[go: up one dir, main page]

JP6943100B2 - Defect detection method - Google Patents

Defect detection method Download PDF

Info

Publication number
JP6943100B2
JP6943100B2 JP2017174722A JP2017174722A JP6943100B2 JP 6943100 B2 JP6943100 B2 JP 6943100B2 JP 2017174722 A JP2017174722 A JP 2017174722A JP 2017174722 A JP2017174722 A JP 2017174722A JP 6943100 B2 JP6943100 B2 JP 6943100B2
Authority
JP
Japan
Prior art keywords
contour
defect
line
approximation line
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017174722A
Other languages
Japanese (ja)
Other versions
JP2019049507A (en
Inventor
布施 直紀
直紀 布施
湯藤 隆夫
隆夫 湯藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2017174722A priority Critical patent/JP6943100B2/en
Publication of JP2019049507A publication Critical patent/JP2019049507A/en
Application granted granted Critical
Publication of JP6943100B2 publication Critical patent/JP6943100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)

Description

本発明は検査対象物の凸欠陥や打痕等の欠陥の検出に適した欠陥検出方法および欠陥検出装置に関するものである。 The present invention relates to a defect detecting method and a defect detecting apparatus suitable for detecting defects such as convex defects and dents of an inspection object.

例えば精密鋳造品のタービンブレードのような複雑な形状の検査対象物では、複雑な陰影により各部の輝度に大きな差を生じるため、輝度の不均一な領域をマスキングで除去することを繰り返して検査領域を区画生成する必要があって多大な手間を要するとともにマスキングによる未検査領域が生じるという問題があった。なお、マスキングによる欠陥検出領域の区画生成については例えば特許文献1に記載されている。 For example, in an inspection object having a complicated shape such as a turbine blade of a precision casting, a large difference in the brightness of each part is caused by a complicated shadow. There is a problem that it is necessary to generate a partition, which requires a lot of time and effort, and an uninspected area is generated due to masking. For example, Patent Document 1 describes the generation of a defect detection region by masking.

特開2011−65604JP 2011-65604

本発明はこのような課題を解決するもので、複雑形状の検査対象物についてもマスキングによる多大の手間を要することなく欠陥の検出を確実に行うことが可能な欠陥検出方法を提供することを目的とする。 The present invention solves such a problem, and an object of the present invention is to provide a defect detection method capable of reliably detecting a defect even in an inspection object having a complicated shape without requiring a great deal of labor by masking. And.

本発明の欠陥検出方法では、検査対象物(1)の輪郭を検出し、当該輪郭に最も近い輪郭近似線(L1)と前記輪郭上の各輪郭点との差分値が所定値(Th)以上となった輪郭部分を欠陥(11)として検出する。前記輪郭近似線(L1)は、無欠陥の前記検査対象物(1)の輪郭から得る。 In the defect detection method of the present invention, the contour of the inspection object (1) is detected, and the difference value between the contour approximation line (L1) closest to the contour and each contour point on the contour is a predetermined value (Th) or more. The contour portion that has become is detected as a defect (11). The contour approximation line (L1) is obtained from the contour of the inspection object (1) without defects.

本発明の欠陥検出方法によれば、検査対象物の輪郭上の各輪郭点と輪郭近似線の差分値が所定値以上となった部分を欠陥として検出しているから、従来のようなマスキングによる領域除去のような煩雑な手間を要することなく欠陥の検出を確実に行うことができる。
前記輪郭近似線を、直線近似線ないし曲線近似線から選択するようにできる。
前記検出された輪郭のうち直線部と曲線部についてそれぞれ検査範囲を設定し、これら検査範囲でそれぞれ直線近似線ないし曲線近似線を選択するようにできる。
前記差分値が所定の閾値Thを超えた場合に当該輪郭部分を欠陥として検出するようにできる。
According to the defect detection method of the present invention, a portion where the difference value between each contour point and the contour approximation line on the contour of the inspection object is equal to or more than a predetermined value is detected as a defect, and therefore, masking as in the conventional case is performed. Defects can be reliably detected without the need for complicated labor such as region removal.
The contour approximation line can be selected from a straight line approximation line or a curve approximation line.
Inspection ranges can be set for each of the straight line portion and the curved portion of the detected contours, and a straight line approximation line or a curve approximation line can be selected in each of these inspection ranges.
When the difference value exceeds a predetermined threshold value Th, the contour portion can be detected as a defect.

前記欠陥(11)は例えばタービンブレードの翼縁に生じた凸欠陥ないし凹欠陥である。 The defect (11) is, for example, a convex defect or a concave defect generated in the blade edge of a turbine blade.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。 The reference numerals in parentheses indicate the correspondence with the specific means described in the embodiments described later for reference.

以上のように、本発明によれば、複雑形状の検査対象物についてもマスキングによる多大の手間を要することなく欠陥の検出を確実に行うことができる。 As described above, according to the present invention, it is possible to reliably detect a defect even in an inspection object having a complicated shape without requiring a great deal of time and effort by masking.

第1実施形態における、凹欠陥を生じたタービンブレードの部分斜視図である。It is a partial perspective view of the turbine blade which caused the concave defect in 1st Embodiment. 凹欠陥を生じたタービンブレードの部分斜視図である。It is a partial perspective view of the turbine blade which caused the concave defect. 輪郭線と輪郭近似線の一例を示す図である。It is a figure which shows an example of a contour line and a contour approximation line. 凸欠陥を生じたタービンブレードの部分斜視図である。It is a partial perspective view of the turbine blade which caused the convex defect. 凸欠陥を生じたタービンブレードの部分斜視図である。It is a partial perspective view of the turbine blade which caused the convex defect. コンピュータ内の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure in a computer. 第2実施形態における、コンピュータ内の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure in a computer in 2nd Embodiment. 図1の一部を示す図である。It is a figure which shows a part of FIG.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。なお、以下で説明する図6、図7のフローチャートの各ステップは画像を取り込んだコンピュータ内で実行されるものである。 The embodiments described below are merely examples, and various design improvements made by those skilled in the art within the scope of the present invention are also included in the scope of the present invention. It should be noted that each step of the flowcharts of FIGS. 6 and 7 described below is executed in the computer in which the image is captured.

(第1実施形態)
図1には一例として検査対象物であるタービンブレード1の画像の一部を示す。本実施形態では最初に公知の撮像手段によってタービンブレード1を撮像し(図6のステップ101)、その画像中で、直線状の輪郭線(輪郭点の集合)を対象として設定された検査範囲X1、曲線状の輪郭線を対象として設定された検査範囲X2毎にタービンブレード1の翼縁に輪郭近似線L1,L2を設定する(図6のステップ103、図1(b))。上記輪郭近似線L1,L2は、各検査範囲X1,X2内においてタービンブレード1の翼縁の輪郭に最も近い近似線を、直線近似線ないし曲線近似線から選択したものである。ここでは一例として、輪郭近似線L1として直線近似線を選択し、輪郭近似線L2として曲線近似線を選択している。なお、検査範囲X1,X2はタービンブレード1の輪郭のうちの直線部と曲線部毎に区分されてそれぞれ設定されている。
(First Embodiment)
FIG. 1 shows a part of an image of the turbine blade 1 which is an inspection target as an example. In the present embodiment, the turbine blade 1 is first imaged by a known imaging means (step 101 in FIG. 6), and the inspection range X1 set for a linear contour line (set of contour points) in the image. , The contour approximation lines L1 and L2 are set on the blade edge of the turbine blade 1 for each inspection range X2 set for the curved contour line (step 103 in FIG. 6, FIG. 1 (b)). The contour approximation lines L1 and L2 are obtained by selecting the approximation line closest to the contour of the blade edge of the turbine blade 1 from the straight line approximation line or the curve approximation line within each inspection range X1 and X2. Here, as an example, a straight line approximation line is selected as the contour approximation line L1, and a curve approximation line is selected as the contour approximation line L2. The inspection ranges X1 and X2 are set separately for each of the straight portion and the curved portion of the contour of the turbine blade 1.

一方、検査対象物であるタービンブレード1の輪郭線を撮像画像から算出して(図6のステップ102)その画像中の各検査範囲X1,X2毎に、翼縁の各輪郭線と当該検査範囲X1,X2に予め設定されている上記輪郭近似線L1,L2の差分値(%)を算出する(図6のステップ104)。そして上記差分値が所定の閾値Thを超えた時に欠陥有りとする(図6のステップ105,106)。差分値が閾値Thを超えない場合は欠陥無しとする(図6のステップ105,107)。ここで差分値は、図3に示すように、基準線PLから輪郭近似線Lまでの距離hと基準線PLから輪郭線Pまでの距離h´より、下式(1)又は(2)を選択的に使用して算出される。
h´>hの場合 差分値(%)=(h´−h)/h×100…(1)
h>h´の場合 差分値(%)=(h−h´)/h×100…(2)
On the other hand, the contour line of the turbine blade 1 which is the inspection target is calculated from the captured image (step 102 in FIG. 6), and for each inspection range X1 and X2 in the image, each contour line of the blade edge and the inspection range are obtained. The difference value (%) of the contour approximation lines L1 and L2 preset in X1 and X2 is calculated (step 104 in FIG. 6). Then, when the difference value exceeds a predetermined threshold value Th, it is considered that there is a defect (steps 105 and 106 in FIG. 6). If the difference value does not exceed the threshold value Th, there is no defect (steps 105 and 107 in FIG. 6). Here, as shown in FIG. 3, the difference value is calculated by the following equation (1) or (2) from the distance h from the reference line PL to the contour approximation line L and the distance h'from the reference line PL to the contour line P. Calculated using selectively.
When h'> h Difference value (%) = (h'-h) / h x 100 ... (1)
When h>h'Difference value (%) = (h-h') / h x 100 ... (2)

ここで、基準線PLは以下のように決定される。すなわち撮像画像上で横方向をX軸(位置)、縦方向をY軸(距離)とし(図8(c))、画像上の検査対象物のY軸方向の全体の大きさ(距離)がWであったときの、その半分W/2の位置を基準とする(図8(a))。そして、輪郭近似線L1上のプロット点Sに対し、距離W/2の例えば90%の距離にあるプロット点Sに近い点を基準点Pとして選択する。このようにして、検査範囲X1において、X軸(位置)方向で複数の基準点(P1,P2,P3)を得て、これらを連結したものを基準線PLとする(図8(b)、(c))。なお、基準点Pは、距離W/2の80%〜90%の間で適宜決定できる。また、検査範囲X1,X2(図1)はあくまで一例であり、実際には必要個所にさらに数多く設定される。 Here, the reference line PL is determined as follows. That is, the horizontal direction is the X-axis (position) and the vertical direction is the Y-axis (distance) on the captured image (FIG. 8 (c)), and the overall size (distance) of the inspection object on the image in the Y-axis direction is The position of half W / 2 when it is W is used as a reference (FIG. 8 (a)). Then, a point close to the plot point S at a distance of, for example, 90% of the distance W / 2 with respect to the plot point S on the contour approximation line L1 is selected as the reference point P. In this way, in the inspection range X1, a plurality of reference points (P1, P2, P3) are obtained in the X-axis (position) direction, and those connected thereof are defined as the reference line PL (FIG. 8 (b), FIG. (C)). The reference point P can be appropriately determined between 80% and 90% of the distance W / 2. Further, the inspection ranges X1 and X2 (FIG. 1) are merely examples, and in reality, more are set at necessary locations.

ここで例えば、図1のA領域および図2に示すように検査範囲X1の翼縁に凹欠陥11が生じていると、式(2)が選択される。この凹欠陥11部分では輪郭点と輪郭近似線L1の差分値が局所的に閾値Thを超えて大きくなる。例えば閾値Thを2.5%としたとき、図1のA領域の欠陥11部分では差分値が5.0%になり、この部分に欠陥11があることが検出される(図6のステップ106)。なお、本発明における検査対象物の凸欠陥や打痕等の欠陥は差分値で2.5%前後の値で顕著に検出されるという実験結果に基づいて、閾値Thを2.5%としている。なお、適した閾値Thは1.5%〜3.5%である。 Here, for example, when the concave defect 11 is generated in the A region of FIG. 1 and the blade edge of the inspection range X1 as shown in FIG. 2, the equation (2) is selected. In the concave defect 11, the difference value between the contour point and the contour approximation line L1 locally exceeds the threshold value Th and becomes large. For example, when the threshold Th is 2.5%, the difference value is 5.0% in the defect 11 portion of the region A in FIG. 1, and it is detected that the defect 11 is present in this portion (step 106 in FIG. 6). ). The threshold Th is set to 2.5% based on the experimental result that defects such as convex defects and dents of the inspection object in the present invention are remarkably detected at a difference value of about 2.5%. .. The suitable threshold Th is 1.5% to 3.5%.

他の一例として、図4のB領域および図5に示すように、検査対象であるタービンブレード1の画像中の検査範囲X1,X2において、厚み方向で上記と反対側の翼縁に輪郭近似線L3,L4を設定しておけば、検査範囲X2で翼縁に打痕による凸欠陥12が生じていると、この凸欠陥12部分で輪郭点と輪郭近似線L4の差分値が所定値Thを超えて局所的に大きくなるから、この部分に欠陥12があることが検出される。例えば閾値Thを2.5%としたとき、図4のA領域の欠陥12部分では差分値が5.5%になり、この部分に欠陥12があることが検出される As another example, as shown in region B of FIG. 4 and FIG. 5, in the inspection ranges X1 and X2 in the image of the turbine blade 1 to be inspected, a contour approximation line is provided on the blade edge opposite to the above in the thickness direction. If L3 and L4 are set, if a convex defect 12 due to a dent is generated on the blade edge in the inspection range X2, the difference value between the contour point and the contour approximation line L4 will be a predetermined value Th in the convex defect 12 portion. Since it grows locally beyond that, it is detected that there is a defect 12 in this portion. For example, when the threshold Th is 2.5%, the difference value is 5.5% in the defect 12 portion in the region A in FIG. 4, and it is detected that the defect 12 is present in this portion.

(第2実施形態)
上記第1実施形態では検査対象のタービンブレードを撮像してこれから輪郭近似線を設定したが、本実施形態では、図7のステップ201〜203で示すように、無欠陥のタービンブレードを撮像し、これから輪郭線を算出して輪郭近似線の設定を行う。ステップ204〜209は、第1実施形態における図6のステップ101,102,104〜107と同一である。このような手順によれば、欠陥検出精度をより向上させることができる。
(Second Embodiment)
In the first embodiment, the turbine blade to be inspected is imaged and the contour approximation line is set from this. However, in the present embodiment, as shown in steps 201 to 203 of FIG. 7, a defect-free turbine blade is imaged. From this, the contour line is calculated and the contour approximation line is set. Steps 204 to 209 are the same as steps 101, 102, 104 to 107 of FIG. 6 in the first embodiment. According to such a procedure, the defect detection accuracy can be further improved.

1…タービンブレード(検査対象物)、11,12…欠陥、L1,L2,L3,L4…輪郭近似線。 1 ... Turbine blade (object to be inspected), 11, 12 ... Defects, L1, L2, L3, L4 ... Contour approximation line.

Claims (5)

検査対象物の輪郭を検出し、当該輪郭に最も近い輪郭近似線と前記輪郭上の各輪郭点との差分値が所定値以上となった輪郭部分を欠陥として検出する欠陥検出方法であって、前記輪郭近似線を、無欠陥の前記検査対象物の輪郭から得るようにした欠陥検出方法A defect detection method that detects the contour of an object to be inspected and detects the contour portion where the difference value between the contour approximation line closest to the contour and each contour point on the contour is equal to or greater than a predetermined value as a defect . A defect detection method in which the contour approximation line is obtained from the contour of the inspection object without defects . 前記欠陥は前記検査対象物としてのタービンブレードの翼縁に生じた凸欠陥ないし凹欠陥である請求項1に記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the defect is a convex defect or a concave defect generated in the blade edge of the turbine blade as the inspection object. 前記輪郭近似線を、直線近似線ないし曲線近似線から選択する請求項1又は2に記載の欠陥検出方法。 The defect detection method according to claim 1 or 2 , wherein the contour approximation line is selected from a straight line approximation line or a curve approximation line. 前記検出された輪郭のうち直線部と曲線部についてそれぞれ検査範囲を設定し、これら検査範囲でそれぞれ直線近似線ないし曲線近似線を選択する請求項1ないしのいずれか一つに記載の欠陥検出方法。 The defect detection according to any one of claims 1 to 3 , wherein an inspection range is set for each of the straight line portion and the curved line portion of the detected contour, and a straight line approximation line or a curve approximation line is selected in each of these inspection ranges. Method. 前記差分値が所定の閾値Thを超えた場合に当該輪郭部分を欠陥として検出する請求項1ないしのいずれか一つに記載の欠陥検出方法。 The defect detection method according to any one of claims 1 to 4 , wherein when the difference value exceeds a predetermined threshold value Th, the contour portion is detected as a defect.
JP2017174722A 2017-09-12 2017-09-12 Defect detection method Active JP6943100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174722A JP6943100B2 (en) 2017-09-12 2017-09-12 Defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174722A JP6943100B2 (en) 2017-09-12 2017-09-12 Defect detection method

Publications (2)

Publication Number Publication Date
JP2019049507A JP2019049507A (en) 2019-03-28
JP6943100B2 true JP6943100B2 (en) 2021-09-29

Family

ID=65905548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174722A Active JP6943100B2 (en) 2017-09-12 2017-09-12 Defect detection method

Country Status (1)

Country Link
JP (1) JP6943100B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112085708B (en) * 2020-08-19 2023-07-07 浙江华睿科技股份有限公司 Method and equipment for detecting defects of straight line edges in outer contour of product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281055A (en) * 1996-04-09 1997-10-31 Hitachi Metals Ltd Inspection method for chip
JP4790223B2 (en) * 2004-01-20 2011-10-12 オリンパス株式会社 Endoscope device for measurement
JP2008002848A (en) * 2006-06-20 2008-01-10 Tateyama Machine Kk Flaw inspection device of rod-shaped rotary tool and flaw detection method of rod-shaped rotary tool
JP5422129B2 (en) * 2008-02-07 2014-02-19 株式会社キーエンス Defect detection apparatus, defect detection method, and computer program

Also Published As

Publication number Publication date
JP2019049507A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP5568277B2 (en) Pattern matching method and pattern matching apparatus
KR101522804B1 (en) Pattern matching apparatus and recording medium
EP2221578B1 (en) Tire shape examining method and device
CN110352431B (en) Image processing system, computer readable storage medium and system
JP5559957B2 (en) Pattern measuring method and pattern measuring device
US20180005363A1 (en) Pattern Matching Device and Computer Program for Pattern Matching
JP5063551B2 (en) Pattern matching method and image processing apparatus
JP5094033B2 (en) Pattern matching method and computer program for performing pattern matching
JP6634842B2 (en) Information processing apparatus, information processing method and program
JP4835481B2 (en) Resist pattern measuring method and resist pattern measuring apparatus
JP5647999B2 (en) Pattern matching apparatus, inspection system, and computer program
JP6943100B2 (en) Defect detection method
JP2020123042A5 (en)
JP5620741B2 (en) Information processing apparatus, information processing method, and program
JP7635931B2 (en) How to detect product defects
US20050061974A1 (en) Method of analyzing material structure using CBED
US10317203B2 (en) Dimension measuring apparatus and computer readable medium
US9230337B2 (en) Analysis of the digital image of the internal surface of a tyre and processing of false measurement points
TW201923923A (en) Determining the critical size variation of the pattern
JP4951591B2 (en) Matching method corresponding to disappearance of pattern and inspection apparatus using the same
JP5157575B2 (en) Defect detection method
JP6602096B2 (en) Defect detection device
JP2018036203A (en) Hole internal inspection device and hole internal inspection method
KR101215079B1 (en) Image Matching Method
JP5604208B2 (en) Defect detection apparatus and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6943100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150