[go: up one dir, main page]

JP6959941B2 - アーク溶接方法及びアーク溶接装置 - Google Patents

アーク溶接方法及びアーク溶接装置 Download PDF

Info

Publication number
JP6959941B2
JP6959941B2 JP2018554985A JP2018554985A JP6959941B2 JP 6959941 B2 JP6959941 B2 JP 6959941B2 JP 2018554985 A JP2018554985 A JP 2018554985A JP 2018554985 A JP2018554985 A JP 2018554985A JP 6959941 B2 JP6959941 B2 JP 6959941B2
Authority
JP
Japan
Prior art keywords
welding
current
arc
wire
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018554985A
Other languages
English (en)
Other versions
JPWO2018105548A1 (ja
Inventor
勇人 馬塲
哲生 惠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Publication of JPWO2018105548A1 publication Critical patent/JPWO2018105548A1/ja
Application granted granted Critical
Publication of JP6959941B2 publication Critical patent/JP6959941B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/093Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0735Stabilising of the arc length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0737Stabilising of the arc position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、消耗電極式のアーク溶接方法及びアーク溶接装置に関する。
溶接方法の一つに、消耗電極式のガスシールドアーク溶接法がある(例えば、特許文献1)。ガスシールドアーク溶接法は、母材の被溶接部に送給された溶接ワイヤと、母材との間にアークを発生させ、アークの熱によって母材を溶接する手法であり、特に高温になった母材の酸化を防ぐために、不活性ガスを溶接部周辺に噴射しながら溶接を行うものである。5mm程度の薄板であれば、母材の突き合わせ継手を1パスで溶接することもできる。
ところが、9〜30mmの厚板になると、従来のガスシールドアーク溶接法では1パスで母材を溶接することができない。このため、複数回の溶接操作を繰り返し行う多層溶接によって、厚板の溶接が行われている。しかし、多層溶接においては、溶接工数の増大が問題となる。また、入熱量が大きくなり、母材の変形、溶接部分の脆化が問題となる。
特開2007−229775号公報
本願発明者等は、かかる問題を解決すべく鋭意検討した結果、一般的なガスシールドアーク溶接法に比して、高速で溶接ワイヤの送給を行い、大電流を供給することによって、厚板の1パス溶接を実現することができるという知見を得た。具体的には、溶接ワイヤを約5〜100m/分で送給し、300A以上の大電流を供給することによって、厚板の1パス溶接を実現することができる。溶接ワイヤの高速送給及び大電流供給を行うと、アークの熱によって母材に凹状の溶融部分が形成され、溶接ワイヤの先端部が溶融部分によって囲まれる空間に進入する。溶接ワイヤの先端部が母材表面より深部に進入することによって、溶融部分が母材の厚み方向裏面側にまで貫通し、1パス溶接が可能になる。以下、凹状の溶融部分によって囲まれる空間を埋もれ空間と呼び、埋もれ空間に進入した溶接ワイヤの先端部と、母材又は溶融部分との間に発生するアークを、適宜、埋もれアークと呼ぶ。
また、本願発明者等は、埋もれアーク溶接において、溶接電流を周期的に変動させることにより、埋もれ空間を安定的に維持することができることを見出した。通常、アークの熱によって溶融した母材及び溶接ワイヤの溶融金属は、埋もれ空間が閉口し、溶接ワイヤの先端部が埋没される方向へ流れる。溶接ワイヤの先端部が閉口した溶融部分に接触して短絡すると、溶接が著しく不安定化する。しかし、溶接電流を周期的に変動させると、埋もれ空間に進入した溶接ワイヤの先端部の位置が電流変動1周期の中で上下移動する。ワイヤ先端位置が高い状態においては、アークが溶融部分の側部に照射され、当該アークの力によって溶融部分の閉口が抑制される。このように、溶接電流を周期的に変動させることにより、埋もれ状態を安定化させ、維持することができる。
しかしながら上記方法では、埋もれ空間におけるワイヤ先端位置が低い状態から高い状態までの状態遷移を一回の溶滴移行で実現することになるため、短期間で急速に溶接ワイヤ5を溶融させる必要があり、溶接ワイヤの先端部に長い液柱が形成される。この長い液柱が電磁気力や重力,アーク力等の力を受けて大きく動き回り、更に場合によっては溶融部分の側部と短絡する等、著しく不安定な挙動をとる。不安定化した液柱は、その一部あるいは全体が埋もれ空間の外部へ吹き飛ばされ、これが大粒のスパッタ粒子となる。
本発明は斯かる事情に鑑みてなされたものであり、その目的は、300A以上の大電流を用いて行う埋もれアーク溶接において、埋もれ空間を安定的に維持しつつ、スパッタの発生を抑制することができ、安定した溶接を可能にするアーク溶接方法及びアーク溶接装置を提供することにある。
本発明に係るアーク溶接方法は、母材の被溶接部に溶接ワイヤを送給すると共に、該溶接ワイヤに平均電流300A以上の溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接方法であって、前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、前記溶接電流の平均値が小さく、前記先端部から前記溶融部分の底部へ溶滴移行する小電流期間と、前記溶接電流の平均値が大きく、前記先端部から前記溶融部分の側部へ溶滴移行する大電流期間とを周期的に変動させ、更に、前記大電流期間における前記溶接電流を、前記先端部から前記側部への溶滴移行が各大電流期間で複数回行われるように制御する。
本発明にあっては、溶接ワイヤの先端部は、凹状の溶融部分で囲まれる埋もれ空間に進入し、埋もれアークが発生する。具体的には、溶接ワイヤの先端部は溶融部分に囲まれた状態となり、溶接電流を周期的に変動させることにより、埋もれ空間におけるワイヤ先端位置を上下させることができ、溶接ワイヤの先端部と、溶融部分の底部及び側部との間にアークが発生する。
小電流期間においては、溶接ワイヤの先端部と、溶融部分の底部との間にアークが発生し、溶融部分の底部へ照射されるアークによって、深い溶込みが得られる。
大電流期間においては、溶接ワイヤの先端部と、溶融部分の側部との間にアークが発生する。アークの熱によって溶融した母材及び溶接ワイヤの溶融金属は、溶接ワイヤの先端部が埋没される方向へ流れようとするが、溶接ワイヤの先端部から溶融部分の側部へ照射されるアークの力によって押し返され、先端部が溶融部分に囲まれた状態で安定化する。
更に、ワイヤ先端位置が上下する埋もれアーク溶接において、ワイヤ先端位置が低い状態から高い状態へ遷移する過程で溶滴移行を複数回に分けて行うことにより、一回の溶滴移行で形成される液柱の長さを短く制限することができ、スパッタの発生を抑制することができる。
以上の通り、本発明によれば、埋もれアーク溶接において、埋もれ空間を安定的に維持しつつ、スパッタの発生を抑制することができる。
本発明に係るアーク溶接方法は、前記大電流期間でパルス状の大電流を複数回供給する。
本発明にあっては、ワイヤ先端位置が低い状態から高い状態へ遷移する過程において、パルス状の大電流が供給される都度、少しずつ溶接ワイヤの溶滴移行が行われる。従って、埋もれアーク溶接における溶滴移行で形成される液柱の長さを短く制限することができ、スパッタの発生を抑制することができる。
本発明に係るアーク溶接方法は、前記大電流期間は前記小電流期間よりも長く、該大電流期間における前記溶接電流は一定である。
本発明にあっては、長い大電流期間を設け、当該大電流期間に一定の溶接電流を供給する。このため、ワイヤ先端位置が低い状態から高い状態へ遷移する過程において少しずつ溶接ワイヤの溶滴移行が行われる。従って、埋もれアーク溶接における溶滴移行で形成される液柱の長さを短く制限することができ、スパッタの発生を抑制することができる。
本発明に係るアーク溶接方法は、前記大電流期間で前記溶接電流を段階的に増大させる。
本発明にあっては、大電流期間で溶接電流を段階的に増大させることにより、ワイヤ先端位置が低い状態から高い状態へ遷移する過程において、溶接ワイヤの急激な溶融が抑えられ、少しずつ溶接ワイヤの溶滴移行が行われる。従って、埋もれアーク溶接における溶滴移行で形成される液柱の長さを短く制限することができ、スパッタの発生を抑制することができる。
本発明に係るアーク溶接方法は、前記大電流期間で最大の溶接電流が供給される段階の前段階における前記溶接電流と、前記小電流期間における前記溶接電流との電流差は、前記前段階における前記溶接電流と、前記最大の溶接電流との電流差よりも大きい。
本発明にあっては、溶接ワイヤの先端部が埋もれ空間に深く侵入している段階で、比較的大きな溶接電流を供給することにより、溶滴移行を大方完了させる。溶接ワイヤの先端部の位置が低い状態、つまり溶接ワイヤの先端部が埋もれ空間に深く侵入している状態においては、溶接ワイヤの液柱が長く成長し、溶滴移行が行われても、埋もれ空間からスパッタ粒子が飛び出す可能性は低い。そして、溶接ワイヤの先端部の位置が高い状態、つまり埋もれ空間への溶接ワイヤの侵入が浅い状態になった最終段階で最大の溶接電流を供給することにより、少量の溶滴移行が行われる。従って、埋もれアーク溶接における溶滴移行で形成される液柱の長さを短く制限することができ、スパッタの発生を抑制することができる。
本発明に係るアーク溶接方法は、前記大電流期間及び前記小電流期間を10Hz以上1000Hz以下の周期で変動させる。
本発明の埋もれアーク溶接においては、アークの熱によって溶融した母材及び溶接ワイヤの溶融金属が増加し、アークによる溶融金属の波打ちが生じ、その溶融金属が凝固したビードの形状も周期的に大きく乱れるおそれがある。
しかし、前記周波数にて溶接電流を周期的に変動させることにより、大きな波打ち周期よりも高周期で溶融金属を微振動させ、溶融金属の大きな波打ちを抑えることができる。
本発明に係るアーク溶接装置は、母材の被溶接部に溶接ワイヤを送給するワイヤ送給部と、該溶接ワイヤに溶接電流を供給する電源部とを備え、前記溶接ワイヤに平均電流300A以上の溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接装置であって、前記ワイヤ送給部は、前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、前記電源部は、前記溶接電流の平均値が小さく、前記先端部から前記溶融部分の底部へ溶滴移行する小電流期間と、前記溶接電流の平均値が大きく、前記先端部から前記溶融部分の側部へ溶滴移行する大電流期間とを周期的に変動させ、かつ、前記大電流期間における前記溶接電流を、前記先端部から前記側部への溶滴移行が各大電流期間で複数回行われるように制御する。
本発明にあっては、上記アーク溶接方法で説明した通り、埋もれアーク溶接において、埋もれ空間を安定的に維持しつつ、スパッタの発生を抑制することができる。
本発明によれば、300A以上の大電流を用いて行う埋もれアーク溶接において、埋もれ空間を安定的に維持しつつ、スパッタの発生を抑制することができ、安定した溶接が可能になる。
本実施形態1に係るアーク溶接装置の一構成を示す模式図である。 本実施形態1に係るアーク溶接方法の手順を示すフローチャートである。 溶接対象の母材を示す側断面図である。 溶接電流を周期的に変動させることによる溶滴移行の様子を示す模式図である。 本実施形態1に係る溶接電流の変動を示すグラフである。 比較例に係る溶接電流の変動を示すグラフである。 本実施形態2に係る溶接電流の変動を示すグラフである。 本実施形態3に係る溶接電流の変動を示すグラフである。 本実施形態3の実施例に係る溶接電流値を示すグラフである。 本実施形態4に係る溶接電流の変動を示すグラフである。
以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、本実施形態1に係るアーク溶接装置の一構成を示す模式図である。本実施形態1に係るアーク溶接装置は、板厚が9〜30mmの母材4を1パスで突き合わせ溶接することが可能な消耗電極式のガスシールドアーク溶接機である。特に本実施形態1に係るアーク溶接装置は、溶接電流Iwの制御によって、埋もれ空間6a(図4参照)に進入した溶接ワイヤ5の先端部5aの位置を上下させ、溶接ワイヤ5の先端部5aの位置が低い状態から高い状態へ遷移させる過程で複数回に分けて溶滴移行を行うことにより、埋もれ空間6aを安定的に維持しつつ、スパッタの発生を抑制することを可能にするものである。
本実施形態1に係るアーク溶接装置は、溶接電源1、トーチ2及びワイヤ送給部3を備える。
トーチ2は、銅合金等の導電性材料からなり、母材4の被溶接部へ溶接ワイヤ5を案内すると共に、アーク7(図4参照)の発生に必要な溶接電流Iwを供給する円筒形状のコンタクトチップを有する。コンタクトチップは、その内部を挿通する溶接ワイヤ5に接触し、溶接電流Iwを溶接ワイヤ5に供給する。また、トーチ2は、コンタクトチップを囲繞する中空円筒形状をなし、被溶接部へシールドガスを噴射するノズルを有する。シールドガスは、アーク7によって溶融した母材4及び溶接ワイヤ5の酸化を防止するためのものである。シールドガスは、例えば炭酸ガス、炭酸ガス及びアルゴンガスの混合ガス、アルゴン等の不活性ガス等である。
溶接ワイヤ5は、例えばソリッドワイヤであり、その直径は0.9mm以上1.6mm以下であり、消耗電極として機能する。溶接ワイヤ5は、例えば、螺旋状に巻かれた状態でペールパックに収容されたパックワイヤ、あるいはワイヤリールに巻回されたリールワイヤである。
ワイヤ送給部3は、溶接ワイヤ5をトーチ2へ送給する送給ローラと、当該送給ローラを回転させるモータとを有する。ワイヤ送給部3は、送給ローラを回転させることによって、ワイヤリールから溶接ワイヤ5を引き出し、引き出された溶接ワイヤ5をトーチ2へ供給する。なお、かかる溶接ワイヤ5の送給方式は一例であり、特に限定されるものでは無い。
溶接電源1は、給電ケーブルを介して、トーチ2のコンタクトチップ及び母材4に接続され、溶接電流Iwを供給する電源部11と、溶接ワイヤ5の送給速度を制御する送給速度制御部12とを備える。なお、電源部11及び送給速度制御部12を別体で構成しても良い。電源部11は、PWM制御された直流電流を出力する電源回路11a、出力電圧設定回路11b、周波数設定回路11c、電流振幅設定回路11d、平均電流設定回路11e、電圧検出部11f、電流検出部11g及び比較回路11hを備える。
電圧検出部11fは、溶接電圧Vwを検出し、検出した電圧値を示す電圧値信号Edを比較回路11hへ出力する。
電流検出部11gは、例えば、溶接電源1からトーチ2を介して溶接ワイヤ5へ供給され、アーク7を流れる溶接電流Iwを検出し、検出した電流値を示す電流値信号Idを出力電圧設定回路11bへ出力する。
周波数設定回路11cは、母材4及び溶接ワイヤ5間の溶接電圧Vw及び溶接電流Iwを周期的に変動させる周波数を設定するための周波数設定信号を出力電圧設定回路11bへ出力する。本実施形態1に係るアーク溶接方法を実施する場合、周波数設定回路11cは、10Hz以上1000Hz以下の周波数、好ましくは50Hz以上300Hz以下の周波数、より好ましくは80Hz以上200Hz以下の周波数を示す周波数設定信号を出力する。
電流振幅設定回路11dは、周期的に変動する溶接電流Iwの振幅を設定するための振幅設定信号を出力電圧設定回路11bへ出力する。振幅は、変動する溶接電流Iwの最小電流値と、最大電流値との電流差である。本実施形態1に係るアーク溶接方法を実施する場合、電流振幅設定回路11dは、50A以上の電流振幅、好ましくは100A以上500A以下の電流振幅、より好ましくは200A以上400A以下の電流振幅を示す振幅設定信号を出力する。
平均電流設定回路11eは、周期的に変動する溶接電流Iwの平均電流を設定するための平均電流設定信号を出力電圧設定回路11b及び送給速度制御部12へ出力する。本実施形態1に係るアーク溶接方法を実施する場合、平均電流設定回路11eは、300A以上の平均電流、好ましくは平均電流を300A以上1000A以下の平均電流、より好ましくは500A以上800A以下の平均電流を示す平均電流設定信号を出力する。
出力電圧設定回路11bは、各部から出力された電流値信号Id、周波数設定信号、振幅設定信号、平均電流設定信号に基づいて、溶接電流Iwが目標とする周波数、電流振幅及び平均電流となるように、例えば、矩形波状の目標電圧を示す出力電圧設定信号Ecrを生成し、生成した出力電圧設定信号Ecrを比較回路11hへ出力する。
比較回路11hは、電圧検出部11fから出力された電圧値信号Edと、出力電圧設定回路11bから出力された出力電圧設定信号Ecrとを比較し、その差分を示す差分信号Evを電源回路11aへ出力する。
電源回路11aは、商用交流を交直変換するAC−DCコンバータ、交直変換された直流をスイッチングにより所要の交流に変換するインバータ回路、変換された交流を整流する整流回路等を備える。電源回路11aは、比較回路11hから出力された差分信号Evに従って、インバータをPWM制御し、電圧を溶接ワイヤ5へ出力する。その結果、母材4及び溶接ワイヤ5間に、周期的に変動する溶接電圧Vwが印加され、溶接電流Iwが通電する。なお、溶接電源1には、図示しない制御通信線を介して外部から出力指示信号が入力されるように構成されており、電源部11は、出力指示信号をトリガにして、電源回路11aに溶接電流Iwの供給を開始させる。出力指示信号は、例えば、溶接ロボットから溶接電源1へ出力される。また、手動の溶接機の場合、出力指示信号は、トーチ2側に設けられた手元操作スイッチが操作された際にトーチ2側から溶接電源1へ出力される。
図2は、本実施形態1に係るアーク溶接方法の手順を示すフローチャート、図3は、溶接対象の母材4を示す側断面図である。まず、溶接により接合されるべき一対の母材4をアーク溶接装置に配置し、溶接電源1の各種設定を行う(ステップS11)。具体的には、図3に示すように板状の第1母材41及び第2母材42を用意し、被溶接部である端面41a、42aを突き合わせて、所定の溶接作業位置に配する。第1及び第2母材41、42は、例えば軟鋼、機械構造用炭素鋼、機械構造用合金鋼等の鋼板であり、厚みは9mm以上30mm以下である。
そして、溶接電源1は、周波数10Hz以上1000Hz以下、平均電流300A以上、電流振幅50A以上の範囲内で溶接電流Iwの溶接条件を設定する。
なお、溶接電流Iwの条件設定は、全て溶接作業者が行っても良いし、溶接電源1が、本実施形態1に係る溶接方法の実施を操作部にて受け付け、全ての条件設定を自動的に行うように構成しても良い。また、溶接電源1が、平均電流等、一部の溶接条件を操作部にて受け付け、受け付けた一部の溶接条件に適合する残りの溶接条件を決定し、条件設定を半自動的に行うように構成しても良い。
各種設定が行われた後、溶接電源1は、溶接電流Iwの出力開始条件を満たすか否かを判定する(ステップS12)。具体的には、溶接電源1は、溶接の出力指示信号が入力されたか否かを判定する。出力指示信号が入力されておらず、溶接電流Iwの出力開始条件を満たさないと判定した場合(ステップS12:NO)、溶接電源1は、出力指示信号の入力待ち状態で待機する。
溶接電流Iwの出力開始条件を満たすと判定した場合(ステップS12:YES)、溶接電源1の送給速度制御部12は、ワイヤの送給を指示する送給指示信号を、ワイヤ送給部3へ出力し、所定速度で溶接ワイヤ5を送給させる(ステップS13)。溶接ワイヤ5の送給速度は、例えば、約5〜100m/分の範囲内で設定される。送給速度制御部12は、平均電流設定回路11eから出力された平均電流設定信号に応じて、送給速度を決定する。なお、溶接ワイヤ5の送給速度は一定速度であっても良いし、周期的に変動させても良い。また、溶接作業者が、ワイヤの送給速度を直接設定するように構成しても良い。
次いで、溶接電源1の電源部11は、電圧検出部11f及び電流検出部11gにて溶接電圧Vw及び溶接電流Iwを検出し(ステップS14)、検出された溶接電流Iwの周波数、電流振幅及び平均電流が設定された溶接条件に一致し、溶接電流Iwが周期的に変動するように、PWM制御する(ステップS15)。
次いで、溶接電源1の電源部11は、溶接電流Iwの出力を停止するか否かを判定する(ステップS16)。具体的には、溶接電源1は、出力指示信号の入力が継続しているか否かを判定する。出力指示信号の入力が継続しており、溶接電流Iwの出力を停止しないと判定した場合(ステップS16:NO)、電源部11は、処理をステップS13へ戻し、溶接電流Iwの出力を続ける。
溶接電流Iwの出力を停止すると判定した場合(ステップS16:YES)、電源部11は、処理をステップS12へ戻す。
以下、溶接電流Iwの周期的変動と溶滴移行の概要を説明する。
本実施形態1に係るアーク溶接方法においては、電源部11は、溶接電流Iwの周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、溶接電流Iwを制御する。
好ましくは、電源部11は、溶接電流Iwの周波数が50Hz以上300Hz以下、平均電流が300A以上1000A以下、電流振幅が100A以上500A以下になるように、溶接電流Iwを制御する。
図4は、溶接電流Iwを周期的に変動させることによる溶滴移行の様子を示す模式図である。上記溶接条件で溶接電流Iwを周期的に変動させると、溶接ワイヤ5の先端部5a及び被溶接部間に発生したアーク7の熱によって溶融した母材4及び溶接ワイヤ5の溶融金属からなる凹状の溶融部分6が母材4に形成される。そして、アーク7の様子を高速度カメラで撮影したところ、図4左図に示すように、溶接ワイヤ5の先端部5a及び溶融部分6の底部61間にアーク7が発生する第1状態と、先端部5a及び溶融部分6の側部62間にアーク7が発生する第2状態とが周期的に変動することが確認された。
具体的には、溶接ワイヤ5の先端部5aから溶融部分6の底部61へアーク7が飛ぶ第1状態と、溶接ワイヤ5の先端部5aから溶融部分6の側部62へアーク7が飛ぶ第2状態とを繰り返す。溶接電流Iwの平均値が小さい小電流期間においては第1状態、溶接電流Iwの平均値が大きい大電流期間においては第2状態となる。第1状態は、溶接ワイヤ5の溶滴移行形態がドロップ移行の状態である。第2状態は、例えば溶接ワイヤ5の溶滴移行形態がローテーティング移行又は振り子移行の状態である。
ドロップ移行は、溶接ワイヤ5の先端部5aから溶融部分6の底部61へ溶滴移行する形態の一例であり、ローテーティング移行は、溶接ワイヤ5の先端部5aから溶融部分6の側部62へ溶滴移行する形態の一例である。また、振り子移行は、溶接ワイヤ5の先端部5aに形成された液柱及びアーク7が、同一平面上を振り子状に揺動しつつ、溶接ワイヤ5の突き出し方向を中心軸として当該平面が全体として少しずつ回転していく特徴的な溶滴移行形態である。
溶融金属は、埋もれ空間6aが閉口し、溶接ワイヤ5の先端部5aが埋没される方向へ流れようとするが、第2状態において溶融部分6の側部62にアーク7が飛び、溶融部分6の溶融金属は溶接ワイヤ5から離隔する方向へ押し返され、埋もれ空間6aは凹状の状態で安定化する。なお、図4右図では、大電流によって溶融した溶接ワイヤ5の先端部5aの溶滴が移行した結果、溶接ワイヤ5の先端部5aが短くなっている。
このような第1状態及び第2状態を80Hz以上200Hz以下で変動させることによって、大きな波打ち周期よりも高周期で溶融金属を微振動させることができ、溶融金属の波打ちが抑えられる。
次に、溶接電流Iwの制御と溶滴移行の詳細を説明する。
図5は、本実施形態1に係る溶接電流Iwの変動を示すグラフである。グラフの横軸は時間を示し、縦軸は溶接電流Iwを示している。また、グラフの上部に、溶接電流Iwの変化に伴う溶滴移行の様子が模式的に図示されている。各模式図は、破線の丸印で示された溶接電流Iwが供給されているときの溶接ワイヤ5及び溶滴移行の状態を示している。以下の図6、図7、図8、図10における模式図も同様にして、溶接ワイヤ5及び溶滴移行の状態を示している。
本実施形態1においては、電源部11は、大電流期間における溶接電流Iwを、溶接ワイヤ5の先端部5aから溶融部分6の側部62への溶滴移行が各大電流期間で複数回行われるように制御する。具体的には、電源部11は、図5に示すように大電流期間でパルス状の大電流が複数回供給されるように溶接電流Iwを制御する。例えば、電源部11は、大電流期間においてパルス状の大電流を3回供給する。パルス状の電流の大きさは、各回で略同一である。小電流期間における溶接電流Iwは例えば200A、大電流期間におけるパルス状の大電流は例えば800Aである。
小電流期間においては、図5左端の模式図に示すように、溶接ワイヤ5の先端部5aは埋もれ空間6aに深く侵入しており、アーク7は溶融部分6の底部61に照射される。アーク7が溶融部分6の底部61へ照射されると、深い溶け込みが得られる。
大電流期間においては、図5中央の3つの模式図に示すように、パルス状の大電流が供給される都度、溶接ワイヤ5の先端部5aから溶融部分6の側部62へ、少量ずつ溶液移行が行われ、ワイヤ先端位置が低い状態から高い状態へ遷移する。溶接ワイヤ5の先端部5aが高い位置にある場合、アーク7は溶融部分6の側部62に照射され、埋もれ空間6aが安定化される。また、溶滴移行が少量ずつ行われるため、スパッタの発生が効果的に抑制される。
再び小電流期間になると、図5右端及び左端の模式図に示すように、ワイヤ先端位置が高い状態から再び低い状態へ遷移する。
以下、上記状態遷移が繰り返し行われる。このように溶接電流Iwを変動させることにより、埋もれアーク溶接において、埋もれ空間6aを安定的に維持しつつ深い溶け込みが得られ、しかもスパッタの発生を抑えることができ、安定した厚板の1パス貫通溶接が可能になる。
図6は、比較例に係る溶接電流Iwの変動を示すグラフである。グラフの横軸は時間を示し、縦軸は溶接電流Iwを示している。また、グラフの上部に、溶接電流Iwの変化に伴う溶滴移行の様子が模式的に図示されている。
比較例においては、大電流期間及び小電流期間が同一の長さであり、大電流期間においては一度に所要の大電流が定常的に供給される。溶接ワイヤ5の先端部5aが埋もれ空間6aに進入している状態で、急激に溶接電流Iwが増大し、一度に大電流が供給されると、図6中央2つの模式図が示すように、溶接ワイヤ5が急激に溶融して長い液柱が形成され、埋もれ空間6aの開口部付近で大きな溶滴が移行する。図中、破線星印で示す時点で、溶接ワイヤ5及び溶融部分6の短絡が発生しており、その結果、大粒のスパッタ粒子が発生する。
図5及び図6を比較すると分かるように、大電流期間において、パルス状の大電流を複数回に分けて供給することにより、少量ずつ溶滴を移行させることができ、スパッタの発生を抑制することができる。
以上の通り、このように構成された実施形態1に係るアーク溶接方法及びアーク溶接装置によれば、300A以上の大電流を用いて行う埋もれアーク溶接において、埋もれ空間6aを安定的に維持しつつ、スパッタの発生を抑制することができ、安定した厚板の1パス貫通溶接が可能になる。
また、300A以上の大電流を用いて埋もれアーク溶接を行う場合であっても、溶接電流Iwを周期的に変動させることによって、溶融金属の波打ちを抑えることができ、ビードの乱れ及び垂れの発生を防止することができる。
(実施形態2)
実施形態2に係るアーク溶接方法及びアーク溶接装置は、溶接電流Iwの制御方法が実施形態1と異なるため、以下では主にかかる相違点について説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
図7は、本実施形態2に係る溶接電流Iwの変動を示すグラフである。グラフの横軸は時間を示し、縦軸は溶接電流Iwを示している。また、グラフの上部に、溶接電流Iwの変化に伴う溶滴移行の様子が模式的に図示されている。
本実施形態2においては、電源部11は、大電流期間が小電流期間よりも長く、大電流期間における溶接電流Iwが一定になるように制御する。大電流期間の長さ及び電流値は、当該大電流期間において溶滴移行が複数回行われ得るような期間及び電流値である。例えば、小電流期間の溶接電流Iwは200A、大電流期間における溶接電流Iwは500Aである。
このように構成された実施形態2に係るアーク溶接方法及びアーク溶接装置によれば、少しずつ溶接ワイヤ5の溶滴移行を行うことができ、液柱の長さを低減し、スパッタの発生を抑制することができる。よって、埋もれアーク溶接において、埋もれ空間6aを安定的に維持しつつ、スパッタの発生を抑制することができ、安定した厚板の1パス貫通溶接が可能になる。
(実施形態3)
実施形態3に係るアーク溶接方法及びアーク溶接装置は、溶接電流Iwの制御方法が実施形態1と異なるため、以下では主にかかる相違点について説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
図8は、本実施形態3に係る溶接電流Iwの変動を示すグラフである。グラフの横軸は時間を示し、縦軸は溶接電流Iwを示している。また、グラフの上部に、溶接電流Iwの変化に伴う溶滴移行の様子が模式的に図示されている。
本実施形態3においては、電源部11は、大電流期間において溶接電流Iwが段階的に増大するように溶接電流Iwの出力を制御する。例えば、電源部11は、図8に示すように、最大の溶接電流Iwに到達するまで3段階で溶接電流Iwを増大させる。各段階で所要の溶接電流Iwが出力される期間は略同一であり、溶接電流Iwの増加量も略同一である。
(実施例)
溶接ワイヤ5の直径は1.2mmであり、溶接電源1は、溶接ワイヤ5の送給速度が40m/分、溶接電流Iwの平均電流は540A,平均電圧が51Vの溶接条件にて母材4の埋もれアーク溶接を実行する。
図9は、実施例に係る溶接電流Iw値を示すグラフである。グラフの横軸は時間を示し、縦軸は溶接電流Iwを示している。溶接電源1は、図9に示すように、小電流期間において200Aの溶接電流Iwを供給し、大電流期間において400A、600A、800Aと、3段階で電流値を増大させながら溶接電流Iwを供給する。小電流期間及び大電流期間からなる単位波形が繰り返される周期は100Hzである。大電流期間で溶接電流Iwが増大する各段階で一回ずつ溶滴移行が起こるため、溶接ワイヤ5に長い液柱が形成されることを抑制しつつ、溶接ワイヤ5の先端位置を引き上げることができ、埋もれ空間6aを安定化させることができる。
このように構成された実施形態3に係るアーク溶接方法及びアーク溶接装置によれば、埋もれアーク溶接において、埋もれ空間6aを安定的に維持しつつ、スパッタの発生を抑制することができ、安定した厚板の1パス貫通溶接が可能になる。
(実施形態4)
実施形態4に係るアーク溶接方法及びアーク溶接装置は、溶接電流Iwの制御方法が実施形態1と異なるため、以下では主にかかる相違点について説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
図10は、本実施形態4に係る溶接電流Iwの変動を示すグラフである。グラフの横軸は時間を示し、縦軸は溶接電流Iwを示している。また、グラフの上部に、溶接電流Iwの変化に伴う溶滴移行の様子が模式的に図示されている。
本実施形態4においては、電源部11は、大電流期間において溶接電流Iwが段階的に増大するように溶接電流Iwの出力を制御する。例えば、電源部11は、図10に示すように、最大の溶接電流Iwに到達するまで2段階で溶接電流Iwを増大させる。前段階の期間は後段の期間よりも長く、前段階における溶接電流Iwの増加量は、後段における溶接電流Iwの増加量よりも大きい。具体的には、前段階の期間は、後段の期間の約2倍であり、前段階における溶接電流Iwの増加量は、前段階から後段における溶接電流Iwの増加量の約2倍である。
溶接ワイヤ5の先端部5aが埋もれ空間6aに深く又は中程度、侵入している状態においては、液柱が長くてもスパッタが発生しない。そこで、溶接ワイヤ5を溶融させることによって、溶接ワイヤ5の先端部5aを埋もれ空間6aの下部から上部へ引き上げる際、図10に示すように、その初期段階では溶接ワイヤ5を比較的急激に溶融させて溶滴移行させ、その後、更に溶接電流Iwを増大させて少量の溶滴移行を起こすことで、より効率的に溶接ワイヤ5を引き上げることができる。
このように構成された実施形態4に係るアーク溶接方法及びアーク溶接装置によれば、埋もれアークにおいて埋もれ空間6aを安定的に維持しつつ、スパッタの発生を抑制することができ、安定した厚板の1パス貫通溶接が可能になる。
今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 溶接電源
2 トーチ
3 ワイヤ送給部
4 母材
5 溶接ワイヤ
5a 先端部
6 溶融部分
6a 埋もれ空間
61 底部
62 側部
7 アーク
11 電源部
11a 電源回路
11b 出力電圧設定回路
11c 周波数設定回路
11d 電流振幅設定回路
11e 平均電流設定回路
11f 電圧検出部
11g 電流検出部
11h 比較回路
12 送給速度制御部
41 第1母材
42 第2母材
Vw 溶接電圧
Iw 溶接電流
Ecr 出力電圧設定信号
Ed 電圧値信号
Id 電流値信号
Ev 差分信号

Claims (7)

  1. 母材の被溶接部に溶接ワイヤを送給すると共に、該溶接ワイヤに平均電流300A以上の溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接方法であって、
    前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、
    前記溶接電流の平均値が小さく、前記先端部から前記溶融部分の底部へ溶滴移行する小電流期間と、前記溶接電流の平均値が大きく、前記先端部から前記溶融部分の側部へ溶滴移行する大電流期間とを周期的に変動させ、
    更に、前記大電流期間における前記溶接電流を、前記先端部から前記側部への溶滴移行が各大電流期間で複数回行われるように制御する
    アーク溶接方法。
  2. 前記大電流期間でパルス状の大電流を複数回供給する
    請求項1に記載のアーク溶接方法。
  3. 前記大電流期間は前記小電流期間よりも長く、該大電流期間における前記溶接電流は一定である
    請求項1に記載のアーク溶接方法。
  4. 前記大電流期間で前記溶接電流を段階的に増大させる
    請求項1に記載のアーク溶接方法。
  5. 前記大電流期間で最大の溶接電流が供給される段階の前段階における前記溶接電流と、前記小電流期間における前記溶接電流との電流差は、前記前段階における前記溶接電流と、前記最大の溶接電流との電流差よりも大きい
    請求項4に記載のアーク溶接方法。
  6. 前記大電流期間及び前記小電流期間を10Hz以上1000Hz以下の周期で変動させる
    請求項1〜請求項5までのいずれか一項に記載のアーク溶接方法。
  7. 母材の被溶接部に溶接ワイヤを送給するワイヤ送給部と、該溶接ワイヤに溶接電流を供給する電源部とを備え、前記溶接ワイヤに平均電流300A以上の溶接電流を供給することによって、前記溶接ワイヤの先端部及び被溶接部間にアークを発生させ、前記母材を溶接する消耗電極式のアーク溶接装置であって、
    前記ワイヤ送給部は、
    前記先端部及び被溶接部間に発生したアークによって前記母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部が進入する速度で、前記溶接ワイヤを送給し、
    前記電源部は、
    前記溶接電流の平均値が小さく、前記先端部から前記溶融部分の底部へ溶滴移行する小電流期間と、前記溶接電流の平均値が大きく、前記先端部から前記溶融部分の側部へ溶滴移行する大電流期間とを周期的に変動させ、かつ、前記大電流期間における前記溶接電流を、前記先端部から前記側部への溶滴移行が各大電流期間で複数回行われるように制御する
    アーク溶接装置。
JP2018554985A 2016-12-06 2017-12-04 アーク溶接方法及びアーク溶接装置 Active JP6959941B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016236944 2016-12-06
JP2016236944 2016-12-06
PCT/JP2017/043442 WO2018105548A1 (ja) 2016-12-06 2017-12-04 アーク溶接方法及びアーク溶接装置

Publications (2)

Publication Number Publication Date
JPWO2018105548A1 JPWO2018105548A1 (ja) 2019-10-24
JP6959941B2 true JP6959941B2 (ja) 2021-11-05

Family

ID=62491093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554985A Active JP6959941B2 (ja) 2016-12-06 2017-12-04 アーク溶接方法及びアーク溶接装置

Country Status (6)

Country Link
US (1) US11407054B2 (ja)
EP (1) EP3552748B1 (ja)
JP (1) JP6959941B2 (ja)
KR (1) KR102324216B1 (ja)
CN (1) CN110023021B (ja)
WO (1) WO2018105548A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342523B1 (en) * 2015-08-25 2023-05-03 Daihen Corporation Welding methods and arc welding device
EP3427882B1 (en) * 2016-03-11 2020-11-25 Daihen Corporation Arc welding system and wire-feeding device
CN108890082B (zh) * 2018-07-19 2020-07-24 唐山松下产业机器有限公司 电弧焊接控制方法和装置、以及焊接设备
JP7475218B2 (ja) * 2019-12-25 2024-04-26 株式会社ダイヘン アーク溶接方法及びアーク溶接装置
US20220193807A1 (en) * 2020-12-23 2022-06-23 Lincoln Global, Inc. Hybrid projected and streaming pulse welding
JP7620481B2 (ja) * 2021-04-05 2025-01-23 株式会社ダイヘン アーク溶接方法及びアーク溶接装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025573A (en) * 1998-10-19 2000-02-15 Lincoln Global, Inc. Controller and method for pulse welding
JP2000263228A (ja) * 1999-03-18 2000-09-26 Hitachi Zosen Corp 溶接条件の選定方法
JP4002960B2 (ja) * 2000-02-29 2007-11-07 独立行政法人物質・材料研究機構 消耗電極式ガスシールドアーク溶接方法とその装置
CN1199760C (zh) * 2003-01-16 2005-05-04 中国重型汽车集团有限公司 一种中厚钢板冲压汽车桥壳的焊接工艺
AT413953B (de) * 2003-11-25 2006-07-15 Fronius Int Gmbh Verfahren und schaltung zum berührungslosen zünden eines schweisslichtbogens
DE102005024802A1 (de) * 2005-05-27 2006-11-30 Ewm Hightec Welding Gmbh Schweissstromquelle und Verfahren zum MIG/MAG-Schweissen
JP4498263B2 (ja) * 2005-11-08 2010-07-07 株式会社神戸製鋼所 パルスアーク溶接方法
JP2007229775A (ja) 2006-03-02 2007-09-13 Daihen Corp 消耗電極アーク溶接方法
US9352410B2 (en) * 2013-03-15 2016-05-31 Lincoln Global, Inc. System for and method of narrow-groove joining of metals
US10543551B2 (en) * 2013-09-16 2020-01-28 Illinois Tool Works Inc. Synchronized rotating arc welding method and system
US11224929B2 (en) * 2014-02-24 2022-01-18 Daihen Corporation Arc welding method
EP3208024B1 (en) * 2014-10-17 2020-01-29 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
EP3342523B1 (en) * 2015-08-25 2023-05-03 Daihen Corporation Welding methods and arc welding device
JP6777969B2 (ja) * 2016-02-18 2020-10-28 株式会社ダイヘン アーク溶接方法及びアーク溶接装置
CN109715335B (zh) * 2016-09-05 2021-05-11 松下知识产权经营株式会社 电弧焊接控制方法

Also Published As

Publication number Publication date
CN110023021A (zh) 2019-07-16
US20190283165A1 (en) 2019-09-19
EP3552748A4 (en) 2020-09-02
EP3552748B1 (en) 2023-09-13
WO2018105548A1 (ja) 2018-06-14
KR102324216B1 (ko) 2021-11-09
CN110023021B (zh) 2021-08-03
JPWO2018105548A1 (ja) 2019-10-24
US11407054B2 (en) 2022-08-09
EP3552748A1 (en) 2019-10-16
KR20190092395A (ko) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6959941B2 (ja) アーク溶接方法及びアーク溶接装置
US11638966B2 (en) Short arc welding system
JP6777969B2 (ja) アーク溶接方法及びアーク溶接装置
KR102102024B1 (ko) 교류 용접 파형을 이용하기 위한 방법 및 시스템 그리고 아연도금 공작물의 용접을 개선하기 위한 향상된 소모품
JP5460863B2 (ja) 溶接操作中に溶接プロセスを変更する方法
JP3200613U (ja) レーザーアークハイブリッド工程中に消耗品を誘導加熱するためのシステム
JP3199189U (ja) ホットワイヤ溶接電源
JP2015522426A (ja) ホットワイヤ処理を開始及び停止させるための方法及びシステム
JP7041034B2 (ja) 溶接電源、溶接システム、溶接電源の制御方法及びプログラム
CN104136161A (zh) 等离子-mig焊接方法及焊炬
JP2009113117A (ja) 消耗電極を用いる短絡アーク溶接方法
JP5822539B2 (ja) 溶接装置
JP6748555B2 (ja) アーク溶接方法及びアーク溶接装置
JP6885755B2 (ja) アーク溶接方法
EP2576119B1 (en) Short arc welding system
WO2017033978A1 (ja) 溶接方法及びアーク溶接装置
JP7222810B2 (ja) アーク溶接装置及びアーク溶接方法
CN109693016B (zh) 电弧焊接装置以及电弧焊接方法
JP6748556B2 (ja) アーク溶接方法及びアーク溶接装置
US20230142671A1 (en) Welding or additive manufacturing system with discontinuous electrode feeding
JP7475218B2 (ja) アーク溶接方法及びアーク溶接装置
EP4382236A1 (en) Welding control method, welding control device, welding power supply, welding system, program, welding method, and additive manufacturing method
JP2024096626A (ja) 多層盛り溶接方法
JP2024006194A (ja) レーザアークハイブリッド溶接方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211008

R150 Certificate of patent or registration of utility model

Ref document number: 6959941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250