). However, in the case of performing the sintering step of the protective film 12 at high temperature, with respect to the oxide film 13 formed on the inside of the metal substrate 11, Cr 2 O 3 (oxidation of Fe) increases and abnormal oxidation of the thickness of the oxide layer, There is a concern that abnormal growth of insulating oxides (oxides of Si, Ti, Al) may occur and the electron conductivity may decrease.

一方で、低温で保護膜12の焼結工程を行った場合、高抵抗である酸化被膜13(Crや絶縁性酸化物(Si,Ti,Alの酸化物)を含む)の成長が限定的となり、高抵抗な層の厚みが薄くなることで、発電性能の低下が小さくなるという効果を期待できる。但し、低温で保護膜12の焼結工程を行った場合、金属基材11に対する保護膜12の密着性が十分に担保できず、保護膜12と金属基材11との間の接触抵抗の増大、保護膜12による金属基材11からのCr飛散の抑制性能の低下、金属基材11からの保護膜12の膜剥がれによる急速な抵抗上昇等が起こり得る。 On the other hand, in the case of performing the sintering step of the protective film 12 at a low temperature, the growth of a high-resistance oxide film 13 (Cr 2 O 3 and an insulating oxide (including Si, Ti, oxides of Al) of) the By limiting the thickness of the high-resistance layer and reducing the thickness, the effect of reducing the deterioration of power generation performance can be expected. However, when the protective film 12 is sintered at a low temperature, the adhesion of the protective film 12 to the metal base material 11 cannot be sufficiently ensured, and the contact resistance between the protective film 12 and the metal base material 11 increases. , The protective film 12 may deteriorate the ability to suppress Cr scattering from the metal base material 11, and the protective film 12 may peel off from the metal base material 11 to cause a rapid increase in resistance.

このように、保護膜12の焼結工程の温度条件は非常に重要なファクターであり、性能と耐久性のトレードオフな関係がある中、本発明では、Si及びAl及びTiを含むステンレス鋼を用いて構成される金属基材11の表面に湿式成膜したMnとCoとを含有するスピネル型金属酸化物を主材料とする保護膜材料層の焼結工程の温度条件を1000℃より高い温度にすることで、上述のトレードオフを解決し、発電性能の高い固体酸化物形燃料電池用セルのセル間接続部材を提供できることを明らかにした。特に、金属基材11に絶縁性の高いSi,Ti,Alの酸化物が形成されるとしても、その酸化物が電気抵抗の増大をもたらさない分布形態になっていることを確認して、本発明の完成に至った。 As described above, the temperature condition in the sintering process of the protective film 12 is a very important factor, and while there is a trade-off relationship between performance and durability, in the present invention, stainless steel containing Si and Al and Ti is used. The temperature condition of the sintering step of the protective film material layer containing a spinel-type metal oxide containing Mn and Co, which is wet-deposited on the surface of the metal base material 11 configured to be used as a main material, is set to a temperature higher than 1000 ° C. By doing so, it was clarified that the above-mentioned trade-off can be solved and a cell-to-cell connection member for a solid oxide fuel cell cell having high power generation performance can be provided. In particular, even if an oxide of Si, Ti, Al having high insulating properties is formed on the metal base material 11, it is confirmed that the oxide has a distribution form that does not cause an increase in electrical resistance. The invention was completed.

上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。 The configurations disclosed in the above embodiment (including other embodiments, the same shall apply hereinafter) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and are also disclosed herein. The embodiment is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、発電性能の高い固体酸化物形燃料電池用セルのセル間接続部材の製造方法を提供するために利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used to provide a method for manufacturing a cell-to-cell connection member of a cell for a solid oxide fuel cell having high power generation performance.

1 セル間接続部材
3 単セル
11 金属基材
12 保護膜
C 固体酸化物形燃料電池用セル(SOFC用セル)
1 Cell-to-cell connection member 3 Single cell 11 Metal substrate 12 Protective film C Solid oxide fuel cell cell (SOFC cell)

Claims (4)

固体酸化物形燃料電池用セルに用いられるセル間接続部材の製造方法であって、
Si及びAl及びTiを含むステンレス鋼を用いて構成される金属基材の表面に、MnとCoとを含有するスピネル型金属酸化物を主材料とする保護膜材料層を湿式成膜する成膜工程と、
前記成膜工程によって前記保護膜材料層が成膜された前記金属基材に対して1000℃よりも高い温度で大気雰囲気下で熱処理を施すことで、前記保護膜材料層を焼結させて前記金属基材に保護膜を形成する焼結工程とを有するセル間接続部材の製造方法。
A method for manufacturing a cell-to-cell connection member used in a cell for a solid oxide fuel cell.
A film formation in which a protective film material layer containing a spinel-type metal oxide containing Mn and Co as a main material is wet-deposited on the surface of a metal base material composed of stainless steel containing Si and Al and Ti. Process and
The protective film material layer is sintered by subjecting the metal substrate on which the protective film material layer is formed by the film forming step to a heat treatment at a temperature higher than 1000 ° C. in an atmospheric atmosphere. A method for manufacturing an intercell connection member having a sintering step of forming a protective film on a metal substrate.
前記保護膜の主材料が、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)、又は、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)である請求項1に記載のセル間接続部材の製造方法。 The main material of the protective film is cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc cobalt manganese manganese oxide Zn z Co x Mn y O 4 (0 <x, y <3, x + y = 3). The method for manufacturing an intercell connecting member according to claim 1, wherein 0 <x, y, z <3, x + y + z = 3). 前記保護膜の主材料が、Co1.5Mn1.54又はCo2MnO4である請求項2に記載のセル間接続部材の製造方法。 The main material of the protective film, Co 1.5 Mn 1.5 O 4 or manufacturing method of the intercell connection member according to claim 2 Co 2 is MnO 4. 前記成膜工程において、前記保護膜材料層が電着塗装により形成される請求項1〜3の何れか一項に記載のセル間接続部材の製造方法。 The method for manufacturing an inter-cell connecting member according to any one of claims 1 to 3, wherein the protective film material layer is formed by electrodeposition coating in the film forming step.
JP2017131785A 2016-07-05 2017-07-05 Manufacturing method of cell-to-cell connection member Active JP6967894B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133441 2016-07-05
JP2016133441 2016-07-05

Publications (2)

Publication Number Publication Date
JP2018010871A JP2018010871A (en) 2018-01-18
JP6967894B2 true JP6967894B2 (en) 2021-11-17

Family

ID=60993891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131785A Active JP6967894B2 (en) 2016-07-05 2017-07-05 Manufacturing method of cell-to-cell connection member

Country Status (1)

Country Link
JP (1) JP6967894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324983B2 (en) * 2019-12-18 2023-08-14 日本特殊陶業株式会社 INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527933C2 (en) * 2004-05-19 2006-07-11 Sandvik Intellectual Property Heat-resistant steel
DE102008036847A1 (en) * 2008-08-07 2010-02-11 Elringklinger Ag Fuel cell unit and method for making an electrically conductive connection between an electrode and a bipolar plate
JP2010113955A (en) * 2008-11-06 2010-05-20 Tokyo Electric Power Co Inc:The Interconnector for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell
JP5645417B2 (en) * 2010-02-12 2014-12-24 新日鐵住金ステンレス株式会社 Al-containing ferritic stainless steel with excellent oxidation resistance and electrical conductivity
JP5377613B2 (en) * 2011-10-24 2013-12-25 日新製鋼株式会社 Stainless steel plate for conductive members with excellent surface electrical conductivity
JP5943821B2 (en) * 2012-12-05 2016-07-05 大阪瓦斯株式会社 Method for producing inter-cell connecting member and method for producing solid oxide fuel cell
JP5731683B2 (en) * 2013-03-26 2015-06-10 大阪瓦斯株式会社 Cell connecting member, cell for solid oxide fuel cell, and electrodeposition coating used for production thereof

Also Published As

Publication number Publication date
JP2018010871A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP5072305B2 (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell stack, fuel cell
JP2010062145A (en) Barrier coating for interconnection, related device, and method of forming the interconnection
AU2008282747A1 (en) Protective oxide coatings for SOFC interconnections
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
US8349395B2 (en) Electrically conductive steel-ceramic composite and process to manufacture it
JP5013750B2 (en) Cell stack and fuel cell
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
US20120064436A1 (en) Interconnecting plate for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell using the interconnecting plate
JP6967894B2 (en) Manufacturing method of cell-to-cell connection member
JP6742105B2 (en) Method for manufacturing member for fuel cell
CN104269569A (en) A surface-modified metal connector for a solid oxide fuel cell and its manufacturing method
JP2016195101A (en) Fuel battery member and manufacturing method for the same
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP6486107B2 (en) Manufacturing method of fuel cell member
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
JP6948791B2 (en) Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell
JP6165051B2 (en) Manufacturing method of fuel cell member
JP2024132599A (en) Alloy member, electrochemical module, solid oxide fuel cell, solid oxide electrolysis cell, method for manufacturing alloy member, and method for manufacturing electrochemical module
JP2007019037A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R150 Certificate of patent or registration of utility model

Ref document number: 6967894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150