[go: up one dir, main page]

JP6955673B2 - Battery abnormality detection system - Google Patents

Battery abnormality detection system Download PDF

Info

Publication number
JP6955673B2
JP6955673B2 JP2018008212A JP2018008212A JP6955673B2 JP 6955673 B2 JP6955673 B2 JP 6955673B2 JP 2018008212 A JP2018008212 A JP 2018008212A JP 2018008212 A JP2018008212 A JP 2018008212A JP 6955673 B2 JP6955673 B2 JP 6955673B2
Authority
JP
Japan
Prior art keywords
temperature
battery
vehicle
assumed
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018008212A
Other languages
Japanese (ja)
Other versions
JP2019129003A (en
Inventor
啓太 小宮山
啓太 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018008212A priority Critical patent/JP6955673B2/en
Publication of JP2019129003A publication Critical patent/JP2019129003A/en
Application granted granted Critical
Publication of JP6955673B2 publication Critical patent/JP6955673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電池異常検出システムに関する。 The present invention relates to a battery abnormality detection system.

リチウムイオン二次電池等の電池は、一般に、複数個の電池を備えた電池スタックや、当該電池スタックを複数個組み合わせた電池パックとして利用される。ここで、同一スタック内で各電池に温度のばらつきが発生すると、電池間で電池性能のばらつきが生じ得る。電池性能にばらつきが生じると、各電池において過充電が発生する可能性が高まる。ここで、電池の温度変化を検出する技術として、例えば、特許文献1には、高負荷走行時において電池に向けて流れる冷却風を利用する技術が開示されている。また、電池の温度に基づく制御技術として特許文献2および特許文献3が挙げられる。 A battery such as a lithium ion secondary battery is generally used as a battery stack including a plurality of batteries or a battery pack in which a plurality of the battery stacks are combined. Here, if the temperature of each battery varies in the same stack, the battery performance may vary between the batteries. If the battery performance varies, the possibility of overcharging in each battery increases. Here, as a technique for detecting a temperature change of a battery, for example, Patent Document 1 discloses a technique for utilizing cooling air flowing toward the battery during high-load traveling. Further, Patent Document 2 and Patent Document 3 are mentioned as control techniques based on the temperature of the battery.

特開2015−129677号公報Japanese Unexamined Patent Publication No. 2015-129677 特開2016−167420号公報Japanese Unexamined Patent Publication No. 2016-167420 特開2012−029491号公報Japanese Unexamined Patent Publication No. 2012-029491

ところで、特許文献1に記載の技術では、冷却風は高負荷走行時にしか流れず、通常走行時には流れない。また、市場での使用形態として最も頻度が高い駐車中においても冷却風は流れず、電池温度の変化を検出することができない。即ち、駐車中において電池の異常を検出することができない。 By the way, in the technique described in Patent Document 1, the cooling air flows only during high-load traveling and does not flow during normal traveling. In addition, the cooling air does not flow even during parking, which is the most frequently used form in the market, and changes in battery temperature cannot be detected. That is, it is not possible to detect an abnormality in the battery while parking.

本発明は、かかる点に鑑みてなされたものであり、その目的は、駐車中において電池の異常を検出することができる電池異常検出システムを提供することである。 The present invention has been made in view of such a point, and an object of the present invention is to provide a battery abnormality detection system capable of detecting a battery abnormality while parking.

本発明に係る電池異常検出システムは、車両駆動用電池を含む車両に搭載される。前記電池異常検出システムは、走行終了時の前記車両駆動用電池の温度Tx0および走行終了時から所定の時間が経過したときの前記車両駆動用電池の温度Tx1を測定する第1温度検出装置と、走行終了時の前記車両の外気温Ty0および走行終了時から前記所定の時間が経過したときの前記車両の外気温Ty1を測定する第2温度検出装置と、制御装置と、を備えている。前記制御装置は、走行終了時の前記車両の外気温Ty2に関連付けられ、走行終了時の前記車両駆動用電池の温度Tx2と走行終了時から前記所定の時間が経過したときの前記車両の外気温Ty3との差(Tx2−Ty3)に対する走行終了時から前記所定の時間が経過したときの前記車両駆動用電池の温度Tx3の比{Tx3/(Tx2−Ty3)}である複数の想定適合係数α1を記憶する記憶部と、前記第1温度検出装置によって測定された前記温度Tx0と、前記第2温度検出装置によって測定された前記外気温Ty0とに基づいて、前記記憶部に記憶された複数の前記想定適合係数α1から1つの前記想定適合係数α1を選択する選択部と、前記第1温度検出装置によって測定された前記温度Tx0および前記温度Tx1と、前記第2温度検出装置によって測定された前記外気温Ty1とに基づいて、前記温度Tx0と前記外気温Ty1との差(Tx0−Ty1)に対する前記温度Tx1の比{Tx1/(Tx0−Ty1)}である実測適合係数α2を算出する算出部と、前記選択部によって選択された前記想定適合係数α1が前記実測適合係数α2より大きい場合には異常と判定し、前記想定適合係数α1が前記実測適合係数α2以下の場合には正常と判定する判定部と、を備えている。 The battery abnormality detection system according to the present invention is mounted on a vehicle including a vehicle driving battery. The battery abnormality detection system includes a first temperature detection device that measures the temperature Tx0 of the vehicle drive battery at the end of traveling and the temperature Tx1 of the vehicle drive battery when a predetermined time has elapsed from the end of travel. It includes a second temperature detecting device for measuring the outside air temperature Ty0 of the vehicle at the end of traveling and the outside air temperature Ty1 of the vehicle when the predetermined time has elapsed from the end of traveling, and a control device. The control device is associated with the outside temperature Ty2 of the vehicle at the end of travel, the temperature Tx2 of the vehicle driving battery at the end of travel, and the outside temperature of the vehicle when the predetermined time has elapsed from the end of travel. A plurality of assumed conformance coefficients α1 which are ratios {Tx3 / (Tx2-Ty3)} of the temperature Tx3 of the vehicle driving battery when the predetermined time elapses from the end of traveling with respect to the difference (Tx2-Ty3) from Ty3. A plurality of storage units stored in the storage unit based on the storage unit, the temperature Tx0 measured by the first temperature detection device, and the outside temperature Ty0 measured by the second temperature detection device. A selection unit that selects one assumed conformity coefficient α1 from the assumed conformity coefficient α1, the temperature Tx0 and the temperature Tx1 measured by the first temperature detection device, and the said temperature Tx1 measured by the second temperature detection device. A calculation unit that calculates the actual measurement conformity coefficient α2, which is the ratio {Tx1 / (Tx0-Ty1)} of the temperature Tx1 to the difference (Tx0-Ty1) between the temperature Tx0 and the outside temperature Ty1 based on the outside temperature Ty1. When the assumed conformity coefficient α1 selected by the selection unit is larger than the actually measured conformity coefficient α2, it is determined to be abnormal, and when the assumed conformity coefficient α1 is equal to or less than the actually measured conformity coefficient α2, it is determined to be normal. It is equipped with a determination unit.

本発明に係る電池異常検出システムによれば、予め測定した正常時における走行終了時および走行終了時から所定の時間が経過したときの電池の温度および車両の外気温に基づいて算出される想定適合係数α1と、実際に測定された走行終了時および走行終了時から所定の時間が経過したときの電池の温度および車両の外気温に基づいて算出される実測適合係数α2とを比較することによって、車両駆動用電池の異常を判定することができる。即ち、判定部は、想定適合係数α1が実測適合係数α2より大きい場合には異常と判定し、想定適合係数α1が実測適合係数α2以下の場合には正常と判定する。このように、車両が駐車中であっても、車両駆動用電池の異常が発生しているか否かを精度よく検出することができる。また、車両駆動用電池を使用していない状態で車両駆動用電池の異常の有無を検出することができるため、安全性により優れる。 According to the battery abnormality detection system according to the present invention, the assumed conformity calculated based on the battery temperature and the outside air temperature of the vehicle at the end of running in the normal state measured in advance and when a predetermined time has passed from the end of running. By comparing the coefficient α1 with the actually measured conformity coefficient α2 calculated based on the battery temperature and the outside air temperature of the vehicle when a predetermined time has passed since the end of the run and the end of the run. It is possible to determine an abnormality in the vehicle drive battery. That is, the determination unit determines that it is abnormal when the assumed conformity coefficient α1 is larger than the actually measured conformity coefficient α2, and determines that it is normal when the assumed conformity coefficient α1 is equal to or less than the actually measured conformity coefficient α2. In this way, even when the vehicle is parked, it is possible to accurately detect whether or not an abnormality has occurred in the vehicle driving battery. In addition, since it is possible to detect the presence or absence of an abnormality in the vehicle drive battery when the vehicle drive battery is not used, it is more excellent in safety.

車両に搭載されている電池異常検出システムを模式的に示す上面図である。It is a top view which shows typically the battery abnormality detection system mounted on a vehicle. 駐車後の車両駆動用電池の状態を確認する手順を示すフローチャートである。It is a flowchart which shows the procedure for confirming the state of the vehicle driving battery after parking. 車両駆動用電池の駐車後の温度変化を示すグラフである。It is a graph which shows the temperature change after parking of a vehicle driving battery.

以下、本発明の好適な実施形態を説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、各図面は、模式的に描いており、必ずしも実物を反映しない。また、各図面は、一例を示すのみであり、各図面は、特に言及されない限りにおいて本発明を限定しない。また、図面中の符号F、Rr、L、Rは、それぞれ前、後、左、右を意味するものとする。ただし、これらは説明の便宜上の方向であり、電池異常検出システムの設置態様を何ら限定するものではない。 Hereinafter, preferred embodiments of the present invention will be described. Matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art. It should be noted that each drawing is drawn schematically and does not necessarily reflect the actual product. In addition, each drawing shows only one example, and each drawing does not limit the present invention unless otherwise specified. Further, the symbols F, Rr, L, and R in the drawing mean front, back, left, and right, respectively. However, these are directions for convenience of explanation, and do not limit the installation mode of the battery abnormality detection system at all.

図1に示すように、車両10は、電池パック20と、電池異常検出システム30とを備えている。本実施形態において、電池パック20は、車両10の後部座席の下側に配置され、フロアパネルに固定されている。ただし、電池パック20は、後部座席の下側以外に配置されていてもよい。 As shown in FIG. 1, the vehicle 10 includes a battery pack 20 and a battery abnormality detection system 30. In the present embodiment, the battery pack 20 is arranged under the rear seat of the vehicle 10 and fixed to the floor panel. However, the battery pack 20 may be arranged on a position other than the lower side of the rear seat.

電池パック20は、電池スタック22と、ケース23と、を備えている。電池スタック22は、4つの車両駆動用電池21を備えている。4つの車両駆動用電池21は、それぞれ角型の外形を有しており、一対の平坦面が対向するように図1の左右方向に一列に配置されている。4つの車両駆動用電池21は、バスバーによって相互に直列に電気接続されている。4つの車両駆動用電池21は、拘束バンド等によって一体的に保持されている。ただし、車両駆動用電池21の形状や個数、配置等は適宜変更してもよい。車両駆動用電池21は、典型的には充放電可能な二次電池、例えばリチウムイオン二次電池である。車両駆動用電池21は、典型的には、正極と負極と電解液と、これらを収容する単電池ケースとを備えている。電解液は、例えばカーボネート類等の非水溶媒と、リチウム塩等の支持塩と、を含んでいる。なお、単電池の構成については従来と同様でよく、特に限定されない。 The battery pack 20 includes a battery stack 22 and a case 23. The battery stack 22 includes four vehicle driving batteries 21. Each of the four vehicle driving batteries 21 has a square outer shape, and is arranged in a row in the left-right direction of FIG. 1 so that a pair of flat surfaces face each other. The four vehicle drive batteries 21 are electrically connected to each other in series by a bus bar. The four vehicle drive batteries 21 are integrally held by a restraint band or the like. However, the shape, number, arrangement, etc. of the vehicle drive battery 21 may be changed as appropriate. The vehicle drive battery 21 is typically a rechargeable / dischargeable secondary battery, such as a lithium ion secondary battery. The vehicle drive battery 21 typically includes a positive electrode, a negative electrode, an electrolytic solution, and a cell cell case for accommodating them. The electrolytic solution contains, for example, a non-aqueous solvent such as carbonates and a supporting salt such as a lithium salt. The configuration of the cell is the same as the conventional one, and is not particularly limited.

ケース23は、電池スタック22を収容する筐体である。ケース23の材質は、例えば金属や樹脂である。ケース23の形状やサイズは、例えば、電池スタック22のサイズや個数等に応じて、適宜、変更してよい。 The case 23 is a housing for accommodating the battery stack 22. The material of the case 23 is, for example, metal or resin. The shape and size of the case 23 may be appropriately changed according to, for example, the size and number of battery stacks 22.

図1に示すように、電池異常検出システム30は、第1温度検出装置31と、第2温度検出装置32と、制御装置35とを備えている。 As shown in FIG. 1, the battery abnormality detection system 30 includes a first temperature detection device 31, a second temperature detection device 32, and a control device 35.

第1温度検出装置31は、車両駆動用電池21の温度を測定する装置である。第1温度検出装置31としては、例えば、熱電対が挙げられる。第1温度検出装置31は、各車両駆動用電池21に設けられている。第1温度検出装置31は、例えば、車両駆動用電池21の単電池ケースに取り付けられている。第1温度検出装置31は、制御装置35と電気的に接続されている。第1温度検出装置31において測定された温度情報は、制御装置35に送信される。 The first temperature detection device 31 is a device that measures the temperature of the vehicle drive battery 21. Examples of the first temperature detection device 31 include a thermocouple. The first temperature detection device 31 is provided in each vehicle driving battery 21. The first temperature detecting device 31 is attached to, for example, the cell cell case of the vehicle driving battery 21. The first temperature detection device 31 is electrically connected to the control device 35. The temperature information measured by the first temperature detection device 31 is transmitted to the control device 35.

第1温度検出装置31は、走行終了時の車両駆動用電池21の温度Tx0を測定する。第1温度検出装置31は、走行終了時から所定の時間tが経過したとき(即ち駐車後所定の時間tが経過したとき)の車両駆動用電池21の温度Tx1を測定する。上記所定の時間tは、例えば、10分、30分または1時間等任意に設定することができる。 The first temperature detecting device 31 measures the temperature Tx0 of the vehicle driving battery 21 at the end of traveling. The first temperature detection device 31 measures the temperature Tx1 of the vehicle drive battery 21 when a predetermined time t has elapsed from the end of traveling (that is, when a predetermined time t has elapsed after parking). The predetermined time t can be arbitrarily set, for example, 10 minutes, 30 minutes, 1 hour, or the like.

第2温度検出装置32は、車両10の外気温を測定する装置である。第2温度検出装置32としては、例えば、サーミスタが挙げられる。第2温度検出装置32は、例えば、車両10のフロントバンパーの裏側等に設けられている。第2温度検出装置32は、制御装置35と電気的に接続されている。第2温度検出装置32において測定された温度情報は、制御装置35に送信される。 The second temperature detection device 32 is a device that measures the outside air temperature of the vehicle 10. Examples of the second temperature detection device 32 include a thermistor. The second temperature detection device 32 is provided, for example, on the back side of the front bumper of the vehicle 10. The second temperature detection device 32 is electrically connected to the control device 35. The temperature information measured by the second temperature detection device 32 is transmitted to the control device 35.

第2温度検出装置32は、走行終了時の車両10の外気温Ty0を測定する。第2温度検出装置32は、走行終了時から所定の時間tが経過したとき(即ち駐車後所定の時間tが経過したとき)の車両の外気温Ty1を測定する。 The second temperature detection device 32 measures the outside air temperature Ty0 of the vehicle 10 at the end of traveling. The second temperature detection device 32 measures the outside air temperature Ty1 of the vehicle when a predetermined time t has elapsed from the end of traveling (that is, when a predetermined time t has elapsed after parking).

制御装置35は、制御プログラムの命令を実行する中央演算処理装置(CPU)と、CPUが実行するプログラムを格納したROMと、プログラムを展開するワーキングエリアとして使用されるRAMと、上記プログラムや各種データを格納するメモリなどの記憶装置とを備えている。制御装置35は、記憶部37と、選択部39と、算出部41と、判定部43と、通知部45とを備えている。これら各部は、プログラムによって実現されている。このプログラムは、インターネットを通じてダウンロードされ得る。また、これら各部は、プロセッサおよび/または回路などによって実現可能なものであってもよい。なお、上述した各部の具体的な制御などについては後述する。 The control device 35 includes a central processing unit (CPU) that executes instructions of a control program, a ROM that stores a program executed by the CPU, a RAM that is used as a working area for developing the program, and the above program and various data. It is equipped with a storage device such as a memory for storing the data. The control device 35 includes a storage unit 37, a selection unit 39, a calculation unit 41, a determination unit 43, and a notification unit 45. Each of these parts is realized by a program. This program can be downloaded via the internet. Further, each of these parts may be feasible by a processor and / or a circuit or the like. The specific control of each part described above will be described later.

記憶部37は、複数の想定適合係数α1を記憶する。想定適合係数α1は、走行終了時の車両駆動用電池21の温度Tx2と走行終了時から所定の時間tが経過したときの車両10の外気温Ty3との差(Tx2−Ty3)に対する走行終了時から所定の時間tが経過したときの車両駆動用電池21の温度Tx3の比{Tx3/(Tx2−Ty3)}である。想定適合係数α1は、走行終了時の前記車両の外気温Ty2に関連付けられている。即ち、外気温Ty2および温度Tx2が決まれば、想定適合係数α1が一義的に決まる。想定適合係数α1は、予備実験によって求められた想定値である。 The storage unit 37 stores a plurality of assumed conformity coefficients α1. The assumed conformity coefficient α1 is the difference (Tx2-Ty3) between the temperature Tx2 of the vehicle drive battery 21 at the end of running and the outside air temperature Ty3 of the vehicle 10 when a predetermined time t has elapsed from the end of running at the end of running. It is a ratio {Tx3 / (Tx2-Ty3)} of the temperature Tx3 of the vehicle driving battery 21 when a predetermined time t has elapsed from. The assumed conformity coefficient α1 is associated with the outside air temperature Ty2 of the vehicle at the end of traveling. That is, if the outside air temperature Ty2 and the temperature Tx2 are determined, the assumed conformity coefficient α1 is uniquely determined. The assumed conformity coefficient α1 is an assumed value obtained by a preliminary experiment.

選択部39は、第1温度検出装置31によって測定された温度Tx0と、第2温度検出装置32によって測定された外気温Ty0とに基づいて、記憶部37に記憶された複数の想定適合係数α1から1つの想定適合係数α1を選択する。即ち、選択部39は、温度Tx0を温度Tx2に置き換え、かつ、外気温Ty0を外気温Ty2に置き換えることで、想定適合係数α1を一義的に選択する。 The selection unit 39 has a plurality of assumed conformity coefficients α1 stored in the storage unit 37 based on the temperature Tx0 measured by the first temperature detection device 31 and the outside air temperature Ty0 measured by the second temperature detection device 32. Select one assumed fit coefficient α1 from. That is, the selection unit 39 uniquely selects the assumed conformity coefficient α1 by replacing the temperature Tx0 with the temperature Tx2 and replacing the outside air temperature Ty0 with the outside air temperature Ty2.

算出部41は、第1温度検出装置31によって測定された温度Tx0および温度Tx1と、第2温度検出装置32によって測定された外気温Ty1とに基づいて、温度Tx0と外気温Ty1との差(Tx0−Ty1)に対する温度Tx1の比{Tx1/(Tx0−Ty1)}である実測適合係数α2を算出する。実測適合係数α2は、実際に測定された温度および外気温に基づいて算出された実測値である。 The calculation unit 41 determines the difference between the temperature Tx0 and the outside air temperature Ty1 based on the temperature Tx0 and the temperature Tx1 measured by the first temperature detection device 31 and the outside air temperature Ty1 measured by the second temperature detection device 32. The measured conformity coefficient α2, which is the ratio of the temperature Tx1 to Tx0-Ty1) {Tx1 / (Tx0-Ty1)}, is calculated. The actual measurement suitability coefficient α2 is an actual measurement value calculated based on the actually measured temperature and the outside air temperature.

判定部43は、選択部39によって選択された想定適合係数α1が算出部41によって算出された実測適合係数α2より大きい場合には異常と判定する。判定部43は、選択部39によって選択された想定適合係数α1が算出部41によって算出された実測適合係数α2以下の場合には正常と判定する。 When the assumed conformity coefficient α1 selected by the selection unit 39 is larger than the actually measured conformity coefficient α2 calculated by the calculation unit 41, the determination unit 43 determines that it is abnormal. The determination unit 43 determines that it is normal when the assumed conformity coefficient α1 selected by the selection unit 39 is equal to or less than the actually measured conformity coefficient α2 calculated by the calculation unit 41.

通知部45は、車両駆動用電池21の異常をユーザーに通知する。なお、通知方法は特に限定されず、例えば、視覚的な表示、音声等による通知が挙げられる。本実施形態では、車両10に設けられた表示パネル(図示せず)を通じて視覚的に作業者に対する通知を行う。 The notification unit 45 notifies the user of the abnormality of the vehicle driving battery 21. The notification method is not particularly limited, and examples thereof include visual display, voice notification, and the like. In the present embodiment, the operator is visually notified through a display panel (not shown) provided on the vehicle 10.

次に、駐車後の車両駆動用電池21の状態を確認する方法について説明する。図2は、一実施形態に係るフローチャートである。車両10の出荷時には、想定適合係数α1が記憶部37に記憶されている。車両10の駐車時には、車両駆動用電池21の充放電は行われない。 Next, a method of confirming the state of the vehicle driving battery 21 after parking will be described. FIG. 2 is a flowchart according to an embodiment. At the time of shipment of the vehicle 10, the assumed conformity coefficient α1 is stored in the storage unit 37. When the vehicle 10 is parked, the vehicle driving battery 21 is not charged or discharged.

まず、車両10の走行が終了すると(即ち車両10が駐車されると)、ステップS10において、第1温度検出装置31は、走行終了時の車両駆動用電池21の温度Tx0を測定する。また、第2温度検出装置32は、走行終了時の車両10の外気温Ty0を測定する。 First, when the traveling of the vehicle 10 is completed (that is, when the vehicle 10 is parked), in step S10, the first temperature detection device 31 measures the temperature Tx0 of the vehicle driving battery 21 at the end of traveling. Further, the second temperature detection device 32 measures the outside air temperature Ty0 of the vehicle 10 at the end of traveling.

次に、所定の時間tが経過すると、ステップS20において、第1温度検出装置31は、走行終了時から所定の時間tが経過したときの車両駆動用電池21の温度Tx1を測定する。また、第2温度検出装置32は、走行終了時から所定の時間tが経過したときの車両10の外気温Ty1を測定する。 Next, when the predetermined time t elapses, in step S20, the first temperature detection device 31 measures the temperature Tx1 of the vehicle driving battery 21 when the predetermined time t elapses from the end of traveling. Further, the second temperature detection device 32 measures the outside air temperature Ty1 of the vehicle 10 when a predetermined time t has elapsed from the end of traveling.

ステップS30において、選択部39は、ステップS10において測定された温度Tx0および外気温Ty0に基づいて、記憶部37に記憶された複数の想定適合係数α1から1つの想定適合係数α1を選択する。 In step S30, the selection unit 39 selects one assumed fit coefficient α1 from the plurality of assumed fit coefficients α1 stored in the storage unit 37 based on the temperature Tx0 and the outside air temperature Ty0 measured in step S10.

ステップS40において、算出部41は、ステップS10において測定された温度Tx0と、ステップS20において測定された温度Tx1および外気温Ty1とに基づいて、実測適合係数α2を算出する。 In step S40, the calculation unit 41 calculates the measured conformity coefficient α2 based on the temperature Tx0 measured in step S10, the temperature Tx1 measured in step S20, and the outside air temperature Ty1.

ステップS50において、判定部43は、ステップS30において選択された想定適合係数α1が実測適合係数α2より大きいか否かを判定する。想定適合係数α1が実測適合係数α2より大きいと判定された場合、ステップS60に進む。一方、想定適合係数α1が実測適合係数α2以下と判定された場合、車両駆動用電池21は正常状態であるため処理を終了する。 In step S50, the determination unit 43 determines whether or not the assumed conformity coefficient α1 selected in step S30 is larger than the actually measured conformity coefficient α2. If it is determined that the assumed conformity coefficient α1 is larger than the actually measured conformity coefficient α2, the process proceeds to step S60. On the other hand, when the assumed conformity coefficient α1 is determined to be equal to or less than the actually measured conformity coefficient α2, the vehicle drive battery 21 is in a normal state, and the process ends.

ステップS60において、通知部45は、車両駆動用電池21の異常をユーザーに通知し、処理を終了する。 In step S60, the notification unit 45 notifies the user of the abnormality of the vehicle drive battery 21 and ends the process.

図3は、車両駆動用電池21の駐車後1時間の温度変化を示すグラフである。図3の実線は、想定適合係数α1が実測適合係数α2と等しい場合(正常状態)の温度変化を示す。図3の破線は、想定適合係数α1が実測適合係数α2より大きい場合(異常状態)の温度変化を示す。図3に示すように、想定適合係数α1が実測適合係数α2に等しい場合には、車両駆動用電池21の温度が十分に低下している。一方、想定適合係数α1が実測適合係数α2より大きい場合には、車両駆動用電池21の温度の低下が十分でない。これにより、例えば、車両駆動用電池21に埃が堆積するなどして十分に放熱することができていないことが確認できる。 FIG. 3 is a graph showing the temperature change of the vehicle driving battery 21 for 1 hour after parking. The solid line in FIG. 3 shows the temperature change when the assumed conformity coefficient α1 is equal to the actually measured conformity coefficient α2 (normal state). The broken line in FIG. 3 indicates the temperature change when the assumed conformity coefficient α1 is larger than the actually measured conformity coefficient α2 (abnormal state). As shown in FIG. 3, when the assumed conformity coefficient α1 is equal to the actually measured conformity coefficient α2, the temperature of the vehicle drive battery 21 is sufficiently lowered. On the other hand, when the assumed conformity coefficient α1 is larger than the actually measured conformity coefficient α2, the temperature of the vehicle driving battery 21 is not sufficiently lowered. As a result, it can be confirmed that heat cannot be sufficiently dissipated due to, for example, dust accumulating on the vehicle driving battery 21.

以上のように、本実施形態に係る電池異常検出システム30によれば、想定適合係数α1と、実測適合係数α2とを比較することによって、車両駆動用電池21の異常を判定することができる。即ち、判定部43は、想定適合係数α1が実測適合係数α2より大きい場合には異常と判定し、想定適合係数α1が実測適合係数α2以下の場合には正常と判定する。このように、車両10が駐車中であっても、車両駆動用電池21の異常が発生しているか否かを精度よく検出することができる。また、車両10の駐車時には車両駆動用電池21の充放電は行われておらず、車両駆動用電池21を使用していない状態で車両駆動用電池21の異常の有無を検出することができるため、安全性により優れる。 As described above, according to the battery abnormality detection system 30 according to the present embodiment, the abnormality of the vehicle drive battery 21 can be determined by comparing the assumed conformity coefficient α1 and the actually measured conformity coefficient α2. That is, the determination unit 43 determines that it is abnormal when the assumed conformity coefficient α1 is larger than the actually measured conformity coefficient α2, and determines that it is normal when the assumed conformity coefficient α1 is equal to or less than the actually measured conformity coefficient α2. In this way, even when the vehicle 10 is parked, it is possible to accurately detect whether or not an abnormality has occurred in the vehicle driving battery 21. Further, when the vehicle 10 is parked, the vehicle drive battery 21 is not charged or discharged, and it is possible to detect the presence or absence of an abnormality in the vehicle drive battery 21 when the vehicle drive battery 21 is not used. , Better in safety.

以上、ここで提案される電池異常検出システムについて、種々説明したが、特に言及されない限りにおいて、ここで挙げられた実施形態および実施例は、本発明を限定しない。 Although various battery abnormality detection systems proposed here have been described above, the embodiments and examples given here do not limit the present invention unless otherwise specified.

例えば、上記したフローチャートでは、ステップS20の後にステップS30の処理を行っているが、ステップS20の前にステップS30を処理してもよい。 For example, in the above flowchart, the process of step S30 is performed after step S20, but step S30 may be processed before step S20.

10 車両
21 車両駆動用電池
30 電池異常検出システム
31 第1温度検出装置
32 第2温度検出装置
35 制御装置
37 記憶部
39 選択部
41 算出部
43 判定部
10 Vehicle 21 Vehicle drive battery 30 Battery abnormality detection system 31 First temperature detection device 32 Second temperature detection device 35 Control device 37 Storage unit 39 Selection unit 41 Calculation unit 43 Judgment unit

Claims (1)

車両駆動用電池を含む車両に搭載される電池異常検出システムであって、
走行終了時の前記車両駆動用電池の温度Tx0および走行終了時から所定の時間が経過したときの前記車両駆動用電池の温度Tx1を測定する第1温度検出装置と、
走行終了時の前記車両の外気温Ty0および走行終了時から前記所定の時間が経過したときの前記車両の外気温Ty1を測定する第2温度検出装置と、
制御装置と、を備え、
前記制御装置は、
走行終了時の前記車両の外気温Ty2に関連付けられ、走行終了時の前記車両駆動用電池の温度Tx2と走行終了時から前記所定の時間が経過したときの前記車両の外気温Ty3との差(Tx2−Ty3)に対する走行終了時から前記所定の時間が経過したときの前記車両駆動用電池の温度Tx3の比{Tx3/(Tx2−Ty3)}である複数の想定適合係数α1を記憶する記憶部と、
前記第1温度検出装置によって測定された前記温度Tx0と、前記第2温度検出装置によって測定された前記外気温Ty0とに基づいて、前記記憶部に記憶された複数の前記想定適合係数α1から1つの前記想定適合係数α1を選択する選択部と、
前記第1温度検出装置によって測定された前記温度Tx0および前記温度Tx1と、前記第2温度検出装置によって測定された前記外気温Ty1とに基づいて、前記温度Tx0と前記外気温Ty1との差(Tx0−Ty1)に対する前記温度Tx1の比{Tx1/(Tx0−Ty1)}である実測適合係数α2を算出する算出部と、
前記選択部によって選択された前記想定適合係数α1が前記実測適合係数α2より大きい場合には異常と判定し、前記想定適合係数α1が前記実測適合係数α2以下の場合には正常と判定する判定部と、を備えている、電池異常検出システム。
A battery abnormality detection system installed in a vehicle including a vehicle drive battery.
A first temperature detection device that measures the temperature Tx0 of the vehicle drive battery at the end of traveling and the temperature Tx1 of the vehicle drive battery when a predetermined time has elapsed from the end of travel.
A second temperature detecting device that measures the outside air temperature Ty0 of the vehicle at the end of traveling and the outside air temperature Ty1 of the vehicle when the predetermined time has elapsed from the end of traveling.
Equipped with a control device,
The control device is
The difference between the temperature Tx2 of the vehicle driving battery at the end of running and the outside air temperature Ty3 of the vehicle when the predetermined time elapses from the end of running, which is associated with the outside air temperature Ty2 of the vehicle at the end of running ( A storage unit that stores a plurality of assumed conformity coefficients α1 which are ratios {Tx3 / (Tx2-Ty3)} of the temperature Tx3 of the vehicle driving battery when the predetermined time elapses from the end of traveling with respect to Tx2-Ty3). When,
A plurality of assumed conformity coefficients α1 to 1 stored in the storage unit based on the temperature Tx0 measured by the first temperature detection device and the outside air temperature Ty0 measured by the second temperature detection device. A selection unit that selects the assumed conformity coefficient α1 and
The difference between the temperature Tx0 and the outside air temperature Ty1 based on the temperature Tx0 and the temperature Tx1 measured by the first temperature detection device and the outside air temperature Ty1 measured by the second temperature detection device ( A calculation unit that calculates the actual measurement conformity coefficient α2, which is the ratio of the temperature Tx1 to Tx0-Ty1) {Tx1 / (Tx0-Ty1)}.
If the assumed conformity coefficient α1 selected by the selection unit is larger than the actually measured conformity coefficient α2, it is determined to be abnormal, and if the assumed conformity coefficient α1 is equal to or less than the actually measured conformity coefficient α2, it is determined to be normal. And, equipped with a battery abnormality detection system.
JP2018008212A 2018-01-22 2018-01-22 Battery abnormality detection system Expired - Fee Related JP6955673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018008212A JP6955673B2 (en) 2018-01-22 2018-01-22 Battery abnormality detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008212A JP6955673B2 (en) 2018-01-22 2018-01-22 Battery abnormality detection system

Publications (2)

Publication Number Publication Date
JP2019129003A JP2019129003A (en) 2019-08-01
JP6955673B2 true JP6955673B2 (en) 2021-10-27

Family

ID=67472306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008212A Expired - Fee Related JP6955673B2 (en) 2018-01-22 2018-01-22 Battery abnormality detection system

Country Status (1)

Country Link
JP (1) JP6955673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093690B1 (en) * 2018-11-16 2020-03-26 (주)피앤디디자인 Locking device
CN113691152B (en) * 2020-05-19 2023-08-22 株式会社日立制作所 Power conversion device and abnormality detection method
CN113851760B (en) * 2021-09-26 2023-07-04 上汽通用五菱汽车股份有限公司 Temperature control method of battery system, vehicle and readable storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839761B2 (en) * 2001-09-14 2006-11-01 松下電器産業株式会社 Battery control device
JP3709859B2 (en) * 2002-06-20 2005-10-26 日産自動車株式会社 Battery temperature detector for thin batteries
JP5209512B2 (en) * 2009-01-16 2013-06-12 株式会社マキタ Battery monitoring system for electric tools, battery pack for electric tools, and charger for electric tools
JP5043061B2 (en) * 2009-03-30 2012-10-10 本田技研工業株式会社 Electric car
JP2012074328A (en) * 2010-09-30 2012-04-12 Hitachi Ltd Secondary battery system detecting heat generation distribution
JP5928385B2 (en) * 2013-03-22 2016-06-01 トヨタ自動車株式会社 Power storage system
JP2015232955A (en) * 2014-06-10 2015-12-24 日本電気株式会社 Power storage device and temperature control device of the same, temperature adjustment system, and temperature adjustment method

Also Published As

Publication number Publication date
JP2019129003A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
KR101295467B1 (en) Storage battery system, storage battery monitoring device, and storage battery monitoring method
JP6955673B2 (en) Battery abnormality detection system
JP5790219B2 (en) Battery status detection device
EP2762909A2 (en) Battery management system and driving method thereof
US9356325B1 (en) Electrified vehicle battery pack monitoring assembly and method
US20080125932A1 (en) Abnormality detecting device, abnormality detecting method, and computer readable medium storing an abnormality detecting program
JP6800758B2 (en) Secondary battery control device and secondary battery control method
JP2014507757A (en) Battery pack management apparatus and method
EP3168954A1 (en) Battery control device
CN113631938B (en) Method and system for detecting connection failure of parallel battery cells
JP7700935B2 (en) Protection device, power storage device, and method for protecting power storage element
JP7031301B2 (en) Power storage element management device and management method
JP6623725B2 (en) Battery remaining amount estimation system and battery remaining amount estimation method
US20220320615A1 (en) Battery unit
JP2020008480A (en) Temperature sensor abnormality determination device and temperature sensor abnormality determination method
JP6844464B2 (en) Battery system
JPWO2020085097A1 (en) Battery control device
JP2015115100A (en) Method for determining deterioration of exterior film of electrode body
JP7064692B2 (en) A method for determining the state of a power storage device, a management device, and a power storage device.
JP2020038812A (en) Method of recycling secondary battery, management device, and computer program
JP6690461B2 (en) In-vehicle battery pack control system
JP2022525896A (en) Connection failure detection method and system for parallel connection cells
WO2023120282A1 (en) Battery monitoring device, battery transport apparatus, and battery monitoring method
JP7576529B2 (en) Battery unit
JP2021040355A (en) Power storage element management device, power storage device, input / output control method for power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R151 Written notification of patent or utility model registration

Ref document number: 6955673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees