[go: up one dir, main page]

JP6920823B2 - Substrate with reflective member and its manufacturing method - Google Patents

Substrate with reflective member and its manufacturing method Download PDF

Info

Publication number
JP6920823B2
JP6920823B2 JP2017008416A JP2017008416A JP6920823B2 JP 6920823 B2 JP6920823 B2 JP 6920823B2 JP 2017008416 A JP2017008416 A JP 2017008416A JP 2017008416 A JP2017008416 A JP 2017008416A JP 6920823 B2 JP6920823 B2 JP 6920823B2
Authority
JP
Japan
Prior art keywords
substrate
reflective member
semiconductor laser
axis
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017008416A
Other languages
Japanese (ja)
Other versions
JP2018117088A (en
Inventor
純二 土屋
純二 土屋
鳥海 和宏
和宏 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Original Assignee
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd, Citizen Fine Device Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2017008416A priority Critical patent/JP6920823B2/en
Publication of JP2018117088A publication Critical patent/JP2018117088A/en
Application granted granted Critical
Publication of JP6920823B2 publication Critical patent/JP6920823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、発光素子から出射された光を反射するための反射部材を備える反射部材付基板及びその製造方法に関する。 The present invention relates to a substrate with a reflective member including a reflective member for reflecting light emitted from a light emitting element, and a method for manufacturing the same.

近年、医療機器、光通信、光ディスク等の光応用技術が大きく進歩しており、その光応用技術に利用される電子機器は大きな進化をとげている。特に発光装置は高出力化、小型化、低コスト化が求められている。
従来より、小型化した発光装置として、基板上に反射部材と発光素子を搭載した発光装置が提供されている。
In recent years, optical application technologies such as medical devices, optical communications, and optical disks have made great progress, and the electronic devices used in the optical application technologies have made great progress. In particular, light emitting devices are required to have high output, small size, and low cost.
Conventionally, as a miniaturized light emitting device, a light emitting device in which a reflecting member and a light emitting element are mounted on a substrate has been provided.

図14は、従来の発光装置の一例であり、発光素子である半導体レーザーをパッケージ化した半導体レーザーパッケージを説明するためのものである。
半導体レーザーパッケージ900は、容器904に半導体レーザーチップ910を搭載し、容器904を透明蓋体905により封止することで構成されている(例えば特許文献1参照。)。
半導体レーザーチップ910は、接合膜906aと906bが形成された基板902、半導体レーザー901、及び反射部材903からなる。
基板902に形成された接合膜906aは、半導体レーザー901と基板902との接合膜であり、接合膜906bは、反射部材903と基板902との接合膜である。接合膜906a、906bにより、基板902上に半導体レーザー901と反射部材903とが固定されている。反射部材903としては、シリコーン等の樹脂系材料に白色顔料等のフィラーを混ぜ合わせたものが広く使われている。
半導体レーザー901は、その出射口であるレーザー出射口901Eが、反射部材903の反射面903Sと対向するように基板902上に配置されている。
また、半導体レーザー901、基板902及び容器904には、それぞれを電気的に接続するための導電膜(不図示)が形成されており、それぞれに形成された導電膜はワイヤー915a、915bにより電気的に接続されている。
FIG. 14 is an example of a conventional light emitting device, and is for explaining a semiconductor laser package in which a semiconductor laser as a light emitting element is packaged.
The semiconductor laser package 900 is configured by mounting a semiconductor laser chip 910 on a container 904 and sealing the container 904 with a transparent lid 905 (see, for example, Patent Document 1).
The semiconductor laser chip 910 includes a substrate 902 on which the bonding films 906a and 906b are formed, a semiconductor laser 901, and a reflection member 903.
The bonding film 906a formed on the substrate 902 is a bonding film between the semiconductor laser 901 and the substrate 902, and the bonding film 906b is a bonding film between the reflective member 903 and the substrate 902. The semiconductor laser 901 and the reflecting member 903 are fixed on the substrate 902 by the bonding films 906a and 906b. As the reflective member 903, a resin-based material such as silicone mixed with a filler such as a white pigment is widely used.
The semiconductor laser 901 is arranged on the substrate 902 so that the laser emission port 901E, which is the emission port thereof, faces the reflection surface 903S of the reflection member 903.
Further, a conductive film (not shown) for electrically connecting each of the semiconductor laser 901, the substrate 902, and the container 904 is formed, and the conductive films formed on the respective conductive films are electrically formed by wires 915a and 915b. It is connected to the.

半導体レーザーパッケージ900は、半導体レーザー901のレーザー出射口901Eからレーザー光911を、反射部材903の反射面903Sに向かって出射し、反射部材903の反射面903Sでレーザー光911の光軸を変更する。光軸が変更されたレーザー光911は、透明蓋体905を透過し、半導体レーザーパッケージ900の外部へ出射される。 The semiconductor laser package 900 emits the laser light 911 from the laser emission port 901E of the semiconductor laser 901 toward the reflecting surface 903S of the reflecting member 903, and changes the optical axis of the laser light 911 at the reflecting surface 903S of the reflecting member 903. .. The laser light 911 whose optical axis has been changed passes through the transparent lid 905 and is emitted to the outside of the semiconductor laser package 900.

図15は、従来の半導体レーザーチップの製造方法を説明するための斜視図である。
半導体レーザーチップ910は、半導体レーザーチップ910を形成するためのチップ形成領域902chを複数有する基板用ウエハー902WFから作製される。
(1)まず、基板用ウエハー902WFの平坦な表面に導電膜及び接合膜906a、906bを形成する。
(2)次に、接合膜906b上にバー状の反射部材903を複数のチップ形成領域に跨るように設置し固定する。
(3)次に、接合膜906a上に半導体レーザー901を設置し固定する。
(4)次に、チップ形成領域の境界であるダイシングライン902DLに沿って基板用ウエハー902WFをダイシングし、半導体レーザーチップ910を個片化する。
(5)以上で、半導体レーザーチップ910が完成する。
FIG. 15 is a perspective view for explaining a conventional method for manufacturing a semiconductor laser chip.
The semiconductor laser chip 910 is manufactured from a substrate wafer 902WF having a plurality of chip forming regions 902 channels for forming the semiconductor laser chip 910.
(1) First, the conductive film and the bonding films 906a and 906b are formed on the flat surface of the substrate wafer 902WF.
(2) Next, the bar-shaped reflective member 903 is installed and fixed on the bonding film 906b so as to straddle the plurality of chip forming regions.
(3) Next, the semiconductor laser 901 is installed and fixed on the bonding film 906a.
(4) Next, the substrate wafer 902WF is diced along the dicing line 902DL, which is the boundary of the chip forming region, and the semiconductor laser chip 910 is fragmented.
(5) With the above, the semiconductor laser chip 910 is completed.

特開2006−32765号公報Japanese Unexamined Patent Publication No. 2006-32765

近年、発光素子を備える電子機器の高機能化にともない、発光装置、例えば半導体発光素子においては、その出力光が、数十mWレベル以下の低出力で利用されるのはもとより、数十〜数百mWレベルの中出力、さらには数Wレベル以上の高出力なものまで、幅広い出力範囲での利用が求められている。 In recent years, with the increasing functionality of electronic devices equipped with light emitting elements, the output light of light emitting devices, for example, semiconductor light emitting elements, is not only used at a low output of several tens of mW level or less, but also several tens to several tens to several. It is required to be used in a wide output range, from medium output of 100 mW level to high output of several W level or more.

従来の反射部材付きの半導体レーザーパッケージにおいては、発光素子である半導体レーザーの出射口より出射されたレーザー光は、反射部材で反射し、半導体レーザーパッケージの外部に射出される。この際、レーザー光を反射する反射部材は、反射部材に入射するレーザー光のすべてを反射することが望ましい。
しかしながら、反射部材(例えば、樹脂製反射部材)に入射するすべてのレーザー光(例えば、半導体レーザーで出射するレーザー光)を反射することは、実質困難である。そして、反射部材で反射しきれなかったレーザー光の一部は、反射部材内に吸収されてしまい、吸収された光は反射部材に熱を発生させる。反射部材で発生した熱は、反射部材の熱膨張を引き起こし、反射面の熱変形を発生させる。さらに熱変形した反射面は、反射したレーザー光を規定の光軸から外れる軸ズレや光の散乱等を生じさせてしまい、出力するレーザー光の劣化を招く虞があった。
In the conventional semiconductor laser package with a reflecting member, the laser light emitted from the outlet of the semiconductor laser, which is a light emitting element, is reflected by the reflecting member and emitted to the outside of the semiconductor laser package. At this time, it is desirable that the reflecting member that reflects the laser light reflects all the laser light incident on the reflecting member.
However, it is practically difficult to reflect all the laser light (for example, the laser light emitted by the semiconductor laser) incident on the reflecting member (for example, the resin reflecting member). Then, a part of the laser light that cannot be completely reflected by the reflecting member is absorbed in the reflecting member, and the absorbed light generates heat in the reflecting member. The heat generated by the reflective member causes thermal expansion of the reflective member and causes thermal deformation of the reflective surface. Further, the heat-deformed reflecting surface causes the reflected laser light to deviate from the specified optical axis, causes light scattering, and the like, which may cause deterioration of the output laser light.

特に、熱伝導性が低い樹脂系材料の反射部材は、反射部材内部の熱を外部に放出し難く、熱が反射部材内部にこもりやすいため反射部材の熱変形が起こりやすい。さらに、発光素子の出力が高い場合には、出射される光のエネルギー量も高くなるため、反射部材の熱吸収はより顕著となり、問題は大きくなる。
例えば、半導体レーザーを用いた高出力の発光装置としては、歯科医療用のペン型半導体レーザーメスがあげられ、その出力は3〜5W程度である。
In particular, a reflective member made of a resin-based material having low thermal conductivity is unlikely to release heat inside the reflective member to the outside, and heat tends to be trapped inside the reflective member, so that the reflective member is likely to be thermally deformed. Further, when the output of the light emitting element is high, the amount of energy of the emitted light is also high, so that the heat absorption of the reflecting member becomes more remarkable, and the problem becomes greater.
For example, as a high-power light emitting device using a semiconductor laser, a pen-type semiconductor laser scalpel for dentistry can be mentioned, and the output is about 3 to 5 W.

本発明は、以上の問題点を鑑みてなされたものであり、反射部材の熱変形を抑制した反射部材付基板及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate with a reflective member that suppresses thermal deformation of the reflective member and a method for manufacturing the same.

発光素子搭載部を有する基板と、前記基板上に反射部材とを備えた反射部材付基板において、
前記基板には、段差部が形成されており、前記反射部材は前記段差部の少なくとも一部を覆い固定されるとともに、
前記基板は、前記基板の前記発光素子搭載部と前記反射部材との間に前記反射部材の反射面と同一面上に配置された側壁面を有する溝を備える反射部材付基板とする。
In a substrate having a light emitting element mounting portion and a substrate with a reflective member having a reflective member on the substrate,
A step portion is formed on the substrate, and the reflective member covers and fixes at least a part of the step portion and is fixed.
The substrate is a substrate with a reflective member having a groove having a side wall surface arranged on the same surface as the reflective surface of the reflective member between the light emitting element mounting portion of the substrate and the reflective member.

また、前記基板の前記凸起部は、1箇所乃至は複数個所に設けてもよい。 Further, the convex portion of the substrate may be provided at one or a plurality of locations.

また、前記基板には溝部が形成されており、前記溝部により前記段差部を形成してもよい。 Further, a groove portion is formed on the substrate, and the step portion may be formed by the groove portion.

さらに、前記基板の前記溝部の底面より前記反射部材が形成されていてもよい。 Further, the reflective member may be formed from the bottom surface of the groove portion of the substrate.

発光素子搭載部を有する基板と、前記基板上に反射部材とを備え、前記基板の熱伝導率が前記反射部材の熱伝導率より高い反射部材付基板の製造方法において、
前記基板に段差部を形成する工程と、前記段差部の少なくとも一部を覆うように前記反射部材を構成する材料を前記基板に固定する工程と、
前記材料を加工し前記反射部材の反射面を形成すると同時に、前記基板の前記発光素子搭載部と前記反射部材との間の前記基板に前記反射面と同一の面上の側壁面を備えた溝を形成する工程と、を有する反射部材付基板の製造方法とする。
In a method for manufacturing a substrate with a reflective member, which comprises a substrate having a light emitting element mounting portion and a reflective member on the substrate, and the thermal conductivity of the substrate is higher than the thermal conductivity of the reflective member.
A step of forming a step portion on the substrate and a step of fixing a material constituting the reflective member to the substrate so as to cover at least a part of the step portion.
The material is processed to form the reflective surface of the reflective member, and at the same time, the groove between the light emitting element mounting portion of the substrate and the reflective member is provided with a side wall surface on the same surface as the reflective surface. It is a method of manufacturing a substrate with a reflective member having a step of forming the above.

前記反射部材を構成する材料を前記基板に固定する工程は、凹部を有する金型を前記凹部が前記段差部を覆うように前記基板にのせる工程と、前記反射部材を構成する材料を前記凹部に充填し硬化する工程を有してもよい。
A step of fixing a material constituting the reflecting member to the substrate includes the steps of placing a mold having a concave portion on the substrate so that the recess covers the step portion, the material constituting the reflecting member and the It may have a step of filling the recess and hardening.

本発明によれば、段差部を備えた基板に、段差部の少なくとも一部を覆い固定した反射部材を設けることによって、反射部材に発生する熱を基板へ効率的に放出し、反射部材の反射面の熱変形を抑制することができる。したがって、反射部材で反射する反射光の軸ズレや光の散乱等による反射光の劣化を抑制することができる。 According to the present invention, by providing a reflective member that covers and fixes at least a part of the stepped portion on the substrate provided with the stepped portion, the heat generated in the reflective member is efficiently released to the substrate, and the reflection of the reflective member is reflected. Thermal deformation of the surface can be suppressed. Therefore, it is possible to suppress the deterioration of the reflected light due to the axis shift of the reflected light reflected by the reflecting member, the scattering of the light, and the like.

本発明の実施形態1に係る半導体レーザーパッケージの説明図Explanatory drawing of semiconductor laser package which concerns on Embodiment 1 of this invention 本発明の実施形態1に係る反射部材付基板の説明図。Explanatory drawing of the substrate with a reflective member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る反射部材付基板を示す図2A部を拡大した説明図。FIG. 2A is an enlarged explanatory view showing a substrate with a reflective member according to a first embodiment of the present invention. 本発明の実施形態2に係る反射部材付基板の説明図。Explanatory drawing of the substrate with a reflective member which concerns on Embodiment 2 of this invention. 本発明の別の実施形態に係る反射部材付基板の説明図。Explanatory drawing of the substrate with a reflective member which concerns on another embodiment of this invention. 本発明の別の実施形態に係る反射部材付基板の説明図。Explanatory drawing of the substrate with a reflective member which concerns on another embodiment of this invention. 本発明の別の実施形態に係る反射部材付基板の説明図。Explanatory drawing of the substrate with a reflective member which concerns on another embodiment of this invention. 本発明の実施形態1に係る反射部材付基板の製造方法の説明図。The explanatory view of the manufacturing method of the substrate with a reflective member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る反射部材付基板の製造方法の説明図。The explanatory view of the manufacturing method of the substrate with a reflective member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る反射部材付基板の製造方法の説明図。The explanatory view of the manufacturing method of the substrate with a reflective member which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る反射部材付基板の製造方法の説明図。The explanatory view of the manufacturing method of the substrate with a reflective member which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る反射部材付基板の製造方法の説明図。The explanatory view of the manufacturing method of the substrate with a reflective member which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る反射部材付基板の製造方法の説明図。The explanatory view of the manufacturing method of the substrate with a reflective member which concerns on Embodiment 2 of this invention. 従来の半導体レーザーパッケージの説明図。Explanatory drawing of a conventional semiconductor laser package. 従来の半導体レーザーチップの製造方法の説明図。Explanatory drawing of the manufacturing method of the conventional semiconductor laser chip.

以下、本発明の最良の実施形態を説明する。
反射部材付基板は、基板上に反射部材を搭載し、基板外又は基板上に備えられる発光素子から反射部材付基板に入射する光を反射する。
本実施形態では、反射部材付基板上に発光素子を搭載し、パッケージ化した半導体レーザーパッケージを例として、図1から図7を参照して本発明の反射部材付基板を、図8から図15を参照して本発明の反射部材付基板の製造方法について説明する。
ただし、本発明の反射部材付基板及びその製造方法は、本実施形態に限定されない。
例えば、固体レーザー、ガスレーザー、半導体レーザー、LED、光ファイバー(導波路)等の発光素子を搭載した発光装置に本発明を適用することもできる。
Hereinafter, the best embodiment of the present invention will be described.
The substrate with a reflective member has a reflective member mounted on the substrate and reflects light incident on the substrate with the reflective member from a light emitting element provided outside the substrate or on the substrate.
In the present embodiment, taking a semiconductor laser package in which a light emitting element is mounted on a substrate with a reflective member and packaged as an example, the substrate with a reflective member of the present invention can be obtained from FIGS. 8 to 15 with reference to FIGS. 1 to 7. The method for manufacturing the substrate with a reflective member of the present invention will be described with reference to.
However, the substrate with a reflective member of the present invention and the method for manufacturing the same are not limited to the present embodiment.
For example, the present invention can be applied to a light emitting device equipped with a light emitting element such as a solid-state laser, a gas laser, a semiconductor laser, an LED, or an optical fiber (wavewave path).

実施形態1
図1は、本発明の反射部材付基板を有する半導体レーザーパッケージを説明するためのものである。
半導体レーザーパッケージ100は、図1に示すように、容器104と、容器104内に搭載される半導体レーザーチップ110と、容器104内の半導体レーザーチップ110を封止する透明蓋体105とを有する。
Embodiment 1
FIG. 1 is for explaining a semiconductor laser package having a substrate with a reflective member of the present invention.
As shown in FIG. 1, the semiconductor laser package 100 has a container 104, a semiconductor laser chip 110 mounted in the container 104, and a transparent lid 105 for sealing the semiconductor laser chip 110 in the container 104.

半導体レーザーチップ110は、発光素子である半導体レーザー101と、基板102と、反射部材103とを有する。半導体レーザー101と反射部材103は、基板102の一方の面に搭載されている。また、基板102の他方の面には、基板102と容器104とを接合するための接合膜102eが設けられている。半導体レーザーチップ110は、半導体レーザー101のレーザー出射口101Eから出射されるレーザー光111を反射部材103で反射し、レーザー光111を半導体レーザーチップ110の上方に出射する。レーザー光111は、レーザー光111の光軸111Aに対し所定の角度をもってレーザー出射口101Eから出射される。 The semiconductor laser chip 110 includes a semiconductor laser 101 which is a light emitting element, a substrate 102, and a reflection member 103. The semiconductor laser 101 and the reflecting member 103 are mounted on one surface of the substrate 102. Further, on the other surface of the substrate 102, a bonding film 102e for bonding the substrate 102 and the container 104 is provided. The semiconductor laser chip 110 reflects the laser light 111 emitted from the laser emission port 101E of the semiconductor laser 101 by the reflecting member 103, and emits the laser light 111 above the semiconductor laser chip 110. The laser light 111 is emitted from the laser emission port 101E at a predetermined angle with respect to the optical axis 111A of the laser light 111.

容器104は、平板で形成された底部104bを有し、その底部104bの周囲に筒形の壁部104cが立設され、底部104bと壁部104cとで囲われた空間として凹部104aを備えている。また、壁部104cの上部開口端には端面104fを有する。
また、凹部104aの開口する側の底部104bの面を底面104bbとし、その底面104bbには、半導体レーザーチップ110を搭載する搭載領域104bAを有する。搭載領域104bAには、半導体レーザーチップ110を固定するための薄膜からなる接合膜104eを有する。
The container 104 has a bottom portion 104b formed of a flat plate, a tubular wall portion 104c is erected around the bottom portion 104b, and a recess 104a is provided as a space surrounded by the bottom portion 104b and the wall portion 104c. There is. Further, the upper opening end of the wall portion 104c has an end face 104f.
Further, the surface of the bottom portion 104b on the opening side of the recess 104a is a bottom surface 104bb, and the bottom surface 104bb has a mounting area 104bA on which the semiconductor laser chip 110 is mounted. The mounting region 104bA has a bonding film 104e made of a thin film for fixing the semiconductor laser chip 110.

半導体レーザーチップ110と容器104は、接合膜102eと接合膜104eとを接合させ固定する。接合膜102eと接合膜104eは、互いに接合できる材料であればよく、より好ましくは、熱的伝導性の良い接合材とすればよい。例えば、接合膜102eには基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層された薄膜、接合膜104eには金錫半田(Au−Sn)を用いることができる。ここで、接合膜102e、接合膜104eに熱伝導性接合剤等を用いることで、半導体レーザーチップ110で発生する熱を容器104へ効率よく放出する熱的流路を確保することができる。
ここでは、半導体レーザーチップ110と容器104を金属材からなる接合膜102e、接合膜104eにより行っているが、接合膜102eと接合膜104eは、半導体レーザーチップ110と容器104を接合できればよく、例えば、樹脂系材料、ガラス等でもよい。より好ましくは、熱伝導性の良い材料がよい。
また、半導体レーザーチップ110と容器104にそれぞれ接合膜102e、接合膜104eを設けているが、これに限らず、基板102又は容器104のいずれか一方のみに接合膜を設けてもよい。
The semiconductor laser chip 110 and the container 104 join and fix the bonding film 102e and the bonding film 104e. The bonding film 102e and the bonding film 104e may be any material that can be bonded to each other, and more preferably a bonding material having good thermal conductivity. For example, a thin film in which titanium-platinum-gold (Ti-Pt-Au) is laminated in this order from the substrate 102 side can be used for the bonding film 102e, and gold-tin solder (Au-Sn) can be used for the bonding film 104e. Here, by using a heat conductive bonding agent or the like for the bonding film 102e and the bonding film 104e, it is possible to secure a thermal flow path for efficiently releasing the heat generated by the semiconductor laser chip 110 to the container 104.
Here, the semiconductor laser chip 110 and the container 104 are formed by a bonding film 102e and a bonding film 104e made of a metal material. However, the bonding film 102e and the bonding film 104e may be formed by bonding the semiconductor laser chip 110 and the container 104, for example. , Resin-based material, glass, etc. may be used. More preferably, a material having good thermal conductivity is preferable.
Further, the semiconductor laser chip 110 and the container 104 are provided with the bonding film 102e and the bonding film 104e, respectively, but the present invention is not limited to this, and the bonding film may be provided only on either the substrate 102 or the container 104.

本実施形態の容器104の材質は、鉄(Fe)を使用している。
容器104の材質は、熱伝導性が高く、熱膨張係数が半導体レーザーチップ110に近い低熱膨張材料であることが好ましい。
この構成とすることで、半導体レーザーチップ110と容器104との熱膨張差により発生する半導体レーザーチップ110の歪みを抑制し、半導体レーザーチップ110と容器104との良好な固定状態を保つことができる。
なお、容器104の材質は本実施形態の材質に限るものではない。例えば、鉄系(Fe系)材料の他、熱伝導性が高く、熱膨張係数が半導体レーザーチップ110に近い材料、例えば、モリブデン(Mo)、銅(Cu)、コバール、42アロイ、ケイ素(Si)、窒化ケイ素(SiC)、サファイア、ポリ塩化ビフェニル(PCB)、窒化アルミ(AlNx)、アルミナ(Al)を用いることができる。また、これら以外にも、関連の用途で使用されるいずれかの既知の材料から形成することもできる。
Iron (Fe) is used as the material of the container 104 of this embodiment.
The material of the container 104 is preferably a low thermal expansion material having high thermal conductivity and a thermal expansion coefficient close to that of the semiconductor laser chip 110.
With this configuration, distortion of the semiconductor laser chip 110 generated by the difference in thermal expansion between the semiconductor laser chip 110 and the container 104 can be suppressed, and a good fixed state between the semiconductor laser chip 110 and the container 104 can be maintained. ..
The material of the container 104 is not limited to the material of the present embodiment. For example, in addition to iron-based (Fe-based) materials, materials with high thermal conductivity and a coefficient of thermal expansion close to those of the semiconductor laser chip 110, such as molybdenum (Mo), copper (Cu), Kovar, 42 alloy, and silicon (Si). ), Silicon nitride (SiC), sapphire, polybiphenyl chloride (PCB), aluminum nitride (AlNx), alumina (Al 2 O 3 ) can be used. In addition to these, it can also be formed from any known material used in related applications.

透明蓋体105は、容器104の壁部104cの端面104f上に搭載され、容器104の凹部104aを封止するとともに、凹部104a内に搭載された半導体レーザーチップ110の半導体レーザー101で出射され、反射部材103で反射したレーザー光111を透過し、半導体レーザーパッケージ100の外部に放出する。 The transparent lid 105 is mounted on the end surface 104f of the wall portion 104c of the container 104, seals the recess 104a of the container 104, and is emitted by the semiconductor laser 101 of the semiconductor laser chip 110 mounted in the recess 104a. The laser light 111 reflected by the reflecting member 103 is transmitted and emitted to the outside of the semiconductor laser package 100.

透明蓋体105と、壁部104cの端面104fとの間には、接合膜104gが介在し、接合膜104gが透明蓋体105と容器104とを接合している。こうして透明蓋体105は、半導体レーザーパッケージ100を容器104内に封止する。 A bonding film 104g is interposed between the transparent lid 105 and the end surface 104f of the wall portion 104c, and the bonding film 104g joins the transparent lid 105 and the container 104. In this way, the transparent lid 105 seals the semiconductor laser package 100 in the container 104.

なお、本実施形態では、透明蓋体105の材質にガラスを用いているが、これに限るものではない。
透明蓋体105の材質は、レーザー光111を透過すればよく、例えば、光透過性に優れたサファイア等の結晶材料、透明アクリル樹脂等の樹脂系材料等でもよい。
ただし、透明蓋体105と容器104とは、それぞれの熱膨張差により発生する応力を抑えるため、熱膨張係数が近い値である材料を選択することが好ましい。
また、半導体レーザーパッケージ100を気密封止する必要がない場合は、透明蓋体を備えない構成としてもよい。
In the present embodiment, glass is used as the material of the transparent lid 105, but the present invention is not limited to this.
The material of the transparent lid 105 may be a crystal material such as sapphire having excellent light transmission, a resin-based material such as a transparent acrylic resin, or the like, as long as it transmits the laser beam 111.
However, in order to suppress the stress generated by the difference in thermal expansion between the transparent lid 105 and the container 104, it is preferable to select a material having a value having a coefficient of thermal expansion close to each other.
Further, when it is not necessary to airtightly seal the semiconductor laser package 100, a transparent lid may not be provided.

半導体レーザーチップ110は、反射部材103で反射したレーザー光111が光透明蓋体105で透過できる位置にあり、かつ反射部材103で反射されたれレーザー光111の軌道が容器104の壁部104cの内側面に当たらない、すなわち、レーザー光111が壁部104cで蹴られない位置で、容器104の底面104bbに搭載されている。 The semiconductor laser chip 110 is located at a position where the laser light 111 reflected by the reflecting member 103 can be transmitted by the light transparent lid 105, and the trajectory of the laser light 111 reflected by the reflecting member 103 is inside the wall portion 104c of the container 104. It is mounted on the bottom surface 104bb of the container 104 at a position where it does not hit the side surface, that is, the laser beam 111 is not kicked by the wall portion 104c.

次に半導体レーザーチップ110について詳細に説明する。図2は、本発明の実施形態1に係る半導体レーザーチップ110を説明するための図である。半導体レーザーチップ110は、半導体レーザー101と、表面に導電膜108が形成され、半導体レーザー101を搭載する基板102と、半導体レーザー101を基板102に固定する導電性接合膜106aと、基板102に搭載され、半導体レーザー101のレーザー光111を反射する反射部材103とを有する。 Next, the semiconductor laser chip 110 will be described in detail. FIG. 2 is a diagram for explaining the semiconductor laser chip 110 according to the first embodiment of the present invention. The semiconductor laser chip 110 is mounted on the semiconductor laser 101, the substrate 102 on which the conductive film 108 is formed on the surface and the semiconductor laser 101 is mounted, the conductive bonding film 106a for fixing the semiconductor laser 101 to the substrate 102, and the substrate 102. It has a reflecting member 103 that reflects the laser light 111 of the semiconductor laser 101.

ここで、本実施形態における、半導体レーザーチップにおける方向の定義をする。半導体レーザーチップ110の状態において、レーザー出射口101Eより出射されるレーザー光111の光軸111Aの方向をX軸方向、X軸方向に直交し、半導体レーザー101が基板102に搭載される面に対して直行する方向をZ軸方向、X軸方向とZ軸方向に直交する方向をY軸方向とする。
X軸方向においてレーザー光111の出射方向をX軸方向の正方向とし、Z軸方向において半導体レーザー101が基板102に搭載される面側をZ軸方向の正方向とする。また、X軸、Y軸、Z軸を法線にもつ面をそれぞれ、X軸面、Y軸面、Z軸面をする。
Here, the direction in the semiconductor laser chip in the present embodiment is defined. In the state of the semiconductor laser chip 110, the direction of the optical axis 111A of the laser beam 111 emitted from the laser ejection port 101E is orthogonal to the X-axis direction and the X-axis direction with respect to the surface on which the semiconductor laser 101 is mounted on the substrate 102. The direction perpendicular to the Z-axis direction is defined as the Z-axis direction, and the direction orthogonal to the X-axis direction and the Z-axis direction is defined as the Y-axis direction.
In the X-axis direction, the emission direction of the laser beam 111 is the positive direction in the X-axis direction, and in the Z-axis direction, the surface side on which the semiconductor laser 101 is mounted on the substrate 102 is the positive direction in the Z-axis direction. Further, the surfaces having the X-axis, the Y-axis, and the Z-axis as normals are the X-axis surface, the Y-axis surface, and the Z-axis surface, respectively.

半導体レーザー101は、直方体形状をなす。半導体レーザー101の一側面は、X軸面に平行なレーザー光111を出射するレーザー出射口101Eを備えたレーザー出射面101Cであり、レーザー出射面101Cと直行する一側面は、基板102への搭載面である下面101b(Y軸面に平行である。)であり、下面101bには、半導体レーザー101と基板102の導電膜108とを電気的に接続するための電極膜101pを備えている。また、下面101bと対向する一側面は上面101aであり、上面101aには、半導体レーザー101と容器104とを電気的に接続するための電極膜101nを備えている。電極膜101nと101pは半導体レーザー101の電源供給用の電極である。 The semiconductor laser 101 has a rectangular parallelepiped shape. One side surface of the semiconductor laser 101 is a laser emission surface 101C provided with a laser emission port 101E that emits a laser beam 111 parallel to the X-axis surface, and one side surface orthogonal to the laser emission surface 101C is mounted on the substrate 102. The lower surface 101b (parallel to the Y-axis surface) is a surface, and the lower surface 101b is provided with an electrode film 101p for electrically connecting the semiconductor laser 101 and the conductive film 108 of the substrate 102. Further, one side surface facing the lower surface 101b is an upper surface 101a, and the upper surface 101a is provided with an electrode film 101n for electrically connecting the semiconductor laser 101 and the container 104. The electrode films 101n and 101p are electrodes for supplying power to the semiconductor laser 101.

電極膜101n、電極膜101pとしては、導電性や耐食性を考慮して金(Au)の薄膜を用いることが好ましい。また、電極膜101n、電極膜101pは、半導体レーザー101との密着性の観点から、例えば、半導体レーザー101表面からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜としてもよい。 As the electrode film 101n and the electrode film 101p, it is preferable to use a thin film of gold (Au) in consideration of conductivity and corrosion resistance. Further, the electrode film 101n and the electrode film 101p may be formed as thin films in which titanium-platinum-gold (Ti-Pt-Au) is laminated in this order from the surface of the semiconductor laser 101, for example, from the viewpoint of adhesion to the semiconductor laser 101. ..

半導体レーザー101は、レーザー出射口101Eから、所定の出射角をもつレーザー光111を出射する。レーザー光111は、半導体レーザー出射口101Eに対向するよう基板102上に配置された反射部材103で反射され、半導体レーザーパッケージ100の外部へ出射される。
一般的な半導体レーザーから出射されるレーザー光は楕円形に広がり出射される。これは半導体レーザーのレーザー出射口が矩形であるため起こる光の回折による現象であり、レーザー光の遠視野像は縦方向に長く、横方向に短い楕円形になる。
本実施形態の半導体レーザー110は、基板102に搭載した状態で、レーザー光111が、レーザー光111の光軸111Aに対し、Z軸方向に約±30°、Y軸方向に±8°の出射角をもってレーザー出射口101Eより出射されている。
The semiconductor laser 101 emits a laser beam 111 having a predetermined emission angle from the laser emission port 101E. The laser light 111 is reflected by the reflection member 103 arranged on the substrate 102 so as to face the semiconductor laser emission port 101E, and is emitted to the outside of the semiconductor laser package 100.
The laser light emitted from a general semiconductor laser spreads in an elliptical shape and is emitted. This is a phenomenon caused by the diffraction of light that occurs because the laser emission port of the semiconductor laser is rectangular, and the far-field image of the laser beam becomes an elliptical shape that is long in the vertical direction and short in the horizontal direction.
In the state where the semiconductor laser 110 of the present embodiment is mounted on the substrate 102, the laser light 111 emits about ± 30 ° in the Z-axis direction and ± 8 ° in the Y-axis direction with respect to the optical axis 111A of the laser light 111. It is emitted from the laser emission port 101E with a corner.

基板102は、半導体レーザー101を搭載する面でありZ軸面に平行な上面102aと、上面102aに対向しZ軸面に平行な下面102bとを有する。
基板102の上面102aには、導電膜108が成膜され、その導電膜108は導電性及び接合性の面で、基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜であることが好ましい。さらに、その導電膜108上の半導体レーザー101の搭載箇所には、半導体レーザー101と導電膜108とを接合する導電性接合膜106aが成膜されている。本実施形態における導電性接合膜106aの材質は、金錫半田(Au−Sn)が用いられる。
なお、基板102と半導体レーザー101との接合に用いられる導電性接合膜106aとしては、Sn−Pb、In等を用いることもでき、特に熱伝導率が高い材料が好ましい。
The substrate 102 is a surface on which the semiconductor laser 101 is mounted and has an upper surface 102a parallel to the Z-axis surface and a lower surface 102b facing the upper surface 102a and parallel to the Z-axis surface.
A conductive film 108 is formed on the upper surface 102a of the substrate 102, and the conductive film 108 is laminated in the order of titanium-platinum-gold (Ti-Pt-Au) from the substrate 102 side in terms of conductivity and bondability. It is preferably a thin film. Further, a conductive bonding film 106a for bonding the semiconductor laser 101 and the conductive film 108 is formed on the conductive film 108 at the mounting location of the semiconductor laser 101. Gold-tin solder (Au-Sn) is used as the material of the conductive bonding film 106a in the present embodiment.
As the conductive bonding film 106a used for bonding the substrate 102 and the semiconductor laser 101, Sn-Pb, In, or the like can also be used, and a material having a particularly high thermal conductivity is preferable.

基板102の下面102bには、容器104の底面104bbと固定するための接合膜102eが成膜されている。接合膜102eは、基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層された薄膜である。 A bonding film 102e for fixing to the bottom surface 104bb of the container 104 is formed on the lower surface 102b of the substrate 102. The bonding film 102e is a thin film in which titanium-platinum-gold (Ti-Pt-Au) is laminated in this order from the substrate 102 side.

基板102の材質は、発熱する半導体レーザー101の取り付け等の観点から、半導体レーザー101の熱膨張係数(約6.5×10−6/℃)に近く、優れた熱伝導率(100W/(m・K)以上)特性を備えていることが好ましい。本実施形態での基板102の材質は、窒化アルミ(AlN)を用いており、その熱膨張係数は約5.0×10−6/℃、熱伝導率は約150W/(m・K)である。 The material of the substrate 102 is close to the coefficient of thermal expansion (about 6.5 × 10-6 / ° C.) of the semiconductor laser 101 from the viewpoint of mounting the semiconductor laser 101 that generates heat, and has an excellent thermal conductivity (100 W / (m). -K) It is preferable to have the above) characteristics. Aluminum nitride (AlN) is used as the material of the substrate 102 in the present embodiment, its coefficient of thermal expansion is about 5.0 × 10 -6 / ° C, and its thermal conductivity is about 150 W / (m · K). be.

なお、基板102の材質は、これらに限るものではない。基板102は、熱伝導性に優れ、熱膨係数が半導体レーザー101に近い材料が好ましく、例えばサファイア、アルミナ(Al)等があり、熱膨張係数が3〜10×10−6/℃で、熱伝導率が100W/(m・K)以上である材料としては、例えば炭化ケイ素(SiC)、タンガロイ(T−cBN)、Cu−W、Cu−Mo、ケイ素(Si)等がある。特に高出力のレーザーを用いる場合で熱伝導率を非常に大きくしなければならない時には、ダイアモンド等も用いることができる。 The material of the substrate 102 is not limited to these. The substrate 102 is preferably made of a material having excellent thermal conductivity and a coefficient of thermal expansion close to that of the semiconductor laser 101. For example, sapphire, alumina (Al 2 O 3 ), etc. are used, and the coefficient of thermal expansion is 3 to 10 × 10 -6 / ° C. Examples of materials having a thermal conductivity of 100 W / (m · K) or more include silicon carbide (SiC), tangaloy (T-cBN), Cu-W, Cu-Mo, and silicon (Si). Especially when a high-power laser is used and the thermal conductivity needs to be very large, diamond or the like can also be used.

半導体レーザー101と基板102の熱膨張係数を同じか近い数値とすることで、半導体レーザー101と基板102の熱膨張差により発生する応力を抑えることができ、半導体レーザー101と基板102との固定部分が外れたりすることを低減できる。
また、基板102の熱伝導性をできるだけ高くすることにより、半導体レーザー101で発生する熱を効率よく外部(容器104等)に逃がすことができる。
By setting the coefficients of thermal expansion of the semiconductor laser 101 and the substrate 102 to the same or close values, the stress generated by the difference in thermal expansion between the semiconductor laser 101 and the substrate 102 can be suppressed, and the fixed portion between the semiconductor laser 101 and the substrate 102 can be suppressed. Can be reduced from coming off.
Further, by increasing the thermal conductivity of the substrate 102 as much as possible, the heat generated by the semiconductor laser 101 can be efficiently released to the outside (container 104, etc.).

図3は、図2におけるA部拡大図である。
基板102は、半導体レーザー101のレーザー出射面101CよりX軸の正方向に配置されており、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状である溝部112aを備える。
溝部112aは、溝部112aの底面部である溝底面112abと、溝部112aの側壁部である側壁面120Wbと、側壁面120WbよりX軸の正方向に位置し溝部112aの側壁部である側壁面120Waから構成され、溝底面112ab、側壁面120Wa、及び上面102aからなる第1段差部120aと、溝底面112ab、側壁面120Wb、及び上面102aからなる第2段差部120bを備える。なお、側壁面120Wa、側壁面120WbはX軸面に平行な面であり、溝底面112abはZ軸面に平行な面である。
FIG. 3 is an enlarged view of part A in FIG.
The substrate 102 is arranged in the positive direction of the X-axis from the laser emission surface 101C of the semiconductor laser 101, is formed across the substrate 102 in parallel with the Y-axis, and has a groove portion having a rectangular cross-sectional shape on the Y-axis surface. It includes 112a.
The groove portion 112a includes a groove bottom surface 112ab which is a bottom surface portion of the groove portion 112a, a side wall surface 120Wb which is a side wall portion of the groove portion 112a, and a side wall surface 120Wa which is located in the positive direction of the X-axis from the side wall surface 120Wb and is a side wall portion of the groove portion 112a. It is provided with a first step portion 120a composed of a groove bottom surface 112ab, a side wall surface 120Wa, and an upper surface 102a, and a second step portion 120b composed of a groove bottom surface 112ab, a side wall surface 120Wb, and an upper surface 102a. The side wall surface 120W and the side wall surface 120Wb are surfaces parallel to the X-axis surface, and the groove bottom surface 112ab is a surface parallel to the Z-axis surface.

さらに、基板102は、溝部112aよりX軸の正方向に配置されており、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状に基板102の一部を切り欠いたL字型切欠部112bを備える。
L字型切欠部112bは、基板102の上面102aよりZ軸の負方向に位置する切欠底面112bbと、基板102の上面102aと切欠底面112bbとを接続する側壁面120Wcから構成され、切欠底面112bb、側壁面120Wc、及び上面102aからなる第3段差部120cを備える。なお、側壁面120WcはX軸面に平行であり、切欠底面112bbはZ軸面に平行な面である。
Further, the substrate 102 is arranged in the positive direction of the X-axis from the groove 112a, is formed across the substrate 102 in parallel with the Y-axis, and has a rectangular cross-sectional shape of the Y-axis surface to form a part of the substrate 102. A notched L-shaped notch 112b is provided.
The L-shaped notch 112b is composed of a notched bottom surface 112bb located in the negative direction of the Z axis from the upper surface 102a of the substrate 102 and a side wall surface 120Wc connecting the upper surface 102a of the substrate 102 and the notched bottom surface 112bb. A third step portion 120c including a side wall surface 120 Wc and an upper surface 102a is provided. The side wall surface 120 Wc is parallel to the X-axis surface, and the notched bottom surface 112 bb is a surface parallel to the Z-axis surface.

また、基板102は、溝部112aとL字型切欠部112bとの間に、第1段差部120aと第3段差部120cとから構成される凸起部109を備える。凸起部109は、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状である。 Further, the substrate 102 includes a convex portion 109 composed of a first step portion 120a and a third step portion 120c between the groove portion 112a and the L-shaped notch portion 112b. The convex portion 109 is formed across the substrate 102 in parallel with the Y-axis, and the cross-sectional shape of the Y-axis surface is rectangular.

基板102上には、反射部材103が搭載されている。反射部材103は、半導体レーザー101のレーザー出射口101Eより出射されたレーザー光111を反射するための反射面103Sを備え、反射面103Sが半導体レーザー111のレーザー出射面101Cと対向するように設置される。反射面103Sは、X軸と平行なレーザー光111を半導体レーザーパッケージ100の外部へ出射するため、光軸111Aに対して所定の角度をもっており、本実施形態においては、Y軸に平行でありZ軸面に対し45°傾斜した面をもっている。反射部材103は、反射面103Sを一面としてもつ略三角柱状であり、Y軸面の断面形状が略三角形状である。 A reflective member 103 is mounted on the substrate 102. The reflecting member 103 includes a reflecting surface 103S for reflecting the laser light 111 emitted from the laser emitting port 101E of the semiconductor laser 101, and the reflecting surface 103S is installed so as to face the laser emitting surface 101C of the semiconductor laser 111. NS. Since the reflecting surface 103S emits the laser beam 111 parallel to the X axis to the outside of the semiconductor laser package 100, the reflecting surface 103S has a predetermined angle with respect to the optical axis 111A. In the present embodiment, the reflecting surface 103S is parallel to the Y axis and Z. It has a surface inclined by 45 ° with respect to the shaft surface. The reflective member 103 has a substantially triangular columnar shape having the reflective surface 103S as one surface, and the cross-sectional shape of the Y-axis surface is substantially triangular.

反射部材103は、略三角柱状の一面が基板102への搭載面であり、その搭載面は、溝部112a、凸起部109及びL字型切欠部112bを覆っており、反射部材103はその搭載面を基板102に固定することで基板102に搭載される。
具体的には、反射部材103は、溝底面112abと、側壁面120Waと、基板102の上面102aと、側壁面120Wcと、切欠底面112bbとを覆い基板102に固定されており、反射部材103は基板102上の第1段差部120aと第3段差部120cを覆う構成となっている。
すなわち、基板102に搭載される反射部材103は、基板102の段差部の少なくとも一部を覆い固定されている。
In the reflective member 103, one surface having a substantially triangular columnar shape is a mounting surface on the substrate 102, and the mounting surface covers the groove portion 112a, the convex portion 109, and the L-shaped notch portion 112b, and the reflective member 103 mounts the reflective member 103. It is mounted on the substrate 102 by fixing the surface to the substrate 102.
Specifically, the reflective member 103 covers the groove bottom surface 112ab, the side wall surface 120Wa, the upper surface 102a of the substrate 102, the side wall surface 120Wc, and the notched bottom surface 112bb and is fixed to the substrate 102. It is configured to cover the first step portion 120a and the third step portion 120c on the substrate 102.
That is, the reflective member 103 mounted on the substrate 102 covers and fixes at least a part of the stepped portion of the substrate 102.

本実施形態における反射部材103は、樹脂系材料の生地に、フィラーを均一に含有したものであり、具体的には、シリコーン樹脂系材料を生地とし、フィラーとして、アルミナ(Al)、窒化アルミ(AlN)、チタニア(TiO)等を含有している。
窒化アルミ(AlN)等の熱伝導性の高い材料をフィラーとして樹脂系材料の生地に含有させることで、樹脂のみからなる反射部材と比べ熱伝導性を高めることができる。
なお、白色系のアルミナ(Al)等の反射率の高い材料をフィラーとすることで、反射部材の反射率を高めることができる。
The reflective member 103 in the present embodiment uniformly contains a filler in the dough of the resin-based material. Specifically, the dough is made of a silicone resin-based material, and the filler is made of alumina (Al 2 O 3 ). It contains aluminum nitride (AlN), titania (TiO 2 ) and the like.
By incorporating a material having high thermal conductivity such as aluminum nitride (AlN) as a filler in the fabric of the resin-based material, the thermal conductivity can be improved as compared with the reflective member made of only resin.
By using a material having a high reflectance such as white alumina (Al 2 O 3 ) as a filler, the reflectance of the reflective member can be increased.

反射部材103の熱伝導率は、0.2〜10.0W/(m・K)がよく、より好ましくは0.4〜5.0W/(m・K)がよい。また、反射部材103の反射率は、80%以上のものが好ましく、より好ましくは90%以上がよい。
反射部材の生地は、本実施形態で用いるシリコーン樹脂系材料に限らず、例えば、エポキシ樹脂系材料やアクリル樹脂系材料等を用いることもできる。
The thermal conductivity of the reflective member 103 is preferably 0.2 to 10.0 W / (m · K), more preferably 0.4 to 5.0 W / (m · K). The reflectance of the reflective member 103 is preferably 80% or more, more preferably 90% or more.
The material of the reflective member is not limited to the silicone resin-based material used in the present embodiment, and for example, an epoxy resin-based material, an acrylic resin-based material, or the like can also be used.

また、熱伝導性向上の観点から、フィラーは、高純度アルミナ(Al(99.9%))に、窒化アルミ(AlN)、窒化ホウ素(BN)を含有させたものを用いてもよい。また、アルミニウム(Al)と酸化ケイ素(SiO)、銀(Ag)と酸化ケイ素(SiO)との組み合わせをフィラーとしてもよく、酸化ケイ素(SiO)の成分比を適切にすることで、熱伝導率の向上と光の反射率を向上させることも可能である。また、熱伝導率や反射率等、求める特性に応じて樹脂やフィラーの材料を適宜選択することができ、種々の材料を組み合わせて使用してもよい。 From the viewpoint of improving thermal conductivity, the filler may be high-purity alumina (Al 2 O 3 (99.9%)) containing aluminum nitride (AlN) and boron nitride (BN). good. Further, a combination of aluminum (Al) and silicon oxide (SiO 2 ) and silver (Ag) and silicon oxide (SiO 2 ) may be used as a filler, and the component ratio of silicon oxide (SiO 2 ) may be adjusted appropriately. It is also possible to improve the thermal conductivity and the light reflectance. Further, the material of the resin or the filler can be appropriately selected according to the desired characteristics such as thermal conductivity and reflectance, and various materials may be used in combination.

反射部材103の反射面103Sの表面粗さは、反射率に影響するため、平坦な鏡面であることが好ましい。反射面103Sの表面粗さはRaを40nm以下、より好ましくは表面粗さRaを10nm以下である。 Since the surface roughness of the reflective surface 103S of the reflective member 103 affects the reflectance, a flat mirror surface is preferable. The surface roughness of the reflective surface 103S is Ra of 40 nm or less, more preferably the surface roughness Ra of 10 nm or less.

本発明では、反射面103Sを備える反射部材103は、基板102に設けられた段差部を構成する溝底面112ab、凸起部109及び切欠底面112bbを覆うように固定されている。
それによって、反射部材103と基板102は、溝底面112ab、凸起部109及び切欠底面112bbからなる複数の面で固定されるため、従来のように反射部材と基板との接触面が互いに平坦な接合面で固定する形態に比べ、反射部材103と基板102との接触面積が増し、反射部材103と基板102とを固定する力が増す効果を得ることができる。また、基板102は比較的熱伝導性が高い材料で形成されている一方、反射部材103は熱伝導性に優れたフィラーを含有した場合においても基板102の熱伝導性に比べると熱伝導性は遥かに低いが、反射部材103と基板102との接触面積が大きいため、結果として、反射部材103から基板102へ効率的に熱を伝えることができる。
In the present invention, the reflective member 103 provided with the reflective surface 103S is fixed so as to cover the groove bottom surface 112ab, the convex portion 109, and the notched bottom surface 112bb that form the stepped portion provided on the substrate 102.
As a result, the reflective member 103 and the substrate 102 are fixed by a plurality of surfaces including the groove bottom surface 112ab, the convex portion 109, and the notched bottom surface 112bb, so that the contact surfaces between the reflective member and the substrate are flat with each other as in the conventional case. Compared with the form of fixing at the joint surface, the contact area between the reflective member 103 and the substrate 102 is increased, and the effect of increasing the force for fixing the reflective member 103 and the substrate 102 can be obtained. Further, while the substrate 102 is made of a material having relatively high thermal conductivity, the reflective member 103 has higher thermal conductivity than the thermal conductivity of the substrate 102 even when it contains a filler having excellent thermal conductivity. Although it is much lower, the contact area between the reflective member 103 and the substrate 102 is large, and as a result, heat can be efficiently transferred from the reflective member 103 to the substrate 102.

さらに、反射部材103が基板102の段差部の少なくとも一部を覆う構成、つまり反射部材103に基板102の段差部が食い込んだ構成であるため、従来の反射部材と基板との接触面が互いに平坦な接合面で固定する形態における反射部材の一部を、基板102の材質に置き換えたこととなり、熱伝導性の低い反射部材の熱を、熱伝導性の高い基板へより効率的に伝えることができる。 Further, since the reflective member 103 covers at least a part of the stepped portion of the substrate 102, that is, the stepped portion of the substrate 102 bites into the reflective member 103, the contact surfaces between the conventional reflective member and the substrate are flat with each other. A part of the reflective member in the form of being fixed by the joint surface is replaced with the material of the substrate 102, and the heat of the reflective member having low thermal conductivity can be transferred to the substrate with high thermal conductivity more efficiently. can.

したがって、本発明の実施形態では、レーザー光111の一部を吸収してしまい、反射部材103にこもる熱をより効率的に基板102へ伝えることで、反射部材103の熱膨張がもたらす反射面103Sの熱変形を抑え、反射光の軸ズレや反射光の劣化を抑制する効果が得られる。 Therefore, in the embodiment of the present invention, the reflective surface 103S caused by the thermal expansion of the reflective member 103 by absorbing a part of the laser beam 111 and more efficiently transferring the heat trapped in the reflective member 103 to the substrate 102. It is possible to obtain the effect of suppressing the thermal deformation of the reflected light and suppressing the axis deviation of the reflected light and the deterioration of the reflected light.

次に、本実施形態に係る副次的な効果を次に示す。
レーザー光111の出射方向、出射角の観点から、半導体レーザー101を基板102の上面102aに搭載する位置は、レーザー出射面101Cが溝部112aの側壁面120Wb(X軸面に対し平行な面)に平行であり、レーザー出射面101Cが側壁面120Wbと反射面103Sとの間にあることが好ましく、レーザー出射面101Cと側壁面120Wbと同一なX軸面にあることがより好ましい。
Next, the secondary effects of the present embodiment are shown below.
From the viewpoint of the emission direction and emission angle of the laser beam 111, the position where the semiconductor laser 101 is mounted on the upper surface 102a of the substrate 102 is such that the laser emission surface 101C is located on the side wall surface 120Wb (plane parallel to the X-axis surface) of the groove 112a. It is preferably parallel and the laser emitting surface 101C is preferably between the side wall surface 120Wb and the reflecting surface 103S, and more preferably is located on the same X-axis surface as the laser emitting surface 101C and the side wall surface 120Wb.

また、溝部112aの側壁面120Wbと側壁面120Waとの間隔、いわゆる溝幅は、X軸方向に適宜設けられている。その溝幅は、Y軸に平行でありZ軸面に対し45°傾斜した面である反射面103Sを一面としてもつ反射部材103が成形できるよう設定されている。 Further, the distance between the side wall surface 120Wb and the side wall surface 120W of the groove portion 112a, that is, the so-called groove width is appropriately provided in the X-axis direction. The groove width is set so that the reflective member 103 having the reflective surface 103S, which is parallel to the Y-axis and inclined by 45 ° with respect to the Z-axis surface, can be formed.

従来の半導体レーザーチップは、溝部(実施形態1でいう溝部112a)を基板上に備えないため、レーザー出射口101Eより出射角±30°で出射するレーザー光111の−30°側(Z軸負方向の半分)のレーザー光の一部が、基板上面で蹴られ光の損失を生じていた。 Since the conventional semiconductor laser chip does not have a groove portion (groove portion 112a in the first embodiment) on the substrate, the laser light 111 emitted from the laser emission port 101E at an emission angle of ± 30 ° is -30 ° side (Z-axis negative). A part of the laser beam (half of the direction) was kicked on the upper surface of the substrate, causing a loss of light.

一方、本実施形態の半導体レーザーチップ110は、溝部112aを基板102の上面102aに設けることで、レーザー光111が上面102aで蹴られることはない。
具体的には、レーザー出射口101Eより出射角±30°で出射されるレーザー光111の−30°側(Z軸の負方向側)は、溝底面112abから形成された反射部材103の反射面103Sによって反射されるため、レーザー光111の蹴られることはない。結果として、半導体レーザー101で出射されたレーザー光111は、光の損失なく、より効率的に反射面103Sへ送るこむことができる。
On the other hand, in the semiconductor laser chip 110 of the present embodiment, the groove portion 112a is provided on the upper surface 102a of the substrate 102, so that the laser beam 111 is not kicked by the upper surface 102a.
Specifically, the -30 ° side (negative direction side of the Z axis) of the laser light 111 emitted from the laser emission port 101E at an emission angle of ± 30 ° is the reflection surface of the reflection member 103 formed from the groove bottom surface 112ab. Since it is reflected by the 103S, the laser beam 111 is not kicked. As a result, the laser light 111 emitted by the semiconductor laser 101 can be more efficiently sent to the reflecting surface 103S without loss of light.

また、基板102の上面102aに溝部112aを備えることで、半導体レーザーチップ110の小型化、低背化の効果が得られる。
具体的には、レーザー光111のレーザー出射口101Eの高さ位置を下げることで、半導体レーザー101のZ軸方向の厚さを薄く抑えることで、半導体レーザーチップ110の低背化ができる。
さらに、溝部112a内で反射された反射光であるレーザー光111が半導体レーザー101のレーザー出射面101Cで蹴られない半導体レーザー101の厚さ(Z軸方向)まで薄く抑えることで、半導体レーザー101のレーザー出射面101Cと反射部材103の反射面103SとのX軸方向の距離を短くすることができる。さらに、レーザー出射面101Cと反射面103SとのX軸方向の距離を短くすることで、反射面103Sに投影される視野像が小さくできることから、反射部材103を小型化、低背化することができる。
したがって、本実施形態において、基板102に溝部112aを備え、その溝部112aから反射面103Sを形成し、半導体レーザー101を薄型化することで、従来半導体レーザーチップに比べ、より小型化かつ低背化させる効果がえられる。
Further, by providing the groove portion 112a on the upper surface 102a of the substrate 102, the effect of downsizing and lowering the height of the semiconductor laser chip 110 can be obtained.
Specifically, the height of the laser emission port 101E of the laser beam 111 is lowered to reduce the thickness of the semiconductor laser 101 in the Z-axis direction, so that the height of the semiconductor laser chip 110 can be reduced.
Further, the laser light 111, which is the reflected light reflected in the groove 112a, is thinly suppressed to the thickness (Z-axis direction) of the semiconductor laser 101 which is not kicked by the laser emission surface 101C of the semiconductor laser 101, so that the semiconductor laser 101 can be formed. The distance between the laser emitting surface 101C and the reflecting surface 103S of the reflecting member 103 in the X-axis direction can be shortened. Further, by shortening the distance between the laser emitting surface 101C and the reflecting surface 103S in the X-axis direction, the visual field image projected on the reflecting surface 103S can be reduced, so that the reflecting member 103 can be made smaller and shorter. can.
Therefore, in the present embodiment, the substrate 102 is provided with the groove portion 112a, the reflection surface 103S is formed from the groove portion 112a, and the semiconductor laser 101 is made thinner, so that the size is smaller and the height is lower than that of the conventional semiconductor laser chip. You can get the effect of making it.

半導体レーザー101と反射部材103とを同一の基板102上に搭載する際は、その基板102上に溝部112aを設けることで、半導体レーザー101と反射部材103とを溝部112aの側壁面120Wbと溝底面112abの一部により、分け隔てることができ、そうすることで、半導体レーザー101が駆動する際に生じる熱を、反射部材側103側へ伝わり難くい。 When the semiconductor laser 101 and the reflecting member 103 are mounted on the same substrate 102, the groove portion 112a is provided on the substrate 102 so that the semiconductor laser 101 and the reflecting member 103 can be mounted on the side wall surface 120Wb of the groove portion 112a and the groove bottom surface. It can be separated by a part of 112ab, so that the heat generated when the semiconductor laser 101 is driven is not easily transferred to the reflection member side 103 side.

さらに、基板102の上面102aと溝部112aの溝底面112abとの高低差、すなわち溝部112aの溝深さは、基板102の上面102aと下面102bとからなる基板102の厚さ(Z軸方向)に対して1/3〜2/3倍が好ましく、より好ましくは基板102の厚さ(Z軸方向)に対して2/3よりも深い程よい。 Further, the height difference between the upper surface 102a of the substrate 102 and the groove bottom surface 112ab of the groove 112a, that is, the groove depth of the groove 112a is set to the thickness (Z-axis direction) of the substrate 102 including the upper surface 102a and the lower surface 102b of the substrate 102. On the other hand, it is preferably 1/3 to 2/3 times, more preferably deeper than 2/3 with respect to the thickness (Z-axis direction) of the substrate 102.

よって、適度な溝部112aの溝深さを備えることで、半導体レーザー101と反射部材103とを結ぶ熱流路を溝深さの分だけ減少させることができるため、反射部材103へ熱の流れ込みが低減し、反射部材の熱変形等の悪影響を抑制する効果が期待できる。 Therefore, by providing an appropriate groove depth of the groove portion 112a, the heat flow path connecting the semiconductor laser 101 and the reflection member 103 can be reduced by the groove depth, so that the inflow of heat to the reflection member 103 is reduced. However, the effect of suppressing adverse effects such as thermal deformation of the reflective member can be expected.

本実施形態の凸起部109の高さ位置は、基板102の製造コスト低減の観点から、半導体レーザー101が搭載される基板102の上面102aと同じ高さで成形されている。
なお、凸起部109の高さ及びその形状は、本実実施形態に限るものではない。例えば、凸起部109は半導体レーザー101が搭載される基板102の上面102aと同じ高さに限らず、さらに、凸起部の形状を傾斜面、曲面等としてもよい。
From the viewpoint of reducing the manufacturing cost of the substrate 102, the height position of the raised portion 109 of the present embodiment is formed at the same height as the upper surface 102a of the substrate 102 on which the semiconductor laser 101 is mounted.
The height of the raised portion 109 and its shape are not limited to the present embodiment. For example, the raised portion 109 is not limited to the same height as the upper surface 102a of the substrate 102 on which the semiconductor laser 101 is mounted, and the shape of the raised portion may be an inclined surface, a curved surface, or the like.

実施形態2
図4は、本発明の実施形態2に係る半導体レーザーチップ210を説明するための断面図である。
実施形態2は、実施形態1の反射部材付基板の変形例である。なお、実施形態2における反射部材付基板を構成する各部材の材質は、実施形態1で説明したものと同一である。また、実施形態2の半導体レーザーパッケージへの半導体レーザーチップ210の搭載は、実施形態1と同一の構成であるため説明を省略する。
Embodiment 2
FIG. 4 is a cross-sectional view for explaining the semiconductor laser chip 210 according to the second embodiment of the present invention.
The second embodiment is a modification of the substrate with a reflective member of the first embodiment. The material of each member constituting the substrate with the reflective member in the second embodiment is the same as that described in the first embodiment. Further, since the mounting of the semiconductor laser chip 210 on the semiconductor laser package of the second embodiment has the same configuration as that of the first embodiment, the description thereof will be omitted.

ここで、本実施形態における、半導体レーザーチップ210における方向の定義をする。半導体レーザーチップ210の状態において、レーザー出射口201Eより出射されるレーザー光211の光軸211Aの方向をX軸方向、X軸方向に直交し、半導体レーザー201が基板202に搭載される面に対して直行する方向をZ軸方向、X軸方向とZ軸方向に直交する方向をY軸方向とする。
X軸方向においてレーザー光211の出射方向をX軸方向の正方向とし、Z軸方向において半導体レーザー201が基板202に搭載される面側をZ軸方向の正方向とする。
また、X軸、Y軸、Z軸のそれぞれの軸を法線にもつ面を、X軸面、Y軸面、Z軸面をする。
Here, the direction of the semiconductor laser chip 210 in the present embodiment is defined. In the state of the semiconductor laser chip 210, the direction of the optical axis 211A of the laser light 211 emitted from the laser ejection port 201E is orthogonal to the X-axis direction and the X-axis direction with respect to the surface on which the semiconductor laser 201 is mounted on the substrate 202. The direction perpendicular to the Z-axis direction is defined as the Z-axis direction, and the direction orthogonal to the X-axis direction and the Z-axis direction is defined as the Y-axis direction.
In the X-axis direction, the emission direction of the laser beam 211 is the positive direction in the X-axis direction, and in the Z-axis direction, the surface side on which the semiconductor laser 201 is mounted on the substrate 202 is the positive direction in the Z-axis direction.
Further, the plane having each axis of the X-axis, the Y-axis, and the Z-axis as a normal is the X-axis plane, the Y-axis plane, and the Z-axis plane.

基板202は、基板202の上面である上面202aをX軸の負方向側で、Y軸面の断面形状が矩形形状でありY軸方向に横断して、 基板202の一部を切り欠いた、L字型切欠部212aを備える。
L字型切欠部212aは、L字型切欠部212aの底面部である切欠底面212abと、L字型切欠部212aの側壁部である側壁面220Waから構成され、切欠底面212ab、側壁面220Wa、及び上面202aからなる第1段差部220aを備える。なお、側壁面220WaはX軸面に平行な面であり、切欠底面212abはZ軸面に平行な面である。
The substrate 202 has an upper surface 202a, which is the upper surface of the substrate 202, on the negative side of the X-axis, and the cross-sectional shape of the Y-axis surface is rectangular, crossing the upper surface 202a in the Y-axis direction, and a part of the substrate 202 is cut out. It is provided with an L-shaped notch 212a.
The L-shaped notch 212a is composed of a notched bottom surface 212ab which is a bottom surface of the L-shaped notch 212a and a side wall surface 220W which is a side wall of the L-shaped notch 212a. A first step portion 220a including an upper surface 202a and a first step portion 220a is provided. The side wall surface 220Wa is a surface parallel to the X-axis surface, and the notched bottom surface 212ab is a surface parallel to the Z-axis surface.

基板202の切欠底面212abは、基板202に搭載される半導体レーザー201のレーザー出射面201Cの位置よりX軸の正方向、かつ側壁面220WaよりX軸の負方向に配置されており、Y軸に平行に基板202の切欠底面212abを横断して形成されたV字型溝部212cを備える。
V字型溝部212cは、Y軸面の断面形状がV字型形状であり、基板202のX軸の負方向側の側壁部である側壁面220Wdと、X軸の正方向側の側壁部である側壁面220Weから構成される。
なお、側壁面220Wdは、X軸面に平行な面であり、側壁面220WeはX軸面に対してX軸の正方向に傾斜した面である。
さらに、基板202は、L字型切欠部212aよりX軸の正方向に配置されており、Y軸に平行に基板202を横断して形成され、Y軸面の断面形状が矩形形状に基板202の一部を切り欠いたL字型切欠部212bを備える。
L字型切欠部212bは、L字型切欠部212bの底面部である切欠底面212bbと、L字型切欠部212bの側壁部である側壁面220Wcから構成され、切欠底面212bb、側壁面220Wc、及び基板202の上面である上面202aからなる第2段差部220cを備える。なお、側壁面220WcはX軸面に平行な面であり、切欠底面212bbはZ軸面に平行な面である。
また、基板202は、L字型切欠部212aとL字型切欠部212bとの間に、第1段差部220aと第2段差部220cとから構成される凸起部209を備える。
凸起部209は、Y軸に平行に基板202を横断して形成され、Y軸面の断面形状が矩形形状である。
なお、基板202の切欠底面212abには、導電膜208が成膜され、さらに、その導電膜208上の所定箇所には、半導体レーザー201搭載用の導電性接合膜206aが成膜されている。そして、導電性接合膜206a上には、半導体レーザー201が搭載される。
The notched bottom surface 212ab of the substrate 202 is arranged in the positive direction of the X-axis from the position of the laser emission surface 201C of the semiconductor laser 201 mounted on the substrate 202 and in the negative direction of the X-axis from the side wall surface 220W, and is arranged on the Y-axis. A V-shaped groove portion 212c formed in parallel across the notched bottom surface 212ab of the substrate 202 is provided.
The V-shaped groove portion 212c has a V-shaped cross-sectional shape on the Y-axis surface, and has a side wall surface 220 Wd which is a side wall portion on the negative direction side of the X axis of the substrate 202 and a side wall portion on the positive direction side of the X axis. It is composed of a side wall surface 220 We.
The side wall surface 220Wd is a surface parallel to the X-axis surface, and the side wall surface 220We is a surface inclined in the positive direction of the X-axis with respect to the X-axis surface.
Further, the substrate 202 is arranged in the positive direction of the X-axis from the L-shaped notch 212a, is formed across the substrate 202 in parallel with the Y-axis, and has a rectangular cross-sectional shape on the Y-axis surface. It is provided with an L-shaped notch portion 212b which is notched from a part of the above.
The L-shaped notch 212b is composed of a notched bottom surface 212bb which is a bottom surface of the L-shaped notch 212b and a side wall surface 220Wc which is a side wall of the L-shaped notch 212b. A second step portion 220c including an upper surface 202a, which is the upper surface of the substrate 202, is provided. The side wall surface 220Wc is a surface parallel to the X-axis surface, and the notched bottom surface 212bb is a surface parallel to the Z-axis surface.
Further, the substrate 202 includes a convex portion 209 composed of a first step portion 220a and a second step portion 220c between the L-shaped notch portion 212a and the L-shaped notch portion 212b.
The convex portion 209 is formed across the substrate 202 in parallel with the Y-axis, and the cross-sectional shape of the Y-axis surface is rectangular.
A conductive film 208 is formed on the cutout bottom surface 212ab of the substrate 202, and a conductive bonding film 206a for mounting the semiconductor laser 201 is formed on the conductive film 208 at a predetermined position. Then, the semiconductor laser 201 is mounted on the conductive bonding film 206a.

基板202上には、反射部材203が搭載されている。
反射部材203は、半導体レーザー201のレーザー出射口201Eより出射されたレーザー光211を反射するための反射面203Sを備え、反射面203Sが半導体レーザー201のレーザー出射面201Cと対向するよう設置される。
反射面203Sは、レーザー光211の光軸211Aに対して所定の角度をもっており、本実施形態においては、Y軸に平行でありZ軸面に対し45°傾斜した面である。反射部材203は、反射面203Sを一面としてもつ略三角柱状であり、Y軸面の断面形状が略三角形状である。
A reflective member 203 is mounted on the substrate 202.
The reflecting member 203 includes a reflecting surface 203S for reflecting the laser light 211 emitted from the laser emitting port 201E of the semiconductor laser 201, and the reflecting surface 203S is installed so as to face the laser emitting surface 201C of the semiconductor laser 201. ..
The reflection surface 203S has a predetermined angle with respect to the optical axis 211A of the laser light 211, and in the present embodiment, is a surface parallel to the Y axis and inclined by 45 ° with respect to the Z axis surface. The reflective member 203 has a substantially triangular columnar shape having the reflective surface 203S as one surface, and the cross-sectional shape of the Y-axis surface is substantially triangular.

反射部材203は、略三角柱状の一面が基板202への搭載面であり、その搭載面は、L字型切欠部212a、凸起部209及びL字型切欠部212bを覆っており、反射部材203はその搭載面を基板202に固定することで基板202に搭載される。
具体的には、反射部材203は、L字型切欠部212bと、側壁面220Waと、基板上面202aと、側壁面220Wcと、切欠底面212bbとを覆い基板202に固定されており、反射部材203は基板202上の第1段差部220aと第2段差部220cを覆う構成となっている。
すなわち、基板202に搭載される反射部材203は、基板202の段差部の少なくともその一部を覆い固定されている。
In the reflective member 203, one surface having a substantially triangular columnar shape is a mounting surface on the substrate 202, and the mounting surface covers the L-shaped cutout portion 212a, the convex portion 209, and the L-shaped cutout portion 212b, and is a reflective member. The 203 is mounted on the substrate 202 by fixing its mounting surface to the substrate 202.
Specifically, the reflective member 203 covers the L-shaped cutout portion 212b, the side wall surface 220Wa, the substrate upper surface 202a, the side wall surface 220Wc, and the notch bottom surface 212bb and is fixed to the substrate 202. Is configured to cover the first stepped portion 220a and the second stepped portion 220c on the substrate 202.
That is, the reflective member 203 mounted on the substrate 202 covers and fixes at least a part of the stepped portion of the substrate 202.

実施形態1と同様に、本実施形態もまた、反射部材203が基板202の切欠底面212ab、凸起部209及び切欠底面212bbとからなる段差部を覆い固定されることで、レーザー光211の一部を吸収することで反射部材203内に発生する熱を基板202へ効率的に放出することができる。 Similar to the first embodiment, also in the present embodiment, the reflective member 203 covers and fixes the stepped portion including the notched bottom surface 212ab, the convex portion 209, and the notched bottom surface 212bb of the substrate 202, so that the laser beam 211 is one of the laser beams 211. By absorbing the portion, the heat generated in the reflective member 203 can be efficiently released to the substrate 202.

反射部材203と切欠底面212abとの接触面は、V字型溝部212cの側壁面220Weと切欠底面212abとが接する稜線からX軸方向の正方向であり、第1段差部220aの側壁面220Waまでの間にある。
なお、本実施形態では、反射部材203と切欠底面212abとの接触面のX軸の負方向における最端部は、側壁面220Weと切欠底面212abとが接する稜線上に位置する。
The contact surface between the reflective member 203 and the cutout bottom surface 212ab is in the positive direction in the X-axis direction from the ridge line where the side wall surface 220We of the V-shaped groove portion 212c and the notch bottom surface 212ab are in contact with each other, and extends to the side wall surface 220Wa of the first step portion 220a. Is between.
In the present embodiment, the end of the contact surface between the reflective member 203 and the notched bottom surface 212ab in the negative direction of the X axis is located on the ridge line where the side wall surface 220We and the notched bottom surface 212ab are in contact with each other.

V字型溝部212cを備えることで、半導体レーザー201と反射部材203とを結ぶ熱流路を溝深さの分だけ減少させることできるため、反射部材203へ熱の流れ込みが低減し、反射部材203の熱変形等の悪影響を抑制する効果が期待できる。 By providing the V-shaped groove portion 212c, the heat flow path connecting the semiconductor laser 201 and the reflection member 203 can be reduced by the groove depth, so that the heat flow into the reflection member 203 is reduced and the reflection member 203 The effect of suppressing adverse effects such as thermal deformation can be expected.

半導体レーザー201のレーザー出射口201Eは、実施形態1と比べて、基板202の切欠底面212abに対し高い位置に設けられている。
こうすることで、半導体レーザー201より所定の出射角をもって出射されるレーザー光211が、基板202の切欠底面212abの面上及びV字型溝部212cの側壁面220Weで蹴られるのを避けることができる。
The laser emission port 201E of the semiconductor laser 201 is provided at a position higher than the notched bottom surface 212ab of the substrate 202 as compared with the first embodiment.
By doing so, it is possible to prevent the laser light 211 emitted from the semiconductor laser 201 at a predetermined emission angle from being kicked on the surface of the notched bottom surface 212ab of the substrate 202 and by the side wall surface 220We of the V-shaped groove portion 212c. ..

別の実施形態
次に、本発明の反射部材付基板の別の実施形態を説明する。
図5は、本発明に係る反射部材付基板の別の実施形態を説明するための斜視図である。ここでは、実施形態1の基板102の凸起部109の変形例を図5(a)〜(b)、図6(c)〜(d)、図7(e)〜(f)にて示し、反射部材付基板の段差部の5つの形態を説明する。なお、図5〜図7において反射部材は、基板の形状を明瞭に示すため、透明体として示している。
Another Embodiment Next, another embodiment of the substrate with a reflective member of the present invention will be described.
FIG. 5 is a perspective view for explaining another embodiment of the substrate with a reflective member according to the present invention. Here, deformation examples of the convex portion 109 of the substrate 102 of the first embodiment are shown in FIGS. 5 (a) to 5 (b), FIGS. 6 (c) to (d), and FIGS. 7 (e) to 7 (f). , Five forms of the stepped portion of the substrate with the reflective member will be described. In addition, in FIGS. 5 to 7, the reflective member is shown as a transparent body in order to clearly show the shape of the substrate.

図5(a)は、基板102の凸起部109を2箇所以上の凸起部に分割した形態の斜視図である。基板102の凸起部109は、その上面102aにおいて、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状の割溝部112sを備える。その割溝部112sの両側面部である側壁面120Ws、側壁面120Wtが立設し、割溝部112sの底部を溝底面112sbとする。また、溝底面112sb、側壁面120Ws、側壁面120Wt及び上面102aとから段差部が形成され、それらの段差部によって少なくとも2箇所以上の凸起部109を形成する。 FIG. 5A is a perspective view in which the convex portion 109 of the substrate 102 is divided into two or more convex portions. The convex portion 109 of the substrate 102 is formed on the upper surface 102a of the substrate 102 across the substrate 102 in parallel with the Y-axis, and includes a split groove portion 112s having a rectangular cross-sectional shape on the Y-axis surface. Side wall surfaces 120Ws and side wall surfaces 120Wt, which are both side surfaces of the split groove portion 112s, are erected, and the bottom portion of the split groove portion 112s is designated as a groove bottom surface 112sb. Further, a stepped portion is formed from the groove bottom surface 112sb, the side wall surface 120Ws, the side wall surface 120Wt, and the upper surface 102a, and at least two or more convex portions 109 are formed by the stepped portion.

本実施形態では凸起部109に割溝部112sを3箇所設けることで、凸起部109を4箇所形成する。また、それらの割溝部112sの溝幅は、凸起部109の上面102aのX軸方向の幅に対応した適宜なサイズで均等に割りあてられている。割溝部112sの溝深さは、L字型切欠部112bの切欠底面112bbの位置にあるZ軸平面までとする。
なお、割溝部の数、割溝の形状は本実施形態に限るものではなくは、割溝の数は1つ乃至は複数備えてもよく、割溝部の形状は、例えば、Y軸面の断面がV溝形状、U字型状であってものよい。
また、反射部材103の樹脂系材料は、これらの割溝部112sにも隙間なく充填され、反射部材103の基板102上の搭載位置に固定され、反射部材103が実施形態1と同様に基板102上へ搭載される。
In the present embodiment, the convex portion 109 is provided with three split groove portions 112s to form four convex portions 109. Further, the groove widths of the split groove portions 112s are evenly allocated with an appropriate size corresponding to the width of the upper surface 102a of the convex portion 109 in the X-axis direction. The groove depth of the split groove portion 112s is up to the Z-axis plane at the position of the cutout bottom surface 112bb of the L-shaped cutout portion 112b.
The number of split grooves and the shape of the split grooves are not limited to this embodiment, and the number of split grooves may be one or more, and the shape of the split grooves is, for example, a cross section of the Y-axis surface. May have a V-groove shape or a U-shape.
Further, the resin-based material of the reflective member 103 is also filled in the split groove portions 112s without gaps, fixed at the mounting position on the substrate 102 of the reflective member 103, and the reflective member 103 is mounted on the substrate 102 as in the first embodiment. Will be installed in.

図5(b)は、図5(a)の凸起部109における割溝部112sの方向をY軸方向からX軸方向へ変更した形態であり、図5(a)と同様に少なくとも2箇所以上の凸起部109を形成する。
本実施形態では凸起部109に割溝部112sを4箇所設けることで、凸起部109を5箇所形成している。また、それらの割溝部の溝幅は、凸起部109の上面102aのY軸方向の幅に対応した適宜なサイズで均等に割りあてている。
なお、図5(a)の実施形態と図5(b)の実施形態とをかけ合わせた、Y軸方向とX軸方向で交わる分割溝部を備える形態としてもよい。
FIG. 5 (b) shows a form in which the direction of the split groove portion 112s in the convex portion 109 of FIG. 5 (a) is changed from the Y-axis direction to the X-axis direction, and at least two or more locations as in FIG. 5 (a). The convex portion 109 of the above is formed.
In the present embodiment, the convex portions 109 are provided with four split groove portions 112s to form five convex portions 109. Further, the groove widths of the split groove portions are evenly allocated with an appropriate size corresponding to the width of the upper surface 102a of the convex portion 109 in the Y-axis direction.
It should be noted that the embodiment of FIG. 5A and the embodiment of FIG. 5B may be crossed and provided with a split groove portion intersecting in the Y-axis direction and the X-axis direction.

図6(c)は、図5(b)で示す四角柱状の凸起部109を複数もつ形態の変形例であり、凸起部109を円柱状にした実施形態である。
さらに、凸起部109のY軸面における断面形状は、矩形形状に限らず、凸起部109の断面が多角形あるいは曲線を交えた断面形状であってもよい。例えば、凸起部109の上面102a上に、階段形状をなす階段状凸起部109st(斜視図6(d))を備えてもよい。
さらに、凸起部109の段差部のY軸面の断面形状が、第1段差部120aの角部で曲線形状をなしてもよい(斜視図を図7(e))
FIG. 6 (c) is a modified example of the form having a plurality of square columnar convex portions 109 shown in FIG. 5 (b), and is an embodiment in which the convex portions 109 are formed into a columnar shape.
Further, the cross-sectional shape of the raised portion 109 on the Y-axis surface is not limited to a rectangular shape, and the cross-sectional shape of the raised portion 109 may be a polygonal shape or a cross-sectional shape including curves. For example, a stepped convex portion 109st (perspective view 6 (d)) having a staircase shape may be provided on the upper surface 102a of the convex portion 109.
Further, the cross-sectional shape of the Y-axis surface of the stepped portion of the raised portion 109 may be curved at the corner portion of the first stepped portion 120a (a perspective view is shown in FIG. 7 (e)).

凸起部109は、そのY軸面又はX軸面における断面形状が凸起部先端部のサイズよりも凸起部根元部のサイズを小さく設定することで、その断面を逆台状としもよい。図7(f)は、Y軸面における断面形状が逆台形である凸起部109を備えている。具体的には、その凸起部109が、凸起部109の側壁面120WcをY軸に平行でX軸面に対し正方向に傾斜させることで、凸起部109のY軸面の断面が先端部のX軸方向のサイズよりも凸起部109の根元部のX軸方向のサイズが小さい逆台形の凸起部を形成する。 The cross section of the convex portion 109 may be inverted by setting the size of the base portion of the convex portion to be smaller than the size of the tip portion of the convex portion in the cross-sectional shape on the Y-axis surface or the X-axis surface. .. FIG. 7 (f) includes a raised portion 109 having an inverted trapezoidal cross-sectional shape on the Y-axis surface. Specifically, the convex portion 109 tilts the side wall surface 120 Wc of the convex portion 109 in the positive direction with respect to the X-axis surface in parallel with the Y-axis, so that the cross section of the Y-axis surface of the convex portion 109 is formed. An inverted trapezoidal convex portion is formed in which the size of the root portion of the protruding portion 109 in the X-axis direction is smaller than the size of the tip portion in the X-axis direction.

凸起部109の先端部サイズよりも付根部のサイズが小さい形状にすることで、釣り針で見られるかえしに似た効果が得られる。この効果により、反射部材103と基板102とがより強固に固定することができ、反射部材103と基板102とが剥がれるのを抑制する効果が得られる。 By making the size of the root portion smaller than the size of the tip portion of the convex portion 109, an effect similar to that of a barb seen with a fishing hook can be obtained. Due to this effect, the reflective member 103 and the substrate 102 can be more firmly fixed, and the effect of suppressing the reflection member 103 and the substrate 102 from peeling off can be obtained.

本発明において、凸起部の形状、突出する方向、凸起部の数については、上述の実施形態の限りではない。また、凸起部形状は、実施形態1、実施形態2、及び別の実施形態(a)〜(f)のすべての構成のうち、いずれかとの組み合わせで構成された凸起部としもよい。 In the present invention, the shape of the raised portion, the protruding direction, and the number of raised portions are not limited to the above-described embodiment. Further, the shape of the raised portion may be a raised portion formed in combination with any of the configurations of the first embodiment, the second embodiment, and the other embodiments (a) to (f).

本発明において、凸起部109を備える基板102は、基板102と凸起部とを別体で成型し半田等の接合膜で接合し形成してもよいが、熱伝達性、熱伝導性及び製造コストの観点から一体であることがより好ましい。 In the present invention, the substrate 102 provided with the convex portion 109 may be formed by molding the substrate 102 and the convex portion separately and joining them with a bonding film such as solder. It is more preferable that they are integrated from the viewpoint of manufacturing cost.

本発明は、基板102と容器104とが別体で構成し述べられているが、これに限るものではなく、基板102と容器104とが一体で形成されてもよい。 Although the present invention is described in that the substrate 102 and the container 104 are separately formed, the present invention is not limited to this, and the substrate 102 and the container 104 may be integrally formed.

本発明は、近年の、半導体レーザーチップのより一層の高性能化、小型化、低背化、耐久性向上に係る需要に適応させることができる。例えば、半導体レーザーチップの小型化は、基板の小型化でもあり、その結果、基板102と反射部材103との固定部面積を減少させ、結果として固定部の固定強度を低下させる問題を引き起こす。
このような課題に対して、限られた固定面積で十分な固定強度を保つ反射部材付基板を構成するには、基板102に凸起部109を設け、その凸起部109を反射部材103で覆うことで固定強度を向上させる効果が期待できる。
The present invention can be adapted to the recent demands for higher performance, smaller size, lower profile, and improved durability of semiconductor laser chips. For example, the miniaturization of the semiconductor laser chip is also a miniaturization of the substrate, and as a result, the area of the fixed portion between the substrate 102 and the reflective member 103 is reduced, and as a result, the fixing strength of the fixed portion is lowered.
In order to solve such a problem, in order to construct a substrate with a reflective member that maintains sufficient fixing strength in a limited fixed area, a convex portion 109 is provided on the substrate 102, and the convex portion 109 is formed by the reflective member 103. By covering it, the effect of improving the fixing strength can be expected.

上記、本発明は発光素子として半導体レーザーについて説明したが、発光素子はこれに限定されるものではない。本発明に係るところの発光素子とは、例えば、LED、白熱灯、蛍光灯、ハロゲンランプ等の光を発する光源であればよい。
<製造方法>
Although the present invention has described the semiconductor laser as a light emitting element, the light emitting element is not limited thereto. The light emitting element according to the present invention may be, for example, a light source that emits light such as an LED, an incandescent lamp, a fluorescent lamp, or a halogen lamp.
<Manufacturing method>

次に、本発明の反射部材付基板の製造方法について、実施形態1の半導体レーザーチップ110を例にあげて図8〜図10を用いて説明する。
なお、実施形態1に係る半導体レーザーチップ110の構成については、実施形態1に付した符号の説明とする。
ここでは、大判の基板用ウエハーから半導体レーザーチップ110を複数製造する工程について説明する。その工程は、次のSTEPで行われる。
Next, the method for manufacturing the substrate with a reflective member of the present invention will be described with reference to FIGS. 8 to 10 by taking the semiconductor laser chip 110 of the first embodiment as an example.
Regarding the configuration of the semiconductor laser chip 110 according to the first embodiment, the reference numerals given to the first embodiment will be described.
Here, a process of manufacturing a plurality of semiconductor laser chips 110 from a large-format substrate wafer will be described. The process is performed in the next STEP.

[STEP1]
図8は、本発明の反射部材付基板の製造方法を説明するための図であり、(a)は基坂用ウエハーに導電膜、接合膜及び導電性接合膜の形成工程を示す図であり、(b)は段差部形成工程を示す図である。
まず、窒化アルミ(AlN)からなる厚さ300μm程度の基板用ウエハー102WFを用意する。基板用ウエハー102WFは、半導体レーザーチップ110に対応するチップ形成領域102chを複数備えている。基板用ウエハー102WFの上面102aの全面には、半導体レーザー101に電力を伝えるための導電膜108と、基板用ウエハー102WFの下面102bの全面は、容器104とを固定するための接合膜102eとを成膜する。導電膜108及び接合膜102eは、例えば、基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜であり、スパッタリング法や蒸着法などにより成膜する。次に、導電膜108上にフォトリソグラフィーによりレジストパターン(不図示)を形成し、このレジストパターンをマスクとして、導電膜108上の半導体レーザー101が固定される所定箇所に金錫半田(Au−Sn)等の導電性接合膜106aを成膜する(図8(a))。導電性接合膜106aは、スパッタリング法や蒸着法などにより成膜する。
[STEP1]
FIG. 8 is a diagram for explaining a method for manufacturing a substrate with a reflective member of the present invention, and FIG. 8A is a diagram showing a process of forming a conductive film, a bonding film, and a conductive bonding film on a base slope wafer. , (B) is a diagram showing a step portion forming step.
First, a substrate wafer 102WF made of aluminum nitride (AlN) and having a thickness of about 300 μm is prepared. The substrate wafer 102WF includes a plurality of chip forming regions 102ch corresponding to the semiconductor laser chip 110. The entire surface of the upper surface 102a of the substrate wafer 102WF is provided with a conductive film 108 for transmitting power to the semiconductor laser 101, and the entire surface of the lower surface 102b of the substrate wafer 102WF is provided with a bonding film 102e for fixing the container 104. Form a film. The conductive film 108 and the bonding film 102e are thin films in which titanium-platinum-gold (Ti-Pt-Au) are laminated in this order from the substrate 102 side, and are formed by a sputtering method, a vapor deposition method, or the like. Next, a resist pattern (not shown) is formed on the conductive film 108 by photolithography, and using this resist pattern as a mask, gold-tin solder (Au-Sn) is placed at a predetermined position on the conductive film 108 to which the semiconductor laser 101 is fixed. ) And the like to form a conductive bonding film 106a (FIG. 8 (a)). The conductive bonding film 106a is formed by a sputtering method, a vapor deposition method, or the like.

[STEP2]
次に、基板用ウエハー102WFの上面102aに溝部112a、溝部112bを形成し、これらの溝部により凸起部109を形成する。
溝部112a、溝部112bは、ダイシングにより基板用ウエハー102WFをハーフカットすることで形成する。本実施形態では、溝部112aの溝幅は300μm、溝深さを100μmであり、溝部112bの溝幅は300μm、溝深さを80μmである。溝部112bは、基板用ウエハー102WFを各半導体レーザーチップ110へ個片化された際に、L字型切欠部112bとなる(図8(b))。
なお、溝部112a、溝部112bは、同時に複数加工することが効率的であり好ましいが、これとは別に、例えば、複数回に分けて加工し形成してもよい。
[STEP2]
Next, a groove portion 112a and a groove portion 112b are formed on the upper surface 102a of the substrate wafer 102WF, and a convex portion 109 is formed by these groove portions.
The groove portion 112a and the groove portion 112b are formed by half-cutting the substrate wafer 102WF by dicing. In the present embodiment, the groove width of the groove portion 112a is 300 μm and the groove depth is 100 μm, and the groove width of the groove portion 112b is 300 μm and the groove depth is 80 μm. The groove portion 112b becomes an L-shaped notch portion 112b when the substrate wafer 102WF is fragmented into each semiconductor laser chip 110 (FIG. 8B).
It is efficient and preferable to process a plurality of the groove portions 112a and 112b at the same time, but apart from this, for example, the groove portions 112a and the groove portions 112b may be processed and formed in a plurality of times.

[STEP3]
図9は、本発明の反射部材付基板の製造方法を説明するための図であり、(c)は基板用ウエハー上に金型をのせた図であり、(d)は基板用ウエハー上に反射部材を形成した図である。
基板用ウエハー102WF上に反射部材103を形成する。
反射部材103は、基板用ウエハー102WFに金型150をのせ(図9(c))、トランスファーモールドにより形成する(図9(d))。
[STEP3]
9A and 9B are views for explaining a method for manufacturing a substrate with a reflective member of the present invention, FIG. 9C is a diagram in which a mold is placed on a substrate wafer, and FIG. 9D is a diagram on a substrate wafer. It is a figure which formed the reflective member.
The reflective member 103 is formed on the substrate wafer 102WF.
The reflective member 103 is formed by placing a mold 150 on a substrate wafer 102WF (FIG. 9 (c)) and performing a transfer mold (FIG. 9 (d)).

金型150は、反射部材103の外形状に対応した凹部150aを有する。金型150は、凹部150aが凸起部109を覆うように基板用ウエハー102WF上にのせられる。
金型150を基板用ウエハー102WF上にのせるための位置決め基準面は、基板用ウエハー102WF上面と溝部112aの側壁面120Wbとする。
基板用ウエハー102WFに金型150をのせた後、基板用ウエハー102WFと金型150との間に形成された空間(凹部150a)に、反射部材103を構成するフィラーを含有した樹脂系材料(以下、樹脂と呼ぶ。)を充填し、その樹脂を熱硬化する。その後、金型150を取り外す。
The mold 150 has a recess 150a corresponding to the outer shape of the reflective member 103. The mold 150 is placed on the substrate wafer 102WF so that the concave portion 150a covers the convex portion 109.
The positioning reference surface for mounting the mold 150 on the substrate wafer 102WF is the upper surface of the substrate wafer 102WF and the side wall surface 120Wb of the groove 112a.
After the mold 150 is placed on the substrate wafer 102WF, a resin-based material containing a filler constituting the reflective member 103 is provided in a space (recessed portion 150a) formed between the substrate wafer 102WF and the mold 150 (hereinafter referred to as a resin material). , Called a resin), and the resin is heat-cured. After that, the mold 150 is removed.

以下に反射部材103の形成方法を具体的に説明する。
反射部材103は、基坂用ウエハー102WFの凸起部109を形成する第1段差部120aと第3段差部120cの少なくとも一部を覆い、基坂用ウエハー102WFに固定する。
ここで、反射部材103を溝部112aの溝底面112abより形成し、反射部材103のZ軸方向の最大高さは基板用ウエハー102WFの上面102aから300μmであり、反射部材103のX軸方向の最大長さは400μmである。
The method of forming the reflective member 103 will be specifically described below.
The reflective member 103 covers at least a part of the first step portion 120a and the third step portion 120c forming the convex portion 109 of the base slope wafer 102WF, and is fixed to the base slope wafer 102WF.
Here, the reflective member 103 is formed from the groove bottom surface 112ab of the groove portion 112a, and the maximum height of the reflective member 103 in the Z-axis direction is 300 μm from the upper surface 102a of the substrate wafer 102WF, and the maximum height of the reflective member 103 in the X-axis direction. The length is 400 μm.

[STEP4]
図10は、本発明の反射部材付基板の製造方法を説明するための図であり、(e)は基板用ウエハーを個片化する工程を示す図であり、(f)は半導体レーザーを搭載する工程を示す図である。
基板用ウエハー102WF上の複数のチップ形成領域102chを区切るダイシングライン102DLにそって(図10(e))、基板用ウエハー102WFを、ダイシグブレード(不図示)を用いてダイシングし個片化することで反射部材103付き基板102を形成する。
[STEP4]
10A and 10B are views for explaining a method for manufacturing a substrate with a reflective member of the present invention, FIG. 10E is a diagram showing a process of individualizing a substrate wafer, and FIG. 10F is a diagram in which a semiconductor laser is mounted. It is a figure which shows the process to perform.
The substrate wafer 102WF is diced and individualized using a dicing blade (not shown) along the dicing line 102DL that divides a plurality of chip forming regions 102ch on the substrate wafer 102WF (FIG. 10 (e)). This forms the substrate 102 with the reflective member 103.

[STEP5]
個片化した反射部材103付き基板102の上に半導体レーザー101を搭載する。
半導体レーザー101は、レーザー出射面101Cが反射部材103と対向する位置で、反射部材103付き基板102上の導電性接合膜106a上に載置し、リフローすることで基板102の上面102a上に固定する(図10(f))。
[STEP5]
The semiconductor laser 101 is mounted on the substrate 102 with the individualized reflective member 103.
The semiconductor laser 101 is placed on the conductive bonding film 106a on the substrate 102 with the reflective member 103 at a position where the laser emitting surface 101C faces the reflective member 103, and is fixed on the upper surface 102a of the substrate 102 by reflowing. (Fig. 10 (f)).

ここで、半導体レーザー101は、導電性接合膜106aが成膜された基板102の上面102aと、溝部112aの側壁面120Wbとを位置決め基準面として搭載する。
半導体レーザー101と金型150との基準面を、基板102の上面102aと溝部112aの側壁面120Wbとし共通化することで、共通化しない場合に比べ、半導体レーザー101に対する反射部材103の位置を高精度に保つことができる。そのためレーザー光111の反射光における光軸111Aの軸ズレ等を抑える効果が期待でき、高品質な半導体レーザーチップ110を製造することができる。
さらに、本実施形態の製造方法は、反射部材を基板上で成形によって形成することで、バー状の反射部材を基板上に固定する従来の製造方法と違い、本発明にあるような段差部をもつ基板にも反射部材を容易に形成することができる上、ウエハー基板上の反射部材を一括で形成することができることから量産性にも優れている。
Here, the semiconductor laser 101 mounts the upper surface 102a of the substrate 102 on which the conductive bonding film 106a is formed and the side wall surface 120Wb of the groove 112a as positioning reference surfaces.
By sharing the reference surface between the semiconductor laser 101 and the mold 150 as the upper surface 102a of the substrate 102 and the side wall surface 120Wb of the groove 112a, the position of the reflecting member 103 with respect to the semiconductor laser 101 is higher than in the case where it is not shared. It can be kept accurate. Therefore, the effect of suppressing the axis deviation of the optical axis 111A in the reflected light of the laser light 111 can be expected, and a high-quality semiconductor laser chip 110 can be manufactured.
Further, the manufacturing method of the present embodiment is different from the conventional manufacturing method in which the bar-shaped reflective member is fixed on the substrate by forming the reflective member by molding on the substrate, and the stepped portion as in the present invention is formed. In addition to being able to easily form reflective members on the substrate to be held, the reflective members on the wafer substrate can be collectively formed, which is excellent in mass productivity.

また、反射部材の反射面は凹面で曲面等の複雑形状とすることができ、反射部材の基板との固定部も複雑形状とすることができる。成形を用いた反射部材の形成方法ではこのような複雑形状も容易に製造することができる。
なお、本実施形態では、STEP4、STEP5の工程順で進められているが、この順序に限るものではなく、例えば、STEP4とSTEP5とが入れ替えられた工程順にしてもよい。
Further, the reflective surface of the reflective member can be concave and has a complicated shape such as a curved surface, and the fixed portion of the reflective member with the substrate can also have a complicated shape. Such a complicated shape can be easily manufactured by the method of forming the reflective member by molding.
In the present embodiment, the steps are carried out in the order of STEP4 and STEP5, but the order is not limited to this, and for example, STEP4 and STEP5 may be exchanged in the order of steps.

[STEP6]
以上で、半導体レーザーチップ110が完成する。
[STEP6]
With the above, the semiconductor laser chip 110 is completed.

次に、本発明の反射部材付基板の製造方法の別の実施形態について、実施形態2の半導体レーザーチップ210を例にあげて図11〜図13を用いて説明する。
なお、実施形態2に係る半導体レーザーチップ210の構成については、実施形態2に付した符号の説明とする。
ここでは、大判の基板用ウエハーから半導体レーザーチップ210を複数製造する工程について説明する。その工程は、次のSTEPで行われる。
Next, another embodiment of the method for manufacturing a substrate with a reflective member of the present invention will be described with reference to FIGS. 11 to 13 by taking the semiconductor laser chip 210 of the second embodiment as an example.
Regarding the configuration of the semiconductor laser chip 210 according to the second embodiment, the reference numerals given to the second embodiment will be described.
Here, a process of manufacturing a plurality of semiconductor laser chips 210 from a large-format substrate wafer will be described. The process is performed in the next STEP.

[STEP1]
図11は、本発明の反射部材付基板の製造方法を説明するための図であり、(a)は段差部形成工程を示す図であり、(b)は基坂用ウエハーに導電膜、接合膜及び導電性接合膜の形成工程を示す図である。
まず、窒化アルミ(AlN)からなる厚さ300μm程度の基板用ウエハー202WFを用意する。基板用ウエハー202WFは、半導体レーザーチップ210に対応するチップ形成領域202chを複数備えている。
[STEP1]
11A and 11B are views for explaining the manufacturing method of the substrate with a reflective member of the present invention, FIG. 11A is a diagram showing a step portion forming process, and FIG. 11B is a conductive film and bonded to a base slope wafer. It is a figure which shows the forming process of a film and a conductive bonding film.
First, a substrate wafer 202WF made of aluminum nitride (AlN) and having a thickness of about 300 μm is prepared. The substrate wafer 202WF includes a plurality of chip forming regions 202ch corresponding to the semiconductor laser chip 210.

基板用ウエハー202WFの上面202aに溝部212a、溝部212bを形成し、これらの溝部により凸起部209を形成する。
溝部212a、溝部212bは、ダイシングにより基板用ウエハー202WFをハーフカットすることで形成する。本実施形態では、溝部212aの溝幅は2250μm、溝深さを100μmであり、溝部212bの溝幅は300μm、溝深さを80μmである(図11(a))。
A groove portion 212a and a groove portion 212b are formed on the upper surface 202a of the substrate wafer 202WF, and a convex portion 209 is formed by these groove portions.
The groove portion 212a and the groove portion 212b are formed by half-cutting the substrate wafer 202WF by dicing. In the present embodiment, the groove width of the groove 212a is 2250 μm and the groove depth is 100 μm, and the groove width of the groove 212b is 300 μm and the groove depth is 80 μm (FIG. 11A).

溝部212a、溝部212bは、基板用ウエハー202WFを各半導体レーザーチップ210へ個片化された際に、L字型切欠部212a、L字型切欠部212bとなる。
なお、溝部212a、溝部212bは、同時に複数加工することが効率的であり好ましいが、これとは別に、例えば、複数回に分けて加工し形成してもよい。
The groove portion 212a and the groove portion 212b become an L-shaped notch portion 212a and an L-shaped notch portion 212b when the substrate wafer 202WF is separated into each semiconductor laser chip 210.
It is efficient and preferable to process a plurality of the groove portions 212a and 212b at the same time, but separately, for example, the groove portions 212a and the groove portions 212b may be processed and formed in a plurality of times.

[STEP2]
次に、基板用ウエハー202WFの溝部212aの溝底面212abの全面には、半導体レーザー201に電力を伝えるための導電膜208と、基板用ウエハー202WFの下面202bの全面には接合膜202eとを成膜する。導電膜208及び接合膜202eは、例えば、基板202側からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜であり、スパッタリング法や蒸着法などにより成膜する。次に、導電膜208上にフォトリソグラフィーによりレジストパターン(不図示)を形成し、このレジストパターンをマスクとして、導電膜208上の半導体レーザー201が固定される所定箇所に金錫半田(Au−Sn)等の導電性接合膜206aを成膜する(図11(b))。導電性接合膜206aは、スパッタリング法や蒸着法などにより成膜する。
[STEP2]
Next, a conductive film 208 for transmitting power to the semiconductor laser 201 is formed on the entire surface of the groove bottom surface 212ab of the groove portion 212a of the substrate wafer 202WF, and a bonding film 202e is formed on the entire surface of the lower surface 202b of the substrate wafer 202WF. Membrane. The conductive film 208 and the bonding film 202e are, for example, thin films in which titanium-platinum-gold (Ti-Pt-Au) are laminated in this order from the substrate 202 side, and are formed by a sputtering method, a vapor deposition method, or the like. Next, a resist pattern (not shown) is formed on the conductive film 208 by photolithography, and using this resist pattern as a mask, gold-tin solder (Au-Sn) is placed at a predetermined position on the conductive film 208 where the semiconductor laser 201 is fixed. ) And the like to form a conductive bonding film 206a (FIG. 11 (b)). The conductive bonding film 206a is formed by a sputtering method, a vapor deposition method, or the like.

[STEP3]
図12は、本発明の反射部材付基板の製造方法を説明するための図であり、(c)は基板用ウエハー上に反射部材203を形成するための樹脂系材料を塗布した図であり、(d)は基板用ウエハー上に研削加工により反射部材を形成した図である。
[STEP3]
FIG. 12 is a diagram for explaining a method for manufacturing a substrate with a reflective member of the present invention, and FIG. 12 (c) is a diagram in which a resin-based material for forming a reflective member 203 is applied on a wafer for a substrate. (D) is a diagram in which a reflective member is formed on a substrate wafer by grinding.

基板用ウエハー202WF上に反射部材203を形成する。
反射部材203は、基板用ウエハー202WFにスクリーン印刷を用いて反射部材203を構成するフィラーを含有した樹脂系材料(以下、樹脂と呼ぶ。)を塗布し、その樹脂を熱硬化して、前成形体203Pを形成する(図12(c))。前成形体203Pを研削加工して反射部材203を形成する。なお、反射部材203の成形と同時に、基坂用ウエハー202WFの切欠底面212abにV字型溝部212cを形成する(図12(d))。
The reflective member 203 is formed on the substrate wafer 202WF.
The reflective member 203 is premolded by applying a resin-based material (hereinafter, referred to as a resin) containing a filler constituting the reflective member 203 to a substrate wafer 202WF by screen printing, and thermosetting the resin. The body 203P is formed (FIG. 12 (c)). The preformed body 203P is ground to form the reflective member 203. At the same time as molding the reflective member 203, a V-shaped groove portion 212c is formed on the notched bottom surface 212ab of the base slope wafer 202WF (FIG. 12 (d)).

以下に反射部材203及びV字型溝部212cの形成方法を具体的に説明する。
基板用ウエハー202WF上にスクリーン印刷用のスクリーンマスクを置き、スクリーンマスクの上に反射部材203を構成する樹脂をのせる。次に、スキージでスクリーンマスク上の樹脂を延ばし、基坂用ウエハー202WF上に所定形状パターンの樹脂を転写する。その後、基坂用ウエハー202WF上の樹脂を熱硬化することで、Y軸面の断面形状が半円でY軸方向に平行な略矩形状である、反射部材203のもとである前成形体203Pを基板用ウエハー202WF上に形成する(図12(c))。
The method of forming the reflective member 203 and the V-shaped groove portion 212c will be specifically described below.
A screen mask for screen printing is placed on the substrate wafer 202WF, and the resin constituting the reflective member 203 is placed on the screen mask. Next, the resin on the screen mask is spread with a squeegee, and the resin having a predetermined shape pattern is transferred onto the base slope wafer 202WF. After that, by thermosetting the resin on the wafer 202WF for the base slope, the cross-sectional shape of the Y-axis surface is a semicircle and a substantially rectangular shape parallel to the Y-axis direction. 203P is formed on the substrate wafer 202WF (FIG. 12 (c)).

反射部材203のもとである前成形体203Pは、基坂用ウエハー202WFの凸起部209を形成する第1段差部220aと第2段差部220cの少なくとも一部を覆い、基坂用ウエハー202WFに固定される。
つづいて、前成形体203Pを、研削加工機を用いて反射部材203の形状に削りだす。こうして、反射部材203が形成される。また、反射部材203の反射面203Sを加工する際、同時に基坂用ウエハー202WFの切欠底面212abにV字型溝部212cを形成する。V字型溝部212cの側壁面220Wdは、基板202のX軸面に平行な面となるように形成する(図12(d))。また反射面203SとV字型溝部212cを研削加工することで、基板用ウエハー202WFの切欠底面212abとV字型溝部212cの側壁面220Wdとが半導体レーザー210を搭置する際の位置決め基準面となる。
The preformed body 203P, which is the source of the reflective member 203, covers at least a part of the first step portion 220a and the second step portion 220c forming the convex portion 209 of the base slope wafer 202WF, and covers at least a part of the base slope wafer 202WF. Is fixed to.
Subsequently, the preformed body 203P is machined into the shape of the reflective member 203 using a grinding machine. In this way, the reflective member 203 is formed. Further, when the reflecting surface 203S of the reflecting member 203 is processed, a V-shaped groove portion 212c is formed on the notched bottom surface 212ab of the base slope wafer 202WF at the same time. The side wall surface 220 Wd of the V-shaped groove portion 212c is formed so as to be a surface parallel to the X-axis surface of the substrate 202 (FIG. 12 (d)). Further, by grinding the reflective surface 203S and the V-shaped groove portion 212c, the notched bottom surface 212ab of the substrate wafer 202WF and the side wall surface 220Wd of the V-shaped groove portion 212c serve as a positioning reference surface when the semiconductor laser 210 is placed. Become.

[STEP4]
図13は、本発明の反射部材付基板の製造方法を説明するための図であり、(e)は基板用ウエハーを個片化する工程を示す図であり、(f)は半導体レーザーを搭載する工程を示す図である。
基板用ウエハー202WF上の複数のチップ形成領域202chを区切るダイシングライン202DLにそって(図13(e))、基板用ウエハー202WFを、ダイシグブレード(不図示)を用いてダイシングし個片化することで反射部材203付き基板202を形成する。
[STEP4]
13A and 13B are views for explaining a method for manufacturing a substrate with a reflective member of the present invention, FIG. 13E is a diagram showing a process of individualizing a wafer for a substrate, and FIG. It is a figure which shows the process to perform.
The substrate wafer 202WF is diced and individualized using a dicing blade (not shown) along the dicing line 202DL that divides a plurality of chip forming regions 202ch on the substrate wafer 202WF (FIG. 13 (e)). This forms the substrate 202 with the reflective member 203.

[STEP5]
個片化した反射部材203付き基板202の上に半導体レーザー201を搭載する。
半導体レーザー201は、レーザー出射面201Cが反射部材203と対向する位置で、反射部材203付き基板202上の導電性接合膜206a上に載置し、リフローすることで基板202の上面202a上に固定する(図13(f))。
[STEP5]
The semiconductor laser 201 is mounted on the substrate 202 with the individualized reflective member 203.
The semiconductor laser 201 is placed on the conductive bonding film 206a on the substrate 202 with the reflecting member 203 at a position where the laser emitting surface 201C faces the reflecting member 203, and is fixed on the upper surface 202a of the substrate 202 by reflowing. (FIG. 13 (f)).

ここで、半導体レーザー201は、導電性接合膜206aが成膜された基板202の切欠底面212abと、V字型溝部212cの側壁面220Wdとを位置決め基準面として搭載する。
半導体レーザー201を搭置する位置決め基準面と、V字型溝部212cの側壁面220Wdからなる位置決め基準面とを共通化することで、共通化しない場合に比べ、半導体レーザー201に対する反射部材203の位置を高精度に保つことができる。そのためレーザー光211の反射光における光軸211Aの軸ズレ等を抑える効果が期待でき、高品質な半導体レーザーを製造することができる。
Here, the semiconductor laser 201 mounts the notched bottom surface 212ab of the substrate 202 on which the conductive bonding film 206a is formed and the side wall surface 220Wd of the V-shaped groove portion 212c as positioning reference surfaces.
By sharing the positioning reference surface on which the semiconductor laser 201 is placed and the positioning reference surface consisting of the side wall surface 220 Wd of the V-shaped groove portion 212c, the position of the reflecting member 203 with respect to the semiconductor laser 201 is compared with the case where the semiconductor laser 201 is not shared. Can be kept highly accurate. Therefore, the effect of suppressing the misalignment of the optical axis 211A in the reflected light of the laser light 211 can be expected, and a high-quality semiconductor laser can be manufactured.

さらに、本実施形態の製造方法は、反射部材を基板上で成形によって形成することで、バー状の反射部材を基板上に固定する従来の製造方法と違い、本発明にあるような段差部をもつ基板にも反射部材を容易に形成することができる上、ウエハー基板上の反射部材を一括で形成することができることから量産性にも優れている。
なお、本実施形態では、STEP4、STEP5の工程順で進められているが、この順序に限るものではなく、例えば、STEP4とSTEP5とが入れ替えられた工程順にしてもよい。
Further, the manufacturing method of the present embodiment is different from the conventional manufacturing method in which the bar-shaped reflective member is fixed on the substrate by forming the reflective member by molding on the substrate, and the stepped portion as in the present invention is formed. In addition to being able to easily form reflective members on the substrate to be held, the reflective members on the wafer substrate can be collectively formed, which is excellent in mass productivity.
In the present embodiment, the steps are carried out in the order of STEP4 and STEP5, but the order is not limited to this, and for example, STEP4 and STEP5 may be exchanged in the order of steps.

[STEP6]
以上で、半導体レーザーチップ210が完成する。
[STEP6]
With the above, the semiconductor laser chip 210 is completed.

本発明における実施形態の製造方法では、反射部材の反射面の表面粗さは、反射率に影響するため、平坦な鏡面であることが好ましい。例えば、金型成形を用いた射出成形、あるいは研削等で反射面を形成する際は、その反射面は鏡面を確保する。反射面の表面は表面粗さRaを40nm以下、より好ましくは表面粗さRaを10nm以下である。 In the manufacturing method of the embodiment of the present invention, the surface roughness of the reflective surface of the reflective member affects the reflectance, and therefore a flat mirror surface is preferable. For example, when a reflective surface is formed by injection molding using mold molding, grinding, or the like, the reflective surface secures a mirror surface. The surface of the reflective surface has a surface roughness Ra of 40 nm or less, more preferably a surface roughness Ra of 10 nm or less.

また、本発明における実施形態の製造方法では、凸起部109乃至は209を備えることで、基板102乃至は202と、反射部材103乃至は203との固定面積が増し、固定部境界面で剥がれが発生し難しくなるため、製造工程等での研削あるいはダイシング等で好適な機能をはたす。 Further, in the manufacturing method of the embodiment of the present invention, by providing the protruding portions 109 to 209, the fixed area between the substrate 102 to 202 and the reflecting member 103 to 203 is increased, and the fixing portion is peeled off at the boundary surface of the fixed portion. Is generated and becomes difficult, so it has a suitable function in grinding or dicing in the manufacturing process.

以上、本発明の基板及び基板の製造方法を実施形態に基づき説明したが、本発明の基板及び基板の製造方法は本実施形態に限定されるものではなく、その各構成は同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成が付加されていてもよい Although the method for manufacturing the substrate and the substrate of the present invention has been described above based on the embodiment, the method for producing the substrate and the substrate of the present invention is not limited to the present embodiment, and each configuration has the same function. It can be replaced with any configuration. Further, any other configuration may be added to the present invention.

100 半導体レーザーパッケージ
101 半導体レーザー
101a 上面
101b 下面
101n 電極膜
101p 電極膜
101C レーザー出射面
101E レーザー出射口
102 基板
102a 上面
102b 下面
102e 接合膜
102ch チップ形成領域
102DL ダイシングライン
102WF 基板用ウエハー
103 反射部材
103S 反射面
104 容器
104a 凹部
104b 底部
104bb 底面
104bA 搭載領域
104c 壁部
104e 接合膜
104f 端面
104g 接合膜
105 透明蓋体
106a 導電性接合膜
108 導電膜
109 凸起部
109st 階段状凸起部
110 半導体レーザーチップ
111 レーザー光
111A 光軸
112a 溝部
112ab 溝底面
112b L字型切欠部(溝部)
112bb 切欠底面
112s 割溝部
112sb 溝底面
120a 第1段差部
120b 第2段差部
120c 第3段差部
120Ws 側壁面
120Wt 側壁面
120Wa 側壁面
120Wb 側壁面
120Wc 側壁面
150 金型
150a 凹部
201 半導体レーザー
201C レーザー出射面
201E レーザー出射口
202 基板
202a 上面
202ch チップ形成領域
202e 接合膜
202DL ダイシングライン
202WF 基板用ウエハー
203 反射部材
203P 前成形体
203S 反射面
206a 導電性接合膜
208 導電膜
209 凸起部
210 半導体レーザーチップ
211 レーザー光
211A 光軸
212a L字型切欠部(溝部)
212ab 切欠底面
212b L字型切欠部(溝部)
212bb 切欠底面
212c V字型溝部
220a 第1段差部
220c 第2段差部
220Wa 側壁面
220Wc 側壁面
220Wd 側壁面
220We 側壁面
900 半導体レーザーパッケージ
901 半導体レーザー
901E レーザー出射口
902 基板
902ch チップ形成領域
902WF 基板用ウエハー
902DL ダイシングライン
903 反射部材
903S 反射面
904 容器
905 透明蓋体
906a 接合膜
906b 接合膜
910 半導体レーザーチップ
911 レーザー光
915a ワイヤー
915b ワイヤー

100 Semiconductor laser package 101 Semiconductor laser 101a Upper surface 101b Lower surface 101n Electrode film 101p Electrode film 101C Laser emission surface 101E Laser emission port 102 Substrate 102a Upper surface 102b Lower surface 102e Bonding film 102ch Chip formation area 102DL Dicing line 102WF Substrate wafer 103 Reflecting member 103S Reflection Surface 104 Container 104a Recess 104b Bottom 104bb Bottom 104b A Mounting area 104c Wall 104e Bonding film 104f End face 104g Bonding film 105 Transparent lid 106a Conductive bonding film 108 Conductive film 108 Conductive 109 Convex part 109st Stepped convex part 110 Semiconductor laser chip 111 Laser light 111A Optical shaft 112a Groove 112ab Groove bottom 112b L-shaped notch (groove)
112bb Notch bottom surface 112s Split groove portion 112sb Groove bottom surface 120a First step portion 120b Second step portion 120c Third step portion 120Ws Side wall surface 120Wt Side wall surface 120W Side wall surface 120Wb Side wall surface 120Wc Side wall surface 150 Mold 150a Recession 201 Semiconductor laser 201C Laser emission Surface 201E Laser emission port 202 Substrate 202a Upper surface 202ch Chip formation area 202e Bonding film 202DL Dicing line 202WF Substrate wafer 203 Reflecting member 203P Preformed body 203S Reflecting surface 206a Conductive bonding film 208 Conductive film 209 Projection part 210 Semiconductor laser chip 211 Laser light 211A Optical axis 212a L-shaped notch (groove)
212ab Notch bottom surface 212b L-shaped notch (groove)
212bb Notched bottom surface 212c V-shaped groove 220a First step 220c Second step 220W Side wall surface 220Wc Side wall surface 220Wd Side wall surface 220W Side wall surface 900 Semiconductor laser package 901 Semiconductor laser 901E Laser emission port 902 Substrate 902ch Chip formation area 902WF Substrate Wafer 902DL Dicing line 903 Reflecting member 903S Reflecting surface 904 Container 905 Transparent lid 906a Bonding film 906b Bonding film 910 Semiconductor laser chip 911 Laser light 915a Wire 915b Wire

Claims (7)

発光素子搭載部を有する基板と、前記基板上に反射部材とを備えた反射部材付基板において、
前記基板の熱伝導率は、前記反射部材の熱伝導率より高く、
前記基板には、段差部が形成されており、前記反射部材は前記段差部の少なくとも一部を覆い固定されるとともに、
前記基板は、前記基板の前記発光素子搭載部と前記反射部材との間に前記反射部材の反射面と同一面上に配置された側壁面を有する溝を備えること特徴とする反射部材付基板。
In a substrate having a light emitting element mounting portion and a substrate with a reflective member having a reflective member on the substrate,
The thermal conductivity of the substrate is higher than the thermal conductivity of the reflective member.
A step portion is formed on the substrate, and the reflective member covers and fixes at least a part of the step portion and is fixed.
The substrate, the substrate with the reflecting member characterized in that it comprises a groove having a side wall surface disposed on the reflecting surface on the same plane of the reflecting member between the reflecting member and the light emitting element mounting portion of the substrate ..
前記基板の前記段差部は、1箇所又は複数個所に設けられることを特徴とする請求項1に記載の反射部材付基板。 The substrate with a reflective member according to claim 1, wherein the stepped portion of the substrate is provided at one or a plurality of locations. 前記基板には溝部が形成されており、前記溝部により前記段差部が形成されることを特徴とする請求項1または請求項2に記載の反射部材付基板。 The substrate with a reflective member according to claim 1 or 2, wherein a groove is formed in the substrate, and the step portion is formed by the groove. 前記基板の前記溝部の底面に前記反射部材の少なくとも一部が固定されていることを特徴とする請求項3に記載の反射部材付基板。 The substrate with a reflective member according to claim 3, wherein at least a part of the reflective member is fixed to the bottom surface of the groove portion of the substrate. 前記基板の前記段差部は、基板表面から突出する凸起部を形成することを特徴とする請求項1から請求項のいずれか1項に記載の反射部材付基板。 The substrate with a reflective member according to any one of claims 1 to 4 , wherein the stepped portion of the substrate forms a convex portion protruding from the surface of the substrate. 発光素子搭載部を有する基板と、前記基板上に反射部材とを備え、前記基板の熱伝導率が前記反射部材の熱伝導率より高い反射部材付基板の製造方法において、
前記基板に段差部を形成する工程と、前記段差部の少なくとも一部を覆うように前記反射部材を構成する材料を前記基板に固定する工程と、
前記材料を加工し前記反射部材の反射面を形成すると同時に、前記基板の前記発光素子搭載部と前記反射部材との間の前記基板に前記反射面と同一の面上の側壁面を備えた溝を形成する工程と、を有することを特徴とする反射部材付基板の製造方法。
In a method for manufacturing a substrate with a reflective member, which comprises a substrate having a light emitting element mounting portion and a reflective member on the substrate, and the thermal conductivity of the substrate is higher than the thermal conductivity of the reflective member.
A step of forming a step portion on the substrate and a step of fixing a material constituting the reflective member to the substrate so as to cover at least a part of the step portion.
The material is processed to form the reflective surface of the reflective member, and at the same time, the groove between the light emitting element mounting portion of the substrate and the reflective member is provided with a side wall surface on the same surface as the reflective surface. A method for manufacturing a substrate with a reflective member, which comprises a step of forming a substrate.
前記反射部材を構成する材料を前記基板に固定する工程は、凹部を有する金型を前記凹部が前記段差部を覆うように前記基板にのせる工程と、前記反射部材を構成する材料を前記凹部に充填し硬化する工程を有することを特徴とする請求項6に記載の反射部材付基板の製造方法。
The steps of fixing the material constituting the reflective member to the substrate include a step of placing a mold having a recess on the substrate so that the recess covers the step portion, and a step of placing the material constituting the reflective member on the recess. The method for manufacturing a substrate with a reflective member according to claim 6, further comprising a step of filling and curing the substrate.
JP2017008416A 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method Active JP6920823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008416A JP6920823B2 (en) 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008416A JP6920823B2 (en) 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018117088A JP2018117088A (en) 2018-07-26
JP6920823B2 true JP6920823B2 (en) 2021-08-18

Family

ID=62984350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008416A Active JP6920823B2 (en) 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6920823B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159335B2 (en) * 2018-10-04 2022-10-24 京セラ株式会社 Substrates for mounting electronic components, electric devices and light-emitting devices
CN112868147B (en) * 2018-10-19 2024-10-25 京瓷株式会社 Package for mounting optical element, electronic device, and electronic module
CN114514662A (en) * 2019-09-30 2022-05-17 京瓷株式会社 Package for mounting optical element and electronic device
US10992103B1 (en) * 2019-12-02 2021-04-27 Sharp Fukuyama Laser Co., Ltd. Laser device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166590A (en) * 1997-08-15 1999-03-09 Toshiba Corp Optical integrated unit, optical pickup apparatus and dvd system
DE19861162A1 (en) * 1998-11-06 2000-06-29 Harting Elektrooptische Bauteile Gmbh & Co Kg Process for producing a printed circuit board and printed circuit board
JP2002228904A (en) * 2001-02-06 2002-08-14 Alps Electric Co Ltd Optical member made of resin and method of manufacturing for the same
JP2006032765A (en) * 2004-07-20 2006-02-02 Nichia Chem Ind Ltd Semiconductor laser package
JP2008294152A (en) * 2007-05-23 2008-12-04 Sumitomo Electric Ind Ltd Optical module
JP2009053529A (en) * 2007-08-28 2009-03-12 Tdk Corp Method of forming optical component attachment surface and method of manufacturing optical pickup
CN104426053A (en) * 2013-09-06 2015-03-18 福州高意通讯有限公司 Semiconductor laser device packaging structure
US20160359296A1 (en) * 2015-06-05 2016-12-08 Lumentum Operations Llc Reflector and a laser diode assembly using same

Also Published As

Publication number Publication date
JP2018117088A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6460162B2 (en) Method for manufacturing wavelength converter
JP6564206B2 (en) Light emitting device
JP6816007B2 (en) Wavelength conversion element, light emitting device, and manufacturing method of wavelength conversion element
JP6920823B2 (en) Substrate with reflective member and its manufacturing method
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP6414104B2 (en) Method for manufacturing light emitting device
JP6457099B2 (en) Wavelength conversion member and light emitting device
JP5166871B2 (en) Light emitting diode device
US10775023B2 (en) Wavelength conversion member complex, light emitting device, and method for manufacturing wavelength conversion member complex
CN109424860B (en) Fluorescent member, optical component, and light-emitting device
CN110197864B (en) Semiconductor light emitting device and method of manufacturing the same
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
CN111834515A (en) Wavelength conversion member, method of manufacturing wavelength conversion member, and light-emitting device
JP2011171504A (en) Light-emitting device
CN112636160B (en) Laser device
US20240372315A1 (en) Semiconductor light emitting device
US20210384699A1 (en) Method of manufacturing metal-coated member, metal-coated member, wavelength conversion member, and light emitting device
CN110494996A (en) Manufacture the method for the semiconductor devices of multiple transmitting radiation and the semiconductor devices of transmitting radiation
JP7032658B2 (en) Optical parts, their manufacturing methods, and light emitting devices
JP7502613B2 (en) Wavelength conversion member and method for manufacturing light emitting device
US20250087964A1 (en) Manufacturing method of mounting substrate, mounting substrate, and light-emitting module
JP6974746B2 (en) Light emitting device and its manufacturing method
JP2024122507A (en) Light emitting device and method for manufacturing the cover
KR102064540B1 (en) Semiconductor light emitting device
JP2023080739A (en) Optical member and light-emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6920823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150