[go: up one dir, main page]

JP6955660B2 - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP6955660B2
JP6955660B2 JP2014097726A JP2014097726A JP6955660B2 JP 6955660 B2 JP6955660 B2 JP 6955660B2 JP 2014097726 A JP2014097726 A JP 2014097726A JP 2014097726 A JP2014097726 A JP 2014097726A JP 6955660 B2 JP6955660 B2 JP 6955660B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
power storage
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014097726A
Other languages
Japanese (ja)
Other versions
JP2015216001A (en
Inventor
仁 八代
仁 八代
山田 宗紀
宗紀 山田
朗 繁田
朗 繁田
雅弘 細田
雅弘 細田
良彰 越後
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Unitika Ltd
Original Assignee
Iwate University
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Unitika Ltd filed Critical Iwate University
Priority to JP2014097726A priority Critical patent/JP6955660B2/en
Publication of JP2015216001A publication Critical patent/JP2015216001A/en
Application granted granted Critical
Publication of JP6955660B2 publication Critical patent/JP6955660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、リチウムイオンの挿入・脱離を利用したリチウムイオン二次電池、リチウムイオンキャパシタ等の蓄電素子(以下、単に「蓄電素子」と略記することがある)に関する。 The present invention relates to a power storage element (hereinafter, may be simply abbreviated as "power storage element") such as a lithium ion secondary battery and a lithium ion capacitor that utilize insertion / removal of lithium ions.

従来、蓄電素子の負極には、黒鉛粉末等の粒子状のカーボン系活物質と、バインダとを含む活物質層を、銅箔、ステンレス等の箔状の集電体の表面に形成したものが用いられている。ここでバインダとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド等が用いられる。 Conventionally, the negative electrode of a power storage element has an active material layer containing a particulate carbon-based active material such as graphite powder and a binder formed on the surface of a foil-like current collector such as copper foil or stainless steel. It is used. Here, as the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyimide or the like is used.

前記カーボン系活物質を用いた負極は、その理論容量が372mAh/gであるため、さらに高容量の活物質が求められている。そこで、カーボン系活物質に代わる次世代の活物質としてシリコン系やスズ系活物質等、リチウムとの合金化により黒鉛の数倍以上の理論放電容量を示す負極活物質(以下、単に「合金系負極活物質」と略記することがある)を用いた負極が提案されている。 Since the theoretical capacity of the negative electrode using the carbon-based active material is 372 mAh / g, a higher capacity active material is required. Therefore, as a next-generation active material that replaces carbon-based active materials, negative electrode active materials such as silicon-based active materials and tin-based active materials that exhibit a theoretical discharge capacity several times or more that of graphite by alloying with lithium (hereinafter, simply "alloy-based active materials"). Negative electrodes using "negative electrode active material") have been proposed.

しかし、これら合金系負極活物質は充放電に伴う体積変化(膨張・収縮)が大きいため、充放電の繰り返しに伴い、活物質が微粉化したり、集電体から脱離したりするため、負極の放電容量が大幅に減少するという問題があった。 However, since these alloy-based negative electrode active materials have a large volume change (expansion / contraction) due to charging / discharging, the active material becomes finer or desorbs from the current collector as the charging / discharging is repeated. There was a problem that the discharge capacity was significantly reduced.

このサイクル特性の低下を改善する方法として、特許文献1には、集電体金属箔上に、気相蒸着法で最表部にSiLix膜を有する負極を形成する方法が提案されており、特許文献2には、粒子内部Fe含有率が10〜1,000ppm、粒子外部Fe含有率が30ppm以下である珪素酸化物粒子を負極活物質として用いる方法が提案されている。 As a method for improving this decrease in cycle characteristics, Patent Document 1 proposes a method of forming a negative electrode having a SiLix film on the outermost surface by a vapor deposition method on a current collector metal foil. Document 2 proposes a method of using silicon oxide particles having a particle internal Fe content of 10 to 1,000 ppm and a particle external Fe content of 30 ppm or less as a negative electrode active material.

特開2009−43747号公報JP-A-2009-43747 特開2013−258135号公報Japanese Unexamined Patent Publication No. 2013-258135

前記特許文献に記載の負極活物質は、いずれも、負極活物質の表面に着目したものであり、表面の活性を高めることにより、サイクル特性の低下の改善を図ろうとしたものであるが、繰り返し充放電による負極活物質の体積変化が大きく、これに起因する放電容量の低下を十分に抑制することは困難であった。そのため、充放電を繰り返した後でも、高い放電容量を維持することが求められている。 All of the negative electrode active materials described in the above patent documents focus on the surface of the negative electrode active material, and attempt to improve the deterioration of the cycle characteristics by increasing the activity of the surface, but repeatedly. The volume change of the negative electrode active material due to charging and discharging is large, and it is difficult to sufficiently suppress the decrease in discharge capacity due to this. Therefore, it is required to maintain a high discharge capacity even after repeated charging and discharging.

そこで、本発明は、前記の課題を解決するため、例えば、合金系負極活物質を用いた場合において、充放電を繰り返した後でも、高い放電容量を維持できる蓄電素子の提供を目的とする。 Therefore, in order to solve the above-mentioned problems, it is an object of the present invention to provide a power storage element capable of maintaining a high discharge capacity even after repeated charging and discharging, for example, when an alloy-based negative electrode active material is used.

本発明者は、前記の課題を解決するために鋭意研究を重ねた結果、本発明に到達した。すなわち、本発明の要旨は、下記の通りである。 The present inventor has arrived at the present invention as a result of repeated diligent research in order to solve the above-mentioned problems. That is, the gist of the present invention is as follows.

(1) 平均粒径が1μm以下の合金系負極活物質へのリチウムイオンの挿入量を、前記負極活物質の理論容量の%以上、20%未満の範囲内に規制し、かつリチウムイオンの挿入量、50〜500mAh/gの範囲内である、リチウムイオンの挿入・脱離を利用した蓄電素子。
(1) The amount of lithium ions inserted into an alloy-based negative electrode active material having an average particle size of 1 μm or less is regulated within a range of 2 % or more and less than 20% of the theoretical capacity of the negative electrode active material, and the lithium ions insertion amount, 50~500mAh / g is in the range of the power storage element utilizing the intercalation and deintercalation of lithium ions.

本発明の蓄電素子は、繰り返し充放電を行った後でも、高い放電容量を維持することができる。 The power storage element of the present invention can maintain a high discharge capacity even after repeated charging and discharging.

本発明の蓄電素子の負極としては、例えば、粒子状の負極活物質と、バインダとを含む活物質層を、銅箔、ステンレス等の箔状の集電体の表面に形成されたものを好ましく用いることができる。ここでバインダとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド等公知のものを用いることができるが、ポリイミドを用いることが好ましい。また、集電体上には、多孔質の導電性接着層を設けておくことが好ましい。これらの負極は、例えば、国際公開特許WO2014/017506号公報に記載の方法により得ることができる。 As the negative electrode of the power storage element of the present invention, for example, an active material layer containing a particulate negative electrode active material and a binder is preferably formed on the surface of a foil-like current collector such as copper foil or stainless steel. Can be used. Here, as the binder, known binders such as polyvinylidene fluoride, polytetrafluoroethylene, and polyimide can be used, but it is preferable to use polyimide. Further, it is preferable to provide a porous conductive adhesive layer on the current collector. These negative electrodes can be obtained, for example, by the method described in International Patent Publication No. WO2014 / 017506.

用いられる負極活物質の種類に制限はないが、理論容量が高い合金系負極活物質を好ましく用いることができる。 合金系負極活物質の具体例としては、シリコン(理論容量:4210mAh/g)、酸化ケイ素(理論容量:2680mAh/g)、ゲルマニウム(理論容量:1620mAh/g)、錫(理論容量 994mAh/g)等を挙げることができる。これら負極活物質の形状としては、不定形状、球状、線維状等を用いることができ、制限はない。また、粒径は、体積基準の平均粒径で、1μm以下とすることが好ましく、0.5μm以下とすることがさらに好ましい。その理由については、後述する。 The type of negative electrode active material used is not limited, but an alloy-based negative electrode active material having a high theoretical capacity can be preferably used. Specific examples of the alloy-based negative electrode active material include silicon (theoretical capacity: 4210 mAh / g), silicon oxide (theoretical capacity: 2680 mAh / g), germanium (theoretical capacity: 1620 mAh / g), and tin (theoretical capacity: 994 mAh / g). And so on. As the shape of these negative electrode active materials, an indefinite shape, a spherical shape, a fibrous shape, or the like can be used, and there is no limitation. The average particle size on a volume basis is preferably 1 μm or less, and more preferably 0.5 μm or less. The reason will be described later.

前記負極活物質と、バインダとを溶媒中で混合して塗液とし、これを前記集電体に塗布、乾燥することにより、集電体上に負極活物質層が形成された負極とすることができる。ここで、負極活物層中の負極活物質塗液中には、黒鉛、カーボンブラック等の導電補助剤を配合しておくことが好ましい。 The negative electrode active material and the binder are mixed in a solvent to form a coating liquid, which is applied to the current collector and dried to obtain a negative electrode having a negative electrode active material layer formed on the current collector. Can be done. Here, it is preferable to add a conductive auxiliary agent such as graphite or carbon black to the negative electrode active material coating liquid in the negative electrode active material layer.

前記の如くして得られた負極を有する本発明の蓄電素子においては、負極活物質へのリチウムイオンの挿入量を、前記負極活物質の理論容量の1%以上、30%未満の範囲内、好ましくは2%以上、20%未満の範囲内に規制して充電できるようにしたものである。このようにするには、本発明の蓄電素子を、例えば、リチウムイオン二次電池として使用する場合は、充電の際、正極から負極へ移動するリチウムイオンの量がこの範囲になるように、正極のリチウムイオン量を調整すれば良い。また、リチウムイオンキャパシタとして使用する場合は、予めこの範囲のリチウム量を負極に挿入しておけば良い。このようにすることにより、蓄電素子が使用される際に、その蓄電素子が満充電の状態(100%充電された状態)で、その負極のリチウムイオン挿入量が、その理論容量の1%以上、30%未満の範囲内とすることができる。これにより、挿入されたリチウムイオン量に比例する負極活物質の体積変化(膨張)を抑制することができる。 In the power storage element of the present invention having the negative electrode obtained as described above, the amount of lithium ions inserted into the negative electrode active material is within the range of 1% or more and less than 30% of the theoretical capacity of the negative electrode active material. Preferably, it is regulated within the range of 2% or more and less than 20% so that the battery can be charged. In order to do so, when the power storage element of the present invention is used as, for example, a lithium ion secondary battery, the positive electrode is so that the amount of lithium ions that move from the positive electrode to the negative electrode during charging is within this range. The amount of lithium ions may be adjusted. When used as a lithium ion capacitor, the amount of lithium in this range may be inserted into the negative electrode in advance. By doing so, when the power storage element is used, the lithium ion insertion amount of the negative electrode is 1% or more of the theoretical capacity when the power storage element is fully charged (100% charged). , Can be within the range of less than 30%. As a result, it is possible to suppress the volume change (expansion) of the negative electrode active material in proportion to the amount of inserted lithium ions.

さらに、前記したように、負極活物質の粒径を1μm以下として小さくして、その表面積を大きくすることにより、充電により、負極活物質表面に吸着されるリチウムイオンの比率をより高めることができる。負極活物質表面には、充放電により、SEI(Solid Electrolyte Interface)とよばれる皮膜が形成されているが、この被膜表面に吸着されたリチウムイオンは、電気化学的に活性であり、放電により、電流として取り出すことが出来る。従い、表面積をより大きくすることにより、放電容量をより大きくすることが出来る。前記SEI被膜は、リチウムイオンの吸着により体積変化(膨張)はしないので、負極活物質の表面積をより大きくすることにより、リチウムの挿入に伴う負極活物質全体の体積変化(膨張)をより小さくすることができ、負極活物質の膨張・収縮に起因するサイクル特性の低下を大幅に抑制することができる。なお、本発明で言う「リチウムイオンの挿入量」とは、前記合金化反応等に基づくリチウムイオン挿入量と表面に吸着されたリチウムイオン挿入量との合計をいう。 Further, as described above, by reducing the particle size of the negative electrode active material to 1 μm or less and increasing the surface area thereof, the ratio of lithium ions adsorbed on the surface of the negative electrode active material can be further increased by charging. .. A film called SEI (Solid Electrolyte Interface) is formed on the surface of the negative electrode active material by charging and discharging. Lithium ions adsorbed on the surface of this film are electrochemically active, and by discharging, they are formed. It can be taken out as an electric current. Therefore, by increasing the surface area, the discharge capacity can be increased. Since the SEI film does not change in volume (expansion) due to the adsorption of lithium ions, the volume change (expansion) of the entire negative electrode active material due to the insertion of lithium is made smaller by increasing the surface area of the negative electrode active material. This makes it possible to significantly suppress a decrease in cycle characteristics due to expansion and contraction of the negative electrode active material. The "lithium ion insertion amount" referred to in the present invention means the total of the lithium ion insertion amount based on the alloying reaction and the like and the lithium ion insertion amount adsorbed on the surface.

本発明の蓄電素子は、リチウムイオンの挿入量を、負極活物質の理論容量の1%以上、30%未満の範囲内に規制して充電できるようにしたものであるが、具体的な挿入量としては、負極活物質の質量基準で、10mAh/g〜1000mAh/gとすることが好ましく、50〜500mAh/gとすることがより好ましい。 The power storage element of the present invention regulates the amount of lithium ions inserted within the range of 1% or more and less than 30% of the theoretical capacity of the negative electrode active material so that it can be charged. It is preferably 10 mAh / g to 1000 mAh / g, and more preferably 50 to 500 mAh / g, based on the mass of the negative electrode active material.

また、本発明の蓄電素子における、電流密度としては、負極活物質の質量基準で、10mA/g〜2000mA/gとすることが好ましく、50〜500mAh/gとすることがより好ましい。 Further, the current density in the power storage element of the present invention is preferably 10 mA / g to 2000 mA / g, more preferably 50 to 500 mAh / g, based on the mass of the negative electrode active material.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例のみに限定されない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to these examples.

<実施例1>
国際公開特許WO2014/017506号公報 実施例1の記載に基づき、シリコン(理論放電容量:4400mAh/g)を 活物質として含有する負極を得た。すなわち、厚み18μmの電解銅箔(古河電気工業社製、F2−WS)の一方の表面に、導電性粒子分散体(組成比率 黒鉛82質量、ポリアミドイミド18質量%)を、バーコータを用いて枚様で均一に塗布した後、130℃で10分間乾燥し、導電塗膜を得た。黒鉛分散体の塗布量は、得られる導電接着層の厚みが3〜4μmになるように調整した。次に、導電塗膜の表面に、シリコン分散体(組成比率:シリコン64質量%、ポリイミド20質量%、黒鉛16質量%)を、バーコータを用いて枚様で均一に塗布し、130℃で10分間乾燥し、活物質塗膜を得た。シリコン分散体の塗布量は、得られる活物質層の厚みが40〜50μmになるように調整した。このようにして、電解銅箔と、導電塗膜と、活物質塗膜とを、この順に積層してなる積層体を得た。なお、ここで用いたシリコンの平均粒径は、0.5μmであった。次に、得られた積層体を、窒素ガス雰囲気下で100℃から350℃まで2時間かけて昇温した後、350℃で1時間熱処理した。この熱処理により、活物質塗膜中のポリアミック酸をポリイミドに変換した。このようにして、電解銅箔と、導電性接着層と、活物質層とを、この順に積層してなる負極を得た。
得られたシート状の負極を用いて、以下の手法により、負極の放電容量を測定するための試験セルとして二極式ポーチ型セル(ラミネートセル)を作製した。得られたシート状の負極を、10mm×40mmの矩形状に裁断し、10mm×10mmの活物質面積を残して融着フィルムで被覆した。対極として、厚み1mmのリチウム板を、30mm×40mmの矩形状に裁断し、厚み0.5mmのニッケルリード(5mm×50mm)に二つ折りにして圧着した。負極のみを、袋状のセパレータ(30mm×20mm)に入れた後、対極と向き合わせ、電極群を得た。セパレータには、矩形状のポリプロピレン樹脂製多孔質フィルム(厚み25μm)を用いた。この電極群を二枚一組の矩形状のアルミラミネートフィルム(50mm×40mm)で覆い、その三辺をシールした後、袋状アルミラミネートフィルム内に電解液1mLを注入した。電解液には、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネートとを、体積比1:1:1で混合した混合溶媒にLiPFを1モル/Lの濃度で溶解したものを用いた。その後、残りの一辺をシールして、袋状アルミラミネートフィルム内を密封した。また、袋状アルミラミネートフィルム内の密封の際には、負極およびニッケルリードの一端を外側に延出し、端子とした。このようにして、試験セルを得た。これらの操作のすべてを、アルゴン雰囲気のグローブボックス内で行った。
次に、得られた試験セルを用いて、測定温度:30℃、充電量:500mA/g、充電電流密度および放電電流密度:100mA/gの充放電条件で、充放電を繰り返し、80回目の放電容量を求めた。
なお、充電量500mA/gは、シリコンの理論容量(4210mA/g)の11.9%に相当する。測定の結果、80回目の放電容量は、495.2mA/g−シリコンであり、充電された電気量の99%以上が放電されていることが判った。このことにより、充電量(リチウムイオン挿入量)を500mA/gに規制することにより、充放電に伴うシリコンの体積変化が大幅に抑制され、良好なサイクル特性を確保できることがわかる。また、この容量は、黒鉛の理論容量(372mAh/g)と比較して、大幅に高いものである。
<Example 1>
Based on the description of Example 1 of International Patent Publication No. WO2014 / 017506, a negative electrode containing silicon (theoretical discharge capacity: 4400 mAh / g) as an active material was obtained. That is, a conductive particle dispersion (composition ratio: graphite 82% by mass, polyamide-imide 18% by mass) was applied to one surface of an electrolytic copper foil (F2-WS manufactured by Furukawa Denki Kogyo Co., Ltd.) having a thickness of 18 μm using a bar coater. After uniformly applying the mixture, the mixture was dried at 130 ° C. for 10 minutes to obtain a conductive coating film. The coating amount of the graphite dispersion was adjusted so that the thickness of the obtained conductive adhesive layer was 3 to 4 μm. Next, a silicon dispersion (composition ratio: 64% by mass of silicon, 20% by mass of polyimide, 16% by mass of graphite) was uniformly applied to the surface of the conductive coating film in a sheet-like manner using a bar coater, and 10 at 130 ° C. It was dried for a minute to obtain an active material coating film. The coating amount of the silicon dispersion was adjusted so that the thickness of the obtained active material layer was 40 to 50 μm. In this way, a laminate obtained by laminating the electrolytic copper foil, the conductive coating film, and the active material coating film in this order was obtained. The average particle size of the silicon used here was 0.5 μm. Next, the obtained laminate was heated from 100 ° C. to 350 ° C. over 2 hours in a nitrogen gas atmosphere, and then heat-treated at 350 ° C. for 1 hour. By this heat treatment, the polyamic acid in the active material coating film was converted into polyimide. In this way, a negative electrode formed by laminating the electrolytic copper foil, the conductive adhesive layer, and the active material layer in this order was obtained.
Using the obtained sheet-shaped negative electrode, a bipolar pouch type cell (laminate cell) was produced as a test cell for measuring the discharge capacity of the negative electrode by the following method. The obtained sheet-shaped negative electrode was cut into a rectangular shape of 10 mm × 40 mm and coated with a fusion film leaving an active material area of 10 mm × 10 mm. As a counter electrode, a lithium plate having a thickness of 1 mm was cut into a rectangular shape having a thickness of 30 mm × 40 mm, folded in half into a nickel lead (5 mm × 50 mm) having a thickness of 0.5 mm, and pressure-bonded. Only the negative electrode was placed in a bag-shaped separator (30 mm × 20 mm) and then faced with the counter electrode to obtain an electrode group. A rectangular polypropylene resin porous film (thickness 25 μm) was used as the separator. This electrode group was covered with a set of two rectangular aluminum laminate films (50 mm × 40 mm), the three sides thereof were sealed, and then 1 mL of the electrolytic solution was injected into the bag-shaped aluminum laminate film. As the electrolytic solution, a mixture of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate in a mixed solvent having a volume ratio of 1: 1: 1 and LiPF 6 dissolved at a concentration of 1 mol / L was used. Then, the remaining one side was sealed, and the inside of the bag-shaped aluminum laminated film was sealed. Further, when sealing the inside of the bag-shaped aluminum laminated film, one end of the negative electrode and the nickel lead was extended outward to form a terminal. In this way, a test cell was obtained. All of these operations were performed in a glove box with an argon atmosphere.
Next, using the obtained test cell, charging / discharging was repeated under the charging / discharging conditions of measurement temperature: 30 ° C., charge amount: 500 mA / g, charge current density and discharge current density: 100 mA / g, and the 80th time. The discharge capacity was calculated.
The charge amount of 500 mA / g corresponds to 11.9% of the theoretical capacity of silicon (4210 mA / g). As a result of the measurement, it was found that the 80th discharge capacity was 495.2 mA / g-silicon, and 99% or more of the charged electricity amount was discharged. From this, it can be seen that by limiting the charge amount (lithium ion insertion amount) to 500 mA / g, the volume change of silicon due to charge / discharge is significantly suppressed, and good cycle characteristics can be ensured. Further, this capacity is significantly higher than the theoretical capacity of graphite (372 mAh / g).

以上述べたように、リチウムイオン挿入量(充電量)を特定の範囲に規制するようにした本発明の蓄電素子は、サイクル特性が大幅に向上されたものである。

As described above, the power storage element of the present invention in which the lithium ion insertion amount (charge amount) is regulated within a specific range has significantly improved cycle characteristics.

Claims (1)

平均粒径が1μm以下の合金系負極活物質へのリチウムイオンの挿入量を、前記負極活物質の理論容量の%以上、20%未満の範囲内に規制し、かつリチウムイオンの挿入量、50〜500mAh/gの範囲内である、リチウムイオンの挿入・脱離を利用した蓄電素子。
The amount of lithium ions inserted into an alloy-based negative electrode active material having an average particle size of 1 μm or less is regulated within the range of 2 % or more and less than 20 % of the theoretical capacity of the negative electrode active material, and the amount of lithium ions inserted is limited. , in the range of 50~500mAh / g, the power storage element utilizing the intercalation and deintercalation of lithium ions.
JP2014097726A 2014-05-09 2014-05-09 Power storage element Active JP6955660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097726A JP6955660B2 (en) 2014-05-09 2014-05-09 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097726A JP6955660B2 (en) 2014-05-09 2014-05-09 Power storage element

Publications (2)

Publication Number Publication Date
JP2015216001A JP2015216001A (en) 2015-12-03
JP6955660B2 true JP6955660B2 (en) 2021-10-27

Family

ID=54752735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097726A Active JP6955660B2 (en) 2014-05-09 2014-05-09 Power storage element

Country Status (1)

Country Link
JP (1) JP6955660B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042733A (en) * 2016-10-05 2019-04-24 와커 헤미 아게 Lithium-ion battery
KR102424725B1 (en) * 2021-11-11 2022-07-22 한국세라믹기술원 Silicon-based negative electrode for lithium secondary battery with improved lifespan property and capacity, and lithium secondary battery including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283179A (en) * 1996-04-16 1997-10-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP4212439B2 (en) * 2003-09-12 2009-01-21 三洋電機株式会社 How to use lithium secondary battery
JP2008130890A (en) * 2006-11-22 2008-06-05 Hitachi Chem Co Ltd Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor
JP5136180B2 (en) * 2008-04-18 2013-02-06 株式会社豊田自動織機 Charge control method for lithium ion secondary battery
JP5229239B2 (en) * 2010-01-15 2013-07-03 宇部興産株式会社 Non-aqueous secondary battery
JP6157468B2 (en) * 2012-07-24 2017-07-05 国立大学法人岩手大学 Negative electrode for lithium secondary battery

Also Published As

Publication number Publication date
JP2015216001A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6353329B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN119480907A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10002717B2 (en) High performance lithium-ion capacitor laminate cells
CN103931030B (en) Lithium ion secondary battery and method for manufacturing same
CN101262078A (en) Rapidly chargeable lithium-ion battery and preparation method thereof
CN105322137B (en) Lithium rechargeable battery
JP2015179565A (en) Electrode for nonaqueous electrolyte batteries, nonaqueous electrolyte secondary battery and battery pack
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
CN107910484A (en) It is a kind of using fast charge lithium ion battery of ceramic diaphragm and preparation method thereof
CN105514344B (en) The method that lithium ion battery cathode surface is modified is realized by electrophoretic deposition graphene
JP2021048137A (en) Cathode active material for lithium secondary battery
WO2012124525A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2020004343A1 (en) Secondary battery and manufacturing method therefor
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
CN108292738B (en) Sodium ion secondary battery and positive electrode active material particle
JP2013246992A (en) Lithium ion secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP6955660B2 (en) Power storage element
JP6658744B2 (en) Negative electrode for non-aqueous electrolyte storage element
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP2019110087A (en) Positive electrode for lithium ion secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20160308193A1 (en) Nonaqueous electrolyte secondary battery
JP6667111B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190701

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190829

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190919

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190927

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191021

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200423

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201021

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210720

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210727

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210831

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6955660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150