JP6957435B2 - Thermally conductive silicone composition and its cured product - Google Patents
Thermally conductive silicone composition and its cured product Download PDFInfo
- Publication number
- JP6957435B2 JP6957435B2 JP2018199530A JP2018199530A JP6957435B2 JP 6957435 B2 JP6957435 B2 JP 6957435B2 JP 2018199530 A JP2018199530 A JP 2018199530A JP 2018199530 A JP2018199530 A JP 2018199530A JP 6957435 B2 JP6957435 B2 JP 6957435B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- component
- conductive silicone
- thermally conductive
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 97
- 229920001296 polysiloxane Polymers 0.000 title claims description 90
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 72
- 239000002245 particle Substances 0.000 claims description 38
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 36
- 125000004432 carbon atom Chemical group C* 0.000 claims description 33
- 238000002156 mixing Methods 0.000 claims description 31
- 239000000945 filler Substances 0.000 claims description 28
- 125000003342 alkenyl group Chemical group 0.000 claims description 20
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000011231 conductive filler Substances 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 230000015556 catabolic process Effects 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 11
- 229920006136 organohydrogenpolysiloxane Polymers 0.000 claims description 10
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 125000001931 aliphatic group Chemical group 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 125000005369 trialkoxysilyl group Chemical group 0.000 claims description 3
- -1 group Chemical group 0.000 description 26
- 238000001723 curing Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 17
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 13
- 238000009413 insulation Methods 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- 238000007259 addition reaction Methods 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 9
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 9
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 8
- 125000000068 chlorophenyl group Chemical group 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 125000001207 fluorophenyl group Chemical group 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 230000005484 gravity Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229920002379 silicone rubber Polymers 0.000 description 7
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 239000004945 silicone rubber Substances 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 125000005999 2-bromoethyl group Chemical group 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 4
- 229910052794 bromium Inorganic materials 0.000 description 4
- 125000005998 bromoethyl group Chemical group 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 125000006178 methyl benzyl group Chemical group 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 4
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 4
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 4
- 125000000547 substituted alkyl group Chemical group 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 125000004344 phenylpropyl group Chemical group 0.000 description 3
- 239000012756 surface treatment agent Substances 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 238000006459 hydrosilylation reaction Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- QBERHIJABFXGRZ-UHFFFAOYSA-M rhodium;triphenylphosphane;chloride Chemical compound [Cl-].[Rh].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 QBERHIJABFXGRZ-UHFFFAOYSA-M 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- NTXQRBIFOAAGDA-UHFFFAOYSA-N 2-ethylhexan-1-ol;hydrochloride Chemical compound Cl.CCCCC(CC)CO NTXQRBIFOAAGDA-UHFFFAOYSA-N 0.000 description 1
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- OTJZCIYGRUNXTP-UHFFFAOYSA-N but-3-yn-1-ol Chemical compound OCCC#C OTJZCIYGRUNXTP-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- VUGRNZHKYVHZSN-UHFFFAOYSA-N oct-1-yn-3-ol Chemical compound CCCCCC(O)C#C VUGRNZHKYVHZSN-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011995 wilkinson's catalyst Substances 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/12—Polysiloxanes containing silicon bound to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Glass Compositions (AREA)
Description
本発明は、熱伝導性シリコーン組成物及びその硬化物に関する。 The present invention relates to a thermally conductive silicone composition and a cured product thereof.
パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。 CPUs used in electronic devices such as personal computers, digital video discs, and mobile phones, and LSI chips such as driver ICs and memories have become large in quantity due to higher performance, higher speed, smaller size, and higher integration. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipation methods and heat dissipation members used for suppressing the temperature rise of the chip during operation have been proposed.
従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。 Conventionally, in electronic devices and the like, a heat sink using a metal plate having high thermal conductivity such as aluminum or copper has been used in order to suppress a temperature rise of a chip during operation. This heat sink conducts the heat generated by the chip and releases the heat from the surface due to the temperature difference from the outside air.
チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。 In order to efficiently transfer the heat generated from the chip to the heat sink, it is necessary to bring the heat sink into close contact with the chip. It is interposed between the chip and the heat sink, and heat conduction from the chip to the heat sink is realized through this sheet or grease.
シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。 The sheet is superior in handleability to grease, and a heat conductive sheet (heat conductive silicone rubber sheet) formed of heat conductive silicone rubber or the like is used in various fields.
特許文献1には、シリコーンゴム等の合成ゴム100質量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を100〜800質量部配合した絶縁性組成物が開示されている。 Patent Document 1 contains 100 to 800 parts by mass of at least one metal oxide selected from beryllium oxide, aluminum oxide, hydrated aluminum oxide, magnesium oxide, and zinc oxide in 100 parts by mass of synthetic rubber such as silicone rubber. The insulating composition is disclosed.
一方、パーソナルコンピューター、ワードプロセッサ、CD−ROMドライブ等の電子機器の高集積化が進み、装置内のLSI,CPU等の集積回路素子の発熱量が増加したため、従来の冷却方法では不十分な場合がある。特に、携帯用のノート型のパーソナルコンピューターの場合、機器内部の空間が狭いため大きなヒートシンクや冷却ファンを取り付けることができない。更に、これらの機器では、プリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられるので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。 On the other hand, as electronic devices such as personal computers, word processors, and CD-ROM drives have become highly integrated, and the amount of heat generated by integrated circuit elements such as LSIs and CPUs in the devices has increased, conventional cooling methods may not be sufficient. be. In particular, in the case of a portable notebook personal computer, a large heat sink or cooling fan cannot be attached because the space inside the device is small. Further, in these devices, an integrated circuit element is mounted on a printed circuit board, and a glass-reinforced epoxy resin or a polyimide resin having poor thermal conductivity is used as the material of the substrate. The heat cannot be released to the substrate.
そこで、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で素子と放熱部品を直接接触させると、表面の凹凸のため熱の伝わりが悪くなり、更に放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり、破損するおそれがある。 Therefore, a method is used in which a natural cooling type or forced cooling type heat radiating component is installed in the vicinity of the integrated circuit element, and the heat generated by the element is transferred to the heat radiating component. When the element and the heat radiating component are brought into direct contact with each other by this method, heat transfer becomes poor due to the unevenness of the surface, and even if the element is attached via the heat radiating insulation sheet, the flexibility of the heat radiating insulation sheet is slightly inferior. Stress is applied between the substrate and the substrate, which may cause damage.
また、各回路素子に放熱部品を取り付けようとすると余分なスペースが必要となり、機器の小型化が難しくなるので、いくつかの素子をひとつの放熱部品に組み合わせて冷却する方式が採られることもある。
特にノート型のパーソナルコンピューターで用いられているBGAタイプのCPUは、高さが他の素子に比べて低く発熱量が大きいため、冷却方式を十分考慮する必要がある。
In addition, if it is attempted to attach a heat radiating component to each circuit element, an extra space is required and it becomes difficult to miniaturize the device. Therefore, a method of cooling by combining several elements into one heat radiating component may be adopted. ..
In particular, the BGA type CPU used in a notebook personal computer has a lower height than other elements and a large amount of heat generation, so it is necessary to fully consider the cooling method.
そこで、素子ごとに高さが異なることにより生じる種々の隙間を埋めることができる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが要望される。 Therefore, a high thermal conductive material having a low hardness that can fill various gaps caused by different heights for each element is required. To solve such problems, there is a demand for a heat conductive sheet having excellent heat conductivity, flexibility, and being able to cope with various gaps.
この場合、特許文献2には、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、取り扱いに必要な強度を持たせたシリコーン樹脂層の上に柔らかく変形し易いシリコーン層が積層されたシートが開示されている。また、特許文献3には、熱伝導性充填材を含有し、アスカーC硬度が5〜50であるシリコーンゴム層と直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている。特許文献4には、可とう性の三次元網状体又はフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートが開示されている。特許文献5には、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有してアスカーC硬度が5〜50である厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている。特許文献6には、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーが開示されている。 In this case, Patent Document 2 describes a sheet formed by mixing a heat conductive material such as a metal oxide with a silicone resin, and is soft and easily deformed on a silicone resin layer having strength necessary for handling. A sheet on which a silicone layer is laminated is disclosed. Further, Patent Document 3 describes thermal conductivity in which a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having holes having a diameter of 0.3 mm or more are combined. The composite sheet is disclosed. Patent Document 4 discloses a sheet in which the skeletal lattice surface of a flexible three-dimensional network or foam is coated with a heat conductive silicone rubber. Patent Document 5 contains a reinforcing sheet or cloth, and has adhesiveness on at least one surface, and has an Asker C hardness of 5 to 50. A heat conductive composite silicone having a thickness of 0.4 mm or less. The sheet is disclosed. Patent Document 6 describes a heat dissipation spacer containing an addition reaction type liquid silicone rubber and a heat conductive insulating ceramic powder, and having an Asker C hardness of 25 or less and a thermal resistance of 3.0 ° C / W or less of the cured product. It is disclosed.
これら熱伝導性シリコーン硬化物は、絶縁性も要求されることが多いため、熱伝導率が0.5〜6W/m・Kの範囲では、熱伝導性充填材として酸化アルミニウム(アルミナ)が主に用いられることが多い。 Since these heat conductive silicone cured products are often required to have insulating properties, aluminum oxide (alumina) is mainly used as the heat conductive filler in the range of thermal conductivity of 0.5 to 6 W / m · K. Often used for.
アルミナは一般的に不定形粉と球状粉に大別されるが、それぞれに長所・短所を有する。不定形のアルミナは球状のアルミナに比べ、熱伝導率を向上させる効果が高いが、シリコーンに対する充填性が悪く、充填により材料粘度が上昇し、加工性が悪くなるという欠点がある。また、アルミナは研磨剤に用いられるようにモース硬度が9と、非常に硬い。そのために、特に粒子径が10μm以上である不定形アルミナを用いた熱伝導性シリコーン組成物は、製造時にシェアがかかると、撹拌釜の内壁や撹拌羽を削ってしまうという問題があった。すると、熱伝導性シリコーン組成物に撹拌釜や撹拌羽の成分が混入し、熱伝導性シリコーン組成物、及びこれを用いた硬化物の絶縁性が低下する。また、撹拌釜と撹拌羽のクリアランスが広がり、撹拌効率が落ちてしまい、同条件で製造しても一定の品質が得られなくなる。またそれを防ぐためには部品を頻繁に交換する必要がある、というような問題があった。 Alumina is generally classified into amorphous powder and spherical powder, and each has advantages and disadvantages. Amorphous alumina has a higher effect of improving thermal conductivity than spherical alumina, but has a drawback that the filling property with respect to silicone is poor, the material viscosity is increased by filling, and the processability is deteriorated. Alumina has a Mohs hardness of 9, which is very hard so that it can be used as an abrasive. Therefore, in particular, the thermally conductive silicone composition using amorphous alumina having a particle size of 10 μm or more has a problem that the inner wall of the stirring pot and the stirring blades are scraped if a share is applied during production. Then, the components of the stirring pot and the stirring blade are mixed in the heat conductive silicone composition, and the insulating property of the heat conductive silicone composition and the cured product using the same is lowered. In addition, the clearance between the stirring pot and the stirring blade is widened, the stirring efficiency is lowered, and a certain quality cannot be obtained even if the product is manufactured under the same conditions. In addition, there was a problem that parts had to be replaced frequently to prevent it.
この問題を解決するために、球状アルミナ粉のみを使用する方法もあるが、不定形粉に比べて価格が高いため、コストが上がるという問題が発生する。さらに、アルミナは理論比重が3.98と非常に重いので、組成物及び硬化物の比重が上昇する。近年、電子機器の小型化、軽量化が進んでおり、電子機器全体の軽量化のためには部材単位で見るとグラム又はミリグラム単位で、性能を維持しながらより軽量なものが求められている。アルミナの使用は軽量化、コストの観点からも不利である。 In order to solve this problem, there is a method of using only spherical alumina powder, but since the price is higher than that of amorphous powder, there is a problem that the cost increases. Further, since alumina has a very heavy theoretical specific gravity of 3.98, the specific gravities of the composition and the cured product increase. In recent years, electronic devices have been made smaller and lighter, and in order to reduce the weight of electronic devices as a whole, there is a demand for lighter weight devices while maintaining their performance in units of grams or milligrams. .. The use of alumina is disadvantageous in terms of weight reduction and cost.
上記要求を満たすフィラーとしては、重質炭酸カルシウムが挙げられる。重質炭酸カルシウムは比重が約2.7とアルミナに比べ低く、価格も安価である。モース硬度も2程度と低く、絶縁性の低下も発生しない。 Examples of the filler satisfying the above requirements include heavy calcium carbonate. Heavy calcium carbonate has a specific gravity of about 2.7, which is lower than that of alumina, and is inexpensive. The Mohs hardness is as low as about 2, and the insulation does not deteriorate.
しかしながら、重質炭酸カルシウムはシリコーンに対する充填性が低く、高熱伝導化が困難であるという問題があった。さらに、重質炭酸カルシウムを付加硬化型シリコーンに充填した場合、硬化阻害が発生し、低硬度の熱伝導性シートを得ることができないという問題があった。 However, heavy calcium carbonate has a problem that it has a low filling property for silicone and it is difficult to achieve high thermal conductivity. Further, when heavy calcium carbonate is filled in the addition-curable silicone, there is a problem that curing inhibition occurs and a low-hardness thermally conductive sheet cannot be obtained.
本発明は、上記事情に鑑みなされたもので、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)を与える重質炭酸カルシウムを用いた熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and uses heavy calcium carbonate that gives a heat conductive resin molded body (heat conductive silicone cured product) having excellent compressibility, insulation, heat conductivity, and processability. It is an object of the present invention to provide a thermally conductive silicone composition and a cured product thereof.
上記課題を解決するために、本発明では、熱伝導性シリコーン組成物であって、(A)成分としての1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量、(C)成分としての熱伝導性充填材:700〜2,500質量部、(D)成分としての白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1〜2,000ppmを含み、前記(C)成分が、(C−1)平均粒径12〜50μmである重質炭酸カルシウムフィラー:400〜2,000質量部、及び、(C−2)平均粒径0.4〜10μmである重質炭酸カルシウムフィラー:0.1〜1,500質量部からなり、かつ、前記(C−1)と前記(C−2)の合計量が700〜2,500質量部であることを特徴とする熱伝導性シリコーン組成物を提供する。 In order to solve the above problems, in the present invention, the thermally conductive silicone composition is an organopolysiloxane having at least two alkenyl groups in one molecule as the component (A): 100 parts by mass, (B). ) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to the silicon atom as a component: The number of moles of the hydrogen atom directly bonded to the silicon atom is 0. 1 to 5.0 times the amount, heat conductive filler as component (C): 700 to 2,500 parts by mass, platinum group metal-based curing catalyst as component (D): relative to component (A) Heavy calcium carbonate filler containing 0.1 to 2,000 ppm of platinum group metal element in terms of mass, and the component (C) having an average particle size of (C-1) of 12 to 50 μm: 400 to 2,000 parts by mass. , And (C-2) a heavy calcium carbonate filler having an average particle size of 0.4 to 10 μm: consisting of 0.1 to 1,500 parts by mass, and the above (C-1) and the above (C-2). ) Are 700 to 2,500 parts by mass, providing a thermally conductive silicone composition.
このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性樹脂成形体を与えることができる。 Such a thermally conductive silicone composition can provide a thermally conductive resin molded body having excellent compressibility, insulation, thermal conductivity, and processability.
前記熱伝導性シリコーン組成物は、更に、(E)成分として、(E−1)下記一般式(1)で表されるアルコキシシラン化合物、及び、(E−2)下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンのいずれか一方又は両方を(A)成分100質量部に対し0.01〜300質量部含有するものであることができる。
R1 aR2 bSi(OR3)4−a−b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
(In the formula, R 1 is an independently alkyl group having 6 to 15 carbon atoms, R 2 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independent. Is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3.)
このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性により優れた熱伝導性樹脂成形体を与えることができる。 With such a heat conductive silicone composition, it is possible to provide a heat conductive resin molded body having more excellent compressibility, insulation, heat conductivity, and processability.
前記熱伝導性シリコーン組成物は、更に、(F)成分として、下記一般式(3)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを(A)成分100質量部に対し0.1〜100質量部含有するものであることができる。
The thermally conductive silicone composition further contains the following general formula (3) as the component (F).
It can contain 0.1 to 100 parts by mass of an organopolysiloxane having a kinematic viscosity at 23 ° C. represented by (A) of 10 to 100,000 mm 2 / s with respect to 100 parts by mass of the component (A).
このような熱伝導性シリコーン組成物であれば、圧縮性、絶縁性、熱伝導性、加工性により一層優れた熱伝導性樹脂成形体を与えることができる。 With such a heat conductive silicone composition, it is possible to provide a heat conductive resin molded body having further excellent compressibility, insulation, heat conductivity, and processability.
上記熱伝導性シリコーン組成物は、23℃における粘度が800Pa・s以下であることが好ましい。 The heat conductive silicone composition preferably has a viscosity at 23 ° C. of 800 Pa · s or less.
このような熱伝導性シリコーン組成物であれば、成形性に優れる。 Such a thermally conductive silicone composition is excellent in moldability.
また、本発明は、上記熱伝導性シリコーン組成物の硬化物である熱伝導性シリコーン硬化物を提供する。 The present invention also provides a cured product of the heat conductive silicone composition, which is a cured product of the heat conductive silicone composition.
このような熱伝導性シリコーン硬化物であれば、圧縮性、絶縁性、熱伝導性、加工性に優れる。 Such a heat conductive silicone cured product is excellent in compressibility, insulation, heat conductivity, and workability.
前記熱伝導性シリコーン硬化物は、熱伝導率が0.7W/m・K以上のものであることが好ましい。 The thermally conductive silicone cured product preferably has a thermal conductivity of 0.7 W / m · K or more.
このような熱伝導性シリコーン硬化物であれば、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体として好適に用いられる。 Such a heat-conducting silicone cured product is suitably used as a heat-conducting resin molded body which is installed between heat-generating parts and heat-dissipating parts in an electronic device and is used for heat-dissipating.
また、前記熱伝導性シリコーン硬化物は、硬度がアスカーC硬度計で60以下のものであることが好ましい。 Further, the heat conductive silicone cured product preferably has a hardness of 60 or less on an Asker C hardness tester.
このような熱伝導性シリコーン硬化物であれば、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことができる。 Such a heat-conducting silicone cured product can be deformed along the shape of the heat-dissipating body and exhibit good heat-dissipating characteristics without applying stress to the heat-dissipating body.
また、前記熱伝導性シリコーン硬化物は、絶縁破壊電圧が10kV/mm以上のものであることが好ましい。 Further, the thermally conductive silicone cured product preferably has a dielectric breakdown voltage of 10 kV / mm or more.
このような熱伝導性シリコーン硬化物であれば、使用時に安定的に絶縁を確保することができる。 With such a thermally conductive silicone cured product, stable insulation can be ensured during use.
本発明は、また、上記熱伝導性シリコーン組成物の製造方法であって、前記(A)成分、(C)成分及び(D)成分、並びに、存在する場合には(E)成分、(F)成分を混合する第1混合工程と、次いで得られた混合物に(B)成分を加えてさらに混合することにより上記熱伝導性シリコーン組成物を得る第2混合工程を含み、前記第1混合工程において真空脱泡撹拌を行うことにより混合することを特徴とする上記組成物の製造方法を提供する。 The present invention is also a method for producing the thermally conductive silicone composition, wherein the component (A), the component (C) and the component (D), and the component (E), if present, (F). ) The first mixing step of mixing the components, and then the second mixing step of adding the component (B) to the obtained mixture and further mixing to obtain the thermally conductive silicone composition. Provided is a method for producing the above composition, which comprises mixing by performing vacuum defoaming stirring in the above.
このような熱伝導性シリコーン組成物の製造方法であれば、混合(混練)工程において組成物の濡れ性が十分であり、ペースト状の均一な組成物を得ることができる。 With such a method for producing a thermally conductive silicone composition, the wettability of the composition is sufficient in the mixing (kneading) step, and a paste-like uniform composition can be obtained.
以上のように、本発明の熱伝導性シリコーン組成物であれば、平均粒径が12〜50μmの重質炭酸カルシウムと、平均粒径が0.4〜10μmの重質炭酸カルシウムとを特定割合で併用することで、圧縮性、絶縁性、熱伝導性、加工性に優れた、高い熱伝導率を有する熱伝導性シリコーン硬化物を提供することができる。特に0.7W/m・K以上の熱伝導率を有する硬化物を提供することができ、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)として好適に用いられる。具体的には、特に熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料として有用である。 As described above, in the heat conductive silicone composition of the present invention, a specific ratio of heavy calcium carbonate having an average particle size of 12 to 50 μm and heavy calcium carbonate having an average particle size of 0.4 to 10 μm is specified. When used in combination with the above, it is possible to provide a thermally conductive silicone cured product having excellent thermal conductivity, excellent compressibility, insulating property, thermal conductivity, and processability, and having high thermal conductivity. In particular, it is possible to provide a cured product having a thermal conductivity of 0.7 W / m · K or more. For example, a thermally conductive resin molded body installed between a heat generating component and a heat radiating component in an electronic device and used for heat dissipation. It is suitably used as (heat conductive silicone cured product). Specifically, it is useful as a heat transfer material interposed at the interface between the thermal interface of a heat-generating electronic component and a heat-dissipating member such as a heat sink or a circuit board, particularly for cooling an electronic component by heat conduction.
上述のように、圧縮性、絶縁性、熱伝導性、加工性に優れた熱伝導性シリコーン硬化物(熱伝導性樹脂成形体)及び該硬化物を与える熱伝導性シリコーン組成物の開発が求められていた。特に、重質炭酸カルシウムフィラーは、電子機器の小型化、軽量化、コストダウンの要求を満たすものの、シリコーンに対する充填性が低く、0.5W/m・Kを超える高熱伝導化が困難であるという問題、さらには、これを付加硬化型シリコーンに充填した場合、硬化阻害が発生し、所望硬度の熱伝導性シートを得ることができないという問題があった。 As described above, it is required to develop a thermally conductive silicone cured product (thermally conductive resin molded body) having excellent compressibility, insulating property, thermal conductivity, and processability, and a thermally conductive silicone composition that gives the cured product. Was being done. In particular, although heavy calcium carbonate filler meets the demands for miniaturization, weight reduction, and cost reduction of electronic devices, it has low filling property for silicone, and it is difficult to achieve high thermal conductivity exceeding 0.5 W / m · K. Further, when this is filled in the addition-curable silicone, there is a problem that curing inhibition occurs and a heat conductive sheet having a desired hardness cannot be obtained.
本発明者らは、上記目的を達成するため鋭意検討を行った結果、平均粒径が12〜50μmの重質炭酸カルシウムと、平均粒径が0.4〜10μmの重質炭酸カルシウムとを特定割合で併用することで上記問題を解決することができることを見出した。即ち、比表面積が小さい大粒径の重質炭酸カルシウムを多く配合することで、高熱伝導化を達成することが可能であり、かつ、硬化阻害を防止できることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have identified heavy calcium carbonate having an average particle size of 12 to 50 μm and heavy calcium carbonate having an average particle size of 0.4 to 10 μm. It was found that the above problem can be solved by using them together in proportion. That is, they have found that it is possible to achieve high thermal conductivity and prevent curing inhibition by blending a large amount of heavy calcium carbonate having a small specific surface area and a large particle size, and completed the present invention.
即ち、本発明は、熱伝導性シリコーン組成物であって、
(A)成分としての1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量、
(C)成分としての熱伝導性充填材:700〜2,500質量部、
(D)成分としての白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1〜2,000ppmを含み、
前記(C)成分が、
(C−1)平均粒径12〜50μmである重質炭酸カルシウムフィラー:400〜2,000質量部、及び、
(C−2)平均粒径0.4〜10μmである重質炭酸カルシウムフィラー:0.1〜1,500質量部からなり、かつ、
前記(C−1)と前記(C−2)の合計量が700〜2,500質量部であることを特徴とする熱伝導性シリコーン組成物である。
That is, the present invention is a thermally conductive silicone composition.
(A) Organopolysiloxane having at least two alkenyl groups in one molecule as a component: 100 parts by mass,
Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to the silicon atom as the component (B): The number of moles of the hydrogen atom directly bonded to the silicon atom is the number of moles of the alkenyl group derived from the component (A). Amount that is 0.1 to 5.0 times larger,
(C) Thermally conductive filler as a component: 700 to 2,500 parts by mass,
Platinum group metal-based curing catalyst as component (D): Contains 0.1 to 2,000 ppm of platinum group metal element mass equivalent with respect to component (A).
The component (C) is
(C-1) Heavy calcium carbonate filler having an average particle size of 12 to 50 μm: 400 to 2,000 parts by mass, and
(C-2) Heavy calcium carbonate filler having an average particle size of 0.4 to 10 μm: consisting of 0.1 to 1,500 parts by mass and
The heat conductive silicone composition is characterized in that the total amount of the (C-1) and the (C-2) is 700 to 2,500 parts by mass.
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
本発明の熱伝導性シリコーン組成物は、(A)成分としての1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、(C)成分としての熱伝導性充填材、及び(D)成分としての白金族金属系硬化触媒を必須成分として含有する。以下、上記成分について説明する。 The thermally conductive silicone composition of the present invention comprises an organopolysiloxane having at least two alkenyl groups in one molecule as the component (A) and at least two hydrogen atoms directly bonded to the silicon atom as the component (B). It contains organohydrogenpolysiloxane, a heat conductive filler as a component (C), and a platinum group metal-based curing catalyst as a component (D) as essential components. Hereinafter, the above components will be described.
[(A)成分:アルケニル基含有オルガノポリシロキサン]
(A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の熱伝導性シリコーン組成物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
[Component (A): alkenyl group-containing organopolysiloxane]
The alkenyl group-containing organopolysiloxane as the component (A) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and is the main agent of the thermally conductive silicone composition of the present invention. Is. Normally, the main chain portion basically consists of repeating diorganosiloxane units, but this may include a branched structure as part of the molecular structure, or it may be cyclic. Although it may be a body, a linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as the mechanical strength of the cured product.
ケイ素原子に結合するアルケニル基以外の官能基としては、非置換又は置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることに限定されない。 The functional group other than the alkenyl group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl. Alkyl group such as group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group and cycloheptyl group, phenyl group and trill group. , Aryl groups such as xylyl group, naphthyl group and biphenylyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group and methylbenzyl group, and a part of hydrogen atom to which the carbon atom of these groups is bonded. Or a group entirely substituted with a halogen atom such as fluorine, chlorine, bromine, a cyano group, etc., for example, a chloromethyl group, a 2-bromoethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group. , Chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group and the like, and typical ones have 1 to 10 carbon atoms. Particularly typical ones have 1 to 6 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group and a cyanoethyl group. Such as an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms, and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group or a fluorophenyl group. Further, all the functional groups other than the alkenyl group bonded to the silicon atom are not limited to the same.
また、アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数が2〜8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在することが必要であるが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。 Examples of the alkenyl group include those having a normal carbon atom number of about 2 to 8, such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group and a cyclohexenyl group, and among them, vinyl. A lower alkenyl group such as a group or an allyl group is preferable, and a vinyl group is particularly preferable. It is necessary that two or more alkenyl groups are present in the molecule, but in order to make the obtained cured product highly flexible, it may be present only bonded to the silicon atom at the end of the molecular chain. preferable.
このオルガノポリシロキサンの23℃における動粘度は、好ましくは10〜100,000mm2/s、特に好ましくは500〜50,000mm2/sの範囲である。前記動粘度が10mm2/s以上であれば、得られる組成物の保存安定性が良くなり、また100,000mm2/s以下であれば、得られる組成物の伸展性が良くなる。なお、動粘度はオストワルド粘度計を用いて測定した場合の値である(以下、同じ)。
この(A)成分のオルガノポリシロキサンは、1種単独でも、粘度が異なる2種以上を組み合わせて用いてもよい。
Kinematic viscosity at 23 ° C. This organopolysiloxane is preferably in the range of 10~100,000mm 2 / s, particularly preferably 500~50,000mm 2 / s. When the kinematic viscosity is 10 mm 2 / s or more, the storage stability of the obtained composition is improved, and when it is 100,000 mm 2 / s or less, the extensibility of the obtained composition is improved. The kinematic viscosity is a value measured using an Ostwald viscometer (hereinafter, the same applies).
The organopolysiloxane of the component (A) may be used alone or in combination of two or more having different viscosities.
[(B)成分:オルガノハイドロジェンポリシロキサン]
(B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に少なくとも2個、好ましくは2〜100個のケイ素原子に直接結合した水素原子(Si−H基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のSi−H基が(A)成分中のアルケニル基に、後述する(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、(B)成分中のSi−H基の数が2個未満の場合、硬化しない。
[Component (B): Organohydrogenpolysiloxane]
The organohydrogenpolysiloxane of the component (B) is an organohydrogenpolysiloxane having a hydrogen atom (Si—H group) directly bonded to at least 2 hydrogen atoms, preferably 2 to 100 silicon atoms in one molecule. , (A) is a component that acts as a cross-linking agent. That is, the Si—H group in the component (B) is added to the alkenyl group in the component (A) by a hydrosilylation reaction promoted by a platinum group metal-based curing catalyst of the component (D) described later to form a crosslinked structure. Gives a three-dimensional network structure having. If the number of Si—H groups in the component (B) is less than 2, it will not be cured.
オルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。
式(4)中、R’の水素原子以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R’は全てが同一であることに限定されない。 In the formula (4), examples of the unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond other than the hydrogen atom of R'include a methyl group, an ethyl group, a propyl group, an isopropyl group and a butyl group. , Isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group and other alkyl groups, cyclopentyl group, cyclohexyl group, cycloheptyl group and other cycloalkyl groups. Aryl groups such as a group, a phenyl group, a trill group, a xsilyl group, a naphthyl group and a biphenylyl group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group and a methylbenzyl group, and a carbon atom of these groups are bonded to each other. Part or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups and the like, for example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3. , 3-Trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group and the like. The number of carbon atoms is 1 to 10, and the most typical ones are those having 1 to 6 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, 3,3,3-. It is an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a trifluoropropyl group and a cyanoethyl group, and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group and a fluorophenyl group. Also, R'is not limited to all being the same.
(B)成分の添加量は、(B)成分由来のSi−H基が(A)成分由来のアルケニル基1モルに対して0.1〜5.0モルとなる量(すなわち、ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量)、好ましくは0.3〜2.0モルとなる量、更に好ましくは0.5〜1.0モルとなる量である。(B)成分由来のSi−H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5.0モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなる。 The amount of the component (B) added is such that the Si—H group derived from the component (B) is 0.1 to 5.0 mol with respect to 1 mol of the alkenyl group derived from the component (A) (that is, to the silicon atom). The number of moles of the directly bonded hydrogen atom is 0.1 to 5.0 times the number of moles of the alkenyl group derived from the component (A)), preferably 0.3 to 2.0 moles, more preferably. Is an amount of 0.5 to 1.0 mol. If the amount of Si—H groups derived from the component (B) is less than 0.1 mol with respect to 1 mol of the alkenyl group derived from the component (A), it will not cure, or the strength of the cured product will be insufficient and the molded product will not cure. The shape may not be retained and it may not be possible to handle it. If it exceeds 5.0 mol, the cured product loses its flexibility and the cured product becomes brittle.
[(C)成分:熱伝導性充填材]
(C)成分である熱伝導性充填材は、主に重質炭酸カルシウムを含有するもので、下記(C−1)〜(C−2)成分からなるものである。
(C−1)平均粒径12〜50μmである重質炭酸カルシウムフィラー
(C−2)平均粒径0.4〜10μmである重質炭酸カルシウムフィラー
なお、本発明において、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
[Component (C): Thermally conductive filler]
The thermally conductive filler which is the component (C) mainly contains heavy calcium carbonate, and is composed of the following components (C-1) to (C-2).
(C-1) Heavy Calcium Carbonate Filler with an average particle size of 12 to 50 μm (C-2) Heavy Calcium Carbonate Filler with an average particle size of 0.4 to 10 μm In the present invention, the average particle size is It is a value of the cumulative average particle size (median diameter) on a volume basis measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
(C−1)成分の重質炭酸カルシウムフィラーは、熱伝導率を優位に向上させることができる。重質炭酸カルシウムの平均粒径は12〜50μmであり、特に15〜25μmであることが好ましい。平均粒径が12μm未満であると、熱伝導性を向上させる効果が低くなり、また、組成物粘度が上昇し、加工性が悪くなる。平均粒径が50μmを超えると、粒径が大きすぎるため成形性が悪くなる。(C−1)成分の重質炭酸カルシウムフィラーとしては1種又は2種以上を複合して用いてもよい。 The heavy calcium carbonate filler of the component (C-1) can significantly improve the thermal conductivity. The average particle size of heavy calcium carbonate is 12 to 50 μm, particularly preferably 15 to 25 μm. When the average particle size is less than 12 μm, the effect of improving the thermal conductivity is lowered, the viscosity of the composition is increased, and the processability is deteriorated. If the average particle size exceeds 50 μm, the particle size is too large and the moldability deteriorates. As the heavy calcium carbonate filler of the component (C-1), one kind or two or more kinds may be used in combination.
(C−2)成分の重質炭酸カルシウムフィラーは、(C−1)成分の重質炭酸カルシウムフィラーと組み合わせることで、組成物の熱伝導率及び流動性を向上させ、またフィラーの沈降を防ぐ。平均粒径は0.4〜10μmであり、特に0.8〜9μmであることが好ましい。平均粒径が0.4μm未満であると、粒径が小さすぎて取り扱い難くなるうえ、熱伝導性を向上させる効果も低くなり、また、組成物粘度が上昇し、加工性が悪くなる。平均粒径が10μmを超えると、(C−1)成分と組み合わせることによる組成物の熱伝導率及び流動性の向上と、フィラーの沈降防止の効果が損なわれる。(C−2)成分の重質炭酸カルシウムフィラーとしては1種又は2種以上を複合して用いてもよい。
(C−1)成分の配合量は、(A)成分100質量部に対して400〜2,000質量部であり、好ましくは800〜1,500質量部である。少なすぎると熱伝導率の向上が困難であり、多すぎると組成物の流動性が失われ、成形性が損なわれる。
The heavy calcium carbonate filler of the component (C-2) is combined with the heavy calcium carbonate filler of the component (C-1) to improve the thermal conductivity and fluidity of the composition and prevent the filler from settling. .. The average particle size is 0.4 to 10 μm, and particularly preferably 0.8 to 9 μm. If the average particle size is less than 0.4 μm, the particle size is too small to handle, the effect of improving thermal conductivity is low, the viscosity of the composition is increased, and the processability is deteriorated. If the average particle size exceeds 10 μm, the effect of improving the thermal conductivity and fluidity of the composition by combining with the component (C-1) and preventing the filler from settling is impaired. As the heavy calcium carbonate filler of the component (C-2), one kind or two or more kinds may be used in combination.
The blending amount of the component (C-1) is 400 to 2,000 parts by mass, preferably 800 to 1,500 parts by mass with respect to 100 parts by mass of the component (A). If it is too small, it is difficult to improve the thermal conductivity, and if it is too large, the fluidity of the composition is lost and the moldability is impaired.
(C−2)成分の配合量は、(A)成分100質量部に対して0.1〜1,500質量部であり、好ましくは200〜800質量部である。0.1質量部未満では熱伝導率及び流動性の向上が困難であり、フィラー沈降の懸念がある。1,500質量部を超えると組成物の流動性が失われ、成形性が損なわれる。 The blending amount of the component (C-2) is 0.1 to 1,500 parts by mass, preferably 200 to 800 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 0.1 parts by mass, it is difficult to improve the thermal conductivity and fluidity, and there is a concern that the filler may settle. If it exceeds 1,500 parts by mass, the fluidity of the composition is lost and the moldability is impaired.
更に、(C)成分の配合量(即ち、上記(C−1)と(C−2)の合計配合量)は、(A)成分100質量部に対して700〜2,500質量部であることが必要であり、好ましくは1,200〜1,600質量部である。この(C)成分配合量が700質量部未満の場合には、得られる組成物の熱伝導率が悪い上、組成物粘度が極めて低粘度となり、保存安定性が乏しいものとなり、2,500質量部を超える場合には、組成物の伸展性が乏しく、硬度が高く、また強度が弱い成形物となる。 Further, the blending amount of the component (C) (that is, the total blending amount of the above (C-1) and (C-2)) is 700 to 2,500 parts by mass with respect to 100 parts by mass of the component (A). It is necessary, preferably 1,200 to 1,600 parts by mass. When the amount of the component (C) blended is less than 700 parts by mass, the thermal conductivity of the obtained composition is poor, the viscosity of the composition is extremely low, and the storage stability is poor, resulting in 2,500 mass by mass. If it exceeds a portion, the composition becomes a molded product having poor extensibility, high hardness, and weak strength.
このように、平均粒径が12〜50μmの重質炭酸カルシウムフィラー(C−1)と、平均粒径が0.4〜10μmの重質炭酸カルシウムフィラー(C−2)とを上記特定割合で配合するとともに、上記配合割合で(C)成分((C−1)及び(C−2)からなる)を用いることで、上記した本発明の効果がより有利にかつ確実に発揮される。 As described above, the heavy calcium carbonate filler (C-1) having an average particle size of 12 to 50 μm and the heavy calcium carbonate filler (C-2) having an average particle size of 0.4 to 10 μm are mixed in the above-mentioned specific ratio. By blending and using the component (C) (consisting of (C-1) and (C-2)) in the above blending ratio, the above-mentioned effect of the present invention can be more advantageously and surely exhibited.
[(D)成分:白金族金属系硬化触媒]
(D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のSi−H基の付加反応を促進するための触媒であれば特に限定されないが、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックス等が挙げられる。
[Component (D): Platinum group metal-based curing catalyst]
The platinum group metal-based curing catalyst of the component (D) is not particularly limited as long as it is a catalyst for accelerating the addition reaction of the alkenyl group derived from the component (A) and the Si—H group derived from the component (B). Well-known catalysts can be mentioned as catalysts used in the hydrosilylation reaction. Specific examples thereof include platinum (including platinum black), rhodium, palladium and other platinum group metals alone, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaH PtCl 6 · nH 2 O. , KHPtCl 6・ nH 2 O, Na 2 PtCl 6・ nH 2 O, K 2 PtCl 4・ nH 2 O, PtCl 4・ nH 2 O, PtCl 2 , Na 2 HPtCl 4・ nH 2 O (However, in the formula, n is an integer of 0 to 6, preferably 0 or 6) and the like platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (US Pat. No. 3,220,972). (See), Platinum Chloropate and Olefin Complex (see US Pat. Nos. 3,159,601, 3,159,662, 3,775,452), Platinum Black , Platinum group metal such as palladium supported on a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, platinum chloride acid or platinum chloride acid. Examples thereof include a complex of a salt and a vinyl group-containing siloxane, particularly a vinyl group-containing cyclic siloxane.
(D)成分の使用量は、(A)成分に対する白金族金属元素の質量換算で0.1〜2,000ppmであり、好ましくは50〜1,000ppmである。0.1ppm未満では十分な触媒活性が得られず、2,000ppmを超えても付加反応を促進する効果は向上せず、コストアップになるうえ、硬化物に触媒が残留するため絶縁性が低下するおそれがある。 The amount of the component (D) used is 0.1 to 2,000 ppm, preferably 50 to 1,000 ppm, in terms of mass of the platinum group metal element with respect to the component (A). If it is less than 0.1 ppm, sufficient catalytic activity cannot be obtained, and if it exceeds 2,000 ppm, the effect of promoting the addition reaction is not improved, the cost is increased, and the catalyst remains in the cured product, so that the insulating property is deteriorated. There is a risk of
[(E)成分:表面処理剤]
本発明の熱伝導性シリコーン組成物には、組成物調製時に(C)成分である熱伝導性充填材を疎水化処理し、(A)成分であるオルガノポリシロキサンとの濡れ性を向上させ、(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(E)成分の表面処理剤を配合することができる。また(E)成分は(C)成分の表面を被覆し硬化阻害を抑制することができる。該(E)成分としては、特に下記に示す(E−1)成分及び(E−2)成分が好ましい。
[(E) component: surface treatment agent]
In the heat conductive silicone composition of the present invention, the heat conductive filler which is the component (C) is hydrophobized at the time of preparing the composition to improve the wettability with the organopolysiloxane which is the component (A). The surface treatment agent of the component (E) can be blended for the purpose of uniformly dispersing the thermally conductive filler as the component (C) in the matrix composed of the component (A). Further, the component (E) can cover the surface of the component (C) and suppress curing inhibition. As the component (E), the components (E-1) and (E-2) shown below are particularly preferable.
(E−1)成分は、下記一般式(1)で表されるアルコキシシラン化合物である。
R1 aR2 bSi(OR3)4−a−b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
The component (E-1) is an alkoxysilane compound represented by the following general formula (1).
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
(In the formula, R 1 is an independently alkyl group having 6 to 15 carbon atoms, R 2 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independent. Is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3.)
上記一般式(1)において、R1で表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このR1で表されるアルキル基の炭素原子数が6〜15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。 In the above general formula (1) , examples of the alkyl group represented by R 1 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group and the like. When the number of carbon atoms of the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low temperature characteristics of the composition are good. Become.
R2で表される非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。R3としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。 The unsubstituted or substituted monovalent hydrocarbon group represented by R 2, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert- butyl group, a pentyl group, a neopentyl group, Alkyl group such as hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, trill group, xsilyl group, naphthyl group, biphenylyl Alaryl groups such as aryl groups such as groups, benzyl groups, phenylethyl groups, phenylpropyl groups and methylbenzyl groups, and some or all of the hydrogen atoms to which the carbon atoms of these groups are bonded are fluorine, chlorine, A halogen atom such as bromine, a group substituted with a cyano group or the like, for example, a chloromethyl group, a 2-bromoethyl group, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a chlorophenyl group, a fluorophenyl group, Examples thereof include a cyanoethyl group, a 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, and typical ones have 1 to 10 carbon atoms, and particularly typical ones are carbons. It has 1 to 6 atoms, preferably 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group and a cyanoethyl group. Examples thereof include an unsubstituted or substituted alkyl group of the above, and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group and a fluorophenyl group. Examples of R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and the like.
(E−2)成分は、下記一般式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
(E)成分の表面処理剤としては、(E−1)成分と(E−2)成分のいずれか一方でも両者を組み合わせて配合してもよい。 As the surface treatment agent for the component (E), either one of the component (E-1) and the component (E-2) may be blended in combination.
(E)成分を配合する場合の配合量としては、(A)成分100質量部に対して0.01〜300質量部、特に0.1〜200質量部であることが好ましい。本成分の配合割合が上記範囲であれば、オイル分離を誘発することはない。 When the component (E) is blended, the blending amount is preferably 0.01 to 300 parts by mass, particularly 0.1 to 200 parts by mass with respect to 100 parts by mass of the component (A). If the blending ratio of this component is within the above range, oil separation will not be induced.
[(F)成分:特性付与剤]
本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整等の特性付与を目的として、(F)成分として、下記一般式(3)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを添加することができる。(F)成分は、1種単独で用いても、2種以上を併用してもよい。
[(F) component: property-imparting agent]
The heat conductive silicone composition of the present invention contains the following general formula (3) as the component (F) for the purpose of imparting characteristics such as viscosity adjustment of the heat conductive silicone composition.
An organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s can be added. The component (F) may be used alone or in combination of two or more.
上記一般式(3)において、R5は独立に非置換又は置換の炭素原子数1〜12の脂肪族不飽和結合を含まない1価炭化水素基である。R5としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられるが、特にメチル基、フェニル基が好ましい。
上記dは要求される粘度の観点から、好ましくは5〜2,000の整数で、特に好ましくは10〜1,000の整数である。
In the general formula (3), R 5 is a monovalent hydrocarbon group containing no unsubstituted or substituted aliphatic unsaturation having 1 to 12 carbon atoms independently. The R 5, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert- butyl group, a pentyl group, a neopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group , Alkyl group such as dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, aryl group such as phenyl group, trill group, xsilyl group, naphthyl group, biphenylyl group, benzyl group, phenylethyl group, phenylpropi An aralkyl group such as a ru group or a methylbenzyl group, and a group in which a part or all of the hydrogen atom to which the carbon atom of these groups is bonded is substituted with a halogen atom such as fluorine, chlorine or bromine, a cyano group or the like. , For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,5,5 , 6, 6, 6-Nonafluorohexyl group and the like, typical ones have 1 to 10 carbon atoms, and particularly representative ones have 1 to 6 carbon atoms, preferably methyl. An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group and a cyanoethyl group, and a phenyl group and a chlorophenyl group. Examples thereof include an unsubstituted or substituted phenyl group such as a group and a fluorophenyl group, and a methyl group and a phenyl group are particularly preferable.
From the viewpoint of the required viscosity, d is preferably an integer of 5 to 2,000, and particularly preferably an integer of 10 to 1,000.
また、(F)成分の23℃における動粘度は、10〜100,000mm2/sであり、100〜10,000mm2/sであることが好ましい。動粘度が10mm2/s以上であれば、得られる組成物の硬化物がオイルブリードを発生し難くなる。動粘度が100,000mm2/s以下であれば、得られる熱伝導性シリコーン組成物の柔軟性が好適なものとなる。 Moreover, kinematic viscosity at 23 ° C. of the component (F), a 10~100,000mm 2 / s, it is preferable that 100~10,000mm 2 / s. When the kinematic viscosity is 10 mm 2 / s or more, the cured product of the obtained composition is less likely to generate oil bleed. When the kinematic viscosity is 100,000 mm 2 / s or less, the flexibility of the obtained thermally conductive silicone composition becomes suitable.
(F)成分を本発明の熱伝導性シリコーン組成物に添加する場合、(A)成分100質量部に対して、0.1〜100質量部、好ましくは1〜50質量部である。添加量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を該組成物に充填するのが容易である。 When the component (F) is added to the thermally conductive silicone composition of the present invention, it is 0.1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A). When the addition amount is in this range, it is easy to maintain good fluidity and workability in the heat conductive silicone composition before curing, and the heat conductive filler of the component (C) is filled in the composition. Is easy.
[(G)成分:反応制御剤]
本発明の熱伝導性シリコーン組成物には、更に(G)成分として付加反応制御剤を使用することができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1−エチニル−1−ヘキサノール、3−ブチン−1−オール、エチニルメチリデンカルビノール等のアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
(G)成分を配合する場合の使用量としては、(A)成分100質量部に対して0.01〜1質量部、特に0.1〜0.8質量部程度が望ましい。このような配合量であれば、十分に硬化反応が進み、成形効率が損なわれることがない。
[(G) component: reaction control agent]
An addition reaction control agent can be further used as the component (G) in the thermally conductive silicone composition of the present invention. As the addition reaction control agent, all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol, 3-butin-1-ol, and ethynylmethyldencarbinol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds.
When the component (G) is blended, the amount used is preferably 0.01 to 1 part by mass, particularly about 0.1 to 0.8 parts by mass with respect to 100 parts by mass of the component (A). With such a blending amount, the curing reaction proceeds sufficiently and the molding efficiency is not impaired.
[その他の成分]
本発明の熱伝導性シリコーン組成物には、必要に応じて、更に他の成分を配合してもよい。例えば、酸化鉄、酸化セリウム等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[Other ingredients]
If necessary, other components may be further added to the thermally conductive silicone composition of the present invention. For example, any component such as a heat resistance improver such as iron oxide and cerium oxide; a viscosity modifier such as silica; a colorant; and a mold release agent can be blended.
[組成物の粘度]
本発明の熱伝導性シリコーン組成物の粘度は、23℃において800Pa・s以下、好ましくは700Pa・s以下である。このような粘度であれば成形性が損なわれない。なお、本発明において、この粘度はB型粘度計による測定に基づく。
[Viscosity of composition]
The viscosity of the thermally conductive silicone composition of the present invention is 800 Pa · s or less, preferably 700 Pa · s or less at 23 ° C. With such a viscosity, moldability is not impaired. In the present invention, this viscosity is based on the measurement by a B-type viscometer.
[熱伝導性シリコーン硬化物の製造方法]
熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100〜120℃で8〜12分で付加硬化させるのがよい。このような本発明のシリコーン硬化物は熱伝導性に優れる。
[Manufacturing method of thermally conductive silicone cured product]
The curing conditions for molding the thermally conductive silicone composition may be the same as those of the known addition reaction curing type silicone rubber composition. For example, it is sufficiently cured even at room temperature, but may be heated if necessary. It is preferable to carry out additional curing at 100 to 120 ° C. for 8 to 12 minutes. Such a cured silicone product of the present invention is excellent in thermal conductivity.
[熱伝導性樹脂成形体の熱伝導率]
本発明における熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)の熱伝導率は、ホットディスク法により測定した25℃における測定値が0.7W/m・K以上、特に0.9W/m・K以上であることが望ましい。
[Thermal conductivity of the thermally conductive resin molded product]
The thermal conductivity of the thermally conductive resin molded body (cured product of thermally conductive silicone) in the present invention is 0.7 W / m · K or more, particularly 0.9 W / m, as measured by the hot disk method at 25 ° C.・ It is desirable that it is K or more.
[熱伝導性樹脂成形体の絶縁破壊電圧]
本発明における熱伝導性樹脂成形体の絶縁破壊電圧は、1mm厚の成形体の絶縁破壊電圧をJIS K 6249に準拠して測定したときの測定値が、10kV以上、より好ましくは13kV以上であることが好ましい。絶縁破壊電圧が10kV/mm以上のシートであれば、使用時に安定的に絶縁を確保することができる。なお、このような絶縁破壊電圧は、フィラーの種類や純度を調整することにより、調整することができる。
[Dielectric breakdown voltage of thermally conductive resin molded product]
The dielectric breakdown voltage of the heat conductive resin molded body in the present invention is 10 kV or more, more preferably 13 kV or more, when the dielectric breakdown voltage of the 1 mm thick molded body is measured according to JIS K 6249. Is preferable. If the sheet has a breakdown voltage of 10 kV / mm or more, stable insulation can be ensured during use. The dielectric breakdown voltage can be adjusted by adjusting the type and purity of the filler.
[熱伝導性樹脂成形体の硬度]
本発明における熱伝導性樹脂成形体の硬度は、アスカーC硬度計で測定した25℃における測定値が60以下、好ましくは40以下、より好ましくは30以下であることが好ましく、また5以上であることが好ましい。硬度が60以下であれば、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことが容易になる。なお、このような硬度は、(A)成分と(B)成分の比率を変えて、架橋密度を調整することにより、調整することができる。
[Hardness of thermally conductive resin molded product]
The hardness of the heat conductive resin molded body in the present invention is preferably 60 or less, preferably 40 or less, more preferably 30 or less, and 5 or more, as measured by an Asker C hardness tester at 25 ° C. Is preferable. When the hardness is 60 or less, it is deformed to follow the shape of the heat-dissipated body, and it becomes easy to exhibit good heat-dissipating characteristics without applying stress to the heat-dissipated body. In addition, such hardness can be adjusted by changing the ratio of the component (A) and the component (B) and adjusting the cross-linking density.
[熱伝導性シリコーン組成物の製造方法]
本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができるが、上記(A)成分、(C)成分及び(D)成分、並びに、存在する場合には(E)成分、(F)成分を混合する第1混合工程と、次いで得られた混合物に(B)成分を加えてさらに混合することにより熱伝導性シリコーン組成物を得る第2混合工程を含み、第1混合工程において真空脱泡撹拌を行うことにより混合することが好ましい。上記特定の成分をあらかじめ真空脱泡撹拌を行うことにより混合(混練)する(第1混合工程)ことにより組成物の濡れ性が十分なものとなり、ペースト状の均一な組成物を得ることができる。第2混合工程における混合方法は、均一に混合することができれば特に限定されないが、第1混合工程と同様に真空脱泡撹拌を行うことで混合(混練)することができる。なお、本明細書ではこのような混合を「混練」ということもある。
[Manufacturing method of thermally conductive silicone composition]
The thermally conductive silicone composition of the present invention can be prepared by uniformly mixing the above-mentioned components according to a conventional method, but the above-mentioned (A) component, (C) component and (D) component, In addition, a thermally conductive silicone composition is obtained by first mixing the components (E) and (F), if present, and then adding the component (B) to the obtained mixture and further mixing the mixture. It is preferable to include the second mixing step of obtaining the mixture, and to mix by performing vacuum defoaming stirring in the first mixing step. By mixing (kneading) the specific components by vacuum defoaming and stirring in advance (first mixing step), the wettability of the composition becomes sufficient, and a paste-like uniform composition can be obtained. .. The mixing method in the second mixing step is not particularly limited as long as it can be mixed uniformly, but it can be mixed (kneaded) by performing vacuum defoaming stirring in the same manner as in the first mixing step. In addition, in this specification, such a mixture may be referred to as "kneading".
以上のように、本発明の熱伝導性シリコーン組成物は、上記(A)〜(D)を必須成分として含有し、特に、(C)成分として平均粒径が12〜50μmの重質炭酸カルシウムフィラー(C−1)と、平均粒径が0.4〜10μmの重質炭酸カルシウムフィラー(C−2)とを特定割合で配合するとともに、特定の配合割合で(C)成分((C−1)及び(C−2)からなる)を用いることを特徴とする。そして、このような平均粒径の異なる重質炭酸カルシウムを特定割合で併用することで、圧縮性、絶縁性、熱伝導性、加工性に優れた、高い熱伝導率を有する熱伝導性シリコーン硬化物を提供することができる。特に、0.7W/m・K以上の熱伝導率を有する硬化物を提供することができ、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体(熱伝導性シリコーン硬化物)として好適に用いられる。具体的には、特に熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料として有用である。 As described above, the thermally conductive silicone composition of the present invention contains the above (A) to (D) as essential components, and in particular, heavy calcium carbonate having an average particle size of 12 to 50 μm as the component (C). The filler (C-1) and the heavy calcium carbonate filler (C-2) having an average particle size of 0.4 to 10 μm are blended in a specific ratio, and the component (C) ((C-)) is blended in a specific ratio. 1) and (consisting of (C-2)) are used. By using heavy calcium carbonate having different average particle diameters in a specific ratio, the heat conductive silicone is cured with high heat conductivity, which is excellent in compressibility, insulation, heat conductivity, and processability. Can provide things. In particular, it is possible to provide a cured product having a thermal conductivity of 0.7 W / m · K or more, for example, heat conductive resin molding installed between a heat generating component and a heat radiating component in an electronic device and used for heat dissipation. It is suitably used as a body (heat conductive silicone cured product). Specifically, it is useful as a heat transfer material interposed at the interface between the thermal interface of a heat-generating electronic component and a heat-dissipating member such as a heat sink or a circuit board, particularly for cooling an electronic component by heat conduction.
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、動粘度は23℃においてオストワルド粘度計により測定した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
下記実施例及び比較例に用いられる(A)〜(G)成分を下記に示す。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The kinematic viscosity was measured at 23 ° C. with an Ostwald viscometer. The average particle size is a volume-based cumulative average particle size (median diameter) measured by a particle size analyzer manufactured by Nikkiso Co., Ltd., Microtrac MT3300EX.
The components (A) to (G) used in the following Examples and Comparative Examples are shown below.
(A)成分:
下記式(5)で示されるオルガノポリシロキサン。
動粘度:600mm2/s
(A) Ingredient:
Organopolysiloxane represented by the following formula (5).
Dynamic viscosity: 600mm 2 / s
(B)成分:
下記式(6)で示されるオルガノハイドロジェンポリシロキサン。
Organohydrogenpolysiloxane represented by the following formula (6).
(C)成分:
平均粒径が下記の通りである重質炭酸カルシウムフィラー。
(C−1)平均粒径が16.6μmの重質炭酸カルシウムフィラー
(C−2a)平均粒径が6.9μmの重質炭酸カルシウムフィラー
(C−2b)平均粒径が2.9μmの重質炭酸カルシウムフィラー
(C−2c)平均粒径が10μmの重質炭酸カルシウムフィラー
(D)成分:
5質量%塩化白金酸2−エチルヘキサノール溶液。
(E)成分:(E−2)成分
下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。
A heavy calcium carbonate filler having an average particle size as follows.
(C-1) Heavy Calcium Carbonate Filler (C-2a) with an average particle size of 16.6 μm Heavy calcium carbonate filler (C-2b) with an average particle size of 6.9 μm Weight with an average particle size of 2.9 μm Quality Calcium Carbonate Filler (C-2c) Component of Heavy Calcium Carbonate Filler (D) with an average particle size of 10 μm:
5 mass% 2-ethylhexanol chloride chloroplatinate solution.
Component (E): Component (E-2) A dimethylpolysiloxane having an average degree of polymerization of 30 represented by the following formula (7) and having one end sealed with a trimethoxysilyl group.
(F)成分
可塑剤として、下記式(8)で示されるジメチルポリシロキサン。
(G)成分:
付加反応制御剤として、エチニルメチリデンカルビノール。
(F) Component A dimethylpolysiloxane represented by the following formula (8) as a plasticizer.
(G) component:
Ethinyl methanol carbinol as an addition reaction control agent.
[実施例1〜3、比較例1〜2]
実施例1〜3及び比較例1〜2において、上記(A)〜(G)成分、その他の成分(内添離型剤)を表1に示す所定の量を用いて下記のように組成物を調製し、成形硬化させ、下記評価方法に従って組成物の粘度、硬化阻害発生の有無、硬化物の熱伝導率、硬度、絶縁破壊電圧、比重を観察した。結果を表1に併記する。なお、表1中、「H/Vi」は、ケイ素原子に直接結合した水素原子(Si−H基)のモル数の(A)成分由来のアルケニル基のモル数に対する比率である。
[Examples 1 to 3 and Comparative Examples 1 to 2]
In Examples 1 to 3 and Comparative Examples 1 to 2, the above components (A) to (G) and other components (internally added and detached agents) were used in the predetermined amounts shown in Table 1 to form the composition as shown below. Was prepared, molded and cured, and the viscosity of the composition, the presence or absence of curing inhibition, the thermal conductivity, hardness, dielectric breakdown voltage, and specific gravity of the cured product were observed according to the following evaluation method. The results are also shown in Table 1. In Table 1, "H / Vi" is the ratio of the number of moles of hydrogen atom (Si—H group) directly bonded to the silicon atom to the number of moles of alkenyl group derived from the component (A).
[組成物の調製]
(A)、(C)〜(F)成分を下記表1の実施例1〜3及び比較例1〜2に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤として、信越化学工業(株)製のフェニル変性シリコーンオイルであるKF−54を有効量加え、プラネタリーミキサーで真空脱泡しながら90分間混練した。
そこに(B)と(G)成分を下記表1の実施例1〜3及び比較例1〜2に示す所定の量を加え、30分間混練し、組成物を得た。
[Preparation of composition]
The components (A), (C) to (F) are added in predetermined amounts shown in Examples 1 to 3 and Comparative Examples 1 to 2 in Table 1 below, and as an internal release mold release agent that further promotes mold release from the separator. , KF-54, a phenyl-modified silicone oil manufactured by Shin-Etsu Chemical Co., Ltd., was added in an effective amount and kneaded for 90 minutes while vacuum defoaming with a planetary mixer.
The predetermined amounts of the components (B) and (G) shown in Examples 1 to 3 and Comparative Examples 1 to 2 in Table 1 below were added thereto, and the mixture was kneaded for 30 minutes to obtain a composition.
[成形硬化方法]
実施例1〜3及び比較例1〜2で得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成形機を用い、120℃,10分間の条件で成形硬化した。
[Molding and curing method]
The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were poured into a mold of 60 mm × 60 mm × 6 mm, and molded and cured under the conditions of 120 ° C. for 10 minutes using a press molding machine.
[評価方法]
組成物の粘度:
実施例1〜3及び比較例1〜2で得られた組成物の粘度を、B型粘度計にて、23℃環境下で測定した。
硬化阻害発生の有無:
実施例1〜3及び比較例1〜2で得られた組成物について硬化阻害発生の有無を組成物を加熱処理して判定した。
熱伝導率:
実施例1〜3及び比較例1〜2で得られた組成物を、プレス成形機を用い、120℃,10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPS−2500S、京都電子工業(株)製)により該シートの熱伝導率を測定した。
硬度:
実施例1〜3及び比較例1〜2で得られた組成物を上記と同様に6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
絶縁破壊電圧:
実施例1〜3及び比較例1〜2で得られた組成物を、プレス成形機を用い、120℃,10分間の条件で1mm厚のシート状に硬化させ、JIS K 6249に準拠して絶縁破壊電圧を測定した。
比重:
実施例1〜3及び比較例1〜2で得られた組成物を、プレス成形機を用い、120℃,10分間の条件で1mm厚のシート状に硬化させ、硬化物の比重を水中置換法により測定した。
[Evaluation method]
Viscosity of composition:
The viscosities of the compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were measured with a B-type viscometer in an environment of 23 ° C.
Presence or absence of hardening inhibition:
With respect to the compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the presence or absence of curing inhibition was determined by heat-treating the compositions.
Thermal conductivity:
The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured into a 6 mm thick sheet at 120 ° C. for 10 minutes using a press molding machine, and two sheets thereof were used. The thermal conductivity of the sheet was measured with a thermal conductivity meter (trade name: TPS-2500S, manufactured by Kyoto Denshi Kogyo Co., Ltd.).
hardness:
The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured into a sheet having a thickness of 6 mm in the same manner as described above, and two sheets thereof were stacked and measured with an Asker C hardness tester.
Breakdown voltage:
The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured into a 1 mm thick sheet at 120 ° C. for 10 minutes using a press molding machine, and insulated in accordance with JIS K 6249. The breakdown voltage was measured.
specific gravity:
The compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were cured into a 1 mm-thick sheet at 120 ° C. for 10 minutes using a press molding machine, and the specific gravity of the cured product was replaced with water. Measured by.
比較例1のように熱伝導性充填材の総質量部が(A)成分100質量部に対し2,500質量部を超えると、組成物の濡れ性が不足し、ペースト状の均一な組成物を得ることができなかった。比較例2のように(C−1)成分の量が400質量部未満で、高熱伝導化のために(C−2)成分を高充填化した場合、硬化阻害が発生した。なお、比較例1では組成物がペースト状にならなかったため硬化阻害の有無以降の評価ができず、比較例2では硬化阻害が発生したため熱伝導率以降の評価ができなかった。 When the total mass part of the heat conductive filler exceeds 2,500 parts by mass with respect to 100 parts by mass of the component (A) as in Comparative Example 1, the wettability of the composition is insufficient, and the paste-like uniform composition Could not be obtained. When the amount of the component (C-1) was less than 400 parts by mass and the component (C-2) was highly filled for high thermal conductivity as in Comparative Example 2, hardening inhibition occurred. In Comparative Example 1, since the composition did not become a paste, it was not possible to evaluate after the presence or absence of curing inhibition, and in Comparative Example 2, since curing inhibition occurred, it was not possible to evaluate after the thermal conductivity.
これに対し、実施例のように、(C−1)と(C−2)を特定の比率で配合した(C)成分を用いた場合、組成物の粘度、硬化物の熱伝導率、硬度、比重、絶縁破壊電圧とも良好な結果となった。 On the other hand, when the component (C) in which (C-1) and (C-2) are mixed in a specific ratio is used as in the example, the viscosity of the composition, the thermal conductivity of the cured product, and the hardness , Specific gravity and dielectric breakdown voltage were both good results.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.
Claims (7)
(A)成分としての1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)成分としてのケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が前記(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量、
(C)成分としての熱伝導性充填材:700〜2,500質量部、
(D)成分としての白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1〜2,000ppm、
(E)成分としての
(E−1)下記一般式(1)
R 1 a R 2 b Si(OR 3 ) 4−a−b (1)
(式中、R 1 は独立に炭素原子数6〜15のアルキル基であり、R 2 は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R 3 は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物、及び
(E−2)下記一般式(2)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンのいずれか一方又は両方:0.01〜300質量部、
(F)成分としての下記一般式(3)
で表される23℃における動粘度が10〜100,000mm 2 /sのオルガノポリシロキサン:0.1〜100質量部
を含み、
前記(C)成分が、
(C−1)平均粒径12〜50μmである重質炭酸カルシウムフィラー:400〜2,000質量部、及び、
(C−2)平均粒径0.4〜10μmである重質炭酸カルシウムフィラー:0.1〜1,500質量部からなり、かつ、
前記(C−1)と前記(C−2)の合計量が700〜2,500質量部であることを特徴とする熱伝導性シリコーン組成物。 A thermally conductive silicone composition
(A) Organopolysiloxane having at least two alkenyl groups in one molecule as a component: 100 parts by mass,
Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to the silicon atom as the component (B): The number of moles of the hydrogen atom directly bonded to the silicon atom is the number of moles of the alkenyl group derived from the component (A). Amount that is 0.1 to 5.0 times larger,
(C) Thermally conductive filler as a component: 700 to 2,500 parts by mass,
Platinum group metal-based curing catalyst as component (D): 0.1 to 2,000 ppm in terms of platinum group metal element mass with respect to component (A),
(E) As an ingredient
(E-1) The following general formula (1)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
(In the formula, R 1 is an independently alkyl group having 6 to 15 carbon atoms, R 2 is an independently unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independent. Is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, and a + b is an integer of 1 to 3.)
Alkoxysilane compound represented by, and
(E-2) The following general formula (2)
One or both of dimethylpolysiloxane in which one end of the molecular chain represented by is sealed with a trialkoxysilyl group: 0.01 to 300 parts by mass,
(F) The following general formula (3) as a component
Organopolysiloxane having a kinematic viscosity at 23 ° C. of 10-100,000 mm 2 / s: 0.1 to 100 parts by mass.
The component (C) is
(C-1) Heavy calcium carbonate filler having an average particle size of 12 to 50 μm: 400 to 2,000 parts by mass, and
(C-2) Heavy calcium carbonate filler having an average particle size of 0.4 to 10 μm: consisting of 0.1 to 1,500 parts by mass and
A thermally conductive silicone composition, wherein the total amount of the (C-1) and the (C-2) is 700 to 2,500 parts by mass.
前記(A)成分、(C)成分、(D)成分、(E)成分、及び(F)成分を混合する第1混合工程と、次いで得られた混合物に(B)成分を加えてさらに混合することにより前記熱伝導性シリコーン組成物を得る第2混合工程を含み、前記第1混合工程において真空脱泡撹拌を行うことにより混合することを特徴とする熱伝導性シリコーン組成物の製造方法。 The method for producing a thermally conductive silicone composition according to claim 1 or 2.
Wherein component (A), (C), (D), further mixed with component (B) in the first mixing step, then the resulting mixture is mixed with component (E), and component (F) A method for producing a thermally conductive silicone composition, which comprises a second mixing step of obtaining the thermally conductive silicone composition by subjecting the mixture, and mixing by performing vacuum defoaming stirring in the first mixing step.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018199530A JP6957435B2 (en) | 2018-10-23 | 2018-10-23 | Thermally conductive silicone composition and its cured product |
PCT/JP2019/030982 WO2020084868A1 (en) | 2018-10-23 | 2019-08-06 | Thermally conductive silicone composition and cured product thereof |
CN201980060877.0A CN112714784B (en) | 2018-10-23 | 2019-08-06 | Heat-conductive silicone composition and cured product thereof |
KR1020217006906A KR20210080351A (en) | 2018-10-23 | 2019-08-06 | Thermally conductive silicone composition and cured product thereof |
TW108128867A TWI813738B (en) | 2018-10-23 | 2019-08-14 | Thermally conductive silicon oxide composition and its hardened product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018199530A JP6957435B2 (en) | 2018-10-23 | 2018-10-23 | Thermally conductive silicone composition and its cured product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020066670A JP2020066670A (en) | 2020-04-30 |
JP6957435B2 true JP6957435B2 (en) | 2021-11-02 |
Family
ID=70330478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018199530A Active JP6957435B2 (en) | 2018-10-23 | 2018-10-23 | Thermally conductive silicone composition and its cured product |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6957435B2 (en) |
KR (1) | KR20210080351A (en) |
CN (1) | CN112714784B (en) |
TW (1) | TWI813738B (en) |
WO (1) | WO2020084868A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023162636A1 (en) * | 2022-02-28 | 2023-08-31 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4732400Y1 (en) | 1968-04-23 | 1972-09-29 | ||
JP2536120B2 (en) | 1989-01-25 | 1996-09-18 | 日本電気株式会社 | Electronic component cooling structure |
JP2938340B2 (en) | 1994-03-29 | 1999-08-23 | 信越化学工業株式会社 | Thermal conductive composite sheet |
JP3075132B2 (en) | 1995-03-06 | 2000-08-07 | 信越化学工業株式会社 | Heat dissipation sheet |
JP3498823B2 (en) | 1996-04-30 | 2004-02-23 | 電気化学工業株式会社 | Heat radiation spacer and its use |
JP3718350B2 (en) * | 1998-08-10 | 2005-11-24 | 富士高分子工業株式会社 | Thermally conductive and electrically insulating silicone rubber composition and silicone gel composition |
JP2002069300A (en) * | 2000-08-31 | 2002-03-08 | Dow Corning Toray Silicone Co Ltd | Vibration-insulating silicon compound |
JP4438937B2 (en) * | 2004-02-05 | 2010-03-24 | 信越化学工業株式会社 | Room temperature curable organopolysiloxane composition |
US20080269405A1 (en) * | 2004-04-01 | 2008-10-30 | Toshihiko Okamoto | Single-Component Curable Composition |
JP2007161806A (en) * | 2005-12-12 | 2007-06-28 | Shin Etsu Chem Co Ltd | Heat conductive silicone rubber composition |
JP2009256400A (en) * | 2008-04-11 | 2009-11-05 | Shin Etsu Chem Co Ltd | Silicone adhesive for semiconductor element |
JP2013222836A (en) * | 2012-04-17 | 2013-10-28 | Shin Etsu Chem Co Ltd | Electronic device excellent in heat dissipation and reworkability and manufacturing method thereof |
JP5729882B2 (en) * | 2012-10-23 | 2015-06-03 | 信越化学工業株式会社 | Thermally conductive silicone grease composition |
JP2014105283A (en) * | 2012-11-28 | 2014-06-09 | Shin Etsu Chem Co Ltd | Thermally conductive silicone grease composition |
US10030122B2 (en) * | 2015-02-09 | 2018-07-24 | Wacker Chemical Corporation | Curable compositions |
WO2018180997A1 (en) * | 2017-03-31 | 2018-10-04 | バンドー化学株式会社 | Heat conductive sheet |
-
2018
- 2018-10-23 JP JP2018199530A patent/JP6957435B2/en active Active
-
2019
- 2019-08-06 CN CN201980060877.0A patent/CN112714784B/en active Active
- 2019-08-06 KR KR1020217006906A patent/KR20210080351A/en active Pending
- 2019-08-06 WO PCT/JP2019/030982 patent/WO2020084868A1/en active Application Filing
- 2019-08-14 TW TW108128867A patent/TWI813738B/en active
Also Published As
Publication number | Publication date |
---|---|
CN112714784B (en) | 2022-12-27 |
TWI813738B (en) | 2023-09-01 |
JP2020066670A (en) | 2020-04-30 |
TW202016219A (en) | 2020-05-01 |
CN112714784A (en) | 2021-04-27 |
WO2020084868A1 (en) | 2020-04-30 |
KR20210080351A (en) | 2021-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5664563B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP5304588B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP5418298B2 (en) | Thermally conductive silicone composition and cured product thereof | |
TWI822954B (en) | Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material | |
JP6075261B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP6202475B2 (en) | Thermally conductive composite silicone rubber sheet | |
JP7033047B2 (en) | Thermally conductive silicone composition and its cured product | |
JP7285231B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP7136065B2 (en) | THERMALLY CONDUCTIVE SILICONE COMPOSITION AND THERMALLY CONDUCTIVE SILICONE SHEET | |
JP7165647B2 (en) | Thermally conductive silicone resin composition | |
JP7264850B2 (en) | Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet | |
JP6957435B2 (en) | Thermally conductive silicone composition and its cured product | |
JP7485634B2 (en) | Thermally conductive silicone composition and cured product thereof | |
KR20240011681A (en) | Thermal conductive silicone composition | |
JP7496800B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP2024125630A (en) | Silicone Composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210910 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6957435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |