[go: up one dir, main page]

JP6932865B1 - Reformer and reformer method for wafer edge - Google Patents

Reformer and reformer method for wafer edge Download PDF

Info

Publication number
JP6932865B1
JP6932865B1 JP2021045451A JP2021045451A JP6932865B1 JP 6932865 B1 JP6932865 B1 JP 6932865B1 JP 2021045451 A JP2021045451 A JP 2021045451A JP 2021045451 A JP2021045451 A JP 2021045451A JP 6932865 B1 JP6932865 B1 JP 6932865B1
Authority
JP
Japan
Prior art keywords
optical system
laser
mirror
irradiation
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021045451A
Other languages
Japanese (ja)
Other versions
JP2022144435A (en
Inventor
太良 津留
太良 津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2021045451A priority Critical patent/JP6932865B1/en
Priority to JP2021133140A priority patent/JP7221345B2/en
Application granted granted Critical
Publication of JP6932865B1 publication Critical patent/JP6932865B1/en
Publication of JP2022144435A publication Critical patent/JP2022144435A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】レーザ熱処理を用いたウエハエッジ部の改質装置において、ノッチ部のように複雑な3次元形状であっても、高精度かつ連続的にレーザ走査し、高品質で高速な表面処理を行う。【解決手段】レーザ光源10からのレーザ光5をノッチ部4へ照射する光学系を有し、光学系は、レーザ光5を反射して、側面がくの字状に組み合わされ凹面鏡となる円弧型であるミラー9へ導くポリゴンミラー7と、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、ミラー9で反射したレーザ光5をノッチ部4へ集光する集光レンズ8と、を備え、ポリゴンミラー7を回転することでノッチ部4へレーザ光5を走査して照射する。【選択図】図3PROBLEM TO BE SOLVED: To perform high-quality and high-speed surface treatment by continuously laser scanning with high accuracy even if it has a complicated three-dimensional shape such as a notch in a wafer edge reforming apparatus using laser heat treatment. .. An arc type having an optical system that irradiates a notch portion 4 with a laser beam 5 from a laser light source 10, and the optical system reflects the laser beam 5 and is combined in a dogleg shape on side surfaces to form a concave mirror. A polygon mirror 7 leading to the mirror 9 and a three-dimensional curved body having a plano-convex cross-sectional shape and a curved shape when viewed from above, and condensing the laser beam 5 reflected by the mirror 9 on the notch portion 4. A condenser lens 8 is provided, and the notch portion 4 is scanned and irradiated with the laser beam 5 by rotating the polygon mirror 7. [Selection diagram] Fig. 3

Description

本発明は、ウエハ表面の加工変質層である表面欠陥の修復と粗さの平坦化をレーザ熱処理により行う改質装置に係わり、特に、エッジ部に対してレーザ照射を行うウエハエッジ部の改質装置及び改質方法に関する。 The present invention relates to a reformer that repairs surface defects, which are a processing alteration layer of a wafer surface, and flattens the roughness by laser heat treatment, and in particular, a reformer for a wafer edge portion that irradiates an edge portion with a laser. And the reforming method.

半導体デバイス等の製作に使用されるシリコンウエハ等の半導体ウエハは、切削・研削・ラッピング・ポッリシングなどの機械加工プロセスによって表面加工が行われている。しかし、その表面及び内部は、加工変質層が形成され、一部の加工変質層には、マイクロクラック(微小亀裂)が含まれる。この内部クラック等の除去は、主にエッチングや化学機械研磨(CMP)等の化学的・機械的方法により行われている。 Semiconductor wafers such as silicon wafers used in the manufacture of semiconductor devices and the like are surface-processed by machining processes such as cutting, grinding, lapping, and polling. However, a processed alteration layer is formed on the surface and the inside thereof, and some of the processed alteration layers contain microcracks (microcracks). The removal of internal cracks and the like is mainly performed by chemical and mechanical methods such as etching and chemical mechanical polishing (CMP).

また、特許文献1、2は、面取り等の研削加工を行った後、シリコンウエハの表面加工変質層の修復と粗さの平坦化を、パルスレーザを照射して効率良く効果的に行うこと、レーザ光源に加えて、ミラー、ガルバノミラー、レンズ、プリズム、コリメーター、偏光子、ビームスプリッタ、のうちの少なくとも1種を含む光学機構を有したレーザ照射ユニットを用いることが記載されている。 Further, Patent Documents 1 and 2 describe that after performing grinding such as chamfering, repairing a surface-processed altered layer of a silicon wafer and flattening the roughness are efficiently and effectively performed by irradiating a pulse laser. It is described that a laser irradiation unit having an optical mechanism including at least one of a mirror, a galvanometer mirror, a lens, a prism, a collimator, a polarizer, and a beam splitter is used in addition to the laser light source.

そして、ノッチ部の凹所底部の円弧部分にレーザを照射する場合、シリコンウエハ自体を回転させながら照射する、あるいはレーザ照射方向を旋回させることが記載されている。さらに、ノッチ部凹所の直線部分にレーザを照射する場合、ウエハ送りユニットを利用して、シリコンウエハを直線部分の方向に沿って直線移動させることが記載されている。 Then, when irradiating the arc portion at the bottom of the recess portion of the notch portion with the laser, it is described that the silicon wafer itself is irradiated while being rotated, or the laser irradiation direction is swiveled. Further, it is described that when irradiating a straight portion of a notch portion recess with a laser, a wafer feed unit is used to linearly move a silicon wafer along the direction of the straight portion.

さらに、特許文献3は、レーザ加工装置において、光走査装置を構成する光学機器を簡便且つ高精度に配置可能にするため、光を角移動させながら放射する投光部と、投光部から放射された光を反射して所定の走査線上に導く1以上の反射部と、を備え、角移動するレーザ光を反射してからワーク上に設定された走査線に沿ってレーザ光を走査するように構成された光走査装置が記載されている。 Further, Patent Document 3 discloses a light projecting unit that emits light while moving the angle in an angular manner and a light projecting unit that emits light in order to enable easy and highly accurate arrangement of optical devices constituting the optical scanning device in the laser processing device. It is provided with one or more reflecting portions that reflect the light and guide it on a predetermined scanning line, and scan the laser beam along the scanning line set on the work after reflecting the angularly moving laser beam. The optical scanning apparatus configured in is described.

特開2020−131218号公報Japanese Unexamined Patent Publication No. 2020-131218 特開2020−141088号公報Japanese Unexamined Patent Publication No. 2020-1410888 特開2014−16398号公報Japanese Unexamined Patent Publication No. 2014-16398

上記従来技術において、特許文献1、2に記載のものでは、研削加工による研削痕等のダメージの修復、平坦化処理を行うことが可能となる。しかし、特許文献1、2に記載のものは、複雑な3次元形状であるノッチ部に対してレーザ照射中にワーク側となるシリコンウエハを移動させるものであり、ノッチ部に均一、かつ高速に表面処理することが極めて困難である。 In the above-mentioned prior art, those described in Patent Documents 1 and 2 can repair and flatten damage such as grinding marks by grinding. However, the ones described in Patent Documents 1 and 2 move the silicon wafer on the work side to the notch portion having a complicated three-dimensional shape during laser irradiation, and the silicon wafer on the work side is moved to the notch portion uniformly and at high speed. Surface treatment is extremely difficult.

また、特許文献3に記載のレーザ加工装置は、入射光路及び出射光路のアライメント作業が簡便になり、ひいては反射部を構成する機器のアライメント作業を簡便且つ高精度に行うことが可能となる。しかし、特許文献3に記載のレーザ加工装置を単に、ノッチ部に適用するだけでは、特許文献1、2と同様に、ノッチ部に均一、かつ高速に表面処理することに限界がある。 Further, the laser processing apparatus described in Patent Document 3 simplifies the alignment work of the incident optical path and the outgoing optical path, and by extension, the alignment work of the equipment constituting the reflecting portion can be performed easily and with high accuracy. However, if the laser processing apparatus described in Patent Document 3 is simply applied to the notch portion, there is a limit to uniform and high-speed surface treatment on the notch portion as in Patent Documents 1 and 2.

本発明の目的は、上記従来技術の課題を解決し、ノッチ部のように複雑な3次元形状にレーザ照射するにあたり、均一な表面処理として、ノッチ部全体に連続的(処理部に切れ目なく)にレーザ走査すること、高速な表面処理として、例えば、レーザ照射中にワーク側となるシリコンウエハの移動を最小限にして照射面に対して入射角が略垂直となること、照射条件を適切に定めること、等を実現して高品質で高速なウエハエッジ部の改質装置及び改質方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and to irradiate a complex three-dimensional shape such as a notch portion with a laser, as a uniform surface treatment, the entire notch portion is continuous (the processed portion is seamless). Laser scanning, high-speed surface treatment, for example, minimizing the movement of the silicon wafer on the work side during laser irradiation and making the incident angle substantially perpendicular to the irradiation surface, and appropriately setting the irradiation conditions It is an object of the present invention to provide a high-quality and high-speed reformer for a wafer edge portion and a reforming method by realizing the determination and the like.

上記目的を達成するため、本発明は、レーザ熱処理を用いたウエハエッジ部の改質装置において、レーザ光源からのレーザ光をノッチ部へ照射する光学系を有し、前記光学系は、前記レーザ光を反射して、側面がくの字状に組み合わされ凹面鏡となる円弧型であるミラーへ導くポリゴンミラーと、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、前記ミラーで反射した前記レーザ光を前記ノッチ部へ集光する集光レンズと、を備え、前記ポリゴンミラーが回転することで前記ノッチ部へ前記レーザ光を走査して照射するものである。 In order to achieve the above object, the present invention has an optical system for irradiating a notch portion with laser light from a laser light source in a wafer edge portion reforming apparatus using laser heat treatment, and the optical system is the laser light. A polygon mirror that reflects light and leads to an arc-shaped mirror that is combined in a dogleg shape to form a concave mirror, and a three-dimensional curved body that has a plano-convex cross-sectional shape and a curved shape when viewed from above. A condensing lens that collects the laser light reflected by the mirror to the notch portion is provided, and the polygon mirror rotates to scan and irradiate the notch portion with the laser light.

また、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記ノッチ部の照射区間を(1)片R部、(2)直線部、(3)ボトムR部、前記(2)直線部と傾き方向が異なる(2')直線部、前記(1)片R部と対称の(1')片R部に分け、前記光学系は3次元的に複数の階層ごとに構成され、前記レーザ光は前記階層ごとの前記光学系で前記照射区間ごとに照射されることが望ましい。
さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記レーザ光を前記階層ごとの前記光学系で前記照射区間ごとに照射するよう照射位置を制御する姿勢制御手段を備えることが望ましい。
Further, in the reformer of the wafer edge portion using the above laser heat treatment, the irradiation section of the notch portion is defined as (1) piece R portion, (2) straight portion, (3) bottom R portion, and (2) straight portion. The laser is divided into a (2') straight line portion having a different inclination direction and a (1') piece R portion symmetrical to the (1) piece R part, and the optical system is three-dimensionally configured for each of a plurality of layers. It is desirable that the light is emitted for each irradiation section by the optical system for each layer.
Further, it is desirable that the reformer of the wafer edge portion using the above laser heat treatment is provided with an attitude control means for controlling the irradiation position so that the laser light is irradiated for each irradiation section by the optical system for each layer. ..

さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記照射区間である(2)直線部、(2')直線部は、前記ミラーと前記ポリゴンミラーとの回転中心間の距離を大きくしてレーザ走査軌道が直線近似されることが望ましい。 Further, in the reformer of the wafer edge portion using the above laser heat treatment, the (2) straight portion and the (2') straight portion, which are the irradiation sections, determine the distance between the rotation centers of the mirror and the polygon mirror. It is desirable to increase the size so that the laser scanning trajectory is linearly approximated.

さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記レーザ光源を1台として、前記レーザ光を前記階層ごとの前記光学系へビームスプリッタで分岐させることが望ましい。 Further, in the reformer of the wafer edge portion using the above laser heat treatment, it is desirable to use the laser light source as one unit and split the laser light into the optical system for each layer by a beam splitter.

さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記レーザ光源を複数台として、前記レーザ光を前記階層ごとの前記光学系へ導くことが望ましい。 Further, in the reformer of the wafer edge portion using the above laser heat treatment, it is desirable to use a plurality of the laser light sources to guide the laser light to the optical system for each layer.

さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記ノッチ部の結晶方位に対応した累積照射エネルギを決定して前記レーザ光を照射することが望ましい。 Further, in the reformer of the wafer edge portion using the above laser heat treatment, it is desirable to determine the cumulative irradiation energy corresponding to the crystal orientation of the notch portion and irradiate the laser beam.

さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記ノッチ部の曲率に対応してエネルギ密度、スキャンピッチ、照射回数の少なくともいずれか一つを変えて前記照射することが望ましい。 Further, in the reformer of the wafer edge portion using the above laser heat treatment, it is desirable to change at least one of the energy density, the scan pitch, and the number of irradiations according to the curvature of the notch portion to perform the irradiation.

さらに、上記のレーザ熱処理を用いたウエハエッジ部の改質装置において、前記レーザ光は、ナノ秒パルスレーザの前記照射と共に、CW(連続)レーザ照射が併用されることが望ましい。 Further, in the reformer of the wafer edge portion using the above laser heat treatment, it is desirable that the laser light is used in combination with the CW (continuous) laser irradiation in addition to the irradiation of the nanosecond pulse laser.

本発明は、レーザ熱処理を用いたウエハエッジ部の改質方法であって、レーザ光を反射して、側面がくの字状に組み合わされ凹面鏡となる円弧型であるミラーへ導くポリゴンミラーと、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、前記ミラーで反射した前記レーザ光をノッチ部へ集光する集光レンズと、を備えた光学系を用いて、前記ポリゴンミラーを回転させることで前記ノッチ部へ前記レーザ光を走査して照射する。 The present invention is a method for modifying a wafer edge portion using laser heat treatment, in which a polygon mirror that reflects laser light and leads to an arcuate mirror whose side surfaces are combined in a dogleg shape to form a concave mirror and a cross-sectional shape. Is a three-dimensional curved body having a plano-convex shape and a curved shape when viewed from the upper surface, and using an optical system including a condensing lens that collects the laser light reflected by the mirror into a notch portion. By rotating the polygon mirror, the notch portion is scanned and irradiated with the laser beam.

本発明によれば、レーザ光を反射して、側面がくの字状に組み合わされ凹面鏡となる円弧型であるミラーへ導くポリゴンミラーと、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、ミラーで反射したレーザ光をノッチ部へ集光する集光レンズと、を備えた光学系を用いて、ポリゴンミラーを回転することでノッチ部へレーザ光を走査して照射するので、ノッチ部のように複雑な3次元形状であっても、高精度かつ連続的(処理部に切れ目なく)にレーザ走査することが可能となり、照射角度を変化させたり、レーザの種類を組み合わせたりして、結晶方位や表面のうねりなどの局所的な様相(状態)に好適な条件で高品質な表面処理を行うことができる。 According to the present invention, a polygon mirror that reflects laser light and guides it to an arc-shaped mirror whose side surfaces are combined in a dogleg shape to form a concave mirror, and a plano-convex cross-sectional shape that is curved when viewed from above. It is a three-dimensional curved surface, and the laser beam is scanned into the notch by rotating the polygon mirror using an optical system equipped with a condenser lens that collects the laser light reflected by the mirror into the notch. Even if it is a complicated three-dimensional shape such as a notch part, it is possible to perform laser scanning with high accuracy and continuously (without a break in the processing part), change the irradiation angle, and use the laser. By combining the types, high-quality surface treatment can be performed under conditions suitable for local aspects (states) such as crystal orientation and surface waviness.

ノッチ部4の形状(ノッチ形状)を示す図であり、(a)は平面図、(b)は一点鎖線部の断面図It is a figure which shows the shape (notch shape) of a notch part 4, (a) is a plan view, (b) is a cross-sectional view of a dash-dotted line part. 本発明の一実施形態によるノッチ部4の端面Tへのレーザ照射例を示す説明図Explanatory drawing which shows an example of laser irradiation to the end face T of the notch part 4 by one Embodiment of this invention. 本発明の一実施形態による光学系の基本構成を示す構成図A block diagram showing a basic configuration of an optical system according to an embodiment of the present invention. 本発明の一実施形態による光学系の基本構成を示す構成図A block diagram showing a basic configuration of an optical system according to an embodiment of the present invention. 第1実施形態の照射区間と光学系の階層関係を示す説明図(上面図)Explanatory drawing (top view) showing the hierarchical relationship between the irradiation section of the first embodiment and the optical system. 第1実施形態の照射区間と光学系の階層関係を示す説明図(構造図)Explanatory drawing (structural drawing) showing the hierarchical relationship between the irradiation section of the first embodiment and the optical system. 各照射区間におけるミラー9、集光レンズ8の形状とレーザ光5の関係を示す図The figure which shows the relationship between the shape of the mirror 9, the condenser lens 8 and the laser beam 5 in each irradiation section. 第1実施形態の光学系の構成を示す上面図Top view showing the configuration of the optical system of the first embodiment 第1実施形態の1層光学系による(1)片R部への照射を説明する上面図Top view for explaining (1) irradiation to the piece R portion by the one-layer optical system of the first embodiment. 第1実施形態の1層光学系による(1)片R部への照射を説明する断面から見た説明図Explanatory drawing seen from the cross section explaining the irradiation to (1) piece R part by the 1-layer optical system of 1st Embodiment 第1実施形態の2層光学系による(2)直線部への照射を説明する上面図Top view for explaining (2) irradiation to a straight line portion by the two-layer optical system of the first embodiment. 第1実施形態の2層光学系と2'層光学系との関係を示す断面から見た説明図Explanatory drawing seen from the cross section showing the relationship between the two-layer optical system and the 2'layer optical system of the first embodiment. 第1実施形態の3層光学系による(3)ボトムR部への照射を説明する上面図Top view for explaining (3) irradiation of the bottom R portion by the three-layer optical system of the first embodiment. 第1実施形態の3層光学系と3'層光学系との関係を示す断面から見た説明図Explanatory drawing seen from the cross section showing the relationship between the three-layer optical system and the 3'layer optical system of the first embodiment. 第1実施形態の姿勢制御手段12の動作を説明する斜視図Perspective view illustrating the operation of the attitude control means 12 of the first embodiment. 第2実施形態の照射区間と光学系の階層の関係を説明する図(構造図)A diagram (structural diagram) for explaining the relationship between the irradiation section of the second embodiment and the hierarchy of the optical system. 第2実施形態の2'層光学系による(2)直線部への照射を示す上面図Top view showing (2) irradiation of a straight line portion by the 2'layer optical system of the second embodiment. 第2実施形態における2層光学系と2'層光学系との関係を示す断面から見た説明図Explanatory drawing seen from the cross section showing the relationship between the two-layer optical system and the 2'layer optical system in the second embodiment. 各実施形態におけるシステム構成を示すブロック図Block diagram showing the system configuration in each embodiment

図1は、ノッチ部4の形状(ノッチ形状)を示す図であり、(a)は平面図、(b)は一点鎖線部の断面図である。ノッチ形状は複雑な3次元形状であり、その照射区間は、図1(a)の左端から(1)片R部、(2)直線部、(3)ボトムR部、そして(2)直線部と傾き方向が異なる(2')直線部、(1)片R部と対称の(1')片R部と続いている。また、断面形状は、シリコンウエハ1の上面2又は下面3と垂直となる端面T、端面Tの両端に接続する2つのR部R1、R2、2つのR部にそれぞれ接続する2つの斜面X1、X2がある。シリコンウエハ1の上面2又は下面3、端面T、R部R1、R2、斜面X1、X2は、結晶方位も異なる。 1A and 1B are views showing the shape (notch shape) of the notch portion 4, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view of a alternate long and short dash line portion. The notch shape is a complicated three-dimensional shape, and the irradiation section thereof is (1) one piece R part, (2) straight part, (3) bottom R part, and (2) straight part from the left end of FIG. 1A. It is followed by a (2') straight line portion having a different inclination direction, and a (1') piece R portion symmetrical with the (1) piece R portion. Further, the cross-sectional shape is an end surface T perpendicular to the upper surface 2 or the lower surface 3 of the silicon wafer 1, two R portions R1 and R2 connected to both ends of the end surface T, and two slopes X1 connected to the two R portions, respectively. There is X2. The crystal orientations of the upper surface 2 or lower surface 3 of the silicon wafer 1, the end faces T, the R portions R1 and R2, and the slopes X1 and X2 are also different.

ノッチ部4へのレーザ照射は、図1のような複雑な3次元形状の各照射区間に行い、光学部品、アクチュエータを用いることで、均一で高速なレーザ熱処理として構成される。均一な表面処理は、ノッチ部4全体に連続的(処理部に切れ目なく)に等速なレーザ走査(それが困難であれば、レーザ照射エネルギを速度変化に対して適切に調整する)、形状変化に対する連続的なレーザ照射によって達成される。高速な表面処理は、レーザ照射中のワーク側の移動を極力避けることで行われる。また、レーザ照射は、処理面(照射面)に対し略垂直(入射角として10〜15°以下)とする。さらに、照射条件は、結晶方位や形状に対応して決定する。 Laser irradiation to the notch portion 4 is performed in each irradiation section having a complicated three-dimensional shape as shown in FIG. 1, and by using optical components and actuators, a uniform and high-speed laser heat treatment is configured. Uniform surface treatment is a continuous (continuously seamless) constant velocity laser scan across the notch 4 (if that is difficult, adjust the laser irradiation energy appropriately for speed changes), shape. Achieved by continuous laser irradiation for changes. High-speed surface treatment is performed by avoiding movement of the work side during laser irradiation as much as possible. Further, the laser irradiation is substantially perpendicular to the processing surface (irradiation surface) (incident angle is 10 to 15 ° or less). Further, the irradiation conditions are determined according to the crystal orientation and shape.

図2は、ノッチ部4の端面Tへのレーザ照射例を示す説明図である。ノッチ部4の厚さ方向断面の各部(端面T、R部R1、R2、斜面X1、X2)照射は、ウエハを真空チャックするなどして固定し、少なくともピッチ方向(左右を軸として、上下に回転方向)に回転軸を持つチャックテーブルを、回転軸周りに回転させることで姿勢を変えて行う。ノッチ部4の端面Tへのレーザ照射において、レーザ照射部(1)片R部へのレーザ走査軌道は、図中(1)として矢印aから矢印bで示している。 FIG. 2 is an explanatory view showing an example of laser irradiation on the end surface T of the notch portion 4. Irradiation of each part (end face T, R part R1, R2, slope X1, X2) of the notch portion 4 in the thickness direction is fixed by vacuum chucking the wafer, and at least in the pitch direction (up and down with the left and right axes as axes). A chuck table having a rotation axis in the direction of rotation) is rotated around the rotation axis to change the posture. In the laser irradiation of the end surface T of the notch portion 4, the laser scanning trajectory of the laser irradiation portion (1) piece R portion is indicated by arrows a to b as (1) in the drawing.

レーザ照射部(2)直線部へのレーザ走査軌道は、図中(2)として矢印cから矢印dで示している。レーザ照射部(3)ボトムR部へのレーザ走査軌道は、図中(3)として矢印dから矢印eで示している。以下、レーザ照射部(2')直線部、(1')片R部へのレーザ照射は、同様に行い、いずれのレーザ照射も連続的、かつ照射面に垂直に行う。 The laser scanning trajectory to the laser irradiation section (2) straight section is indicated by arrows c to d as (2) in the figure. The laser scanning trajectory to the laser irradiation section (3) bottom R section is indicated by arrows d to e as (3) in the figure. Hereinafter, the laser irradiation to the laser irradiation unit (2') straight portion and the (1') piece R portion is performed in the same manner, and both laser irradiations are performed continuously and perpendicular to the irradiation surface.

ただし、(2')直線部、(1')片R部は、ノッチボトム位置に対して対称なので、(1)片R部、(2)直線部と同様であるが、同一平面にレーザ走査軌道があると、光学系を構成する部品が干渉する。例えば、(2')直線部へのレーザ走査軌道(2')は、(1)片R部へのレーザ走査軌道(1)及び(3)ボトムR部へのレーザ走査軌道(3)と干渉する。 However, since the (2') straight part and (1') piece R part are symmetrical with respect to the notch bottom position, they are the same as the (1) piece R part and (2) straight part, but the laser scanning trajectories are on the same plane. If there is, the parts constituting the optical system interfere with each other. For example, (2') the laser scanning trajectory to the straight section (2') interferes with (1) the laser scanning trajectory to the single R portion (1) and (3) the laser scanning trajectory to the bottom R portion (3). do.

その他、(1')片R部へのレーザ走査軌道(1')は、(2)直線部へのレーザ走査軌道(2)及び(3)ボトムR部へのレーザ走査軌道(3)と干渉する。したがって、光学系は、同一平面に光学系を組むと干渉するので、各照射区間に対応した複数の階層に分けて光学部品が干渉しないように配置する。また、(2)直線部、(2')直線部は、曲率の小さい円弧でレーザ走査軌道を近似する。 In addition, (1') the laser scanning trajectory to the single R portion (1') interferes with (2) the laser scanning trajectory to the straight portion (2) and (3) the laser scanning trajectory to the bottom R portion (3). do. Therefore, since the optical system interferes when the optical system is assembled on the same plane, the optical system is divided into a plurality of layers corresponding to each irradiation section and arranged so that the optical components do not interfere with each other. Further, the (2) straight line portion and the (2') straight line portion approximate the laser scanning trajectory with an arc having a small curvature.

ウエハエッジ部の改質装置は、要約すると以下の構成とする。光学系は、光学部品として偏向素子としてポリゴンミラー(回転多面鏡)6、7、ミラー(反射板)9、ビームスプリッタ38及び集光レンズ8を適切に配置し、ポリゴンミラー6、7をモータ等のアクチュエータにより高速に回転・制御する。これにより、光学系は、等速で高速なレーザ照射の走査(スキャン)を行うことが可能となる。 The reformer for the wafer edge portion has the following structure in summary. In the optical system, polygon mirrors (rotating multifaceted mirrors) 6 and 7, mirrors (reflectors) 9, beam splitter 38 and condenser lens 8 are appropriately arranged as deflection elements as optical components, and polygon mirrors 6 and 7 are motors and the like. Rotates and controls at high speed with the actuator of. This enables the optical system to scan the laser irradiation at a constant speed and at a high speed.

レーザ光源10から発射されたレーザ光5は、ノッチ形状に沿って連続的に高速でスキャンされる。また、光学系は、同一平面に組むと干渉するので、3次元的に複数の階層ごとに構成され、階層ごとの光学系でレーザ光5を照射区間ごとに照射する。レーザ光5は、照射区間に応じてビームスプリッタ38等で階層ごとに分岐させる。 The laser beam 5 emitted from the laser light source 10 is continuously scanned at high speed along the notch shape. Further, since the optical system interferes when assembled on the same plane, it is three-dimensionally configured for each of a plurality of layers, and the laser beam 5 is irradiated for each irradiation section by the optical system for each layer. The laser beam 5 is branched for each layer by a beam splitter 38 or the like according to the irradiation section.

レーザ光5は、ウエハの材質に応じた波長、パルス又は連続(CW)レーザを選択する。また、レーザ光5は、複数台組み合わせても良い。選択されたレーザ光5は、高速回転するポリゴンミラー7により偏向する。次に、レーザ光5は、ミラー9等を介してノッチ形状に対応して、例えば、照射面に対して入射角が略垂直となるように偏向される。レーザ照射角度は、表面状態に好適な条件となるように調整しても良い。さらに、偏向されたレーザ光5は、ノッチ形状に応じた形状とされた集光レンズ8で集光し、ノッチ部4へレーザ光5を走査して照射する。 The laser beam 5 selects a wavelength, pulsed or continuous (CW) laser depending on the material of the wafer. Further, a plurality of laser beams 5 may be combined. The selected laser beam 5 is deflected by the polygon mirror 7 that rotates at high speed. Next, the laser beam 5 is deflected through the mirror 9 or the like so that the incident angle is substantially perpendicular to the irradiation surface, for example, corresponding to the notch shape. The laser irradiation angle may be adjusted so as to be suitable for the surface condition. Further, the deflected laser beam 5 is condensed by a condenser lens 8 having a shape corresponding to the notch shape, and the notch portion 4 is scanned and irradiated with the laser beam 5.

上記により、ウエハエッジ部の改質装置は、3次元で形状変化するノッチ部4全体に高精度に均一な処理(高品質)を高速で行うことが可能となる。また、レーザ光5の照射角度を変化させたり、レーザ光5の種類を組み合わせたりして、結晶方位や表面のうねりなどの局所的な様相(状態)に好適な条件で表面処理を行うことができる。 As described above, the reformer of the wafer edge portion can perform uniform processing (high quality) with high accuracy on the entire notch portion 4 whose shape changes in three dimensions at high speed. Further, it is possible to perform surface treatment under conditions suitable for local aspects (states) such as crystal orientation and surface undulation by changing the irradiation angle of the laser beam 5 or combining the types of the laser beam 5. can.

図3及び図4は、光学系の基本構成を示す構成図である。図3は、図2で示したレーザ照射部(1)片R部、(3)ボトムR部、(1')片R部で使用する光学系の基本構成、図4は、同様に(2)直線部、(2')直線部で使用する光学系の基本構成である。 3 and 4 are configuration diagrams showing the basic configuration of the optical system. FIG. 3 shows the basic configuration of the optical system used in the laser irradiation unit (1) piece R part, (3) bottom R part, and (1') piece R part shown in FIG. 2, and FIG. 4 shows the same (2). ) This is the basic configuration of the optical system used in the straight section and (2') straight section.

図3において、レーザ光源10からのレーザ光5は、高速回転するポリゴンミラー6、7で反射してミラー9へ至る。ミラー9に入射するレーザ光5は、ポリゴンミラー7の回転中心を中心とする円弧を動くレーザ走査軌道となる。ミラー9で反射したレーザ光5は、集光レンズ8を通って集光されてノッチ部4を照射する。 In FIG. 3, the laser beam 5 from the laser light source 10 is reflected by the polygon mirrors 6 and 7 rotating at high speed and reaches the mirror 9. The laser beam 5 incident on the mirror 9 becomes a laser scanning trajectory that moves in an arc centered on the rotation center of the polygon mirror 7. The laser beam 5 reflected by the mirror 9 is condensed through the condenser lens 8 and irradiates the notch portion 4.

なお、集光レンズ8は、図示しているように断面形状が平凸型で上面から見て曲面形状となった3次元曲面体である。図4は、図3と同様であるが、ミラー9とポリゴンミラー6の回転中心間の距離を大きくして、レーザ走査軌道は、曲率の小さな円弧で直線近似する。 As shown in the figure, the condenser lens 8 is a three-dimensional curved surface having a plano-convex cross-sectional shape and a curved surface when viewed from the upper surface. FIG. 4 is the same as FIG. 3, but the distance between the rotation centers of the mirror 9 and the polygon mirror 6 is increased, and the laser scanning trajectory is linearly approximated by an arc having a small curvature.

図5、図6は、第1実施形態のレーザ光5の照射区間と光学系の階層関係を示す説明図であり、図5は上面図、図6は階層構造を示している。第1実施形態は、光学系の全体でレーザ光源10を1台とし、図3及び図4で示した光学系の基本構成を複数の階層に立体配置(特に、高さ方向に配置)して構成される。 5 and 6 are explanatory views showing the hierarchical relationship between the irradiation section of the laser beam 5 of the first embodiment and the optical system, FIG. 5 is a top view, and FIG. 6 shows a hierarchical structure. In the first embodiment, the entire optical system has one laser light source 10, and the basic configurations of the optical systems shown in FIGS. 3 and 4 are three-dimensionally arranged (particularly, arranged in the height direction) in a plurality of layers. It is composed.

図5において、図(a)、(b)は、シリコンウエハ1を上から見た上面側の図であり、(c)は、下から見た下面側の図である。図5(a)及び図6で示すように、(1)片R部の照射区間は1層光学系で照射する。(1')片R部の照射はノッチボトムとウエハ中心を通る線で対称なので、(1')片R部は、1層光学系に対し対称に配置した5層光学系で照射する。 5A and 5B are views of the upper surface of the silicon wafer 1 as viewed from above, and FIG. 5C is a view of the lower surface of the silicon wafer 1 as viewed from below. As shown in FIGS. 5 (a) and 6 (1), the irradiation section of the piece R portion is irradiated with a one-layer optical system. Since the irradiation of the (1') piece R portion is symmetrical with respect to the line passing through the notch bottom and the center of the wafer, the (1') piece R portion is irradiated with the five-layer optical system arranged symmetrically with respect to the one-layer optical system.

図5(b)及び図6で示すように、(2)直線部の照射区間は2層光学系で照射する。(2')直線部の照射は、ノッチボトムとウエハ中心を通る線で対称なので、2層光学系に対し対称に配置した4層光学系で照射する。図5(c)及び図6で示すように、2'層光学系は、シリコンウエハ1を挟んで2層光学系と鏡像となる2'層光学系をシリコンウエハ1の上面側と下面側とでペアとなるように配置する。 As shown in FIGS. 5 (b) and 6 (2), the irradiation section of the straight line portion is irradiated with a two-layer optical system. (2') Irradiation of the straight line portion is symmetrical with respect to the line passing through the notch bottom and the center of the wafer, so irradiation is performed with a four-layer optical system arranged symmetrically with respect to the two-layer optical system. As shown in FIGS. 5 (c) and 6 in the 2'layer optical system, the 2'layer optical system sandwiching the silicon wafer 1 and the 2'layer optical system forming a mirror image are formed on the upper surface side and the lower surface side of the silicon wafer 1. Arrange them in pairs.

以下、同様に、第1実施形態は、3層光学系と鏡像となる3'層光学系、4層光学系と鏡像となる4'層光学系、5層光学系と鏡像となる5'層光学系を配置する。なお、改質装置は、レーザ光5を各階層(1〜5、2'〜5'層光学系)の切替え手段11、及びシリコンウエハ1をピッチ方向に回転させて、照射位置を図1(b)で示した斜面X1、X2、端面T、R部R1、R2と切替える姿勢制御手段12を備えている。 Hereinafter, similarly, in the first embodiment, the three-layer optical system and the mirror image of the 3'layer optical system, the four-layer optical system and the mirror image of the 4'layer optical system, and the five-layer optical system and the mirror image of the 5'layer Place the optical system. In the reformer, the laser beam 5 is rotated in the pitch direction by rotating the switching means 11 of each layer (1 to 5, 2'to 5'layer optical system) and the silicon wafer 1, and the irradiation position is set in FIG. 1 (1). The attitude control means 12 for switching between the slopes X1 and X2, the end faces T, and the R portions R1 and R2 shown in b) is provided.

図7は、各照射区間におけるミラー9、集光レンズ8の形状とレーザ光5の関係を示す図である。図(a)は(1)片R部、(1')片R部、図(b)は(2)直線部、(2')直線部、図(c)は(3)ボトムR部である。図(a)において、レーザ光5は、側面がくの字状に組み合わされた凹面鏡となる円弧型のミラー9の上側に入射し、下側で反射して図3で示したように集光レンズ8へ至る。集光レンズ8は、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体である。 FIG. 7 is a diagram showing the relationship between the shapes of the mirror 9 and the condenser lens 8 and the laser beam 5 in each irradiation section. Fig. (A) shows (1) piece R part, (1') piece R part, figure (b) shows (2) straight part, (2') straight part, and figure (c) shows (3) bottom R part. be. In FIG. 3A, the laser beam 5 is incident on the upper side of the arcuate mirror 9 which is a concave mirror whose side surfaces are combined in a dogleg shape, is reflected on the lower side, and is a condenser lens as shown in FIG. Up to 8. The condenser lens 8 is a three-dimensional curved surface having a plano-convex cross-sectional shape and a curved surface shape when viewed from the upper surface.

図(b)において、ミラー9、集光レンズ8の上面より見た曲率は、図(a)よりも小さい円弧でレーザ光5のレーザ走査軌道は直線に近似される。図(c)は、図(a)と同様であるが、ミラー9、集光レンズ8の上面より見た曲率(あるいは焦点距離)は、(3)ボトムR部と(1)片R部との距離の違いに対応している。 In FIG. (B), the curvature seen from the upper surface of the mirror 9 and the condenser lens 8 is an arc smaller than that in FIG. (A), and the laser scanning trajectory of the laser beam 5 is approximated to a straight line. FIG. (C) is the same as FIG. (A), but the curvature (or focal length) seen from the upper surface of the mirror 9 and the condenser lens 8 is (3) the bottom R portion and (1) the piece R portion. Corresponds to the difference in distance.

図8は、第1実施形態の光学系の構成を示す上面図であり、1層光学系による(1)片R部の照射区間(図1、2参照)の照射例を示している。レーザ光源10からのレーザ光5は、図3で示した1層光学系としてポリゴンミラー21、固定ミラー23を介して高速回転するポリゴンミラー6、7で反射してミラー9へ至る。ノッチ部4への照射は、図3で説明したものと同様である。 FIG. 8 is a top view showing the configuration of the optical system of the first embodiment, and shows an example of irradiation of the irradiation section (see FIGS. 1 and 2) of the (1) piece R portion by the one-layer optical system. The laser beam 5 from the laser light source 10 is reflected by the polygon mirrors 6 and 7 rotating at high speed via the polygon mirror 21 and the fixed mirror 23 as the one-layer optical system shown in FIG. 3 and reaches the mirror 9. Irradiation to the notch portion 4 is the same as that described with reference to FIG.

レーザ光源10からのレーザ光5は、ポリゴンミラー21、回転ミラー22、ポリゴンミラー24、固定ミラー25、偏向ミラー26の光路を介して2層光学系へ導かれる。また、レーザ光5は、ポリゴンミラー21、回転ミラー22、ポリゴンミラー24、回転ミラー27、回転ミラー28、固定ミラー29、偏向ミラー30を介して3層光学系へ導かれる。さらに、回転ミラー28で分岐されたレーザ光5は、固定ミラー31、偏向ミラー32を介して4層光学系へ導かれる。そして、回転ミラー27で分岐されたレーザ光5は、固定ミラー33、34、偏向ミラー35を介して5層光学系へ導かれる。 The laser beam 5 from the laser light source 10 is guided to the two-layer optical system via the optical paths of the polygon mirror 21, the rotating mirror 22, the polygon mirror 24, the fixed mirror 25, and the deflection mirror 26. Further, the laser beam 5 is guided to the three-layer optical system via the polygon mirror 21, the rotating mirror 22, the polygon mirror 24, the rotating mirror 27, the rotating mirror 28, the fixed mirror 29, and the deflection mirror 30. Further, the laser beam 5 branched by the rotating mirror 28 is guided to the four-layer optical system via the fixed mirror 31 and the deflection mirror 32. Then, the laser beam 5 branched by the rotating mirror 27 is guided to the five-layer optical system via the fixed mirrors 33 and 34 and the deflection mirror 35.

1〜5層光学系への切替えは、ポリゴンミラー21、24の回転で行われる。また、ミラー9、集光レンズ8は、ポリゴンミラー7の回転中心を中心とする円弧に配置されている。したがって、ポリゴンミラー7の中心軸は、(1)片R部(図1、2参照)の円中心と一致している。 Switching to the 1- to 5-layer optical system is performed by rotating the polygon mirrors 21 and 24. Further, the mirror 9 and the condenser lens 8 are arranged in an arc centered on the rotation center of the polygon mirror 7. Therefore, the central axis of the polygon mirror 7 coincides with the center of the circle of (1) the piece R portion (see FIGS. 1 and 2).

図9は1層光学系による(1)片R部への照射を説明する上面図、図10は断面から見た説明図であり、(a)は断面図、(b)は集光レンズ8の斜視図である。なお、図9は、ノッチ部4を見やすくするためポリゴンミラー6、7の大きさを小さく描いている。また、(1')片R部の照射区間はノッチボトムとウエハ中心を通る線gで対称に、5層光学系として光学系を配置する。 9 is a top view for explaining (1) irradiation of the piece R portion by the one-layer optical system, FIG. 10 is an explanatory view seen from a cross section, (a) is a cross-sectional view, and (b) is a condenser lens 8. It is a perspective view of. In FIG. 9, the size of the polygon mirrors 6 and 7 is drawn small in order to make the notch portion 4 easy to see. Further, in the irradiation section of the (1') piece R portion, the optical system is arranged as a five-layer optical system symmetrically with the line g passing through the notch bottom and the center of the wafer.

図10において、レーザ光5は、ミラー9により直角に折り返され、シリコンウエハ1の厚み方向に光軸をずらしてノッチ部4へ照射される。なお、(2)直線部の照射区間は、ミラー9の曲面を大きくし、レーザ走査軌道を直線に近づける。また、(2')直線部の照射区間は、ノッチボトムとウエハ中心を通る線gで対称なので同様にする。 In FIG. 10, the laser beam 5 is folded back at a right angle by the mirror 9 and irradiates the notch portion 4 with the optical axis shifted in the thickness direction of the silicon wafer 1. In (2) the irradiation section of the straight line portion, the curved surface of the mirror 9 is enlarged to bring the laser scanning trajectory closer to the straight line. Further, since the irradiation section of the (2') straight line portion is symmetrical with respect to the line g passing through the notch bottom and the center of the wafer, the same applies.

図11は、2層光学系による(2)直線部への照射を説明する上面図である。偏向ミラー26で2層光学系へ導かれたレーザ光5は、ミラー36、ミラー37、ビームスプリッタ38を介してポリゴンミラー6へ導かれる。ノッチ部4への照射は、図3で説明したものと同様である。 FIG. 11 is a top view illustrating (2) irradiation of the straight line portion by the two-layer optical system. The laser beam 5 guided to the two-layer optical system by the deflection mirror 26 is guided to the polygon mirror 6 via the mirror 36, the mirror 37, and the beam splitter 38. Irradiation to the notch portion 4 is the same as that described with reference to FIG.

ビームスプリッタ38で分岐したレーザ光5は、2'層光学系へ導かれる。ポリゴンミラー7の中心軸は、(2)直線部の垂直二等分線fをウエハ中心を境界として左側に配置する。2'層光学系も同様であり、2'層光学系は、シリコンウエハ1を挟んで対称に配置する。つまり、2'層光学系は、2層光学系と鏡像対称となり、シリコンウエハ1を挟んで手のひらを合わせた関係となる。なお、3'層光学系、4'層光学系、5'層光学系も同様の関係の配置となる。 The laser beam 5 branched by the beam splitter 38 is guided to the 2'layer optical system. The central axis of the polygon mirror 7 is (2) arranged on the left side with the vertical bisector f of the straight line portion as a boundary with the center of the wafer as a boundary. The same applies to the 2'layer optical system, and the 2'layer optical system is arranged symmetrically with the silicon wafer 1 interposed therebetween. That is, the 2'layer optical system is mirror-image symmetric with the two-layer optical system, and the palms are put together with the silicon wafer 1 sandwiched between them. The 3'layer optical system, the 4'layer optical system, and the 5'layer optical system have the same arrangement.

図12は2層光学系と2'層光学系との関係を示す断面から見た説明図である。図12において、ビームスプリッタ38で分岐したレーザ光5は、一方が2層光学系(図12で上側)へ、他方がミラー39を介して2'層光学系(図12で下側)へ導かれる。ノッチ部4への照射は、2層光学系、2'層光学系共に、図3で説明したものと同様に集光レンズ8を通って行われる。 FIG. 12 is an explanatory view seen from a cross section showing the relationship between the two-layer optical system and the 2'layer optical system. In FIG. 12, the laser beam 5 branched by the beam splitter 38 is guided to the two-layer optical system (upper side in FIG. 12) on one side and to the 2'layer optical system (lower side in FIG. 12) via the mirror 39. It will be split. Irradiation to the notch portion 4 is performed through the condenser lens 8 in the same manner as described with reference to FIG. 3 in both the two-layer optical system and the 2'layer optical system.

図13は、3層光学系による(3)ボトムR部への照射を説明する上面図である。偏向ミラー30で3層光学系へ導かれたレーザ光5は、ミラー40、ミラー41、ビームスプリッタ42を介してポリゴンミラー6へ導かれる。ノッチ部4への照射は、図3で説明したものと同様である。ビームスプリッタ42で分岐したレーザ光5は、3'層光学系へ導かれる。ポリゴンミラー7の中心軸は、ノッチボトムの中心に配置する。3'層光学系も同様であり、3'層光学系は、シリコンウエハ1を挟んで対称に配置する。つまり、3'層光学系は、3層光学系と鏡像対称となり、シリコンウエハ1を挟んで手のひらを合わせた関係となる。 FIG. 13 is a top view illustrating (3) irradiation of the bottom R portion by the three-layer optical system. The laser beam 5 guided to the three-layer optical system by the deflection mirror 30 is guided to the polygon mirror 6 via the mirror 40, the mirror 41, and the beam splitter 42. Irradiation to the notch portion 4 is the same as that described with reference to FIG. The laser beam 5 branched by the beam splitter 42 is guided to the 3'layer optical system. The central axis of the polygon mirror 7 is arranged at the center of the notch bottom. The same applies to the 3'layer optical system, and the 3'layer optical system is arranged symmetrically with the silicon wafer 1 interposed therebetween. That is, the 3'layer optical system is mirror-image symmetric with the 3-layer optical system, and the palms are put together with the silicon wafer 1 sandwiched between them.

図14は、断面で見た3層光学系と3'層光学系との関係を示す説明図である。図14において、ビームスプリッタ42で分岐したレーザ光5は、一方が3層光学系(図14で上側)へ、他方がミラー43を介して3'層光学系(図14で下側)へ導かれる。ノッチ部4への照射は、3層光学系、3'層光学系共に、図3で説明したものと同様に集光レンズ8を通って行われる。 FIG. 14 is an explanatory diagram showing the relationship between the three-layer optical system and the 3'layer optical system as seen in cross section. In FIG. 14, the laser beam 5 branched by the beam splitter 42 is guided to the three-layer optical system (upper side in FIG. 14) on one side and to the 3'layer optical system (lower side in FIG. 14) via the mirror 43. It will be split. Irradiation to the notch portion 4 is performed through the condenser lens 8 in the same manner as described with reference to FIG. 3 in both the three-layer optical system and the 3'layer optical system.

図15は、姿勢制御手段12(図6参照)の動作を説明する斜視図である。姿勢制御手段12は、シリコンウエハ1をピッチ方向に回転させて、照射位置を図1(b)で示した斜面X1、X2、端面T、R部R1、R2と切替える。シリコンウエハ1は、真空チャック等で固定する。姿勢制御手段12は、ピッチ方向の回転軸を持つテーブルを図示のように回転させる。 FIG. 15 is a perspective view illustrating the operation of the attitude control means 12 (see FIG. 6). The attitude control means 12 rotates the silicon wafer 1 in the pitch direction to switch the irradiation position between the slopes X1 and X2, the end faces T, and the R portions R1 and R2 shown in FIG. 1 (b). The silicon wafer 1 is fixed with a vacuum chuck or the like. The attitude control means 12 rotates a table having a rotation axis in the pitch direction as shown in the figure.

そして、姿勢制御手段12は、斜面X1、X2、端面T、R部R1、R2のいずれかにレーザ光5の入射が垂直になるようにシリコンウエハ1の姿勢を変える。シリコンウエハ1の姿勢が定まった状態で、位置調整機構(例えば、ウエハテーブル:図示せず)は、YとZ方向にシリコンウエハ1を移動し照射距離と位置を調整する。 Then, the attitude control means 12 changes the attitude of the silicon wafer 1 so that the incident of the laser beam 5 is perpendicular to any of the slopes X1 and X2, the end faces T, and the R portions R1 and R2. With the posture of the silicon wafer 1 fixed, the position adjusting mechanism (for example, a wafer table: not shown) moves the silicon wafer 1 in the Y and Z directions to adjust the irradiation distance and the position.

斜面X1、X2、端面T、R部R1、R2への照射は、連続的(1)片R部、(2)直線部、(3)ボトムR部(図1参照)に1ラインずつ照射を行う。同じ面の次のラインへの照射は、Z軸で所定のスキャンピッチで送り照射していく。 Irradiation of slopes X1, X2, end faces T, R parts R1 and R2 is continuous (1) single R part, (2) straight part, and (3) bottom R part (see FIG. 1) one line at a time. conduct. Irradiation to the next line on the same surface is carried out by feeding and irradiating at a predetermined scan pitch on the Z axis.

図16は、第2実施形態のレーザ光5の照射区間と光学系の階層の関係を説明する図である。第2実施形態は、照射エネルギを増加させるため、光学系の全体でレーザ光源10、51の2台とし、図3及び図4で示した光学系の基本構成を複数の階層に立体配置して構成される。例えば、第2実施形態は、(2)直線部の照射区間の照射にレーザ光源10を2層光学系、レーザ光源51を2'層光学系で別々に使用する。 FIG. 16 is a diagram illustrating the relationship between the irradiation section of the laser beam 5 of the second embodiment and the hierarchy of the optical system. In the second embodiment, in order to increase the irradiation energy, two laser light sources 10 and 51 are used in the entire optical system, and the basic configurations of the optical system shown in FIGS. 3 and 4 are three-dimensionally arranged in a plurality of layers. It is composed. For example, in the second embodiment, (2) the laser light source 10 is used separately in the two-layer optical system and the laser light source 51 is used separately in the 2'layer optical system for irradiating the irradiation section of the straight line portion.

したがって、第2実施形態は、レーザ光5を1〜5層光学系の切替え手段11と2'〜5'層光学系の切替え手段50、及びシリコンウエハ1をピッチ方向に回転させて、照射位置を図1(b)で示した斜面X1、X2、端面T、R部R1、R2と切替える姿勢制御手段12を備えている。以下、同様に、第2実施形態は、3層光学系と鏡像となる3'層光学系、4層光学系と鏡像となる4'層光学系、5層光学系と鏡像となる5'層光学系を配置する。なお、レーザ光源10、51は、2台に限らず、複数台を設けて、レーザ光源10を適宜分岐して各光学系へ導いても良く、各階層ごとに設けても良い。 Therefore, in the second embodiment, the laser beam 5 is rotated in the pitch direction by rotating the switching means 11 of the 1st to 5th layer optical system, the switching means 50 of the 2'to 5'layer optical system, and the silicon wafer 1 to the irradiation position. Is provided with the attitude control means 12 for switching between the slopes X1 and X2, the end faces T, and the R portions R1 and R2 shown in FIG. 1 (b). Hereinafter, similarly, in the second embodiment, the three-layer optical system and the mirror image of the 3'layer optical system, the four-layer optical system and the mirror image of the 4'layer optical system, and the five-layer optical system and the mirror image of the 5'layer Place the optical system. The laser light sources 10 and 51 are not limited to two units, and a plurality of units may be provided, and the laser light source 10 may be appropriately branched and guided to each optical system, or may be provided for each layer.

図17は、第2実施形態の光学系の構成を示す上面図であり、2'層光学系による(2)直線部(図1、2参照)の照射を示している。なお、1層光学系は、第1実施形態と同様である。2'層光学系は、2層光学系とペアとなって(2)直線部を照射する。レーザ光源51からのレーザ光5は、図4で示した2'層光学系としてポリゴンミラー52、固定ミラー53を介して高速回転するポリゴンミラー6、7で反射してミラー9へ至る。ノッチ部4への照射は、図4で説明したものと同様である。 FIG. 17 is a top view showing the configuration of the optical system of the second embodiment, and shows irradiation of the (2) straight line portion (see FIGS. 1 and 2) by the 2'layer optical system. The one-layer optical system is the same as that of the first embodiment. The 2'layer optical system is paired with the two-layer optical system and (2) irradiates the linear portion. The laser beam 5 from the laser light source 51 is reflected by the polygon mirrors 6 and 7 rotating at high speed via the polygon mirror 52 and the fixed mirror 53 as the 2'layer optical system shown in FIG. 4 and reaches the mirror 9. Irradiation to the notch portion 4 is the same as that described with reference to FIG.

レーザ光源51からのレーザ光5は、ポリゴンミラー52、回転ミラー54、ポリゴンミラー55、固定ミラー56、偏向ミラー57の光路を介して3'層光学系へ導かれる。また、レーザ光5は、ポリゴンミラー52、回転ミラー54、ポリゴンミラー55、固定ミラー58、回転ミラー61、固定ミラー59、偏向ミラー60を介して4'層光学系へ導かれる。さらに、回転ミラー61で分岐されたレーザ光5は、固定ミラー63、偏向ミラー62を介して5'層光学系へ導かれる。 The laser beam 5 from the laser light source 51 is guided to the 3'layer optical system through the optical paths of the polygon mirror 52, the rotating mirror 54, the polygon mirror 55, the fixed mirror 56, and the deflection mirror 57. Further, the laser beam 5 is guided to the 4'layer optical system via the polygon mirror 52, the rotating mirror 54, the polygon mirror 55, the fixed mirror 58, the rotating mirror 61, the fixed mirror 59, and the deflection mirror 60. Further, the laser beam 5 branched by the rotating mirror 61 is guided to the 5'layer optical system via the fixed mirror 63 and the deflection mirror 62.

図18は、第2実施形態における2層光学系と2'層光学系との関係を示す断面説明図である。第2実施形態は、レーザ光源10、51を用いるので、第1実施形態のビームスプリッタ38(図12参照)が不要となる。レーザ光源10からのレーザ光5が2層光学系(図18で上側)へ、レーザ光源51からのレーザ光5が2'層光学系(図18で下側)へ導かれる。ノッチ部4への照射は、2層光学系、2'層光学系共に、図3で説明したものと同様に集光レンズ8を通って行われる。 FIG. 18 is a cross-sectional explanatory view showing the relationship between the two-layer optical system and the 2'layer optical system in the second embodiment. Since the laser light sources 10 and 51 are used in the second embodiment, the beam splitter 38 (see FIG. 12) of the first embodiment becomes unnecessary. The laser light 5 from the laser light source 10 is guided to the two-layer optical system (upper side in FIG. 18), and the laser light 5 from the laser light source 51 is guided to the 2'layer optical system (lower side in FIG. 18). Irradiation to the notch portion 4 is performed through the condenser lens 8 in the same manner as described with reference to FIG. 3 in both the two-layer optical system and the 2'layer optical system.

図19は、各実施形態におけるシステム構成を示すブロック図である。制御部70は、レーザ光源10(図3、8等参照)に対しては、照射部の結晶方位や形状に対応して照射条件を決定して照射の開始、停止、切替え、スキャンピッチ等を制御する。例えば、制御部70は、照射箇所(ノッチ部4及びそれ以外)の結晶方位に対応した累積照射エネルギを決定してレーザ光5(例えば、ナノ秒パルスレーザ)を照射する。なお、制御部70は、ナノ秒パルスレーザの照射と共に、CW(連続)レーザ照射を併用しても良い。 FIG. 19 is a block diagram showing a system configuration in each embodiment. The control unit 70 determines the irradiation conditions for the laser light source 10 (see FIGS. 3 and 8) according to the crystal orientation and shape of the irradiation unit, and starts, stops, switches, scan pitch, and the like. Control. For example, the control unit 70 determines the cumulative irradiation energy corresponding to the crystal orientation of the irradiation location (notch portion 4 and other parts) and irradiates the laser beam 5 (for example, a nanosecond pulse laser). The control unit 70 may use CW (continuous) laser irradiation in combination with nanosecond pulse laser irradiation.

特に、シリコンウエハ1の上面2又は下面3、端面T、斜面X1、X2は、結晶方位が異なるので、結晶方位に対応した照射条件を定める。また、レーザ光源10は、波長λ=355、532、785nmのいずれかのナノ秒パルスレーザが望ましい。そして、パルス幅1パルス当たりのエネルギは、0.5μジュールから30μジュール、エネルギ密度が0.125J/cmから7.5J/cmが望ましい。 In particular, since the crystal orientations of the upper surface 2 or the lower surface 3 of the silicon wafer 1, the end faces T, the slopes X1 and X2 are different, the irradiation conditions corresponding to the crystal orientations are determined. The laser light source 10 is preferably a nanosecond pulse laser having a wavelength of λ = 355, 532, or 785 nm. The energy per pulse width is preferably 0.5 μjoule to 30 μjoule, and the energy density is 0.125 J / cm 2 to 7.5 J / cm 2.

また、ナノ秒パルスレーザは、照射箇所の曲率に対応してエネルギ密度、スキャンピッチ、照射回数の少なくともいずれか一つを変えて照射する。例えば、必要な照射エネルギは、Si(110)>Si(100)>Si(111)の大小関係となり、結晶方位に対応した照射条件を定める。結晶方位に対応した照射条件は、Si(110)面のエネルギは、Si(100)面のおおよそ1.3倍、Si(111)面は、Si(100)面と同程度から0.7倍の照射エネルギとすることなどである。 Further, the nanosecond pulse laser irradiates by changing at least one of the energy density, the scan pitch, and the number of irradiations according to the curvature of the irradiation portion. For example, the required irradiation energy has a magnitude relationship of Si (110)> Si (100)> Si (111), and the irradiation conditions corresponding to the crystal orientation are determined. Under the irradiation conditions corresponding to the crystal orientation, the energy of the Si (110) plane is about 1.3 times that of the Si (100) plane, and the energy of the Si (111) plane is about the same as that of the Si (100) plane to 0.7 times. It is used as the irradiation energy of.

また、制御部70は、偏向素子(アクチェーター)71として、ポリゴンミラー6、7等(図3等参照)、回転ミラー22、27、28等(図8参照)をレーザ光5の照射区間、光学系の階層、スキャンピッチ、等の切替え等を制御する。さらに、制御部70は、シリコンウエハ1の姿勢を姿勢制御手段12(図6参照)へ指令して、ピッチ方向の回転、鉛直方向及び水平方向の位置を制御する。なお、ミラー9等(図3等参照)、集光レンズ8等は、固定である。 Further, the control unit 70 uses polygon mirrors 6, 7 and the like (see FIG. 3 and the like) and rotary mirrors 22, 27 and 28 and the like (see FIG. 8) as the deflection element (actuator) 71 for the irradiation section of the laser beam 5 and the optics. Controls switching of system hierarchy, scan pitch, etc. Further, the control unit 70 commands the posture of the silicon wafer 1 to the posture control means 12 (see FIG. 6) to control the rotation in the pitch direction, the vertical direction, and the horizontal position. The mirror 9 and the like (see FIG. 3 and the like), the condenser lens 8 and the like are fixed.

以上、集光レンズ8は、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、レーザ光5は、ノッチ部4へ集光する光学系を用いる。そして、偏向素子(アクチェーター)71は、照射区間、光学系の階層、スキャンピッチ、等の切替え等を制御するので、ノッチ部4のように複雑な3次元形状であっても、高精度かつ連続的(処理部に切れ目なく)にレーザ走査することが可能となる。また、照射角度を変化させたり、レーザの種類を組み合わせたりして、結晶方位や表面のうねりなどの局所的な様相(状態)に好適な条件で高品質で高速な表面処理を行うことが可能となる。 As described above, the condensing lens 8 is a three-dimensional curved surface having a plano-convex cross-sectional shape and a curved surface shape when viewed from the upper surface, and the laser beam 5 uses an optical system that condenses light on the notch portion 4. Since the deflection element (actuator) 71 controls switching of the irradiation section, the hierarchy of the optical system, the scan pitch, etc., even if it has a complicated three-dimensional shape such as the notch portion 4, it is highly accurate and continuous. It is possible to perform laser scanning on target (without a break in the processing unit). In addition, by changing the irradiation angle or combining the types of lasers, it is possible to perform high-quality and high-speed surface treatment under conditions suitable for local aspects (states) such as crystal orientation and surface waviness. It becomes.

1…シリコンウエハ
2…上面
3…下面
4…ノッチ部
5…レーザ光
6、7、21、24、52、55…ポリゴンミラー
8…集光レンズ
9、36、37、39、40、41、43…ミラー
10、51…レーザ光源
11、50…切替え手段
12…姿勢制御手段
22、27、28、54、61…回転ミラー
23、25、29、31、33、34、53、56、58、59、63…固定ミラー
26、30、32、35、57、60、62…偏向ミラー
38、42…ビームスプリッタ
70…制御部
71…偏向素子
T…端面
X1、X2…斜面
R1、R2…R部
f…垂直二等分線
1 ... Silicon wafer 2 ... Top surface 3 ... Bottom surface 4 ... Notch 5 ... Laser beam 6, 7, 21, 24, 52, 55 ... Polygon mirror 8 ... Condensing lens 9, 36, 37, 39, 40, 41, 43 ... Mirrors 10, 51 ... Laser light sources 11, 50 ... Switching means 12 ... Attitude control means 22, 27, 28, 54, 61 ... Rotating mirrors 23, 25, 29, 31, 33, 34, 53, 56, 58, 59. , 63 ... Fixed mirror 26, 30, 32, 35, 57, 60, 62 ... Deflection mirror 38, 42 ... Beam splitter 70 ... Control unit 71 ... Deflection element T ... End surface X1, X2 ... Slope R1, R2 ... R unit f … Vertical bisector

Claims (9)

レーザ熱処理を用いたウエハエッジ部の改質装置において、
レーザ光源からのレーザ光をノッチ部へ照射する光学系を有し、
前記光学系は、
前記レーザ光を反射して、側面がくの字状に組み合わされ凹面鏡となる円弧型であるミラーへ導くポリゴンミラーと、
断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、前記ミラーで反射した前記レーザ光を前記ノッチ部へ集光する集光レンズと、
を備え、前記ポリゴンミラーが回転することで前記ノッチ部へ前記レーザ光を走査して照射し、前記ノッチ部の結晶方位に対応した累積照射エネルギを決定して前記レーザ光を前記照射することを特徴とするウエハエッジ部の改質装置。
In a wafer edge reformer using laser heat treatment
It has an optical system that irradiates the notch with laser light from a laser light source.
The optical system is
A polygon mirror that reflects the laser beam and guides it to an arc-shaped mirror whose side surfaces are combined in a dogleg shape to form a concave mirror.
A three-dimensional curved body having a plano-convex cross-sectional shape and a curved shape when viewed from above, and a condensing lens that collects the laser light reflected by the mirror to the notch portion.
By rotating the polygon mirror, the laser beam is scanned and irradiated to the notch portion, and the cumulative irradiation energy corresponding to the crystal orientation of the notch portion is determined to irradiate the laser beam. A featured wafer edge reformer.
前記ノッチ部の照射区間を(1)片R部、(2)直線部、(3)ボトムR部、前記(2)直線部と傾き方向が異なる(2')直線部、前記(1)片R部と対称の(1')片R部に分け、前記光学系は3次元的に複数の階層ごとに構成され、前記レーザ光は前記階層ごとの前記光学系で前記照射区間ごとに照射されることを特徴とする請求項1に記載のウエハエッジ部の改質装置。 The irradiation section of the notch portion is divided into (1) piece R portion, (2) straight portion, (3) bottom R portion, (2) straight portion having a different inclination direction from the straight portion, and (1) piece. Divided into (1') piece R parts symmetrical to the R part, the optical system is three-dimensionally configured for each of a plurality of layers, and the laser beam is irradiated for each irradiation section by the optical system for each layer. The reforming device for a wafer edge portion according to claim 1, wherein the wafer edge portion is modified. 前記レーザ光を前記階層ごとの前記光学系で前記照射区間ごとに照射するよう照射位置を制御する姿勢制御手段を備えることを特徴とする請求項2に記載のウエハエッジ部の改質装置。 The reforming device for a wafer edge portion according to claim 2, further comprising an attitude control means for controlling an irradiation position so that the laser beam is irradiated for each irradiation section by the optical system for each layer. 前記照射区間である前記(2)直線部、前記(2')直線部は、前記ミラーと前記ポリゴンミラーとの回転中心間の距離を大きくしてレーザ走査軌道が直線近似されることを特徴とする請求項2又は3に記載のウエハエッジ部の改質装置。 The (2) straight line portion and the (2') straight line portion, which are the irradiation sections, are characterized in that the laser scanning trajectory is linearly approximated by increasing the distance between the rotation centers of the mirror and the polygon mirror. The reformer for a wafer edge portion according to claim 2 or 3. 前記レーザ光源を1台として、前記レーザ光を前記階層ごとの前記光学系へビームスプリッタで分岐させることを特徴とする請求項2から4のいずれか1項に記載のウエハエッジ部の改質装置。 The reforming device for a wafer edge portion according to any one of claims 2 to 4, wherein the laser light source is used as one unit, and the laser light is split into the optical system for each layer by a beam splitter. 前記レーザ光源を複数台として、前記レーザ光を前記階層ごとの前記光学系へ導くことを特徴とする請求項2から4のいずれか1項に記載のウエハエッジ部の改質装置。 The reformer for a wafer edge portion according to any one of claims 2 to 4, wherein a plurality of the laser light sources are used to guide the laser light to the optical system for each layer. 前記ノッチ部の曲率に対応してエネルギ密度、スキャンピッチ、照射回数の少なくともいずれか一つを変えて前記照射することを特徴とする請求項1からのいずれか1項に記載のウエハエッジ部の改質装置。 The wafer edge portion according to any one of claims 1 to 6 , wherein at least one of the energy density, the scan pitch, and the number of irradiations is changed according to the curvature of the notch portion. Reformer. 前記レーザ光は、ナノ秒パルスレーザの前記照射と共に、CW(連続)レーザ照射が併用されることを特徴とする請求項1からのいずれか1項に記載のウエハエッジ部の改質装置。 The reformer for a wafer edge portion according to any one of claims 1 to 7 , wherein the laser beam is used in combination with the irradiation of a nanosecond pulse laser and CW (continuous) laser irradiation. レーザ熱処理を用いたウエハエッジ部の改質方法であって、
レーザ光を反射して、側面がくの字状に組み合わされ凹面鏡となる円弧型であるミラーへ導くポリゴンミラーと、断面形状が平凸型で上面から見て曲面形状となった3次元曲面体であり、前記ミラーで反射した前記レーザ光をノッチ部へ集光する集光レンズと、を備えた光学系を用いて、前記ポリゴンミラーを回転させることで前記ノッチ部へ前記レーザ光を走査して照射し、前記ノッチ部の結晶方位に対応した累積照射エネルギを決定して前記レーザ光を前記照射することを特徴とするウエハエッジ部の改質方法。
This is a method for modifying the edge of a wafer using laser heat treatment.
A polygon mirror that reflects laser light and guides it to an arc-shaped mirror that is combined in a dogleg shape to form a concave mirror, and a three-dimensional curved body that has a plano-convex cross-sectional shape and a curved shape when viewed from above. The laser beam is scanned into the notch by rotating the polygon mirror using an optical system including a condensing lens that collects the laser light reflected by the mirror into the notch. A method for modifying a wafer edge portion, which comprises irradiating, determining cumulative irradiation energy corresponding to the crystal orientation of the notch portion, and irradiating the laser beam.
JP2021045451A 2021-03-19 2021-03-19 Reformer and reformer method for wafer edge Active JP6932865B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021045451A JP6932865B1 (en) 2021-03-19 2021-03-19 Reformer and reformer method for wafer edge
JP2021133140A JP7221345B2 (en) 2021-03-19 2021-08-18 Wafer edge modification apparatus and modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021045451A JP6932865B1 (en) 2021-03-19 2021-03-19 Reformer and reformer method for wafer edge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021133140A Division JP7221345B2 (en) 2021-03-19 2021-08-18 Wafer edge modification apparatus and modification method

Publications (2)

Publication Number Publication Date
JP6932865B1 true JP6932865B1 (en) 2021-09-08
JP2022144435A JP2022144435A (en) 2022-10-03

Family

ID=77549965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021045451A Active JP6932865B1 (en) 2021-03-19 2021-03-19 Reformer and reformer method for wafer edge

Country Status (1)

Country Link
JP (1) JP6932865B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7596191B2 (en) 2021-03-24 2024-12-09 株式会社東京精密 Method for modifying the surface of silicon wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167700A (en) * 1997-08-22 1999-03-09 Hamamatsu Photonics Kk Manufacture of semiconductor wafer
WO2009078324A1 (en) * 2007-12-19 2009-06-25 Mitsuboshi Diamond Industrial Co., Ltd. Method for chamfering/machining brittle material substrate and chamfering/machining apparatus
WO2009157319A1 (en) * 2008-06-25 2009-12-30 三星ダイヤモンド工業株式会社 Chamfering apparatus
JP2020131218A (en) * 2019-02-15 2020-08-31 株式会社東京精密 Laser-irradiating restoration device for silicon wafer surface after grinding and restoration method
JP2020141088A (en) * 2019-03-01 2020-09-03 株式会社東京精密 Grinding repair device and grinding repair method for surface of silicon wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167700A (en) * 1997-08-22 1999-03-09 Hamamatsu Photonics Kk Manufacture of semiconductor wafer
WO2009078324A1 (en) * 2007-12-19 2009-06-25 Mitsuboshi Diamond Industrial Co., Ltd. Method for chamfering/machining brittle material substrate and chamfering/machining apparatus
WO2009157319A1 (en) * 2008-06-25 2009-12-30 三星ダイヤモンド工業株式会社 Chamfering apparatus
JP2020131218A (en) * 2019-02-15 2020-08-31 株式会社東京精密 Laser-irradiating restoration device for silicon wafer surface after grinding and restoration method
JP2020141088A (en) * 2019-03-01 2020-09-03 株式会社東京精密 Grinding repair device and grinding repair method for surface of silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7596191B2 (en) 2021-03-24 2024-12-09 株式会社東京精密 Method for modifying the surface of silicon wafer

Also Published As

Publication number Publication date
JP2022144435A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
US8415585B2 (en) Laser machining systems and methods with multiple beamlet laser beam delivery systems
US9931712B2 (en) Laser drilling and trepanning device
EP1228835B1 (en) System and method for remote laser welding
JP4691166B2 (en) Scanner head and processing equipment using the scanner head
US20090255911A1 (en) Laser scribing platform and hybrid writing strategy
JP2013500867A (en) Latitudinal contour scribing, stitching, and simplified laser and scanner control
JPH02104487A (en) Laser beam machine
JP6896193B1 (en) Laminated modeling equipment
JPH10328873A (en) Laser beam machining device
JP2023104449A (en) Planarization system for semiconductor wafer surface
JP6932865B1 (en) Reformer and reformer method for wafer edge
JP5394172B2 (en) Processing method
JP7221345B2 (en) Wafer edge modification apparatus and modification method
KR100603904B1 (en) Multi laser processing equipment using polygon mirror
KR100609831B1 (en) Multi laser processing equipment
KR102189459B1 (en) Method for drilling hole and the drilling apparatus
JP7186898B2 (en) Additive manufacturing equipment
JP6917727B2 (en) Laser processing equipment
JP2023104450A (en) Planarization method for semiconductor wafer surface
JP5063402B2 (en) Laser processing equipment
KR100664573B1 (en) Laser processing apparatus and method
RU2283738C1 (en) Device for laser working
US20220088704A1 (en) Multi-source laser head for laser engraving
CN117564797A (en) Laser galvanometer device for laser-assisted milling of complex curved surface
JP2000263268A (en) Laser beam machining device and machining method using same device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210818

R150 Certificate of patent or registration of utility model

Ref document number: 6932865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250