JP6946648B2 - How to make prepreg - Google Patents
How to make prepreg Download PDFInfo
- Publication number
- JP6946648B2 JP6946648B2 JP2017013907A JP2017013907A JP6946648B2 JP 6946648 B2 JP6946648 B2 JP 6946648B2 JP 2017013907 A JP2017013907 A JP 2017013907A JP 2017013907 A JP2017013907 A JP 2017013907A JP 6946648 B2 JP6946648 B2 JP 6946648B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- prepreg
- tank
- reinforcing fibers
- continuous reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920005992 thermoplastic resin Polymers 0.000 claims description 97
- 239000012783 reinforcing fiber Substances 0.000 claims description 84
- 238000004519 manufacturing process Methods 0.000 claims description 47
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 23
- 239000004917 carbon fiber Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 239000000835 fiber Substances 0.000 description 39
- -1 polyethylene Polymers 0.000 description 24
- 238000005452 bending Methods 0.000 description 13
- 238000004513 sizing Methods 0.000 description 10
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920002302 Nylon 6,6 Polymers 0.000 description 8
- 229920006231 aramid fiber Polymers 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 229920006123 polyhexamethylene isophthalamide Polymers 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- PBLZLIFKVPJDCO-UHFFFAOYSA-N 12-aminododecanoic acid Chemical compound NCCCCCCCCCCCC(O)=O PBLZLIFKVPJDCO-UHFFFAOYSA-N 0.000 description 2
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- 229920002748 Basalt fiber Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920006139 poly(hexamethylene adipamide-co-hexamethylene terephthalamide) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- GUOSQNAUYHMCRU-UHFFFAOYSA-N 11-Aminoundecanoic acid Chemical compound NCCCCCCCCCCC(O)=O GUOSQNAUYHMCRU-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- ZPXGNBIFHQKREO-UHFFFAOYSA-N 2-chloroterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(Cl)=C1 ZPXGNBIFHQKREO-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- UFMBOFGKHIXOTA-UHFFFAOYSA-N 2-methylterephthalic acid Chemical compound CC1=CC(C(O)=O)=CC=C1C(O)=O UFMBOFGKHIXOTA-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- PMZBHPUNQNKBOA-UHFFFAOYSA-N 5-methylbenzene-1,3-dicarboxylic acid Chemical compound CC1=CC(C(O)=O)=CC(C(O)=O)=C1 PMZBHPUNQNKBOA-UHFFFAOYSA-N 0.000 description 1
- MBRGOFWKNLPACT-UHFFFAOYSA-N 5-methylnonane-1,9-diamine Chemical compound NCCCCC(C)CCCCN MBRGOFWKNLPACT-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 208000030984 MIRAGE syndrome Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229920000577 Nylon 6/66 Polymers 0.000 description 1
- 229920000393 Nylon 6/6T Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- QCTBMLYLENLHLA-UHFFFAOYSA-N aminomethylbenzoic acid Chemical compound NCC1=CC=C(C(O)=O)C=C1 QCTBMLYLENLHLA-UHFFFAOYSA-N 0.000 description 1
- 229960003375 aminomethylbenzoic acid Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- TZYHIGCKINZLPD-UHFFFAOYSA-N azepan-2-one;hexane-1,6-diamine;hexanedioic acid Chemical compound NCCCCCCN.O=C1CCCCCN1.OC(=O)CCCCC(O)=O TZYHIGCKINZLPD-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- ILRSCQWREDREME-UHFFFAOYSA-N dodecanamide Chemical compound CCCCCCCCCCCC(N)=O ILRSCQWREDREME-UHFFFAOYSA-N 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- TVLSRXXIMLFWEO-UHFFFAOYSA-N prochloraz Chemical compound C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl TVLSRXXIMLFWEO-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
Description
本発明は、プリプレグの製造方法であって、熱可塑性樹脂が含浸された複数の連続強化繊維を使用したプリプレグの製造方法に関する。 The present invention relates to a method for producing a prepreg, which is a method for producing a prepreg using a plurality of continuous reinforcing fibers impregnated with a thermoplastic resin.
複数の連続強化繊維と樹脂からなる複合材料は、軽量で優れた力学特性を有するために、スポーツ用品用途、航空宇宙用途、車両、船舶およびその他一般産業用途に広く用いられている。特に前記樹脂に熱可塑性樹脂を用いて、強化繊維に含浸させたプリプレグは、熱硬化性樹脂と強化繊維からなるプリプレグと比較して、加熱による溶融、冷却による固化が容易であることから、成形時におけるハンドリング性、サイクルタイムの短縮などの効果が見込まれ、工数低減、コスト低減の観点から注目を集めている。 Composite materials consisting of multiple continuous reinforcing fibers and resins are widely used in sports equipment applications, aerospace applications, vehicles, ships and other general industrial applications due to their light weight and excellent mechanical properties. In particular, a prepreg impregnated with reinforcing fibers using a thermoplastic resin for the resin is easier to melt by heating and solidify by cooling than a prepreg composed of a thermosetting resin and reinforcing fibers. It is expected to have effects such as handleability at times and shortening of cycle time, and is attracting attention from the viewpoint of reducing manpower and cost.
また、近年、熱可塑性樹脂と強化繊維からなるプリプレグの用途は、多岐に細分化されるようになっている。積層材や部分補強材として適用される場合、一方向に配向した複数の連続強化繊維を用いたプリプレグは、その優れた力学特性から中間基材としての需要が高まりつつある。 Further, in recent years, the uses of prepregs composed of thermoplastic resins and reinforcing fibers have been subdivided into various fields. When applied as a laminated material or a partial reinforcing material, a prepreg using a plurality of continuous reinforcing fibers oriented in one direction is in increasing demand as an intermediate base material due to its excellent mechanical properties.
前記プリプレグは、繊維方向に対する引張特性には優れるものの、曲げ特性、圧縮特性については相対的に劣る。これらを向上させるために、高分子量の熱可塑性樹脂を使用するなどの方法はあるが、高分子量の熱可塑性樹脂を用いた場合、製造過程における溶融した樹脂の流動性が低下し、生産性が低下してしまう問題がある。一方で、力学特性に優れる高分子量の熱可塑性樹脂を用いても、製造過程において、熱可塑性樹脂の溶融状態が長時間に渡った場合には、熱可塑性樹脂の熱劣化や酸化劣化等のおそれが高くなる。 Although the prepreg is excellent in tensile properties in the fiber direction, it is relatively inferior in bending properties and compressive properties. In order to improve these, there are methods such as using a high molecular weight thermoplastic resin, but when a high molecular weight thermoplastic resin is used, the fluidity of the molten resin in the manufacturing process decreases and the productivity increases. There is a problem that it drops. On the other hand, even if a high molecular weight thermoplastic resin having excellent mechanical properties is used, if the thermoplastic resin is in a molten state for a long time in the manufacturing process, there is a risk of thermal deterioration or oxidative deterioration of the thermoplastic resin. Will be higher.
そして特許文献1や2には、複数の連続強化繊維に熱可塑性樹脂をよく含浸させるため、プリプレグ内の複数の連続強化繊維を均一に配置させるための製造方法や装置に関する記載がされている。 Further, Patent Documents 1 and 2 describe a manufacturing method and an apparatus for uniformly arranging a plurality of continuous reinforcing fibers in a prepreg in order to impregnate a plurality of continuous reinforcing fibers with a thermoplastic resin.
特許文献1や2には、前述のとおり、プリプレグ内の複数の連続強化繊維を均一に配置させるための製造方法や装置の記載がされているものの、これらの文献には、製造過程における熱可塑性樹脂の物性がプリプレグの力学特性に与える影響については詳しく触れられていない。 As described above, Patent Documents 1 and 2 describe a manufacturing method and an apparatus for uniformly arranging a plurality of continuous reinforcing fibers in a prepreg, but these documents describe thermoplasticity in the manufacturing process. The effect of the physical properties of the resin on the mechanical properties of the prepreg is not mentioned in detail.
そこで本発明の目的は、力学特性に優れた熱可塑性樹脂と複数の連続強化繊維からなるプリプレグを高い生産性をもって製造できる、プリプレグの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing a prepreg, which can produce a prepreg composed of a thermoplastic resin having excellent mechanical properties and a plurality of continuously reinforced fibers with high productivity.
本発明の上記目的は、以下の発明によって達成された。つまり本発明は以下である。 The above object of the present invention has been achieved by the following invention. That is, the present invention is as follows.
(1)熱可塑性樹脂を含む槽に複数の連続強化繊維を通過させることにより、熱可塑性樹脂と複数の連続強化繊維を含むプリプレグを製造する方法において、
槽内の空間体積Vd[m3]と、単位時間当たりの槽への熱可塑性樹脂の供給体積Qe[m3/s]とが、下記の(A)式を満たすとともに、
単位時間当たりに槽の出口を通過するプリプレグの体積Qp[m 3 /s]と、単位時間当たりの槽からの熱可塑性樹脂の排出体積Qo[m 3 /s]が、下記の(C)式を満たすことを特徴とするプリプレグの製造方法。
(1) In a method for producing a prepreg containing a thermoplastic resin and a plurality of continuous reinforcing fibers by passing a plurality of continuous reinforcing fibers through a tank containing the thermoplastic resin.
The space volume Vd [m 3 ] in the tank and the supply volume Qe [m 3 / s] of the thermoplastic resin to the tank per unit time satisfy the following formula (A) and also satisfy the following formula (A) .
The volume Qp [m 3 / s] of the prepreg passing through the outlet of the tank per unit time and the volume Qo [m 3 / s] of the thermoplastic resin discharged from the tank per unit time are given by the following equation (C). A method for producing a prepreg, which comprises satisfying.
10≦Vd/Qe≦9000・・・(A)式
Qe−5.4×Qp≦Qo≦Qe−0.2×Qp・・・(C)式
10 ≤ Vd / Qe ≤ 9000 ... (A)
Qe-5.4 × Qp ≦ Qo ≦ Qe-0.2 × Qp ・ ・ ・ (C)
本発明によれば、引張強度、曲げ強度などの力学物性に優れたプリプレグを高い生産性を持って製造することができる。 According to the present invention, a prepreg having excellent mechanical properties such as tensile strength and bending strength can be produced with high productivity.
本発明は、複数の連続強化繊維と熱可塑性樹脂を含むプリプレグの製造方法である。本発明により製造されたプリプレグにおいて連続強化繊維は、プリプレグ中に特定の位置に固まることなく概ね均一に分散されていることが好ましく、それぞれの連続強化繊維の間は熱可塑性樹脂で充填されている。すなわち本発明により製造されたプリプレグは、複数の連続強化繊維に対して熱可塑性樹脂が含浸している。 The present invention is a method for producing a prepreg containing a plurality of continuous reinforcing fibers and a thermoplastic resin. In the prepreg produced by the present invention, the continuous reinforcing fibers are preferably dispersed substantially uniformly in the prepreg without solidifying at a specific position, and each continuous reinforcing fiber is filled with a thermoplastic resin. .. That is, in the prepreg produced by the present invention, a plurality of continuous reinforcing fibers are impregnated with a thermoplastic resin.
複数の連続強化繊維と熱可塑性樹脂を含むプリプレグの製造方法である本発明は、熱可塑性樹脂を含む槽に、複数の連続強化繊維を通過させる工程を有する。熱可塑性樹脂を含む槽に、複数の連続強化繊維を通過させる工程を有する方法としては、例えば溶融法、粉末法、混繊(コミングル)法などが例示される。これらの中でも本発明では、事前に熱可塑性樹脂を加工する必要がない溶融法が好ましく用いられる。 The present invention, which is a method for producing a prepreg containing a plurality of continuous reinforcing fibers and a thermoplastic resin, has a step of passing the plurality of continuous reinforcing fibers through a tank containing the thermoplastic resin. Examples of the method having a step of passing a plurality of continuous reinforcing fibers through a tank containing a thermoplastic resin include a melting method, a powder method, and a mixed fiber (commingle) method. Among these, in the present invention, a melting method that does not require processing a thermoplastic resin in advance is preferably used.
以下に、本発明の実施の形態の一例について、図面を参照しながら説明する。 Hereinafter, an example of the embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の一実施態様に係わるプリプレグの製造方法を示しており、100はプリプレグの製造装置全体を示している。本実施態様では、連続強化繊維101が巻かれたボビン102を準備し、複数のボビン102それぞれから連続的に糸道ガイド103を通じて複数の連続強化繊維101が送り出される。連続的に送り出された複数の連続強化繊維101は、熱可塑性樹脂を充填したフィーダー105から定量供給された熱可塑性樹脂107を含む槽104を通過する。複数の連続強化繊維101が槽104を通過する際、熱可塑性樹脂107を複数の連続強化繊維101に含浸させることができる。引取ロール109の引取力により、槽104から連続的に引き抜かれた複数の連続強化繊維101は、冷却ロール108を通過させることで熱可塑性樹脂107を冷却固化し、巻取ロール111にて巻き取られる。以上の工程によって、プリプレグ110は製造される。なお、槽104の中を満たす熱可塑性樹脂107は、その全てが複数の連続強化繊維101と共に槽104を通過してもよく、槽104の中の熱可塑性樹脂107が複数の連続強化繊維101と共に通過しない場合には、槽104の中で余剰となった熱可塑性樹脂107を、排出口106から排出することができる。
FIG. 1 shows a method for manufacturing a prepreg according to an embodiment of the present invention, and 100 shows the entire prepreg manufacturing apparatus. In the present embodiment, the
本発明の製造方法において、槽内の空間体積Vd[m3]と、単位時間当たりの槽への熱可塑性樹脂の供給体積Qe[m3/s]の比、Vd/Qeは、10〜9000であり、より好ましくは30〜5500、さらに好ましくは70〜1200である。Vd/Qeが大きいことは、槽の空間体積と比較して、単位時間当たりに槽へ供給される熱可塑性樹脂が少ないことを意味しており、このVd/Qeが9000を超えると、熱可塑性樹脂の熱分解によるプリプレグの曲げ特性の低下が見られ、他部材の補強効果が低下する。一方でVd/Qeが小さいことは、槽の空間体積と比較して、単位時間当たりに槽へ供給される熱可塑性樹脂が多いことを意味しており、このVd/Qeが10未満であると、熱可塑性樹脂の槽への供給量が多く、熱可塑性樹脂の歩留まりが悪くなる。 In the production method of the present invention, the ratio of the space volume Vd [m 3 ] in the tank to the supply volume Qe [m 3 / s] of the thermoplastic resin to the tank per unit time, Vd / Qe is 10 to 9000. It is more preferably 30 to 5500, still more preferably 70 to 1200. A large Vd / Qe means that the amount of thermoplastic resin supplied to the tank per unit time is small compared to the space volume of the tank. When this Vd / Qe exceeds 9000, the thermoplastic resin is small. The bending characteristics of the prepreg are deteriorated due to the thermal decomposition of the resin, and the reinforcing effect of other members is reduced. On the other hand, a small Vd / Qe means that a large amount of thermoplastic resin is supplied to the tank per unit time as compared with the space volume of the tank, and if this Vd / Qe is less than 10. , The amount of the thermoplastic resin supplied to the tank is large, and the yield of the thermoplastic resin deteriorates.
本発明の製造方法において、槽内の空間体積Vd[m3]は、0.6×10-7〜0.3が好ましく、より好ましくは0.8×10-4〜0.1、さらに好ましくは0.1×10-3〜0.4×10-1である。Vdが0.3以下であると、槽内を熱可塑性樹脂で満たすために必要な熱可塑性樹脂が少量で済み、熱可塑性樹脂の歩留まりが良い。また、Vdが0.6×10-7以上であると、複数の連続強化繊維へ熱可塑性樹脂を含浸させる際の含浸性を向上させることができるため、複数の連続強化繊維への熱可塑性樹脂が良好に含浸する。 In the production method of the present invention, the space volume Vd [m 3 ] in the tank is preferably 0.6 × 10 -7 to 0.3, more preferably 0.8 × 10 -4-0.1, and even more preferably 0.8 × 10 -4 to 0.1. Is 0.1 × 10 -3 to 0.4 × 10 -1 . When Vd is 0.3 or less, a small amount of thermoplastic resin is required to fill the inside of the tank with the thermoplastic resin, and the yield of the thermoplastic resin is good. Further, when Vd is 0.6 × 10 -7 or more, the impregnation property when impregnating the plurality of continuous reinforcing fibers with the thermoplastic resin can be improved, so that the thermoplastic resin for the plurality of continuous reinforcing fibers can be improved. Is well impregnated.
本発明の製造方法において、単位時間当たりに槽の出口を通過するプリプレグの体積Qp[m3/s]は、0.8×10-9〜0.7×10-3が好ましく、より好ましくは0.1×10-7〜0.3×10-3、さらに好ましくは0.6×10-7〜0.9×10-4である。Qpが0.7×10-3以下であると、複数の連続強化繊維への熱可塑性樹脂の含浸性が良くなる。また、Qpが0.8×10-9以上であると、高い生産性が得られる。 In the production method of the present invention, the volume Qp [m 3 / s] of the prepreg passing through the outlet of the tank per unit time is preferably 0.8 × 10 -9 to 0.7 × 10 -3, more preferably 0.8 × 10 -9 to 0.7 × 10 -3. It is 0.1 × 10 -7 to 0.3 × 10 -3 , more preferably 0.6 × 10 -7 to 0.9 × 10 -4 . When Qp is 0.7 × 10 -3 or less, the impregnation property of the thermoplastic resin into the plurality of continuous reinforcing fibers is improved. Further, when Qp is 0.8 × 10 -9 or more, high productivity can be obtained.
なお、単位時間当たりに槽の出口を通過するプリプレグの体積Qp[m3/s]は、槽の出口を通過するプリプレグの速度[m/s]と、出口の寸法(面積[m2])から求めることができる。 The volume Qp [m 3 / s] of the prepreg passing through the outlet of the tank per unit time is the speed [m / s] of the prepreg passing through the outlet of the tank and the dimensions of the outlet (area [m 2 ]). Can be obtained from.
本発明の製造方法において、単位時間当たりに槽の出口を通過するプリプレグの体積をQp[m3/s]とすると、単位時間当たりの槽への熱可塑性樹脂の供給体積Qe[m3/s]は、0.2×Qp〜5.4×Qpであることが好ましく、より好ましくは0.3×Qp〜4.7×Qp、さらに好ましくは0.4×Qp〜4.1×Qpである。Qeが5.4×Qp以下であると、熱可塑性樹脂の歩留まりが良くなる。Qeが0.2×Qp以上であると、複数の連続強化繊維への熱可塑性樹脂の含浸性が良く、槽内の熱可塑性樹脂の量がプリプレグを構成する熱可塑性樹脂の必要量よりも常に多く、安定した製造が可能となる。 In the production method of the present invention, assuming that the volume of the prepreg passing through the outlet of the tank per unit time is Qp [m 3 / s], the supply volume of the thermoplastic resin to the tank per unit time is Qe [m 3 / s]. ] Is preferably 0.2 × Qp to 5.4 × Qp, more preferably 0.3 × Qp to 4.7 × Qp, and further preferably 0.4 × Qp to 4.1 × Qp. be. When Qe is 5.4 × Qp or less, the yield of the thermoplastic resin is improved. When Qe is 0.2 × Qp or more, the impregnation property of the thermoplastic resin into the plurality of continuous reinforcing fibers is good, and the amount of the thermoplastic resin in the tank is always larger than the required amount of the thermoplastic resin constituting the prepreg. Many, stable production is possible.
本発明の製造方法は、槽に複数の連続強化繊維を通過させる際に、熱可塑性樹脂の一部が槽から排出されることが好ましい。このようにすることで、槽内で熱分解した熱可塑性樹脂を排出することができ、熱分解の影響が少ない熱可塑性樹脂を槽に含ませることができる。なお、熱可塑性樹脂の一部を槽から排出させる際の排出箇所は特に限定されるものではなく、槽の底面に排出箇所を設けたり、槽の側面に排出箇所を設けたりすることができる。さらに排出箇所の数に制限はなく、槽内に複数の排出箇所を設置しても、1つのみの排出箇所を設置しても、いずれでも構わない。 In the production method of the present invention, it is preferable that a part of the thermoplastic resin is discharged from the tank when a plurality of continuous reinforcing fibers are passed through the tank. By doing so, the thermoplastic resin that has been thermally decomposed in the tank can be discharged, and the thermoplastic resin that is less affected by the thermal decomposition can be contained in the tank. The discharge point when a part of the thermoplastic resin is discharged from the tank is not particularly limited, and a discharge point may be provided on the bottom surface of the tank or a discharge point may be provided on the side surface of the tank. Further, the number of discharge points is not limited, and it does not matter whether a plurality of discharge points are installed in the tank or only one discharge point is installed.
さらに熱可塑性樹脂の一部を槽から排出する場合には、本発明の製造方法において、単位時間当たりの槽への熱可塑性樹脂の供給体積をQe[m3/s]として、単位時間当たりに槽の出口を通過するプリプレグの体積をQp[m3/s]とすると、単位時間あたりの槽からの熱可塑性樹脂の排出体積Qo[m3/s]は、Qe−5.4×Qp〜Qe−0.2×Qpであることが好ましく、より好ましくはQe−4.7×Qp〜Qe−0.2×Qp、さらに好ましくはQe−4.1×Qp〜Qe−0.4×Qpである。ここで、単位時間あたりの槽からの熱可塑性樹脂の排出体積Qo[m3/s]とは、前述のように、槽内に設置した排出箇所から排出される体積を意味する。そして、槽内に複数の排出箇所を設置した場合には、複数の排出箇所から排出される熱可塑性樹脂の体積の合計を、単位時間あたりの槽からの熱可塑性樹脂の排出体積Qo[m3/s]とする。 Further, when a part of the thermoplastic resin is discharged from the tank, in the production method of the present invention, the volume of the thermoplastic resin supplied to the tank per unit time is set to Qe [m 3 / s] per unit time. Assuming that the volume of the prepreg passing through the outlet of the tank is Qp [m 3 / s], the volume Qo [m 3 / s] of the thermoplastic resin discharged from the tank per unit time is Qe-5.4 × Qp ~. It is preferably Qe-0.2 × Qp, more preferably Qe-4.7 × Qp to Qe-0.2 × Qp, and even more preferably Qe-4.1 × Qp to Qe-0.4 × Qp. Is. Here, the discharge volume Qo [m 3 / s] of the thermoplastic resin from the tank per unit time means the volume discharged from the discharge point installed in the tank as described above. When a plurality of discharge points are installed in the tank, the total volume of the thermoplastic resin discharged from the plurality of discharge points is calculated as the discharge volume of the thermoplastic resin from the tank per unit time Qo [m 3]. / S].
そして本発明においては、QoがQe−0.2×Qp以下であると熱可塑性樹脂の歩留まりが良くなる。QoがQe−5.4×Qp以上であると、槽内の熱可塑性樹脂の量がプリプレグを構成する熱可塑性樹脂の必要量よりも常に多く、安定した製造が可能となり、複数の連続強化繊維への熱可塑性樹脂の含浸も良くなる。QoをQe−0.2×Qp以下に制御するためには、排出口の出口寸法を小さくする、などの手段がある。 In the present invention, when Qo is Qe−0.2 × Qp or less, the yield of the thermoplastic resin is improved. When Qo is Qe-5.4 × Qp or more, the amount of thermoplastic resin in the tank is always larger than the required amount of the thermoplastic resin constituting the prepreg, enabling stable production and a plurality of continuous reinforcing fibers. The impregnation of the thermoplastic resin is also improved. In order to control Qo to Qe-0.2 × Qp or less, there are means such as reducing the outlet dimension of the discharge port.
本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグ100体積%中の繊維体積含有率は、30〜70体積%が好ましく、より好ましくは35〜65体積%、さらに好ましくは40〜60体積%である。繊維体積含有率が30体積%以上であると、プリプレグの力学特性に優れ、他部材への補強に優れる。繊維体積含有率が70体積%以下あると、複数の連続強化繊維への熱可塑性樹脂の含浸性に優れる。 The fiber volume content in 100% by volume of the prepreg containing the plurality of continuous reinforcing fibers and the thermoplastic resin obtained by the production method of the present invention is preferably 30 to 70% by volume, more preferably 35 to 65% by volume, still more preferably. Is 40 to 60% by volume. When the fiber volume content is 30% by volume or more, the mechanical properties of the prepreg are excellent and the reinforcement to other members is excellent. When the fiber volume content is 70% by volume or less, the impregnation property of the thermoplastic resin into the plurality of continuous reinforcing fibers is excellent.
本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグ100体積%中の空隙率は、5体積%以下が好ましく、より好ましくは4体積%以下、さらに好ましくは3体積%以下である。空隙率が5体積%以下であると、プリプレグの力学特性に優れ、他部材への補強により優れる。空隙率を5体積%以下に制御するための手段としては、含浸させる熱可塑性樹脂の溶融粘度を下げる、含浸時にかかる圧力を上昇させる、複数の連続強化繊維に熱可塑性樹脂が充分に含浸するのに必要な、所望の繊維体積含有率に対応した量の熱可塑性樹脂を槽に連続的に供給する、などの手段がある。 The porosity in 100% by volume of the prepreg containing the plurality of continuous reinforcing fibers and the thermoplastic resin obtained by the production method of the present invention is preferably 5% by volume or less, more preferably 4% by volume or less, still more preferably 3% by volume. It is as follows. When the porosity is 5% by volume or less, the mechanical properties of the prepreg are excellent, and the reinforcement to other members is excellent. As a means for controlling the void ratio to 5% by volume or less, the melt viscosity of the thermoplastic resin to be impregnated is lowered, the pressure applied at the time of impregnation is increased, and the plurality of continuous reinforcing fibers are sufficiently impregnated with the thermoplastic resin. There are means such as continuously supplying the tank with an amount of thermoplastic resin corresponding to a desired fiber volume content, which is necessary for the above.
本発明の製造方法により得られるプリプレグのJIS K 7074(1988)で測定した曲げ強度は、750MPa以上が好ましく、より好ましくは900MPa以上、さらに好ましくは1,000MPa以上である。曲げ強度が750MPa以上であると他部材への補強に優れる。なお、プリプレグの曲げ強度は大きいほど好ましいが、現実的な上限としては2,000MPa程度と考えられる。 The bending strength of the prepreg obtained by the production method of the present invention measured by JIS K 7074 (1988) is preferably 750 MPa or more, more preferably 900 MPa or more, still more preferably 1,000 MPa or more. When the bending strength is 750 MPa or more, it is excellent in reinforcing other members. The larger the bending strength of the prepreg, the more preferable it is, but the practical upper limit is considered to be about 2,000 MPa.
曲げ強度を750MPa以上に制御するための手段としては、熱可塑性樹脂の熱分解を抑制する、空隙率を低い値に調整する、などの手段がある。 As a means for controlling the bending strength to 750 MPa or more, there are means such as suppressing thermal decomposition of the thermoplastic resin and adjusting the porosity to a low value.
本発明の製造方法は、槽に複数の連続強化繊維を通過させる際に、連続強化繊維をその通過方向に沿って一方向に配列させて通過させることが好ましい。このようにすることで、得られるプリプレグ中の連続強化繊維を、一方向に配向したものとすることができる。つまり、本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグにおいて、複数の連続強化繊維の配向方向は、特に限定されないが、プリプレグを製造する際の作業性に優れることから、一方向に配向していることが好ましい。 In the production method of the present invention, when passing a plurality of continuous reinforcing fibers through the tank, it is preferable that the continuous reinforcing fibers are arranged and passed in one direction along the passing direction. By doing so, the continuous reinforcing fibers in the obtained prepreg can be made to be oriented in one direction. That is, in the prepreg containing the plurality of continuous reinforcing fibers and the thermoplastic resin obtained by the production method of the present invention, the orientation direction of the plurality of continuous reinforcing fibers is not particularly limited, but the workability in producing the prepreg is excellent. Therefore, it is preferable that the fibers are oriented in one direction.
本発明の製造方法に用いられる連続強化繊維としては、特に限定されないが、炭素繊維、金属繊維、有機繊維、および無機繊維が例示される。 The continuous reinforcing fibers used in the production method of the present invention are not particularly limited, and examples thereof include carbon fibers, metal fibers, organic fibers, and inorganic fibers.
炭素繊維としては、ポリアクリロニトリル(Poly Acrylo−Nitrile:PAN)系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維、これらの黒鉛化繊維などが例示される。このうちPAN系炭素繊維は、ポリアクリロニトリル繊維を原料とする炭素繊維である。ピッチ系炭素繊維は石油タールや石油ピッチを原料とする炭素繊維である。セルロース系炭素繊維はビスコースレーヨンや酢酸セルロースなどを原料とする炭素繊維である。気相成長系炭素繊維は炭化水素などを原料とする炭素繊維である。これら炭素繊維のうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましく用いられる。 Examples of carbon fibers include polyacrylonitrile (PAN) -based carbon fibers, pitch-based carbon fibers, cellulose-based carbon fibers, vapor-phase growth-based carbon fibers, and graphitized fibers thereof. Of these, the PAN-based carbon fiber is a carbon fiber made from polyacrylonitrile fiber. Pitch-based carbon fibers are carbon fibers made from petroleum tar or petroleum pitch. Cellulose-based carbon fibers are carbon fibers made from viscose rayon, cellulose acetate, or the like. The vapor phase growth type carbon fiber is a carbon fiber made from a hydrocarbon or the like. Among these carbon fibers, PAN-based carbon fibers are preferably used because they have an excellent balance between strength and elastic modulus.
金属繊維としては、例えば、鉄、金、銀、銅、アルミニウム、黄銅、ステンレスなどの金属からなる繊維が挙げられる。 Examples of the metal fiber include fibers made of a metal such as iron, gold, silver, copper, aluminum, brass, and stainless steel.
有機繊維としては、アラミド繊維、ポリフェニレンサルファイド繊維、ポリエステル繊維、ポリアミド繊維、ポリエチレン繊維などの有機材料からなる繊維が挙げられる。アラミド繊維としては強度や弾性率に優れたパラ系アラミド繊維と難燃性、長期耐熱性に優れるメタ系アラミド繊維とが例示される。パラ系アラミド繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン−3,4’−オキシジフェニレンテレフタルアミド繊維などが挙げられ、メタ系アラミド繊維としては、ポリメタフェニレンイソフタルアミド繊維などが挙げられる。アラミド繊維としては、メタ系アラミド繊維に比べて弾性率の高いパラ系アラミド繊維が好ましく用いられる。 Examples of the organic fiber include fibers made of an organic material such as aramid fiber, polyphenylene sulfide fiber, polyester fiber, polyamide fiber, and polyethylene fiber. Examples of the aramid fiber include a para-type aramid fiber having excellent strength and elastic modulus and a meta-type aramid fiber having excellent flame retardancy and long-term heat resistance. Examples of the para-aramid fiber include polyparaphenylene terephthalamide fiber and copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber, and examples of the meta-aramid fiber include polymetaphenylene isophthalamide fiber. Can be mentioned. As the aramid fiber, a para-aramid fiber having a higher elastic modulus than the meta-aramid fiber is preferably used.
無機繊維としては、ガラス、バサルト、シリコンカーバイト、シリコンナイトライドなどの無機材料からなる繊維が挙げられる。ガラス繊維としては、Eガラス繊維(電気用)、Cガラス繊維(耐食用)、Sガラス繊維、Tガラス繊維(高強度、高弾性率)などが例示されるがこのいずれを用いても良い。バサルト繊維は、鉱物である玄武岩を繊維化した物で、耐熱性の非常に高い繊維である。玄武岩には、一般に鉄の化合物であるFeOまたはFeO2を9〜25%、チタンの化合物であるTiOまたはTiO2を1〜6%含有するが、溶融状態でこれらの成分を増量して繊維化することも可能である。 Examples of the inorganic fiber include fibers made of an inorganic material such as glass, basalt, silicon carbide, and silicon nitride. Examples of the glass fiber include E glass fiber (for electricity), C glass fiber (for corrosion resistance), S glass fiber, and T glass fiber (high strength and high elasticity), and any of these may be used. Basalt fiber is a fiber of basalt, which is a mineral, and has extremely high heat resistance. Basalt generally contains 9 to 25% of FeO or FeO 2 which is an iron compound and 1 to 6% of TiO or TiO 2 which is a titanium compound, but these components are increased in a molten state to become fibrous. It is also possible to do.
本発明の製造方法においては、連続強化繊維として、炭素繊維、ガラス繊維、バサルト繊維、及びアラミド繊維からなる群より選ばれる少なくとも1種の連続強化繊維を用いることがより好ましく、これらの中でも、軽量化や強度などの力学特性を効率よく発揮する炭素繊維を用いることが特に好ましい。 In the production method of the present invention, it is more preferable to use at least one continuous reinforcing fiber selected from the group consisting of carbon fiber, glass fiber, basalt fiber, and aramid fiber as the continuous reinforcing fiber, and among these, lightweight. It is particularly preferable to use carbon fibers that efficiently exhibit mechanical properties such as chemical conversion and strength.
複数の連続強化繊維としては、その複数種を組み合わせて使用してもよく、異なる連続強化繊維を組み合わせることで複合的な効果が期待できる。例えば連続強化繊維として炭素繊維とガラス繊維を組み合わせる事で、炭素繊維による高い補強効果および安価なガラス繊維によるコストの低減が両立できる。 As the plurality of continuous reinforcing fibers, a plurality of types thereof may be used in combination, and a composite effect can be expected by combining different continuous reinforcing fibers. For example, by combining carbon fiber and glass fiber as continuous reinforcing fibers, it is possible to achieve both a high reinforcing effect by carbon fibers and a cost reduction by inexpensive glass fibers.
本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグにおいて、複数の連続強化繊維は通常、多数本の単繊維を束ねた強化繊維束を1本または複数本を並べて構成される。1本または複数本の強化繊維束を並べたときの複数の連続強化繊維の総フィラメント数(単繊維の本数)は、本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグ中に1,000〜2,000,000本の範囲にあることが好ましい。生産性の観点からは、本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグ中の複数の連続強化繊維の総フィラメント数は、1,000〜1,000,000本がより好ましく、1,000〜600,000本がさらに好ましく、1,000〜300,000本が特に好ましい。複数の連続強化繊維の総フィラメント数の上限は、分散性や取り扱い性とのバランスも考慮して、生産性と分散性、取り扱い性を良好に保てるように選択する。 In a prepreg containing a plurality of continuous reinforcing fibers and a thermoplastic resin obtained by the production method of the present invention, the plurality of continuous reinforcing fibers are usually composed of one or a plurality of reinforcing fiber bundles in which a large number of single fibers are bundled. Will be done. The total number of filaments (number of single fibers) of the plurality of continuous reinforcing fibers when one or a plurality of reinforcing fiber bundles are arranged includes the plurality of continuous reinforcing fibers and the thermoplastic resin obtained by the production method of the present invention. It is preferably in the range of 1,000 to 2,000,000 during the prepreg. From the viewpoint of productivity, the total number of filaments of the plurality of continuous reinforcing fibers obtained by the production method of the present invention and the plurality of continuous reinforcing fibers in the prepreg containing the thermoplastic resin is 1,000 to 1,000,000. Is more preferable, 1,000 to 600,000 is even more preferable, and 1,000 to 300,000 is particularly preferable. The upper limit of the total number of filaments of the plurality of continuous reinforcing fibers is selected so as to maintain good productivity, dispersibility, and handleability in consideration of the balance between dispersibility and handleability.
本発明の製造方法により得られる複数の連続強化繊維と熱可塑性樹脂を含むプリプレグにおいて、複数の連続強化繊維中の単繊維の平均直径は好ましくは5〜10μmであり、単繊維の平均直径は6〜8μmがさらに好ましい。 In the prepreg containing the plurality of continuous reinforcing fibers and the thermoplastic resin obtained by the production method of the present invention, the average diameter of the single fibers in the plurality of continuous reinforcing fibers is preferably 5 to 10 μm, and the average diameter of the single fibers is 6. ~ 8 μm is more preferable.
また複数の連続強化繊維の引張強度は3,000〜6,000MPaのものを用いることが好ましい。なお複数の連続強化繊維の強度(MPa)=(単繊維強力(N))/単繊維断面積(mm2)という関係となる。 Further, it is preferable to use a plurality of continuous reinforcing fibers having a tensile strength of 3,000 to 6,000 MPa. The relationship is that the strength (MPa) of the plurality of continuous reinforcing fibers = (single fiber strength (N)) / single fiber cross-sectional area (mm 2).
また、複数の連続強化繊維を構成する強化繊維束は、接着性やコンポジット力学特性、高次加工性を向上させるためにサイジング剤で表面処理されていてもよい。サイジング剤には、ビスフェノール型エポキシ化合物、直鎖状低分子量エポキシ化合物、ポリエチレングリコール、ポリウレタン、ポリエステル、乳化剤あるいは界面活性剤などの成分を粘度調整、耐擦過性向上、耐毛羽性向上、集束性向上、高次加工性向上等の目的で混合したものが好ましい。 Further, the reinforcing fiber bundle constituting the plurality of continuous reinforcing fibers may be surface-treated with a sizing agent in order to improve adhesiveness, composite mechanical properties, and higher-order processability. The sizing agent contains components such as bisphenol type epoxy compound, linear low molecular weight epoxy compound, polyethylene glycol, polyurethane, polyester, emulsifier or surfactant to adjust the viscosity, improve scratch resistance, improve fluff resistance, and improve focusing. , Preferably mixed for the purpose of improving higher workability.
サイジング剤の付与手段としては特に限定されるものではないが、例えばローラを介してサイジング液に浸漬する方法、サイジング液の付着したローラに接する方法、サイジング液を霧状にして吹き付ける方法などがある。また、バッチ式、連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましい。この際、強化繊維に対するサイジング剤有効成分の付着量が適正範囲内で均一に付着するように、サイジング液濃度、温度、糸条張力などをコントロールすることが好ましい。また、サイジング剤付与時に強化繊維を超音波で加振させることはより好ましい。 The means for applying the sizing agent is not particularly limited, but for example, there are a method of immersing in the sizing liquid via a roller, a method of contacting the roller to which the sizing liquid is attached, a method of atomizing the sizing liquid and spraying the sizing liquid. .. Further, either a batch type or a continuous type may be used, but a continuous type having good productivity and small variation is preferable. At this time, it is preferable to control the sizing liquid concentration, temperature, thread tension, etc. so that the amount of the sizing agent active ingredient adhered to the reinforcing fibers is uniformly within an appropriate range. Further, it is more preferable to ultrasonically vibrate the reinforcing fibers when the sizing agent is applied.
本発明の製造方法に用いる熱可塑性樹脂としては、熱可塑性樹脂でありさえすれば特に限定されず、例えばポリプロピレン、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ABS樹脂、ABS樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリアミドイミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンオキサイド、ポリビニルアルコール、ポリアルキレンオキサイド、ポリサルホン、ポリフェニレンサルファイド、ポリアリレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリイミド、液晶ポリマー、ポリメチルメタアクリレート、ポリスルホンなどが挙げられる。 The thermoplastic resin used in the production method of the present invention is not particularly limited as long as it is a thermoplastic resin, for example, polypropylene, polyethylene, polystyrene, polyvinyl chloride, polyvinyl acetate, ABS resin, ABS resin, polyethylene terephthalate, and the like. Polybutylene terephthalate, polyamide, polyamideimide, polyacetal, polycarbonate, modified polyphenylene oxide, polyvinyl alcohol, polyalkylene oxide, polysulfone, polyphenylene sulfide, polyarylate, polyetherimide, polyetheretherketone, polyethersulfone, polyimide, liquid crystal polymer, Examples thereof include polymethylmethacrylate and polysulfone.
特に、耐熱性や強度、剛性などの各物性が優れたプリプレグが得られるので、本発明の製造方法に用いる熱可塑性樹脂としては、ポリアミド樹脂を用いることが好ましい。 In particular, since a prepreg having excellent heat resistance, strength, rigidity and other physical properties can be obtained, it is preferable to use a polyamide resin as the thermoplastic resin used in the production method of the present invention.
ここで、ポリアミド樹脂とは、アミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる構成成分とするポリアミドである。その主要構成成分の代表例としては、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε−カプロラクタム、ω−ラウロラクタムなどのラクタム、テトラメチレンジアミン、ヘキサメチレンジアミン、2 − メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、2,6−ナフタレンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられ、本発明においては、これらの原料から誘導されるナイロンホモポリマーまたはコポリマーを各々単独または混合物の形で用いることができる。 Here, the polyamide resin is a polyamide containing amino acids, lactam or diamine and a dicarboxylic acid as main constituents. Typical examples of its main constituents are amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactam such as ε-caprolactam and ω-laurolactam, and tetramethylenediamine. , Hexamethylenediamine, 2-methylpentamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, Metaxylylenediamine, paraxamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, Fat groupes such as bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethyl piperazine, Alicyclic, aromatic diamine, and adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, Examples thereof include aliphatic, alicyclic, and aromatic dicarboxylic acids such as 5-sodium sulfoisophthalic acid, 2,6-naphthalenedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid. In the present invention, these raw materials are used. Nylon homopolymers or copolymers derived from can be used alone or in the form of a mixture, respectively.
本発明の製造方法に用いられる熱可塑性樹脂として特に有用なポリアミド樹脂の具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ナイロン66 /6I/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリキシリレンアジパミド(ナイロンXD6)、ポリヘキサメチレンテレフタルアミド/ポリ−2−メチルペンタメチレンテレフタルアミドコポリマー(ナイロン6T/M5T)、ポリノナメチレンテレフタルアミド(ナイロン9T)、およびこれらの混合物、ないし共重合体などが挙げられ、中でも強化繊維への含浸性、取扱い性に優れるポリアミド6が好ましい。 Specific examples of the polyamide resin particularly useful as the thermoplastic resin used in the production method of the present invention include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), and polytetramethylene adipamide. (Nylon 46), Polyhexamethylene sebacamide (Nylon 610), Polyhexamethylene dodecamide (Nylon 612), Polyundecaneamide (Nylon 11), Polydodecaneamide (Nylon 12), Polycaproamide / Polyhexamethyleneazi Pamide copolymer (nylon 6/66), polycaproamide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene Adipamide / polyhexamethylene isophthalamide / polycaproamide copolymer (nylon 66 / 6I / 6), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polyhexamethylene terephthalamide / poly Hexamethylene isophthalamide copolymer (nylon 6T / 6I), polyhexamethylene terephthalamide / polydodecaneamide copolymer (nylon 6T / 12), polyhexamethylene adipamide / polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon) 66 / 6T / 6I), Polyxylylene adipamide (Nylon XD6), Polyhexamethylene terephthalamide / Poly-2-methylpentamethylene terephthalamide copolymer (Nylon 6T / M5T), Polynonamethylene terephthalamide (Nylon 9T) , And a mixture thereof, a copolymer, and the like. Among them, polyamide 6 having excellent impregnation property and handleability in reinforcing fibers is preferable.
本発明の製造方法において、プリプレグの得たい要求特性に応じて、難燃剤、耐候性改良材、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶性化剤、導電性フィラーなどを添加することができる。 In the production method of the present invention, flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, ultraviolet absorbers, plasticizers, lubricants, colorants, compatibility agents, depending on the required characteristics of the prepreg. , Conductive filler and the like can be added.
次に本発明を、実施例、比較例に基づいて具体的に説明するが、本発明はこれらの実施例により制限されるものではない。 Next, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples.
(1)JIS K 7074(1988)で測定した曲げ強度の測定方法
複数の連続強化繊維と熱可塑性樹脂を含むプリプレグの曲げ強度は、JIS K 7074(1988)のA法に従って測定した。
(1) Method for measuring bending strength measured by JIS K 7074 (1988)
The bending strength of the prepreg containing a plurality of continuous reinforcing fibers and a thermoplastic resin was measured according to the method A of JIS K 7074 (1988).
得られた曲げ強度の測定値に応じて、以下の基準で判定をした。なお、AA〜Bを合格とした。
AA:曲げ強度1,000MPa以上
A:曲げ強度900MPa以上1,000MPa未満
B:曲げ強度750MPa以上900MPa未満
C:750MPa未満
(2)比重(g/cm3)の測定方法
比重測定機(ALFA MIRAGE製、ELECTRONIC DENSIMETER SD−200L)を用いて、強化繊維、熱可塑性樹脂組成物、プリプレグなどの比重を測定した。
Judgment was made according to the following criteria according to the obtained measured values of bending strength. In addition, AA to B were accepted.
AA: Bending strength 1,000 MPa or more A: Bending strength 900 MPa or more and less than 1,000 MPa B: Bending strength 750 MPa or more and less than 900 MPa C: Less than 750 MPa (2) Measurement method of specific gravity (g / cm 3 ) Specific gravity measuring machine (manufactured by ALFA MIRAGE) , ELECTRONIC DENSIMTER SD-200L) was used to measure the specific densities of reinforcing fibers, thermoplastic resin compositions, prepregs and the like.
(3)繊維体積含有率、空隙率の測定方法
約0.5gの連続強化繊維と熱可塑性樹脂を含むプリプレグの質量W1を秤量した後、窒素気流中、500℃の温度に設定した電気炉に120分間放置し、前記プリプレグ中の熱可塑性樹脂組成物を完全に熱分解させた。そして、乾燥窒素気流中の容器に移し、15分間冷却した後の強化繊維の質量W2を秤量して、強化繊維量を求めた。これらの各測定値から次式により各値を算出した。
(3) Method for measuring fiber volume content and void ratio After weighing the mass W1 of a prepreg containing about 0.5 g of continuously reinforced fibers and a thermoplastic resin, the prepreg is placed in an electric furnace set at a temperature of 500 ° C. in a nitrogen stream. After leaving it for 120 minutes, the thermoplastic resin composition in the prepreg was completely thermally decomposed. Then, the fiber was transferred to a container in a dry nitrogen stream and cooled for 15 minutes, and then the mass W2 of the reinforcing fiber was weighed to determine the amount of the reinforcing fiber. Each value was calculated from each of these measured values by the following formula.
繊維体積含有率(%)=(W2(g)/強化繊維の比重(g/cm3))/(W1(g)/プリプレグの比重(g/cm3))×100
樹脂体積含有率(%)=((W1−W2)(g)/熱可塑性樹脂組成物の比重(g/cm3))/(W1(g)/プリプレグの比重(g/cm3))×100
空隙率(%)=100−繊維体積含有率(%)−樹脂体積含有率(%)
(4)本発明の製造方法におけるパラメータ
(A)連続強化繊維としては、炭素繊維(東レ株式会社製T700SC−12K)を用いた。
Fiber volume content (%) = (W2 (g) / specific gravity of reinforcing fiber (g / cm 3 )) / (W1 (g) / specific density of prepreg (g / cm 3 )) × 100
Resin volume content (%) = ((W1-W2) (g) / specific gravity of thermoplastic resin composition (g / cm 3 )) / (W1 (g) / specific density of prepreg (g / cm 3 )) × 100
Porosity (%) = 100-Fiber volume content (%) -Resin volume content (%)
(4) Parameters in the Production Method of the Present Invention (A) Carbon fiber (T700SC-12K manufactured by Toray Industries, Inc.) was used as the continuous reinforcing fiber.
(B)熱可塑性樹脂としては、ポリアミド6(東レ株式会社製“アミラン”(登録商標)CM1007を用いた。 As the thermoplastic resin (B), polyamide 6 (“Amilan” (registered trademark) CM1007 manufactured by Toray Industries, Inc.) was used.
(C)Vd/Qe[s]
(c−1)30
(c−2)1100
(c−3)4800
(c−4)8700
(c−5)4
(c−6)10500
(D)Qe[m3/s]
(d−1)0.6×Qp
(d−2)3.8×Qp
(E)Qo[m3/s]
(e−1)Qe−0.5×Qp
(e−2)Qe−0.2×Qp
(e−3)Qe−0.8×Qp
(実施例1)
複数の連続強化繊維として炭素繊維を用い、熱可塑性樹脂組成物としてポリアミド6樹脂を用い、Vd/Qeを(c−1)、単位時間あたりに槽に供給される熱可塑性樹脂の体積Qeを(d−1)、単位時間あたりの槽からの熱可塑性樹脂の排出体積Qoを(e−1)として、図1に示す製造方法によりプリプレグを製造した。
(C) Vd / Qe [s]
(C-1) 30
(C-2) 1100
(C-3) 4800
(C-4) 8700
(C-5) 4
(C-6) 10500
(D) Qe [m 3 / s]
(D-1) 0.6 × Qp
(D-2) 3.8 × Qp
(E) Qo [m 3 / s]
(E-1) Qe-0.5 × Qp
(E-2) Qe-0.2 × Qp
(E-3) Qe-0.8 × Qp
(Example 1)
Carbon fiber is used as a plurality of continuous reinforcing fibers, polyamide 6 resin is used as the thermoplastic resin composition, Vd / Qe is (c-1), and the volume Qe of the thermoplastic resin supplied to the tank per unit time is (). d-1), the prepreg was manufactured by the manufacturing method shown in FIG. 1 with the discharge volume Qo of the thermoplastic resin from the tank per unit time as (e-1).
図1において、複数の連続強化繊維101が巻かれたボビン102を準備し、それぞれボビン102から連続的に糸道ガイド103を通じて複数の連続強化繊維101を送り出した。連続的に送り出された複数の連続強化繊維101には、槽104内にて、熱可塑性樹脂を充填したフィーダー105から定量供給された熱可塑性樹脂107が含浸された。槽104内の熱可塑性樹脂107を含浸した複数の連続強化繊維101を、槽104のノズルから連続的に引き抜いた。引取ロール108にて引き抜かれた複数の連続強化繊維101を、冷却ロール107を通過させ冷却固化し、巻取ロール110にて巻き取り、繊維体積含有率50体積%のプリプレグ110を得た。
In FIG. 1, a
(実施例2)
Vd/Qeを(c−2)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(Example 2)
A
(実施例3)
Vd/Qeを(c−3)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(Example 3)
A
(実施例4)
Vd/Qeを(c−4)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(Example 4)
A
(実施例5)
単位時間あたりに槽に供給される熱可塑性樹脂の体積Qeを(d−2)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(実施例6)
単位時間あたりの槽からの熱可塑性樹脂の排出体積Qoを(e−2)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(実施例7)
単位時間あたりの槽からの熱可塑性樹脂の排出体積Qoを(e−3)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(Example 5)
A
(Example 6)
A
(Example 7)
A
(比較例1)
Vd/Qeを(c−5)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(Comparative Example 1)
A
(比較例2)
Vd/Qeを(c−6)と設定したこと以外は実施例1と同様にプリプレグ110を得た。
(Comparative Example 2)
A
100 製造装置
101 強化繊維束
102 ボビン
103 糸道ガイド
104 槽
105 フィーダー
106 排出口
107 熱可塑性樹脂
108 冷却ロール
109 引取ロール
110 プリプレグ
111 巻取ロール
100
Claims (5)
槽内の空間体積Vd[m3]と、単位時間当たりの槽への熱可塑性樹脂の供給体積Qe[m3/s]とが、下記の(A)式を満たすとともに、
単位時間当たりに槽の出口を通過するプリプレグの体積Qp[m 3 /s]と、単位時間当たりの槽からの熱可塑性樹脂の排出体積Qo[m 3 /s]が、下記の(C)式を満たすことを特徴とする、プリプレグの製造方法。
10≦Vd/Qe≦9000・・・(A)式
Qe−5.4×Qp≦Qo≦Qe−0.2×Qp・・・(C)式 In a method for producing a prepreg containing a thermoplastic resin and a plurality of continuous reinforcing fibers by passing a plurality of continuous reinforcing fibers through a tank containing the thermoplastic resin.
The space volume Vd [m 3 ] in the tank and the supply volume Qe [m 3 / s] of the thermoplastic resin to the tank per unit time satisfy the following formula (A) and also satisfy the following formula (A) .
The volume Qp [m 3 / s] of the prepreg passing through the outlet of the tank per unit time and the volume Qo [m 3 / s] of the thermoplastic resin discharged from the tank per unit time are given by the following equation (C). A method for producing a prepreg, which comprises satisfying.
10 ≤ Vd / Qe ≤ 9000 ... (A)
Qe-5.4 × Qp ≦ Qo ≦ Qe-0.2 × Qp ・ ・ ・ (C)
0.2×Qp≦Qe≦5.4×Qp・・・(B)式 The volume Qe [m 3 / s] of the thermoplastic resin supplied to the tank per unit time and the volume Qp [m 3 / s] of the prepreg passing through the outlet of the tank per unit time are given by the following equation (B). The method for producing a prepreg according to claim 1, wherein the prepreg is produced.
0.2 × Qp ≦ Qe ≦ 5.4 × Qp ・ ・ ・ (B)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017013907A JP6946648B2 (en) | 2017-01-30 | 2017-01-30 | How to make prepreg |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017013907A JP6946648B2 (en) | 2017-01-30 | 2017-01-30 | How to make prepreg |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018123180A JP2018123180A (en) | 2018-08-09 |
JP6946648B2 true JP6946648B2 (en) | 2021-10-06 |
Family
ID=63110929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017013907A Active JP6946648B2 (en) | 2017-01-30 | 2017-01-30 | How to make prepreg |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6946648B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7023476B1 (en) | 2020-11-20 | 2022-02-22 | 中川産業株式会社 | Mold for forming a bar and a method for manufacturing a bar using the die |
JP7055314B1 (en) | 2020-12-28 | 2022-04-18 | 中川産業株式会社 | Manufacturing method of the bar and the dipping device used for it |
CN114801274A (en) | 2021-01-27 | 2022-07-29 | 中川产业株式会社 | Method for manufacturing steel bar body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3306959B2 (en) * | 1993-03-02 | 2002-07-24 | 株式会社神戸製鋼所 | Method for producing long fiber reinforced synthetic resin strand |
JP3667294B2 (en) * | 2002-04-16 | 2005-07-06 | 旭ファイバーグラス株式会社 | Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin material |
JP4727960B2 (en) * | 2004-09-06 | 2011-07-20 | 株式会社プライムポリマー | Method for producing fiber reinforced resin composition |
-
2017
- 2017-01-30 JP JP2017013907A patent/JP6946648B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018123180A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7234632B2 (en) | Unidirectionally oriented tape-shaped prepreg and its molded product | |
EP3653362B1 (en) | Molded article manufacturing method and manufacturing device | |
US11235513B2 (en) | Method for manufacturing three-dimensional structure | |
US10889070B2 (en) | Composite material including unidirectional continuous fibers and thermoplastic resin | |
WO2015046290A1 (en) | Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article | |
JP5614187B2 (en) | Manufacturing method of composite reinforcing fiber bundle and molding material using the same | |
JP5922867B2 (en) | Resin composition for wear-resistant molded article | |
JP6946648B2 (en) | How to make prepreg | |
JP5494375B2 (en) | Manufacturing method of composite reinforcing fiber bundle and molding material using the same | |
JP7384197B2 (en) | Fiber-reinforced resin material, roll, molded product, and method for producing fiber-reinforced resin material | |
JP2013203941A (en) | Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material | |
JP2013173811A (en) | Resin composition, molding material and method for producing the same | |
KR102621342B1 (en) | Tape-type prepreg and its manufacturing method | |
JP5972721B2 (en) | Thermoplastic resin composition | |
JP6962196B2 (en) | Polyamide resin composite molded product and its manufacturing method | |
JP6711876B2 (en) | Fiber reinforced resin composition | |
CN110099949B (en) | Structural body | |
JP7388435B2 (en) | Molded product manufacturing method | |
JP6806292B1 (en) | Molded article manufacturing method and composite materials | |
WO2021019928A1 (en) | Formed product production method and composite material | |
JP2018104537A (en) | Base material | |
JP2008240170A (en) | Conjugate yarn for reinforcing thermoplastic resin, and method for producing resin-containing strand using the same | |
JP2013203942A (en) | Thermoplastic prepreg and method of manufacturing the same | |
KR20140087913A (en) | Long fiber reinforced polyamide resin compositions and molded products including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210830 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6946648 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |