[go: up one dir, main page]

JP6955798B2 - Ultraviolet irradiation device - Google Patents

Ultraviolet irradiation device Download PDF

Info

Publication number
JP6955798B2
JP6955798B2 JP2020141016A JP2020141016A JP6955798B2 JP 6955798 B2 JP6955798 B2 JP 6955798B2 JP 2020141016 A JP2020141016 A JP 2020141016A JP 2020141016 A JP2020141016 A JP 2020141016A JP 6955798 B2 JP6955798 B2 JP 6955798B2
Authority
JP
Japan
Prior art keywords
light emitting
ultraviolet
light source
electrode
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020141016A
Other languages
Japanese (ja)
Other versions
JP2020202189A (en
Inventor
篠田 傳
傳 篠田
平川 仁
仁 平川
粟本 健司
健司 粟本
武文 日▲高▼
武文 日▲高▼
純一郎 ▲高▼橋
純一郎 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKOH TECH CO., LTD.
Original Assignee
SHIKOH TECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015223152A external-priority patent/JP6757531B2/en
Application filed by SHIKOH TECH CO., LTD. filed Critical SHIKOH TECH CO., LTD.
Priority to JP2020141016A priority Critical patent/JP6955798B2/en
Publication of JP2020202189A publication Critical patent/JP2020202189A/en
Priority to JP2021156879A priority patent/JP7470994B2/en
Application granted granted Critical
Publication of JP6955798B2 publication Critical patent/JP6955798B2/en
Priority to JP2022076688A priority patent/JP7268927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

本発明は、集光ミラーや集光レンズを用いることなく照射対象に対して光源からの強力な紫外光束を集中照射できるようにした自己集光機能を有する紫外光源装置に関し、更に詳細には紫外発光ガス放電チューブのアレイをからなるフレキシブルな面光源を利用した自己集光機能を有する紫外線照射装置に関するものである。 The present invention relates to an ultraviolet light source device having a self-condensing function that enables concentrated irradiation of a strong ultraviolet light beam from a light source to an irradiation target without using a condensing mirror or a condensing lens. The present invention relates to an ultraviolet irradiation device having a self-condensing function using a flexible surface light source composed of an array of luminescent gas discharge tubes.

従来、産業用や医療用、殺菌・滅菌用などの分野で紫外線が広く応用されているが、光源デバイスとしては高圧水銀ランプやエキシマ放電ランプのほかには実用的なものが無いのが実情である。水銀レス構造として注目される紫外発光LEDは、未だ開発途上にあって十分な発光強度のものが得られていないが、例えば、特許文献1に開示のように複数のLED発光素子からの光束を湾曲した反射ミラーで集光して照射強度を高める技術が知られている。また、特許文献2には外部電極構成のガス放電チューブを利用した紫外発光用平面光源デバイスも提案されているが、同じく発光強度の向上が望まれている。 Conventionally, ultraviolet rays have been widely applied in fields such as industrial use, medical use, sterilization and sterilization, but the reality is that there are no practical light source devices other than high-pressure mercury lamps and excimer discharge lamps. be. Ultraviolet light emitting LEDs, which are attracting attention as a mercury-less structure, are still under development and have not been obtained with sufficient light emission intensity. For example, as disclosed in Patent Document 1, luminous flux from a plurality of LED light emitting elements is emitted. A technique is known in which light is collected by a curved reflection mirror to increase the irradiation intensity. Further, Patent Document 2 also proposes a flat light source device for ultraviolet light emission using a gas discharge tube having an external electrode configuration, but it is also desired to improve the light emission intensity.

特開2012−199055号公開特許公報Japanese Patent Application Laid-Open No. 2012-199055 特開2011−040271号公開特許公報Japanese Patent Application Laid-Open No. 2011-040271

上記のように、LEDを利用した従来の光源デバイスでは湾曲した反射ミラーによって装置全体が大型となって利用範囲が制限され、また、ガス放電チューブを利用した従来の平面光源は、電極構成が複雑であるほか、発光効率や発光出力の点で未だ実用の域に達していない。 As described above, in the conventional light source device using LEDs, the entire device becomes large due to the curved reflection mirror and the range of use is limited, and in the conventional flat light source using a gas discharge tube, the electrode configuration is complicated. In addition, it has not yet reached the practical level in terms of luminous efficiency and emission output.

従って、本発明は、高強度の照射光が得られる水銀レスの光源デバイスを提供しようとするものであり、特に、反射ミラーや集光レンズを用いることなく自己集光機能を有する光源デバイスの提供を目的とするものである。 Therefore, the present invention is intended to provide a mercury-less light source device capable of obtaining high-intensity irradiation light, and in particular, to provide a light source device having a self-condensing function without using a reflection mirror or a condensing lens. Is the purpose.

本発明は、細長いガラス管の長手方向に沿って設けた一対の長電極間で放電を発生させるようにした外部電極型の新しい紫外発光ガス放電チューブをベースとするものである。この新しい紫外発光ガス放電チューブは、従来の平面光源に用いられた発光チューブとは電極構造並びに放電形式が異なり、発光効率の大幅な改善が図られている。また、複数本の発光チューブを共通の電極対上に配列して面光源を構成した場合、アルミニウム箔のような反射性の電極材料で発光チューブの背面側の80%以上をカバーすることが可能となるので、一層高い集光機能を得ることができる。 The present invention is based on a new external electrode type ultraviolet emitting gas discharge tube in which a discharge is generated between a pair of long electrodes provided along the longitudinal direction of an elongated glass tube. This new ultraviolet emitting gas discharge tube has a different electrode structure and discharge type from the light emitting tube used for the conventional flat light source, and the luminous efficiency is greatly improved. Further, when a plurality of light emitting tubes are arranged on a common electrode pair to form a surface light source, it is possible to cover 80% or more of the back side of the light emitting tubes with a reflective electrode material such as aluminum foil. Therefore, a higher light collecting function can be obtained.

かくして本発明は、上記のような新しい構成の紫外発光ガス放電チューブを複数本それぞれの照射光束が照射対象に向けて収束するよう湾曲面又は屈曲面上に配列し、照射対象位置において最大の照射強度が得られるようにしたことを骨子とするものである。発光面の彎曲を可能とするよう隣接チューブ間には等間隔又は部分的に異なる間隔の隙間が設けられる。紫外発光ガス放電チューブは、紫外領域で発光する蛍光体層を備えたものに限らず、照射用途に応じて可視域の発光チューブを混在させた構成とすることもできる。 Thus, in the present invention, a plurality of ultraviolet emitting gas discharge tubes having a new configuration as described above are arranged on a curved surface or a bent surface so that the irradiation light flux of each of them converges toward the irradiation target, and the maximum irradiation is performed at the irradiation target position. The main point is to obtain strength. Equally spaced or partially differently spaced gaps are provided between adjacent tubes to allow the light emitting surface to bend. The ultraviolet emitting gas discharge tube is not limited to the one provided with a phosphor layer that emits light in the ultraviolet region, and may be configured to have a mixture of light emitting tubes in the visible region depending on the irradiation application.

更に具体的に述べると、本発明による自己集光機能を有する紫外線照射装置は、絶縁基板上に少なくとも1対の帯状電極対を平行に配置した電極構造体と、内部底面に紫外蛍光体層を有し、内部に放電ガスを封入してなる複数の紫外発光ガス放電チューブを隣接チューブ間に微小間隔を隔てて1つの面上に平行に配列したチューブアレイ構造体とを備え、前記電極構造体の上に複数の前記放電チューブの底面側が位置して前記帯状電極対を横切る方向となるよう前記チューブアレイ構造体を組み合わせてフレキシブルな紫外線発光構造体を構成し、各放電チューブの照射光束が照射対象に向けて収束するよう前記チューブアレイ構造体の放電チューブの配列面の少なくとも一部を湾曲又は屈曲させたことを特徴とするものである。 More specifically, the ultraviolet irradiation device having a self-condensing function according to the present invention has an electrode structure in which at least one pair of strip-shaped electrode pairs are arranged in parallel on an insulating substrate, and an ultraviolet phosphor layer on the inner bottom surface. The electrode structure comprises a tube array structure in which a plurality of ultraviolet luminescent gas discharge tubes having a discharge gas sealed therein are arranged in parallel on one surface with a minute interval between adjacent tubes. A flexible ultraviolet light emitting structure is formed by combining the tube array structures so that the bottom surface side of the plurality of discharge tubes is located on the discharge tube so as to cross the strip-shaped electrode pair, and the irradiation light beam of each discharge tube is irradiated. It is characterized in that at least a part of the array surface of the discharge tube of the tube array structure is curved or bent so as to converge toward the target.

前記紫外発光ガス放電チューブの配列面は、照射対象を挟むように形成された複合平面でもよいし、円筒又は角筒などの筒状面であってもよい。紫外発光ガス放電チューブの配列面を筒状に構成する場合、前記配列面を紫外線透過性のガラス筒やメッシュ構造体で構成してもよい。 The array surface of the ultraviolet emitting gas discharge tube may be a composite plane formed so as to sandwich the irradiation target, or may be a cylindrical surface such as a cylinder or a square cylinder. When the array surface of the ultraviolet emitting gas discharge tube is formed in a tubular shape, the array surface may be formed of a glass cylinder or a mesh structure that is transparent to ultraviolet rays.

本発明の紫外線照射装置によれば、水銀レスの達成は勿論、集光ミラーや集光レンズのような光学素子を組み合わせることなくシンプルな構造で自己集光機能を実現することができる。その結果、安全で且つ安価な構成で高強度の紫外線を対象面に照射することが可能となり、医療用途や殺菌・滅菌用途など産業上の実用範囲が大幅に拡大する。 According to the ultraviolet irradiation device of the present invention, it is possible to realize a self-condensing function with a simple structure without combining optical elements such as a condensing mirror and a condensing lens, as well as achieving mercury-free operation. As a result, it becomes possible to irradiate the target surface with high-intensity ultraviolet rays with a safe and inexpensive configuration, and the industrial practical range such as medical use and sterilization / sterilization use is greatly expanded.

本発明による紫外線照射装置に用いる紫外発光ガス放電チューブを利用した面光源デバイスの基本構成を説明する説明図である。It is explanatory drawing explaining the basic structure of the surface light source device using the ultraviolet light emitting gas discharge tube used for the ultraviolet irradiation apparatus by this invention. 本発明の紫外線照射装置の実施形態1における発光面の構成と照射プロファイルを示す説明図である。It is explanatory drawing which shows the structure of the light emitting surface and the irradiation profile in Embodiment 1 of the ultraviolet irradiation apparatus of this invention. 本発明による紫外線照射装置の使用例を示す模式的斜視図である。It is a schematic perspective view which shows the use example of the ultraviolet irradiation apparatus by this invention. 本発明の実施形態2の紫外線照射装置の発光面の構成を示す斜視図である。It is a perspective view which shows the structure of the light emitting surface of the ultraviolet irradiation apparatus of Embodiment 2 of this invention.

以下、図面に示す実施形態を用いて、本発明を詳述する。これによって、この発明が限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. This does not limit the invention.

(実施形態1)
図1(a)は、本発明の実施形態1における紫外線照射装置に用いる紫外発光ガス放電チューブの基本構成を示す断面図、図1(b)は該紫外発光ガス放電チューブを複数本配列して構成した面光源の基本構成を示す斜視図、図1(c)はその駆動原理を説明する説明図である。
(Embodiment 1)
FIG. 1 (a) is a cross-sectional view showing a basic configuration of an ultraviolet luminescent gas discharge tube used in the ultraviolet irradiation device according to the first embodiment of the present invention, and FIG. 1 (b) shows a plurality of the ultraviolet luminescent gas discharge tubes arranged. A perspective view showing the basic configuration of the constructed surface light source, FIG. 1C is an explanatory view for explaining the driving principle thereof.

〔紫外発光ガス放電チューブ〕
図1(a)に示すように、新しい紫外発光ガス放電チューブ(以下、発光チューブという)1は、扁平楕円形状の横断面を有する細長いガラス管2を主体とし、その内部底面に紫外蛍光体層3を備えると共に、内部にネオンとキセノンを混合した放電ガスが封入され、両端が封止されている。ガラス管2は、酸化珪素(SiO2)と酸化硼素(B2O3)を主成分とする硼珪酸系ガラスを材料とした、例えば長径2mm、短径1mm程度の扁平楕円断面を持つ細管で、肉厚を300μm以下に制限して紫外線に対する十分な透過率を実現している。
[Ultraviolet emission gas discharge tube]
As shown in FIG. 1 (a), the new ultraviolet emitting gas discharge tube (hereinafter referred to as light emitting tube) 1 is mainly composed of an elongated glass tube 2 having a flat elliptical cross section, and an ultraviolet phosphor layer on the inner bottom surface thereof. 3 is provided, and a discharge gas in which neon and xenone are mixed is sealed inside, and both ends are sealed. The glass tube 2 is a thin tube made of borosilicate glass containing silicon oxide (SiO2) and boron oxide (B2O3) as main components, for example, having a flat elliptical cross section with a major axis of 2 mm and a minor axis of about 1 mm. Sufficient transmittance for ultraviolet rays is realized by limiting it to 300 μm or less.

紫外蛍光体層3に、ガドリリュウム賦活蛍光体(LaMgAl11O19 : Gd) を用いた場合、産業用や医療用に有効なUV-Bバンドの波長レンジである311nmの紫外発光を得ることができる。また、プラセオジム賦活の蛍光体(YBO3 : PrまたはY2SiO5 : Pr)を用いれば殺菌・滅菌効果のあるUV-Cバンドの波長レンジの261nmまたは270nmの紫外発光を得ることができる。 When a gadrillium-activated phosphor (LaMgAl11O19: Gd) is used for the ultraviolet phosphor layer 3, ultraviolet light emission of 311 nm, which is a wavelength range of the UV-B band effective for industrial and medical purposes, can be obtained. Further, if a praseodymium-activated phosphor (YBO3: Pr or Y2SiO5: Pr) is used, ultraviolet emission of 261 nm or 270 nm in the wavelength range of the UV-C band having a sterilizing and sterilizing effect can be obtained.

〔フレキシブル面光源デバイス〕
ガラス管2を主体とした発光チューブ1が、図1(b)に示すようにチューブの長手方向と交差する方向に複数本平行に並べられてアレイ構成の面光源デバイス(発光チューブアレイ構造体)10が作られる。図1(a)の断面図との関連において一層明らかなように、発光チューブアレイ構造体10を構成する各発光チューブ1は、耐熱性の薄い絶縁フィルム11の上にシリコーン樹脂のような熱伝導性の良好な粘着剤12により離脱可能な粘着状態で配置されている。隣接する発光チューブ1の相互間には発光面の彎曲を可能とするため同じ幅又は部分的に異なる幅の隙間が設けられている。
[Flexible surface light source device]
As shown in FIG. 1 (b), a plurality of light emitting tubes 1 mainly composed of a glass tube 2 are arranged in parallel in a direction intersecting the longitudinal direction of the tubes, and a surface light source device (light emitting tube array structure) having an array configuration. 10 is made. As is more apparent in relation to the cross-sectional view of FIG. 1A, each light emitting tube 1 constituting the light emitting tube array structure 10 conducts heat like a silicone resin on a heat-resistant thin insulating film 11. It is arranged in a sticky state that can be removed by the pressure-sensitive adhesive 12 having good properties. A gap having the same width or a partially different width is provided between the adjacent light emitting tubes 1 so as to allow the light emitting surface to be curved.

他方、発光チューブアレイ構造体10の下には、例えば、ポリイミド系樹脂製のフレキシブルな絶縁基板13と、その上に形成された電極対14とからなる電極構造体15が非接着状態で配置されている。電極対14は、発光チューブアレイ構造体10を構成する各発光チューブ1の底部背面に対向して、共通の電極スリットGを挟んで両側に広がる帯状のX電極14XとY電極14Yとからなる。 On the other hand, under the light emitting tube array structure 10, for example, an electrode structure 15 composed of a flexible insulating substrate 13 made of a polyimide resin and an electrode pair 14 formed on the flexible insulating substrate 13 is arranged in a non-adhesive state. ing. The electrode pair 14 is composed of a band-shaped X electrode 14X and a Y electrode 14Y that face the back surface of the bottom of each light emitting tube 1 constituting the light emitting tube array structure 10 and spread on both sides with a common electrode slit G interposed therebetween.

即ち、X電極14XとY電極14Yは、全体としては各発光チューブ1の長手方向と交差する方向に延びる共通の電極パターンを有するが、個々の発光チューブ1に対しては、そのチューブ内に初期放電を発生させる0.1〜10mm程度の電極スリットGを挟んで長手方向の両側に対称的に延びる長電極対の構成をもつ。X電極14X、Y電極14Yのチューブ長手方向における長さは電極スリットGの幅の5〜10倍またはそれ以上となる。 That is, the X electrode 14X and the Y electrode 14Y have a common electrode pattern extending in a direction intersecting the longitudinal direction of each light emitting tube 1 as a whole, but for each light emitting tube 1, the initial state in the tube is set. It has a configuration of long electrode pairs extending symmetrically on both sides in the longitudinal direction with an electrode slit G of about 0.1 to 10 mm for generating an electric discharge. The length of the X electrode 14X and the Y electrode 14Y in the tube longitudinal direction is 5 to 10 times or more the width of the electrode slit G.

因に、発光チューブ1を長径2mm、短径1mmの扁平楕円断面を持つ長さ5cmのガラス細管で構成し、これを1mm間隔で20本平行配列して図1(b)に示すような発光チューブアレイ構造体10を構成した場合、X電極14XとY電極14Yは、3mm幅の放電スリットGの両側にそれぞれ23.5mmの幅を持って各発光チューブ1と交差する方向に延びるパターンで設けられる。この結果、5×6=30cm2の発光面の背面側は、電極スリットGの幅に対応した0.3×6=1.8cm2の隙間を除いて全て電極面でカバーされた形となる。発光面積に対する電極のカバー率は94%に相当する。 Incidentally, the light emitting tube 1 is composed of a glass thin tube having a major axis of 2 mm and a minor axis of 1 mm and a length of 5 cm having a flat elliptical cross section, and 20 of these tubes are arranged in parallel at 1 mm intervals to emit light as shown in FIG. 1 (b). When the tube array structure 10 is configured, the X electrode 14X and the Y electrode 14Y are provided on both sides of a 3 mm wide discharge slit G in a pattern extending in a direction intersecting each light emitting tube 1 with a width of 23.5 mm. Be done. As a result, the back side of the light emitting surface of 5 × 6 = 30 cm 2 is completely covered with the electrode surface except for the gap of 0.3 × 6 = 1.8 cm 2 corresponding to the width of the electrode slit G. .. The coverage of the electrode with respect to the light emitting area corresponds to 94%.

X電極14XとY電極14Yは、絶縁基板13の上に銀ペースト等の導電性インクを印刷して直接形成してもよいし、あらかじめ整形した銅やアルミニウム等の金属導体箔を粘着または接着して構成してもよい。 The X electrode 14X and the Y electrode 14Y may be formed directly by printing a conductive ink such as silver paste on the insulating substrate 13, or by adhering or adhering a preformed metal conductor foil such as copper or aluminum. May be configured.

発光チューブ1をアレイ状に支持する絶縁フィルム11としてテフロン(登録商標)などのフッ素系透明樹脂で構成した場合、X、Y電極14X、14Yには高い光反射率の材料を用いることが好ましく、その意味では特にアルミニウム箔を用いるのが効果的である。この場合、電極スリットGが下方に開いた窓となって紫外発光が裏へ抜けるおそれがあるので、電極スリットGの対応部を電極材料と同等の光反率を持った絶縁材料、例えば光反射テープで塞ぐことが好ましい。 When the insulating film 11 that supports the light emitting tube 1 in an array is made of a fluorine-based transparent resin such as Teflon (registered trademark), it is preferable to use a material having high light reflectance for the X and Y electrodes 14X and 14Y. In that sense, it is particularly effective to use aluminum foil. In this case, the electrode slit G may become a window that opens downward and ultraviolet light may escape to the back. Therefore, the corresponding portion of the electrode slit G is an insulating material having a photoreaction ratio equivalent to that of the electrode material, for example, light reflection. It is preferable to cover it with tape.

また、電極対14を形成した絶縁基板13上に直接シリコーン樹脂等の粘着性絶縁層を設けて発光チューブ1を配置するようにしてもよい。それによって、発光チューブ1と電極対14との間が非接着状態で滑り可能になるので、フレキシブルな面光源デバイスを湾曲させる場合に絶縁基板13に加わる引っ張り力を吸収することができる。 Further, the light emitting tube 1 may be arranged by directly providing an adhesive insulating layer such as a silicone resin on the insulating substrate 13 on which the electrode pair 14 is formed. As a result, the light emitting tube 1 and the electrode pair 14 can slide in a non-adhesive state, so that the tensile force applied to the insulating substrate 13 when the flexible surface light source device is curved can be absorbed.

〔駆動原理〕
本発明による紫外線照射装置の基本単位となる新しい形式の発光チューブ1は、外部電極型であり、正弦波電圧で駆動する。即ち図1(c)に示すように電極対14の一方のX電極14Xを接地した状態で他方のY電極14Yに正弦波電圧を印加するようにインバータ電源17を接続する。正弦波電圧の上昇過程において電極スリットGで電極近接端間の電圧が対応ガス空間の放電開始電圧を超えた時点でトリガ放電が発生する。
[Drive principle]
The new type of light emitting tube 1 which is the basic unit of the ultraviolet irradiation device according to the present invention is an external electrode type and is driven by a sinusoidal voltage. That is, as shown in FIG. 1 (c), the inverter power supply 17 is connected so as to apply a sinusoidal voltage to the other Y electrode 14Y with one X electrode 14X of the electrode pair 14 grounded. Trigger discharge occurs when the voltage between the electrodes close to each other in the electrode slit G exceeds the discharge start voltage of the corresponding gas space in the process of increasing the sinusoidal voltage.

このトリガ放電からの空間電荷の供給による種火効果で近傍の放電開始電圧が低下するので、印加正弦波電圧の上昇と相俟って新たな放電がX電極14XとY電極14Yの両端方向に拡張していく。 Since the discharge start voltage in the vicinity decreases due to the pilot fire effect due to the supply of space charge from this trigger discharge, a new discharge is generated in both ends of the X electrode 14X and the Y electrode 14Y in combination with the increase in the applied sinusoidal voltage. Expand.

一方、外部電極型放電デバイスの特徴として放電した電極対応部分の内壁には印加電圧の極性と反対極性の電荷(電子と陽イオン)が壁電荷として蓄積し、この内部電界が当該対応部分に印加された外部電圧の電界を打ち消す結果、一旦発生した放電は順次停止していくことになる。この動作原理は本発明者等が先に出願した特願2015-148622号(特許第6,103,730号)に更に詳しく述べられている。 On the other hand, as a feature of the external electrode type discharge device, charges (electrons and cations) having a polarity opposite to the polarity of the applied voltage are accumulated as wall charges on the inner wall of the discharged electrode-corresponding part, and this internal electric field is applied to the corresponding part. As a result of canceling the electric field of the external voltage, the discharge once generated will be stopped in sequence. This principle of operation is described in more detail in Japanese Patent Application No. 2015-148622 (Patent No. 6,103,730) filed earlier by the present inventors.

印加される正弦波駆動電圧の極性が反転すると、壁電荷による内部電界が外部印加電圧の電界に加算される結果、再度、電極スリットGの対応部で放電が始まった後、上記と同様に印加正弦波電圧の逆方向への上昇に伴う放電の拡張と停止が、電極対14の両端方向に進行する。この動作の繰り返しでガス放電とそれに伴う発光が行われる。 When the polarity of the applied sinusoidal drive voltage is reversed, the internal electric field due to the wall charge is added to the electric field of the externally applied voltage. The expansion and cessation of the discharge as the sinusoidal voltage rises in the opposite direction proceeds in the direction across the electrode pair 14. By repeating this operation, gas discharge and accompanying light emission are performed.

因に、正弦波駆動電圧の周波数は、負荷となるガス空間の容量や電極間容量の関係から10KHz乃至40KHz、例えば25KHzに設定される。また、ピーク電圧は電極スリットGに対応したガス空間の放電開始電圧よりも高い1000V乃至はそれ以上となるが、長電極対上での放電の広がり長さと、電極スリット部16の耐圧を超えた損傷防止との両方のバランスを考慮して決めるのが望ましい。 Incidentally, the frequency of the sinusoidal drive voltage is set to 10 KHz to 40 KHz, for example, 25 KHz in relation to the capacity of the gas space as a load and the capacity between the electrodes. Further, the peak voltage is 1000 V or more, which is higher than the discharge start voltage of the gas space corresponding to the electrode slit G, but exceeds the spread length of the discharge on the long electrode pair and the withstand voltage of the electrode slit portion 16. It is desirable to consider the balance between both damage prevention and damage prevention.

因に、先に例示した5cm長、20本の発光チューブからなる面光源デバイスを駆動するには、12Vの直流電圧(電池)を20KHzの正弦波に変換するインバータ回路と、この正弦波をピーク電圧2000Vまで昇圧する小型トランスを含む小型のインバータ電源で十分である。 By the way, in order to drive the surface light source device consisting of 20 light emitting tubes with a length of 5 cm illustrated above, an inverter circuit that converts a 12 V DC voltage (battery) into a 20 KHz sine wave and a peak of this sine wave. A small inverter power supply including a small transformer that boosts the voltage to 2000V is sufficient.

〔自己集光機能〕
ところで、図1に示した発光面が平面の面光源デバイス10では、照射対象物を発光面に接近させて配置しても個々の発光チューブ1の発光強度以上の照射強度は得られない。本発明は発光面を曲げることによって複数本の発光チューブ1の光束を照射対象に向けて収束させるようにした自己集光機能を有する構成を特徴とする。これは発光チューブアレイ構造体である面光源デバイス10がフレキシブルである利点を最大限利用するものである。
[Self-condensing function]
By the way, in the surface light source device 10 having a flat light emitting surface shown in FIG. 1, even if the irradiation target is arranged close to the light emitting surface, the irradiation intensity equal to or higher than the light emitting intensity of each light emitting tube 1 cannot be obtained. The present invention is characterized by a configuration having a self-condensing function in which light fluxes of a plurality of light emitting tubes 1 are converged toward an irradiation target by bending a light emitting surface. This takes full advantage of the flexibility of the surface light source device 10 which is a light emitting tube array structure.

図2は実施形態1による紫外線照射装置の発光面構成と照射強度プロファイルを示す説明図である。先に説明したような複数本の発光チューブ1のアレイからなる面光源20は、湾曲した発光面を持つよう全体が図2のように湾曲している。この湾曲面を実現するには、前述したように隣接チューブ間に絶縁フィルム11や電極基板13の湾曲を吸収する隙間が必須となる。 FIG. 2 is an explanatory diagram showing a light emitting surface configuration and an irradiation intensity profile of the ultraviolet irradiation device according to the first embodiment. The surface light source 20 composed of an array of a plurality of light emitting tubes 1 as described above is entirely curved as shown in FIG. 2 so as to have a curved light emitting surface. In order to realize this curved surface, as described above, a gap for absorbing the curvature of the insulating film 11 and the electrode substrate 13 is indispensable between the adjacent tubes.

即ち、隣接する発光チューブ1同志が当接するまでフレキシブルの光源デバイスを湾曲させて圧縮力を吸収することができるので、半円状の発光面を得る場合には等間隔配列とし、両サイドの曲率を小さくした湾曲面を得る場合には中間部に比べて両サイドでの配列間隔を広くすることになる。また湾曲時における絶縁基板13と発光チューブ配列を支持する絶縁フィルム11との間は単に重ねた状態でコンタクトしているだけであり機械的な固着手段で固着されていないので湾曲時の張力は両者間の滑りによって吸収されることになる。 That is, the flexible light source device can be curved until the adjacent light emitting tubes 1 come into contact with each other to absorb the compressive force. In the case of obtaining a curved surface with a small value, the arrangement spacing on both sides is widened as compared with the intermediate portion. Further, since the insulating substrate 13 at the time of bending and the insulating film 11 supporting the light emitting tube arrangement are only in contact with each other in an overlapping state and are not fixed by mechanical fixing means, the tension at the time of bending is both. It will be absorbed by the slip between.

発光面を湾曲させたことにより、各発光チューブの発光中心軸(以下、光軸という)22は湾曲面の内側に向けて収束する。その結果、平坦な受光面23に対しては、図2(a)に示すように、湾曲した発光面に対応して、ほぼ均等且つ強度の高い照射強度プロファイル24を得ることができる。従って、受光面23の代わりに立体的な照射対象物25を置けば、図2(b)に示すように、照射強度プロファイル26で対象物25の表面全体にほぼ均等に紫外線照射を行うことが可能となる。 By curving the light emitting surface, the light emitting central axis (hereinafter referred to as the optical axis) 22 of each light emitting tube converges toward the inside of the curved surface. As a result, with respect to the flat light receiving surface 23, as shown in FIG. 2A, it is possible to obtain an irradiation intensity profile 24 having substantially uniform and high intensity corresponding to the curved light emitting surface. Therefore, if a three-dimensional irradiation object 25 is placed instead of the light receiving surface 23, as shown in FIG. 2B, the entire surface of the object 25 can be irradiated with ultraviolet rays substantially evenly with the irradiation intensity profile 26. It will be possible.

(実施形態2)
図3は、本発明による自己集光機能を有する紫外線照射装置の実施形態2を示す概略説明図である。
(Embodiment 2)
FIG. 3 is a schematic explanatory view showing the second embodiment of the ultraviolet irradiation device having a self-condensing function according to the present invention.

図3(a) において、トンネル形状に湾曲した紫外線照射装置30が、自動搬送機(ベルトコンベア)35の走行路の一部を覆う形で配置されている。紫外線照射装置30は、フレキシブルな電極支持体とその上(図では下面側)に配列した複数の発光チューブ1からなる紫外光源デバイスの発光面を内側に向けて湾曲させた構成を持ち、各発光チューブ1の光軸は、搬送機35に載せられた立体形状の照射対象物36に向けて収束した形となる。 In FIG. 3A, the ultraviolet irradiation device 30 curved in a tunnel shape is arranged so as to cover a part of the traveling path of the automatic conveyor (belt conveyor) 35. The ultraviolet irradiation device 30 has a configuration in which the light emitting surface of an ultraviolet light source device composed of a flexible electrode support and a plurality of light emitting tubes 1 arranged on the flexible electrode support (lower surface side in the figure) is curved inward. The optical axis of the tube 1 has a shape that converges toward the three-dimensional irradiation target object 36 mounted on the conveyor 35.

この実施形態によれば、自動搬送機35に載置した立体形状の照射対象物36に対して殺菌効果のある紫外線を強い強度で直接照射可能な照射装置を提供することができる。特に、紫外線照射装置30は、主体となる光源デバイスが発光チューブ1の長手方向と交差する方向にフレキシブルであり、また発光面の幅を発光チューブの配列本数で決定することができる点から、自動搬送機で搬送する照射対象物36の大きさに見合った設計対応が可能である。 According to this embodiment, it is possible to provide an irradiation device capable of directly irradiating a three-dimensionally shaped irradiation object 36 mounted on the automatic carrier 35 with ultraviolet rays having a bactericidal effect with a strong intensity. In particular, the ultraviolet irradiation device 30 is automatic because the main light source device is flexible in the direction intersecting the longitudinal direction of the light emitting tube 1 and the width of the light emitting surface can be determined by the number of light emitting tubes arranged. It is possible to design a design that matches the size of the irradiation object 36 to be conveyed by the transfer machine.

図3(b)は、図3(a)に示す実施形態の変形例である。自動搬送機35の走行路に沿って2つの紫外線照射装置30が走行路をトンネル状に直列にカバーする形で設けられている。かくして搬送機35に載せられて移動する照射対象物36は2つの照射装置30からの紫外線照射に連続して2回曝される。連続照射の構成は、自動搬送機35の速度を速めて処理速度を向上させる点と、低速でトータル照射線量を増やす点で効果的である。 FIG. 3B is a modified example of the embodiment shown in FIG. 3A. Two ultraviolet irradiation devices 30 are provided along the traveling path of the automatic carrier 35 so as to cover the traveling path in series in a tunnel shape. Thus, the irradiation object 36 that is mounted on the conveyor 35 and moves is exposed to the ultraviolet irradiation from the two irradiation devices 30 twice in succession. The continuous irradiation configuration is effective in that the speed of the automatic carrier 35 is increased to improve the processing speed and that the total irradiation dose is increased at a low speed.

なお、2つの紫外線照射装置30とは同じ構成でもよいが、互いに発光波長や発光波長幅の異なる構成とすることも可能である。発光波長は、単位発光源となる各発光チューブ1の蛍光体層3(図1(a)参照)の材料を調整することで実現する。 Although the two ultraviolet irradiation devices 30 may have the same configuration, they may have different emission wavelengths and emission wavelength widths. The emission wavelength is realized by adjusting the material of the phosphor layer 3 (see FIG. 1A) of each emission tube 1 which is a unit emission source.

図3(c)は、図3(a)に示す実施形態の別の変形例であり、自動搬送機35の走行路に沿って、2つの紫外線照射装置30が搬送路を上下から包むように配置されている。搬送機35に載せられて移動する立体的な照射対象物36は、湾曲した発光面を下に向けた照射装置30と、湾曲した発光面を上に向けた照射装置30のそれぞれから収束して照射される紫外線に両面を曝され、全表面の照射処理が行われる。この場合、搬送機37は、少なくとも照射対象物を載置する部分において下側の照射装置30からの照射紫外線を透過させることが必要である。 FIG. 3C is another modification of the embodiment shown in FIG. 3A, in which the two ultraviolet irradiation devices 30 are arranged so as to wrap the transport path from above and below along the travel path of the automatic transport machine 35. Has been done. The three-dimensional irradiation object 36 that is mounted on the carrier 35 and moves converges from each of the irradiation device 30 with the curved light emitting surface facing down and the irradiation device 30 with the curved light emitting surface facing up. Both sides are exposed to the irradiated ultraviolet rays, and the entire surface is irradiated. In this case, the transporter 37 needs to transmit the irradiation ultraviolet rays from the lower irradiation device 30 at least in the portion where the irradiation target is placed.

従って、搬送機35の搬送ベルトをメッシュ構成のものとするほか、載置部分を紫外線透過性のフッ素系樹脂膜で構成するなどの対策が採られる。また図3(b)の場合と同様、上下の紫外線照射装置30を搬送機の走行路に沿って更に増設することにより照射処理効率を上げることも可能であるし、それぞれの発光スペクトルを異ならせておくことも可能である。 Therefore, in addition to making the transport belt of the transport machine 35 have a mesh configuration, measures such as configuring the mounting portion with an ultraviolet-transparent fluororesin film are taken. Further, as in the case of FIG. 3B, it is possible to increase the irradiation processing efficiency by further adding the upper and lower ultraviolet irradiation devices 30 along the traveling path of the conveyor, and to make the emission spectra of each different. It is also possible to keep it.

(実施形態3)
図4(a)及び(b)は、それぞれ本発明による実施形態3の紫外線照射装置の2種類の構成を示す概略斜視図である。この実施形態は、2つ以上の平坦発光面を角度を持って組み合わせて自己集光機能を得るようにした複合発光面を特徴とするものである。
(Embodiment 3)
4 (a) and 4 (b) are schematic perspective views showing two types of configurations of the ultraviolet irradiation device of the third embodiment according to the present invention, respectively. This embodiment is characterized by a composite light emitting surface obtained by combining two or more flat light emitting surfaces at an angle to obtain a self-condensing function.

即ち図4(a)には、発光チューブアレイ構造体の平面光源デバイスをそのほぼ中央の発光チューブの長手方向に沿うライン41で発光面側に2つに折り曲げた紫外線照射装置40が示されている。折り曲げられて形成された2つの発光面10Aと10Bを構成する各発光チューブ1の光軸22は、折り曲げライン41の垂直面に向けて互いに収束する方向となり、中央垂直面の延長位置に置いた照射対象物に効果的な紫外線照射を行うことができる。 That is, FIG. 4A shows an ultraviolet irradiation device 40 in which the planar light source device of the light emitting tube array structure is bent in two toward the light emitting surface side along a line 41 along the longitudinal direction of the light emitting tube at the center thereof. There is. The optical axes 22 of the light emitting tubes 1 constituting the two light emitting surfaces 10A and 10B formed by bending are oriented so as to converge with each other toward the vertical surface of the bending line 41, and are placed at an extension position of the central vertical surface. It is possible to effectively irradiate the object to be irradiated with ultraviolet rays.

図4(b)の紫外線照射装置70は、矩形状に折り曲げた3つの複合発光面10A、10B、及び10Cからなり、各発光面を構成する発光チューブ1の光軸は発光面で囲まれた照射空間に集まる形となる。 The ultraviolet irradiation device 70 of FIG. 4B is composed of three composite light emitting surfaces 10A, 10B, and 10C bent in a rectangular shape, and the optical axis of the light emitting tube 1 constituting each light emitting surface is surrounded by the light emitting surface. It will gather in the irradiation space.

折り曲げられた複合発光面10A、10B及び10Cは、それぞれ独立した面光源デバイスとして構成してもよいし、電極配置基板13を各発光面に共通とした構成にしてもよい。複合発光面で囲まれた照射空間に図示しない搬送ベルトを通すことにより、移動する搬送ベルト上の被照射物に効果的に紫外線照射を行うことが可能となる。 The folded composite light emitting surfaces 10A, 10B, and 10C may be configured as independent surface light source devices, or the electrode arrangement substrate 13 may be configured in common for each light emitting surface. By passing a transport belt (not shown) through the irradiation space surrounded by the composite light emitting surface, it is possible to effectively irradiate the object to be irradiated on the moving transport belt with ultraviolet rays.

(その他の変形例)
本発明の自己収光機能を有する紫外線照射装置は、最初に述べたようにガス放電を利用した発光チューブを複数本並べて構成したアレイ状のフレキシブルな面光源デバイスを基本構成とし、その発光面を湾曲面状、又は角度をつけた複合平面状に曲げて各発光チューブの発光軸を照射対象に向けて収束させたことを特徴とするものである。
(Other variants)
As described at the beginning, the ultraviolet irradiation device having a self-collecting function of the present invention has a basic configuration of an array-shaped flexible surface light source device in which a plurality of light emitting tubes using gas discharge are arranged side by side, and the light emitting surface thereof is used. It is characterized in that the light emitting axis of each light emitting tube is converged toward an irradiation target by bending it into a curved surface shape or an angled composite plane shape.

図1に例示した光源デバイスの基本構成では、細長いガラス管2に対してその長手方向を2分して1対のX電極14XとY電極14Yを直列配置しているが、更に電極を複数対直列配置して発光チューブの長尺化に対応することができる。因に、ガラス管2の長さを20cm余りとした場合、ガラス管の長手方向にそれぞれ電極スリットGを挟んだ長さ5cmのXY電極対を所定間隔で2対直列配置することにより、有効発光長が20cmの紫外発光チューブを構成することができる。 In the basic configuration of the light source device illustrated in FIG. 1, a pair of X electrodes 14X and Y electrodes 14Y are arranged in series with respect to the elongated glass tube 2 by dividing the longitudinal direction into two, but a plurality of pairs of electrodes are further arranged. It can be arranged in series to accommodate the lengthening of the light emitting tube. By the way, when the length of the glass tube 2 is about 20 cm, effective light emission is achieved by arranging two pairs of XY electrode pairs having a length of 5 cm sandwiching the electrode slit G in the longitudinal direction of the glass tube in series at predetermined intervals. An ultraviolet light emitting tube having a length of 20 cm can be constructed.

図1に示す電極支持用の絶縁基板13については、フレキシブルな樹脂フィルムが好適であるが、予め発光面の曲がり具合に沿った曲面又は複合平面のそれぞれに対応した面を持つリジッドなガラス又はセラミック基板で代替してもよい。また、発光チューブ1の配列方向に延びる帯状の共通X電極14XとY電極14Yの背面パターンに対応してそれぞれ独立した形状の金属放熱フィンのような放熱エレメントを電極基板の裏側に密着するよう設けることにより光源デバイスの放熱を促進して発光効率を安定に保つことができる。 A flexible resin film is suitable for the insulating substrate 13 for supporting the electrodes shown in FIG. 1, but a rigid glass or ceramic having a surface corresponding to each of a curved surface or a composite plane along the degree of bending of the light emitting surface in advance. A substrate may be used instead. Further, a heat radiation element such as a metal heat radiation fin having an independent shape corresponding to the back pattern of the band-shaped common X electrode 14X and the Y electrode 14Y extending in the arrangement direction of the light emitting tube 1 is provided so as to be in close contact with the back side of the electrode substrate. As a result, heat dissipation of the light source device can be promoted and the luminous efficiency can be kept stable.

紫外線照射強度は複数の発光チューブの光軸が照射対象に向けて収束させることで強められるが、その強度調整は、図1(c)に示すインバータ電源17から駆動正弦波電圧をバースト形式で間欠的に印加する際のデューティ比を変えることで行うことができる。また、図3の実施形態に示したような自動搬送機35に載置されて移動する照射対象物に紫外線を照射する構成では、駆動正弦波電圧の印加を照射対象物の搬送速度に同期した通過時間幅で間欠的に行うことにより光源デバイスの発熱を抑制することができる。 The ultraviolet irradiation intensity is strengthened by converging the optical axes of a plurality of light emitting tubes toward the irradiation target, and the intensity adjustment is performed by intermittently driving a sinusoidal voltage from the inverter power supply 17 shown in FIG. 1 (c) in a burst format. This can be done by changing the duty ratio when the application is applied. Further, in the configuration in which the irradiation object mounted on the automatic carrier 35 and moving is irradiated with ultraviolet rays as shown in the embodiment of FIG. 3, the application of the drive sinusoidal voltage is synchronized with the transfer speed of the irradiation object. It is possible to suppress the heat generation of the light source device by performing it intermittently in the passage time width.

いずれにしても本発明の紫外線照射装置によれば、反射ミラーや集光レンズ等の光学素子を用いることなく発光面自体の形状で集光機能を制御できるメリットが得られ、紫外線応用面の拡大に極めて有益である。 In any case, according to the ultraviolet irradiation device of the present invention, there is an advantage that the condensing function can be controlled by the shape of the light emitting surface itself without using an optical element such as a reflection mirror or a condensing lens, and the ultraviolet application surface can be expanded. Extremely beneficial to.

1:紫外発光ガス放電チューブ(発光チューブ)
2:ガラス管
3:紫外蛍光体層
10:発光チューブアレイ構造体(面光源デバイス)
11:絶縁層
12:粘着剤
13:絶縁基板
14:電極対
14X:X電極
14Y:Y電極
15:電極構造体
17:交番電源
G:電極スリット
20:面光源
1: Ultraviolet luminescent gas discharge tube (light emitting tube)
2: Glass tube 3: Ultraviolet phosphor layer 10: Light emitting tube array structure (surface light source device)
11: Insulation layer 12: Adhesive 13: Insulation substrate 14: Electrode pair 14X: X electrode 14Y: Y electrode 15: Electrode structure 17: Alternate power supply G: Electrode slit 20: Surface light source

Claims (4)

照射対象に向けて湾曲または屈曲した発光面を有する面光源デバイスを備えた紫外線照射装置において、
前記面光源デバイスは、フレキシブルな絶縁基板と、該絶縁基板上に平行に支持されて前記発光面を構成する複数本の紫外発光ガス放電チューブから成る発光チューブアレイの構成を有し、前記絶縁基板には、前記複数本の紫外発光ガス放電チューブを共通に横切る電極スリットを挟んで当該電極スリット幅の5倍以上の長さを持って両側に対称的に広がる少なくとも1対の電極が設けられ、
前記発光チューブアレイ構成を有する面光源デバイスの発光面を湾曲または屈曲して自動搬送機の走行路を覆うように配置したことを特徴とする紫外線照射装置。
In an ultraviolet irradiation device provided with a surface light source device having a light emitting surface curved or bent toward an irradiation target.
The surface light source device has a configuration of a light emitting tube array composed of a flexible insulating substrate and a plurality of ultraviolet emitting gas discharge tubes supported in parallel on the insulating substrate to form the light emitting surface, and the insulating substrate. Is provided with at least one pair of electrodes having a length of 5 times or more the width of the electrode slits and extending symmetrically on both sides with an electrode slit that commonly crosses the plurality of ultraviolet emitting gas discharge tubes.
An ultraviolet irradiation device characterized in that the light emitting surface of the surface light source device having the light emitting tube array configuration is curved or bent so as to cover the traveling path of the automatic carrier.
前記自動搬送機の走行路をトンネル状に覆う面光源デバイスを前記走行路に沿って直列に複数配置して成ることを特徴とする請求項1記載の紫外線照射装置。 The ultraviolet irradiation device according to claim 1, wherein a plurality of surface light source devices that cover the traveling path of the automatic carrier in a tunnel shape are arranged in series along the traveling path. 前記自動搬送機の走行路を上方から下向きに湾曲した発光面で覆う第1の面光源デバイスと、下方から上向きに湾曲した発光面で覆う第2の面光源デバイスとを直列に配置して成ることを特徴とする請求項1記載の紫外線照射装置。 A first surface light source device that covers the traveling path of the automatic carrier with a light emitting surface curved downward from above and a second surface light source device covering the traveling path of the automatic carrier with a light emitting surface curved upward from below are arranged in series. The ultraviolet irradiation device according to claim 1. 前記複数の面光源デバイスが異なる波長の紫外線を照射することを特徴とする請求項2記載の紫外線照射装置。 The ultraviolet irradiation device according to claim 2, wherein the plurality of surface light source devices irradiate ultraviolet rays having different wavelengths.
JP2020141016A 2015-11-13 2020-08-24 Ultraviolet irradiation device Active JP6955798B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020141016A JP6955798B2 (en) 2015-11-13 2020-08-24 Ultraviolet irradiation device
JP2021156879A JP7470994B2 (en) 2020-08-24 2021-09-27 Ultraviolet irradiation device and driving method thereof
JP2022076688A JP7268927B2 (en) 2020-08-24 2022-05-06 Ultraviolet irradiation device and its driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223152A JP6757531B2 (en) 2015-11-13 2015-11-13 Ultraviolet irradiation device with self-condensing function
JP2020141016A JP6955798B2 (en) 2015-11-13 2020-08-24 Ultraviolet irradiation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015223152A Division JP6757531B2 (en) 2015-11-13 2015-11-13 Ultraviolet irradiation device with self-condensing function

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021156879A Division JP7470994B2 (en) 2020-08-24 2021-09-27 Ultraviolet irradiation device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2020202189A JP2020202189A (en) 2020-12-17
JP6955798B2 true JP6955798B2 (en) 2021-10-27

Family

ID=73743517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141016A Active JP6955798B2 (en) 2015-11-13 2020-08-24 Ultraviolet irradiation device

Country Status (1)

Country Link
JP (1) JP6955798B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885286B2 (en) * 2010-03-17 2012-02-29 篠田プラズマ株式会社 Ultraviolet light irradiation device
JP2014175227A (en) * 2013-03-11 2014-09-22 Toyama Prefecture Ultraviolet light generator

Also Published As

Publication number Publication date
JP2020202189A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6757531B2 (en) Ultraviolet irradiation device with self-condensing function
JP6241971B2 (en) Gas discharge device, flat light source using the same, and driving method thereof
JP7268927B2 (en) Ultraviolet irradiation device and its driving method
JP6524477B2 (en) Gas discharge light emitting device and its driving circuit
WO2011079108A1 (en) Uv led based lamp for compact uv curing lamp assemblies
JP2018190686A (en) Ultraviolet light source device and manufacturing method thereof
JP6103730B2 (en) Gas discharge light emitting device
JP6955798B2 (en) Ultraviolet irradiation device
CN115885365A (en) Ultraviolet irradiation device
CN101720403A (en) Fluorescent lamp compatible led illuminating decive
JPWO2022113943A5 (en)
JP7470994B2 (en) Ultraviolet irradiation device and driving method thereof
US9129794B2 (en) Tubular light source having overwind
US11011367B2 (en) Light-emitting tube array-type light source device
KR101411842B1 (en) Pulse lighting device
JP7284991B2 (en) Light source device and light source module and fluid processing device using the same
JP2017157519A (en) Manufacturing method of gas discharge light-emitting tube, manufacturing method of light-emitting tube array type surface light source, and gas discharge light-emitting tube for surface light source
JP5573375B2 (en) Light irradiation device
JP5708128B2 (en) Light irradiation device
JP5682306B2 (en) Light irradiation unit
JP2012104480A (en) Lamp device with color-changeable filter
JP2023055415A (en) Ultraviolet light source, ozone generator, ultraviolet light radiation method
JP2024081879A (en) Flashlight irradiation device, flashlight discharge lamp
JP7007569B2 (en) Luminescent device
RU153931U1 (en) SOURCE OF RADIATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6955798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250