JP6951053B2 - Monitoring method of sacrificial anode method in concrete structure - Google Patents
Monitoring method of sacrificial anode method in concrete structure Download PDFInfo
- Publication number
- JP6951053B2 JP6951053B2 JP2015131542A JP2015131542A JP6951053B2 JP 6951053 B2 JP6951053 B2 JP 6951053B2 JP 2015131542 A JP2015131542 A JP 2015131542A JP 2015131542 A JP2015131542 A JP 2015131542A JP 6951053 B2 JP6951053 B2 JP 6951053B2
- Authority
- JP
- Japan
- Prior art keywords
- anode material
- sacrificial anode
- lead wire
- reinforcing bar
- hardened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004567 concrete Substances 0.000 title claims description 60
- 238000000034 method Methods 0.000 title claims description 54
- 238000012544 monitoring process Methods 0.000 title claims description 19
- 239000010405 anode material Substances 0.000 claims description 97
- 230000003014 reinforcing effect Effects 0.000 claims description 63
- 239000000463 material Substances 0.000 claims description 48
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 33
- 230000008439 repair process Effects 0.000 claims description 24
- 230000010287 polarization Effects 0.000 claims description 18
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- 239000011150 reinforced concrete Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 2
- 238000002848 electrochemical method Methods 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 20
- 238000005260 corrosion Methods 0.000 description 20
- 239000004568 cement Substances 0.000 description 17
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 239000011433 polymer cement mortar Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002336 repolarization Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000011083 cement mortar Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical class [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002683 reaction inhibitor Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- -1 fluororesin Polymers 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Prevention Of Electric Corrosion (AREA)
Description
本発明は、主に土木・建築分野において用いられるコンクリート構造物の断面修復工法における鉄筋を防食する犠牲陽極工法のモニタリング方法に関するものである。 The present invention relates to a monitoring method of a sacrificial anode method for preventing corrosion of reinforcing bars in a cross-section restoration method for concrete structures mainly used in the fields of civil engineering and construction.
コンクリート構造物は、コンクリート構造物の内部に、鋼材が埋め込まれており、コンクリートと鋼材が一体となって、外力を受け持つものであるが、現在早期劣化が問題となっている。 In a concrete structure, a steel material is embedded inside the concrete structure, and the concrete and the steel material are integrated to take charge of an external force, but early deterioration is currently a problem.
コンクリート構造物の劣化要因としては、塩害、中性化、凍害、アルカリ骨材反応、及び化学的コンクリート腐食等が挙げられ、これら劣化に対する選択可能な補修工法として、断面修復工法、表面保護工法、ひび割れ補修工法、除塩工法、及びアルカリ再付与工法等が挙げられている。 Deterioration factors of concrete structures include salt damage, neutralization, frost damage, alkaline aggregate reaction, chemical concrete corrosion, etc., and selectable repair methods for these deteriorations include cross-section repair method, surface protection method, and so on. The crack repair method, the salt removal method, the alkali re-applying method, etc. are mentioned.
塩害等で劣化したコンクリート構造物の補修工法として、一般に断面修復工法が広く用いられている。 As a repair method for concrete structures deteriorated due to salt damage or the like, a cross-section repair method is generally widely used.
断面修復工法は、コンクリート構造物の劣化しているコンクリートをはつり取り、はつり取った部分をポリマーセメントモルタルなどの劣化に対する耐久性の高い材料、断面修復材で埋め戻す工法である。
しかし、断面修復材とコンクリート硬化体との打継界面を貫通する鉄筋において、同じ鉄筋表面で劣化因子の濃度に濃淡が生じてしまう。例えば、塩害では、塩化物イオン量に、また、中性化では、pHに差異が生じる。同じ鉄筋表面でこれらの劣化因子の濃度に差異が生じた場合、主に打継界面付近のコンクリート硬化体側の鉄筋表面にマクロセル腐食が生じることが知られており、これにより断面修復部が施工後数年で再劣化してしまうことがある。
The cross-section repair method is a method of scraping the deteriorated concrete of a concrete structure and backfilling the scraped portion with a material having high durability against deterioration such as polymer cement mortar and a cross-section repair material.
However, in the reinforcing bar penetrating the joint interface between the cross-section repair material and the hardened concrete, the concentration of the deterioration factor is different on the same reinforcing bar surface. For example, salt damage causes a difference in the amount of chloride ions, and neutralization causes a difference in pH. It is known that if there is a difference in the concentration of these deterioration factors on the same reinforcing bar surface, macrocell corrosion will occur mainly on the reinforcing bar surface on the concrete hardened body side near the joint interface, and as a result, the cross-section repair part will be constructed after construction. It may deteriorate again in a few years.
即ち、鉄筋のマクロセル腐食とは、連続する鉄筋の同じ表面において劣化因子の量が部分的に異なる場合に生じ、離れた位置にある陽極部(腐食部)と陰極部(非腐食部)の間をマクロセル電流が流れ、陽極部が腐食する現象である。 That is, macrocell corrosion of reinforcing bars occurs when the amount of deterioration factors is partially different on the same surface of continuous reinforcing bars, and is between the anode part (corroded part) and the cathode part (non-corroded part) at distant positions. This is a phenomenon in which a macrocell current flows and the anode part corrodes.
このため、土木・建築分野では、鉄よりもイオン化傾向の高い金属を陽極材とした犠牲陽極材を断面修復部に設置することにより、マクロセル腐食を防止する工法が知られている(特許文献1〜8参照)。
しかしながら、従来の方法は、断面修復材の内部に犠牲陽極材を埋め込むことを前提としており、断面修復材に犠牲陽極材を埋め込んだ後に犠牲陽極材の鉄筋防食性能を確認するのは困難であった。
Therefore, in the field of civil engineering and construction, a construction method for preventing macrocell corrosion is known by installing a sacrificial anode material having a metal having a higher ionization tendency than iron as an anode material in the cross-section repair portion (Patent Document 1). ~ 8).
However, the conventional method is premised on embedding the sacrificial anode material inside the cross-section repair material, and it is difficult to confirm the reinforcing bar anticorrosion performance of the sacrificial anode material after embedding the sacrificial anode material in the cross-section repair material. rice field.
本発明者は鋭意努力の結果、特定の材料や特定の工法を用いることによって、従来技術の持つ課題を解消し、コンクリート構造物の犠牲陽極工法における鉄筋防食性能のモニタリングが可能であるとの知見を得て本発明を完成するに至った。 As a result of diligent efforts, the present inventor has found that by using a specific material and a specific construction method, it is possible to solve the problems of the prior art and monitor the anticorrosion performance of the reinforcing bar in the sacrificial anode construction method of the concrete structure. The present invention was completed.
本発明は、上記課題を解決するために以下の手段を採用する。
(1)亜鉛又は亜鉛合金の陽極材3と、陽極材3の周りに陽極の不動態の生成を避けるのに充分なpHを持った電解質溶液を含有するバックフィル材とで構成された犠牲陽極材4を、コンクリート硬化体2の表面に設置し、コンクリート硬化体2の内部の鉄筋1と犠牲陽極材4とを電気的に接続する鉄筋コンクリート構造物の断面修復工法における鉄筋を防食する犠牲陽極工法のモニタリング工法であって、犠牲陽極材4の内部の陽極材3の打継界面側端部5の位置が、断面修復材6とコンクリート硬化体2の打継界面7から30cm以内となるように犠牲陽極材4をコンクリート硬化体2の表面に設置し、リード線9を介して鉄筋1と犠牲陽極材4と接続し、リード線9の一部がコンクリート硬化体2の表面及び/又は断面修復材6の表面に露出しており、表面に露出したリード線9に電気的な接続の開閉が可能な接続端子10を備え、電気化学的計測を行う鉄筋コンクリート構造物の犠牲陽極工法のモニタリング方法である。
(2)鉄筋1と犠牲陽極材4の接続を切り離すことにより、前記コンクリート硬化体2の表面に設置した犠牲陽極材4のコンクリート硬化体2の表面からの接続を切り離し、表面に露出したリード線9の接続端子10に、照合電極11と電位差計12をつなぎ、打継界面7から30cm以内のコンクリート硬化体2の表面における犠牲陽極材4を設置した面の1点を測定点13として、上記切り離した直後のインスタントオフ電位と、24時間経過後の電位の測定を行う前記(1)のモニタリング方法である。
(3)表面に露出したリード線9の接続端子10に、電流計をつなぎ、鉄筋1と犠牲陽極材4との間に流れる電流量の測定を行う前記(1)のモニタリング方法である。
(4)表面に露出したリード線9の接続端子10に、分極抵抗値測定装置をつなぎ、リード線9と導通のある鉄筋1及び/又は犠牲陽極材4の表面の分極抵抗値の測定を行う前記(1)のモニタリング方法である。
The present invention employs the following means to solve the above problems.
(1) A sacrificial anode composed of an
(2) Disconnect Succoth
(3) The monitoring method according to (1) above, wherein an ammeter is connected to the
(4) A polarization resistance measuring device is connected to the
本発明の犠牲陽極工法のモニタリング方法は、断面修復工法における鉄筋1を防食する犠牲陽極工法について、犠牲陽極材4の性能評価が容易になり、犠牲陽極材4の交換時期の把握が容易になる効果を奏する。
In the monitoring method of the sacrificial anode method of the present invention, the performance of the sacrificial anode material 4 can be easily evaluated and the replacement time of the sacrificial anode material 4 can be easily grasped in the sacrificial anode method for corrosion-preventing the reinforcing
以下、本発明を詳しく説明する。
本発明で使用する部や%は特に規定のない限り質量基準である。
なお、本発明でいうコンクリートとは、セメントペースト、セメントモルタル、及びセメントコンクリートを総称するものである。
Hereinafter, the present invention will be described in detail.
Parts and% used in the present invention are based on mass unless otherwise specified.
The concrete referred to in the present invention is a general term for cement paste, cement mortar, and cement concrete.
本発明では、コンクリート硬化体2の内部の鉄筋1を陰極とし、コンクリート硬化体2の表面に犠牲陽極材4を設置して陽極とし、両者を電気的に接続することにより、鉄筋1に防食電流を供給し、鉄筋1を防食する。
In the present invention, the reinforcing
犠牲陽極材4は、電気化学的防食工法で使用される一種であるが、電流量の調整や外部電源のメンテナンスは不要であり、設置後の維持管理の負担が少なく、塩害を受けるコンクリート構造物の断面修復工法と併用することで耐久性の向上が図れるものと考えられる。 The sacrificial anode material 4 is a type used in the electrochemical corrosion protection method, but it does not require adjustment of the current amount or maintenance of the external power supply, the burden of maintenance after installation is small, and the concrete structure is damaged by salt. It is considered that the durability can be improved by using it together with the cross-section restoration method of.
ここで、犠牲陽極材4とは、鉄よりもイオン化傾向が高い金属を含み、鉄よりも先にイオン化することにより、鉄筋1を防食する材料をいう。
犠牲陽極材4を構成する陽極材3としては、亜鉛、又は、亜鉛のアルミニウム及び/又はマグネシウム合金が挙げられ、使い易さから亜鉛を陽極材3として使用することが好ましい。
Here, the sacrificial anode material 4 is a material containing a metal having a higher ionization tendency than iron and ionizing before iron to prevent corrosion of the reinforcing
Examples of the
陽極材3の不動態化を避けるため、陽極材3の周囲を、バックフィル材(図示せず)で充分なpHに保持する必要がある。例えば、陽極材3が、亜鉛や、亜鉛−アルミニウム合金の場合には、pH値は13.3以上が好ましく、使用する金属によって不動態化を抑えるためのpH値は異なるが、通常、pH値は12以上である。
In order to avoid passivation of the
陽極材3の周りに付設されるバックフィル材中に含有する電解質溶液のpHが高いため、バックフィル材が接触するコンクリート部分でアルカリシリカ反応が懸念される。そのため、電解質溶液にアルカリシリカ反応抑制剤を存在させることが好ましい。
Since the pH of the electrolyte solution contained in the backfill material attached around the
アルカリシリカ反応抑制剤としては、電解質溶液のpHの低下を避けるため、リチウムイオンが好ましく、水酸化リチウム、炭酸リチウム、又はリチウム型ゼオライトを使用することが好ましい。 As the alkali-silica reaction inhibitor, lithium ions are preferable, and lithium hydroxide, lithium carbonate, or lithium-type zeolite is preferably used in order to avoid a decrease in the pH of the electrolyte solution.
本発明で、鉄筋1と犠牲陽極材4とを電気的に接続する方法は、鉄筋1と陽極材3とが電気的に導通されるリード線9を介して行う。
鉄筋1とリード線9との接続は、巻きつけによる方法や溶接による方法が可能である。
リード線9は、その端部がコンクリート硬化体2及び/又は断面修復材6の表面に露出している必要がある。
In the present invention, the method of electrically connecting the
The
The end of the lead wire 9 needs to be exposed on the surface of the hardened
リード線9の種類は、特に限定されるものではないが、耐久性を考慮すると、ステンレス加工されたものや、チタンメッキ処理、亜鉛メッキ処理、又はクロメート処理などの表面加工処理されたリード線9、及び/又は、ビニル樹脂、フッ素樹脂、又はクロロプレンゴムなどの被膜で覆われたリード線9を用いることが好ましい。 The type of the lead wire 9 is not particularly limited, but in consideration of durability, the lead wire 9 is stainless-processed or surface-treated such as titanium-plated, galvanized, or chromate-treated. And / or, it is preferable to use a lead wire 9 covered with a coating film such as vinyl resin, fluororesin, or chloroprene rubber.
さらに、本発明では、表面に露出したリード線9に電気的な接続の開閉が可能な接続端子10を備えることが好ましい。接続端子10は、本発明の目的を阻害しない範囲で公知のいかなるものも使用可能であるが、耐久性を考慮すると、防水型の圧着端子による接続端子やコネクタなどを用いることが好ましい。
Further, in the present invention, it is preferable that the lead wire 9 exposed on the surface is provided with a
本発明では、劣化したコンクリート構造物の劣化部分をはつり取った後、鉄筋1にリード線9を電気的に接続し、断面修復材6を打設し、断面修復材6の打設後に犠牲陽極材4内部の陽極材3の打継界面側端部5の位置が、断面修復材6とコンクリート硬化体2の打継界面7上、もしくは、打継界面7から30cm以内のコンクリート硬化体2の表面になるように、犠牲陽極材4を設置し、陽極材3とリード線9とを電気的に接続するか、陽極材3と、断面修復材6を打設した断面修復部内部の鉄筋1を電気的に接続し、陽極材3表面を不動態被膜の生成を避けるのに充分なpHを持った電解質溶液を含有するバックフィル材で覆った後、犠牲陽極材4をモルタルなどで包み込む形でコンクリート硬化体2の表面に設置することによって鉄筋1と犠牲陽極材4との間に防食電流が流れ、コンクリート内部の鉄筋1が防食される。
In the present invention, after scraping off the deteriorated portion of the deteriorated concrete structure, the lead wire 9 is electrically connected to the reinforcing
本発明では、鉄筋1及び/又は犠牲陽極材4の電位、犠牲陽極材4から流れる電流、及び/又は、鉄筋1の分極抵抗値を測定することで、犠牲陽極材4の鉄筋防食効果をモニタリングすることができる。
In the present invention, the anticorrosion effect of the reinforcing bar of the sacrificial anode material 4 is monitored by measuring the potential of the reinforcing
コンクリート硬化体2の内部の鉄筋1に、それより標準電極電位の低い金属を電気的に接続すると、鉄筋1自体の電位が低くなる。そのため、電位を測定することで、その数値から鉄筋防食の有効性を判断できる。
When a metal having a lower standard electrode potential is electrically connected to the reinforcing
電位の測定は、コンクリート硬化体2の表面における犠牲陽極材4を設置した面の1点を測定点13とし、飽和硫酸銅を用いた照合電極11を用い、電位差計12により測定する。このとき犠牲陽極材4と鉄筋1の接続を切り離せるようにしておき、接続を切り離した直後のインスタントオフ電位と、24時間経過後の電位(24時間後オフ電位)を測定し、これらの差から復極量を算出する。復極量が大きいほど鉄筋を防食する効果が大きく、一般に、コンクリートの鉄筋中では100mV以上の復極量が得られれば防食が達成されているとされている。
The potential is measured by a
また、リード線9に流れる電流値は、コンクリートの環境条件により大きく影響を受けるので、明確な閾値は確立されていないが、鉄筋1と犠牲陽極材4に接続したリード線9に流れる電流が鉄筋1から犠牲陽極材4に流れていることを確認することで、犠牲陽極材4が鉄筋防食に有効に作用しているか否かの判定が可能となる。
電流の計測については、既存のいかなる電流計でも測定可能であるが、電流値が小さくなることがあることから無抵抗電流計を用いることが好ましい。
Further, since the current value flowing through the lead wire 9 is greatly affected by the environmental conditions of concrete, a clear threshold value has not been established, but the current flowing through the lead wire 9 connected to the reinforcing
The current can be measured with any existing ammeter, but it is preferable to use a non-resistive ammeter because the current value may be small.
本発明では、コンクリート硬化体2の内部の鉄筋1の分極抵抗値を測定することでも鉄筋防食効果のモニタリングが可能である。
In the present invention, it is possible to monitor the anticorrosion effect of the reinforcing bar by measuring the polarization resistance value of the reinforcing
分極抵抗値とは、鉄筋1の表面上の反応抵抗、即ち、腐食反応に対する反応抵抗を意味する。抵抗値が大きいほど腐食反応が生じにくい、即ち、不動態化していることを意味している。
分極抵抗値を測定する方法には、直流抵抗分極法、交流インピーダンス法等が知られている。
The polarization resistance value means the reaction resistance on the surface of the reinforcing
Known methods for measuring the polarization resistance value include a DC resistance polarization method and an AC impedance method.
直流抵抗分極法は、微少な直流電流(i)を鉄筋1に通電し、その時の電位変化量(ΔV)から分極抵抗値(ΔV/i)を算出する方法である。
The direct current resistance polarization method is a method in which a minute direct current (i) is applied to the reinforcing
一方、交流インピーダンス法は、低周波数(0.1mHz程度)から高周波数(100kHz程度)までの交流電流を通電し、両周波数におけるインピーダンス(抵抗)の差を分極抵抗値とするものである。交流インピーダンス法の原理に基づく計測器が市販されており、それを用いることが好ましい。 On the other hand, in the AC impedance method, an AC current from a low frequency (about 0.1 mHz) to a high frequency (about 100 kHz) is energized, and the difference in impedance (resistance) at both frequencies is used as the polarization resistance value. Measuring instruments based on the principle of the AC impedance method are commercially available, and it is preferable to use them.
分極抵抗値は、ヨーロッパコンクリート委員会による基準値から、分極抵抗値で130〜260kΩcm2のときは「不動態状態」、52〜130kΩcm2のときは「低〜中程度の腐食速度」、26〜52kΩcm2のときは「中〜高程度の腐食速度」、26kΩcm2未満のときは「激しい、高い腐食速度」とされている。(コンクリート診断技術‘15〔基礎編〕、p.195、日本コンクリート工学会) Polarization resistance values, from the reference value by the European Concrete Committee, "passivated state" when the 130~260kΩcm 2 in the polarization resistance value, when the 52~130kΩcm 2 "corrosion rate of low to moderate", 26 to When it is 52 kΩcm 2 , it is said to be "medium to high corrosion rate", and when it is less than 26 kΩ cm 2 , it is said to be "severe and high corrosion rate". (Concrete Diagnostic Technology '15 [Basic], p.195, Japan Concrete Engineering Society)
本発明では、犠牲陽極材4の設置位置を規定することにより、鉄筋腐食を防止する効果を保持しつつ、モニタリングも可能としている。具体的には、断面修復材6とコンクリート硬化体2の打継界面7を起点とし、犠牲陽極材4内部の陽極材3の打継界面側端部5の位置が、コンクリート硬化体2側30cmの範囲内になるようにコンクリート硬化体2の表面に犠牲陽極材4を設置する。この範囲内に犠牲陽極材4の全部もしくは一部がかかっていれば所定の鉄筋のマクロセル腐食の防止効果が得られるが、この範囲を外して設置した場合、打継界面7からコンクリート硬化体2側の鉄筋1に発生する腐食の防止効果が得られない場合がある。
In the present invention, by defining the installation position of the sacrificial anode material 4, monitoring is possible while maintaining the effect of preventing the corrosion of the reinforcing bars. Specifically, starting from the
本発明では、犠牲陽極材4をコンクリート硬化体2の表面に設置する際に、犠牲陽極材被覆材8で包み込むことは好ましい。
In the present invention, when the sacrificial anode material 4 is installed on the surface of the hardened
犠牲陽極材被覆材8に用いる材料としては、後述する比抵抗を満たせば特に限定されるものではないが、セメントモルタルとするのが好ましい。
The material used for the sacrificial anode
セメントモルタルに使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。 Cement used for cement mortar includes various Portland cements such as ordinary, early-strength, ultra-fast-strength, low-heat, and moderate heat, and various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these Portland cements. Examples include filler cement mixed with limestone powder and blast furnace slow-cooled slag fine powder, and Portland cement such as environment-friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash. One or more of these can be used.
本発明では、犠牲陽極材被覆材8の比抵抗は、陽極材3からの防食電流が過剰に供給されることもなく、耐久性が期待でき、マクロセル腐食の防止に必要な防食電流量が供給できる面から、1〜300kΩ・cmが好ましく、10〜100kΩ・cmがより好ましい。
In the present invention, the specific resistance of the sacrificial anode
本発明で使用する断面修復材6は、特に限定されるものではなく、既存のいかなるものも使用可能であるが、長期耐久性やコンクリート硬化体2との一体性を考慮した適量のセメント混和用ポリマーを混和したポリマーセメントモルタルが好ましい。
The
以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the contents will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実験例1
塩害を受けた鉄筋コンクリート構造物の壁面を模擬した、厚さ150mmの供試体を作製し、500×500mmの範囲において断面修復工法を実施した。
図1に本発明方法に用いる装置の概要の断面図、図2に平面図を示す。
図2に示すように、内部には150mmピッチで直径16mmの鉄筋1を配し、縦1,500mm、横1,500mm、厚さ150mmの供試体を作製し、その500×500mmの範囲に断面修復工法を実施した。
Experimental Example 1
A specimen with a thickness of 150 mm was prepared to simulate the wall surface of a reinforced concrete structure damaged by salt, and a cross-section restoration method was carried out in a range of 500 x 500 mm.
FIG. 1 shows a cross-sectional view of an outline of the apparatus used in the method of the present invention, and FIG. 2 shows a plan view.
As shown in FIG. 2, a reinforcing
供試体の作製は20℃の恒温室内にて実施した。コンクリートを鉄筋のかぶりが40mmとなるように打設後、翌日に脱型し、材齢28日で断面修復部(500×500mm)をウォータージェットで60mmの断面修復深さまではつり取り、鉄筋1の縦横交点に、リード線9を溶接にて接続した。リード線9には、防水型の圧着接続端子10を取り付け、断面修復材6を打設した。断面修復材6として市販のポリマーセメントモルタルを打設した。この断面図を図1に示す。
The specimen was prepared in a constant temperature room at 20 ° C. After placing the concrete so that the cover of the reinforcing bar is 40 mm, the mold is removed the next day, and at the age of 28 days, the cross-section repair part (500 x 500 mm) is lifted with a water jet at a cross-section repair depth of 60 mm, and the reinforcing
断面修復材6の打設の翌日に犠牲陽極材4を設置した。
犠牲陽極材4は、亜鉛金属を陽極材3としたものに、水酸化リチウムを混和したモルタルをバックフィル材としたものを用い、さらに、犠牲陽極材被覆材8で被覆した。犠牲陽極材被覆材8で被覆した後の大きさは、縦14cm、横4.5cm、厚さ1.3cmの板状である。犠牲陽極材被覆材8で被覆した犠牲陽極材4を、図1及び図2に示すように、打設した断面修復部の上下の両端に近接し、打継界面7から、犠牲陽極材4中の陽極材3の打継界面側端部5までの距離が30mm(3cm)となるように、コンクリート硬化体2の表面に設置した。
犠牲陽極材被覆材8は、比抵抗が50kΩ・cmのポリマーセメントモルタルで、犠牲陽極材被覆材8として、ポリマーセメントモルタルの厚みが20mmとなるようにした。
The sacrificial anode material 4 was installed the day after the
As the sacrificial anode material 4, a zinc metal as an
The sacrificial anode
コンクリート配合は、その圧縮強度が24N/mm2となるよう、セメント300kg/cm3、細骨材757kg/cm3、粗骨材1,047kg/cm3、混和材3.0kg/cm3、NaCl8.2kg/cm3、水165kg/cm3で、W/Cが55%、Gmaxが25mm、s/aが42.7%、及びAirが4.5±1%とした。混和する塩化物イオン量は5kg/m3を目標として試薬のNaClを外割で混和した。なお、目標スランプは12±2.5cmとした。 Concrete formulation, so that the compressive strength is 24N / mm 2, cement 300 kg / cm 3, fine aggregate 757kg / cm 3, coarse aggregate 1,047kg / cm 3, admixture 3.0kg / cm 3, NaCl8.2kg At / cm 3 , water 165 kg / cm 3 , W / C was 55%, Gmax was 25 mm, s / a was 42.7%, and Air was 4.5 ± 1%. The amount of chloride ions to be mixed was 5 kg / m 3, and the reagent NaCl was mixed by external division. The target slump was 12 ± 2.5 cm.
ポリマーセメントモルタルの材齢28日まで湿布養生を行った後、リード線9を介して鉄筋1と犠牲陽極材4との接続を行い、屋外に供試体を静置し、モニタリングを開始した。測定は4カ所実施し、その平均値を求めた。
モニタリングは、試験開始直後から2ヶ月毎に実施した。
電位測定は、図3に示すように、照合電極11として飽和硫酸銅照合電極を用い、犠牲陽極材4のコンクリート硬化体2の表面からの接続(鉄筋1と犠牲陽極材4との接続)を切り離した直後のインスタントオフ電位と、24時間経過後の電位(24時間後オフ電位)を測定し、これらの差から復極量を算出した。
電流は、各リード線9に流れる電流値を無抵抗電流計で測定を行い、電流値の平均値を求めた。
分極抵抗値は、株式会社四国総合研究所製携帯型鉄筋腐食診断機「CM-V」を用いて、対象となる鉄筋位置で測定を行った。
打継界面7から、3cm、10cm、30cm、50cmの位置における鉄筋1の直上で電位を測定した結果から算出した復極量の測定結果と、分極抵抗値の測定を行った結果を表1に示す。各リード線9に流れる電流値を測定した結果を表2に示す。なお、リード線9を鉄筋1から犠牲陽極材4へ流れる方向が防食側の電流であり、プラス方向とする。
After compressing the polymer cement mortar up to the age of 28 days, the reinforcing
Monitoring was performed every two months immediately after the start of the test.
In the potential measurement, as shown in FIG. 3, a saturated copper sulfate reference electrode is used as the
As for the current, the current value flowing through each lead wire 9 was measured with a non-resistive ammeter, and the average value of the current values was obtained.
The polarization resistance value was measured at the target reinforcing bar position using a portable reinforcing bar corrosion diagnostic machine "CM-V" manufactured by Shikoku Research Institute Co., Ltd.
From striking
<使用材料>
セメント(C):普通ポルトランドセメント、市販品、密度3.15g/cm3
細骨材(S):新潟県姫川産川砂、密度2.62g/cm3
粗骨材(G):新潟県姫川産砕石、Gmax15mm、密度2.66g/cm3
混和材(Add):ナフタレンスルホン酸系高性能AE減水剤
NaCl :試薬1級
犠牲陽極材:直径3.9cm×高さ0.7cmの円盤状の亜鉛塊を2本の軟鋼線で導通させ、砂/セメント比=3/1で、水/セメント比=60%のモルタルで、練り混ぜ水は飽和水酸化リチウム水溶液を用いて、モルタル内部のpHが常に13以上になるようにしたLiOHを含有する細孔溶液を有するバックフィル材で被覆し、直径6cm×高さ3.5cmの円柱状
犠牲陽極材被覆材:砂/セメント比=1/1、水/セメント比=60%の普通セメントを用いたモルタルで、材齢28日の比抵抗が20kΩ・cm
断面修復材:市販のポリアクリル酸エステル(PAE)系ポリマーセメントモルタルで、ポリマー/セメント比(P/C)=5%、水/セメント比(W/C)=45%
<Material used>
Cement (C): Ordinary Portland cement, commercial product, density 3.15 g / cm 3
Fine aggregate (S): River sand from Himekawa, Niigata Prefecture, density 2.62 g / cm 3
Coarse aggregate (G): Crushed stone from Himekawa, Niigata Prefecture, Gmax15mm, density 2.66g / cm 3
Admixture (Add): Naphthalene sulfonic acid-based high-performance AE water reducing agent
NaCl: Reagent first-class sacrificial anode material: A disk-shaped zinc mass of 3.9 cm in diameter x 0.7 cm in height is conducted by two mild steel wires, and the sand / cement ratio is 3/1 and the water / cement ratio is 60%. In the mortar, the mixing water was coated with a backfill material having a pore solution containing LiOH so that the pH inside the mortar was always 13 or higher, using a saturated aqueous solution of lithium hydroxide, and the diameter was 6 cm x height. 3.5 cm columnar sacrificial anode material Coating material: A mortar using ordinary cement with sand / cement ratio = 1/1 and water / cement ratio = 60%, with a specific resistance of 20 kΩ · cm at 28 days of age.
Cross-section restoration material: Commercially available polyacrylic acid ester (PAE) -based polymer cement mortar, polymer / cement ratio (P / C) = 5%, water / cement ratio (W / C) = 45%.
表1より、試験開始から24ヶ月後まで、打継界面7から30cmの位置まで復極量や分極抵抗値が大きいことが、また、表2より、試験開始から24ヶ月後まで電流が流れていることがわかり、試験開始から24ヶ月後まで、高い鉄筋防食効果を維持していることがモニタリングできていることが確認される。
From Table 1, from the start of the test to 24 months later, the amount of polarization and the polarization resistance value are large from the
実験例2
犠牲陽極材4の消耗を模擬した実験を行った。消耗した犠牲陽極材4が陽極となるように直流の外部電源につなぎ、強制的に10mAの電流を2ヶ月間通電したものを用いた以外は、実験例1と同様の試験を行った。モニタリング結果を表3と表4に示す。
Experimental Example 2
An experiment was conducted in which the consumption of the sacrificial anode material 4 was simulated. The same test as in Experimental Example 1 was carried out except that the consumed sacrificial anode material 4 was connected to a DC external power source so as to serve as an anode, and a current of 10 mA was forcibly applied for 2 months. The monitoring results are shown in Tables 3 and 4.
表3と表4より、試験開始から24ヶ月後まで、消耗を模擬した犠牲陽極材4を用いた場合、犠牲陽極材4の鉄筋防食効果は限定的となり、試験開始から24ヶ月時点では、打継界面7から30cmの位置では鉄筋腐食が懸念され、モニタリングできていることが確認される。
From Tables 3 and 4, when the sacrificial anode material 4 simulating wear is used from the start of the test to 24 months later, the reinforcing bar anticorrosion effect of the sacrificial anode material 4 is limited, and at 24 months from the start of the test, the impact is applied. It is confirmed that there is concern about reinforcing bar corrosion at the position of the
本発明の犠牲陽極工法のモニタリング方法は、断面修復工法と付随して実施する犠牲陽極工法について犠牲陽極材4の性能評価が容易になり、犠牲陽極材4の交換時期の把握が容易となるので土木、建築分野に好適である。 The monitoring method of the sacrificial anode method of the present invention facilitates the performance evaluation of the sacrificial anode material 4 for the sacrificial anode method performed in association with the cross-section repair method, and makes it easy to grasp the replacement time of the sacrificial anode material 4. Suitable for civil engineering and construction fields.
1:鉄筋
2:コンクリート硬化体
3:陽極材
4:犠牲陽極材
5:陽極材の打継界面側端部
6:断面修復材
7:打継界面
8:犠牲陽極材被覆材
9:リード線
10:接続端子
11:照合電極
12:電位差計
13:電位測定点
1: Reinforcing bar 2: Concrete hardened body 3: Anode material 4: Sacrificial anode material 5: End of joint interface side of anode material 6: Cross section restoration material 7: Joint interface 8: Sacrifice anode material coating material 9: Lead wire 10 : Connection terminal 11: Reference electrode 12: Potentiometer 13: Potential measurement point
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131542A JP6951053B2 (en) | 2015-06-30 | 2015-06-30 | Monitoring method of sacrificial anode method in concrete structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131542A JP6951053B2 (en) | 2015-06-30 | 2015-06-30 | Monitoring method of sacrificial anode method in concrete structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017014567A JP2017014567A (en) | 2017-01-19 |
JP6951053B2 true JP6951053B2 (en) | 2021-10-20 |
Family
ID=57828003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015131542A Active JP6951053B2 (en) | 2015-06-30 | 2015-06-30 | Monitoring method of sacrificial anode method in concrete structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6951053B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018169495A1 (en) * | 2017-03-16 | 2018-09-20 | Pinai Mungsantisuk | Sacrificial anode for steel reinforcement in concrete |
JP7377460B2 (en) * | 2020-03-25 | 2023-11-10 | 住友大阪セメント株式会社 | Cathodic protection methods, backfill selection methods, drainage terminal installation methods, and concrete structures |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59177379A (en) * | 1983-03-25 | 1984-10-08 | Tokyo Gas Co Ltd | Method for carrying out electric protection of article buried in ground |
JPH04297643A (en) * | 1991-03-26 | 1992-10-21 | Mitsui Mining & Smelting Co Ltd | Reinforced concrete structure and structural member, and electric protection method for reinforced concrete |
JP3172964B2 (en) * | 1993-07-29 | 2001-06-04 | 日本防蝕工業株式会社 | Connection method for connection to steel in concrete |
JP3294524B2 (en) * | 1997-02-28 | 2002-06-24 | 大日本塗料株式会社 | Corrosion protection method for reinforced concrete structures |
JP3521195B2 (en) * | 2001-11-27 | 2004-04-19 | 電気化学工業株式会社 | Method for preventing corrosion of steel material of mortar or concrete member and material for preventing corrosion of steel material used therefor |
JP4091953B2 (en) * | 2005-11-18 | 2008-05-28 | 株式会社クエストエンジニア | Cross-sectional repair structure of existing reinforced concrete structures |
JP4968645B2 (en) * | 2007-05-31 | 2012-07-04 | 株式会社ピーエス三菱 | Terminal mounting structure for corrosion protection of concrete structures |
GB2458268A (en) * | 2008-03-10 | 2009-09-16 | Nigel Davison | Discrete sacrifical anode assembly |
GB201018830D0 (en) * | 2010-11-08 | 2010-12-22 | Glass Gareth K | Anode assembly |
-
2015
- 2015-06-30 JP JP2015131542A patent/JP6951053B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017014567A (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2893678C (en) | Treatment process for concrete | |
CA2880235C (en) | Galvanic anode and method of corrosion protection | |
Saraswathy et al. | Extraction of chloride from chloride contaminated concrete through electrochemical method using different anodes | |
EP1861522B2 (en) | Treatment process for concrete | |
JP6951053B2 (en) | Monitoring method of sacrificial anode method in concrete structure | |
JP5388435B2 (en) | Steel anticorrosive member used for electrochemical corrosion protection method of concrete using sacrificial anode material, and electrochemical corrosion protection method using the same | |
Khomwan et al. | Startup Thailand: A new innovative sacrificial anode for reinforced concrete structures | |
JP6636761B2 (en) | Cross-section restoration method for concrete structures | |
JP4602719B2 (en) | Anticorrosion and repair methods for reinforced concrete structures | |
JP6482969B2 (en) | Section repair method for concrete structures | |
JP6353733B2 (en) | Spacer member having anti-corrosion function for steel in concrete and installation method thereof | |
JP2006248792A (en) | Lightweight conductive cement composition and protective material for electrolytic protection obtained by using the conductive cement composition | |
Parthiban et al. | Cathodic protection of concrete structures using magnesium alloy anode | |
Fonna et al. | The Effect of Stray Current from Sacrificial Anode Cathodic Protection (SACP) System on the Adjacent Unprotected Reinforcing Steel | |
Mahasiripan et al. | Experimental study on the performance of sacrificial anode cathodic protection under low temperature around—17 C | |
Arito et al. | The use of discrete sacrificial anodes in reducing corrosion rate in chloride contaminated reinforced concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20150724 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190426 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191001 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20191001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191001 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20191021 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20191023 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20191122 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20191126 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200716 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20201006 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210304 |
|
C19 | Decision taken to dismiss amendment |
Free format text: JAPANESE INTERMEDIATE CODE: C19 Effective date: 20210318 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210430 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210603 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210706 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20210729 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210907 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210907 |
|
C27B | Notice of submission of publications, etc. [third party observations] |
Free format text: JAPANESE INTERMEDIATE CODE: C2714 Effective date: 20210921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6951053 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |