[go: up one dir, main page]

JP6904136B2 - Resin composition and optical compensation film using it - Google Patents

Resin composition and optical compensation film using it Download PDF

Info

Publication number
JP6904136B2
JP6904136B2 JP2017144691A JP2017144691A JP6904136B2 JP 6904136 B2 JP6904136 B2 JP 6904136B2 JP 2017144691 A JP2017144691 A JP 2017144691A JP 2017144691 A JP2017144691 A JP 2017144691A JP 6904136 B2 JP6904136 B2 JP 6904136B2
Authority
JP
Japan
Prior art keywords
film
optical compensation
group
resin
indicates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017144691A
Other languages
Japanese (ja)
Other versions
JP2019026677A (en
Inventor
薫 陶山
薫 陶山
竜一 坂下
竜一 坂下
拓也 小峯
拓也 小峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017144691A priority Critical patent/JP6904136B2/en
Publication of JP2019026677A publication Critical patent/JP2019026677A/en
Application granted granted Critical
Publication of JP6904136B2 publication Critical patent/JP6904136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂組成物およびそれを用いた光学補償フィルムに関するものであり、より詳しくは、樹脂組成物ならびに位相差特性および波長分散特性に優れた液晶ディスプレイ用の光学補償フィルムに関する。 The present invention relates to a resin composition and an optical compensation film using the same, and more particularly to a resin composition and an optical compensation film for a liquid crystal display excellent in phase difference characteristics and wavelength dispersion characteristics.

近年、液晶表示装置の普及に伴い、表示性能や耐久性に対する要求がより高くなり、応答速度の向上や、表示画像に対して斜め方向から観察した場合のコントラストやカラーバランスといった視野角をより広範囲で補償することが課題となっている。これらの課題を解決すべく、VA(Vertical Alignment)方式、OCB(Optical Compensated Bend)方式、またはIPS(In−Plane Swiching)方式の表示素子が開発され、それぞれの液晶方式に応じた、様々なレターデーション発現性を有する光学補償フィルム材料が要求されている。 In recent years, with the spread of liquid crystal display devices, the demand for display performance and durability has become higher, and the viewing angle such as improvement of response speed and contrast and color balance when observed from an oblique direction with respect to the displayed image has been widened. Compensation with is an issue. In order to solve these problems, VA (Vertical Optical) system, OCB (Optical Adaptive Bend) system, or IPS (In-Plane Switching) system display element has been developed, and various letters corresponding to each liquid crystal system have been developed. There is a demand for an optically compensating film material having denial expression.

従来の光学補償フィルムとしては、セルロース系樹脂、ポリカーボネートや環状ポリオレフィンなどの延伸フィルムが用いられている。特にセルロースアシレートなどのセルロース系樹脂からなる延伸フィルムは、その透明性、強靭性、プロセス上必要である透湿性や低い波長分散性から、液晶表示装置向けの光学補償フィルムとして広く利用されている。 As the conventional optical compensation film, a stretched film such as a cellulosic resin, polycarbonate or cyclic polyolefin is used. In particular, stretched films made of cellulosic resins such as cellulose acylate are widely used as optical compensation films for liquid crystal display devices because of their transparency, toughness, moisture permeability required for the process, and low wavelength dispersibility. ..

しかしながら、セルロ−ス系樹脂からなる光学補償フィルムはいくつかの課題がある。例えば、セルロ−ス系樹脂フィルムは延伸条件を調整することで各種ディスプレイにあわせた位相差値を持つ光学補償フィルムに加工されるが、セルロ−ス系樹脂フィルムの一軸または二軸延伸により得られるフィルムの三次元屈折率は、ny≧nx>nzであり、それ以外の3次元屈折率、例えば、ny>nz>nxや、ny=nz>nxなどの3次元屈折率を有する光学補償フィルムを製造するためには、フィルムの片面または両面に熱収縮性フィルムを接着し、その積層体を加熱延伸処理して、高分子フィルムの厚み方向に収縮力をかけるなど特殊な延伸方法が必要であり屈折率(位相差値)の制御も困難である(例えば、特許文献1〜3参照)。ここでnxはフィルム面内の進相軸方向(最も屈折率の小さい方向)の屈折率、nyはフィルム面内の遅相軸方向(最も屈折率の大きい方向)の屈折率、nzはフィルム面外(厚み方向)の屈折率を示す。 However, the optical compensation film made of a cellulosic resin has some problems. For example, a cellulosic resin film is processed into an optical compensation film having a phase difference value suitable for various displays by adjusting stretching conditions, and can be obtained by uniaxial or biaxial stretching of the cellulosic resin film. The three-dimensional refractive index of the film is ny ≧ nx> nz, and an optical compensation film having another three-dimensional refractive index, for example, ny> nz> nx or ny = nz> nx, is used. In order to manufacture the film, a special stretching method is required, such as adhering a heat-shrinkable film to one or both sides of the film, heat-stretching the laminate, and applying a shrinking force in the thickness direction of the polymer film. It is also difficult to control the refractive index (phase difference value) (see, for example, Patent Documents 1 to 3). Here, nx is the refractive index in the phase-advancing axis direction (the direction with the smallest refractive index) in the film surface, ny is the refractive index in the slow-phase axial direction (the direction with the largest refractive index) in the film surface, and nz is the film surface. Indicates the refractive index of the outside (thickness direction).

また、セルロ−ス系樹脂フィルムは一般に溶剤キャスト法により製造されるが、キャスト法により成膜したセルロ−ス系樹脂フィルムはフィルム厚み方向に40nm程度の面外位相差(Rth)を有するため、IPSモ−ドの液晶ディスプレイなどではカラ−シフトが起こるなどの問題がある。ここで面外位相差(Rth)は以下の式で示される位相差値である。 Further, the cellulosic resin film is generally manufactured by the solvent casting method, but the cellulosic resin film formed by the casting method has an out-of-plane phase difference (Rth) of about 40 nm in the film thickness direction. There is a problem that color shift occurs in the liquid crystal display of IPS mode. Here, the out-of-plane phase difference (Rth) is a phase difference value represented by the following equation.

Rth=[(nx+ny)/2−nz]×d
(式中、nxはフィルム面内の進相軸方向の屈折率、nyはフィルム面内の遅相軸方向の屈折率、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
また、フマル酸エステル系樹脂からなる位相差フィルム(光学補償フィルム)が提案されている(例えば、特許文献4参照)。
Rth = [(nx + ny) /2-nz] × d
(In the formula, nx indicates the refractive index in the phase-advancing axis direction in the film surface, ny indicates the refractive index in the slow-phase axial direction in the film surface, nz indicates the refractive index outside the film surface, and d indicates the film thickness. )
Further, a retardation film (optical compensation film) made of a fumaric acid ester resin has been proposed (see, for example, Patent Document 4).

しかしながら、フマル酸エステル系樹脂からなる延伸フィルムの3次元屈折率は、nz>ny>nxであり、上記3次元屈折率を示す光学補償フィルムを得るためには他の光学補償フィルム等との積層などが必要である。 However, the three-dimensional refractive index of the stretched film made of the fumaric acid ester resin is nz> ny> nx, and in order to obtain the optical compensation film exhibiting the above three-dimensional refractive index, it is laminated with another optical compensation film or the like. Etc. are required.

そこで、上記3次元屈折率を示す光学補償フィルムとして、樹脂組成物およびそれを用いた光学補償フィルムが提案されている(例えば、特許文献5〜特許文献7参照)。特許文献5〜特許文献7は光学補償フィルムとして優れた性能を有するものの、より薄い膜で目的とするReを発現させる光学補償フィルムが求められている。 Therefore, as the optical compensation film exhibiting the three-dimensional refractive index, a resin composition and an optical compensation film using the resin composition have been proposed (see, for example, Patent Documents 5 to 7). Although Patent Documents 5 to 7 have excellent performance as an optical compensation film, an optical compensation film that expresses the desired Re with a thinner film is required.

ここで、一般に光学補償フィルムは反射型液晶表示装置、タッチパネルや有機ELの反射防止層としても用いられるものであり、該用途では、特に長波長域ほどレタ−デ−ションが大きい光学補償フィルム(以下、「逆波長分散フィルム」という)が求められるものである。例えば、有機EL用円偏光板の光学補償フィルムとして逆波長分散フィルムが用いられる場合、位相差は測定波長λの1/4程度が好ましく、450nmにおけるレタ−デ−ションと550nmにおけるレタ−デ−ションの比Re(450)/Re(550)は0.81に近いことが好ましい。そして、表示装置の薄型化を鑑みた場合、使用される逆波長分散フィルムも薄いことが求められる。上記のような要求特性に対し、種々の光学補償フィルムが開発されている。 Here, the optical compensation film is generally used as an antireflection layer for a reflective liquid crystal display device, a touch panel, or an organic EL, and in this application, an optical compensation film having a larger retardation especially in a long wavelength region (a long wavelength region). Hereinafter, "reverse wavelength dispersion film") is required. For example, when an inverse wavelength dispersion film is used as an optical compensation film for a circularly polarizing plate for organic EL, the phase difference is preferably about 1/4 of the measurement wavelength λ, and the retardation at 450 nm and the retardation at 550 nm. The ratio of the ratios Re (450) / Re (550) is preferably close to 0.81. In view of the thinning of the display device, the reverse wavelength dispersion film used is also required to be thin. Various optical compensation films have been developed to meet the above-mentioned required characteristics.

上記3次元屈折率を示し、かつ、逆波長分散フィルムとして用いられる位相差フィルム(光学補償フィルム)としてセルロース系樹脂およびフマル酸エステル重合体を含有する位相差フィルムが提案されている(例えば、特許文献8参照)。しかしながら、特許文献8に記載の位相フィルムは、得られるフィルムの高温高湿環境に対する耐久性に課題を有し、より高温高湿下において安定性の高い光学補償フィルムが求められている。 As a retardation film (optical compensation film) that exhibits the above-mentioned three-dimensional refractive index and is used as an inverse wavelength dispersion film, a retardation film containing a cellulosic resin and a fumaric acid ester polymer has been proposed (for example, a patent). Reference 8). However, the phase film described in Patent Document 8 has a problem in durability of the obtained film in a high temperature and high humidity environment, and an optical compensation film having high stability under higher temperature and high humidity is required.

特許2818983号公報Japanese Patent No. 2818983 特開平5−297223号公報Japanese Unexamined Patent Publication No. 5-297223 特開平5−323120号公報Japanese Unexamined Patent Publication No. 5-323120 特開2008−64817号公報Japanese Unexamined Patent Publication No. 2008-64817 特開2013−28741号公報Japanese Unexamined Patent Publication No. 2013-28741 特開2014−125609号公報Japanese Unexamined Patent Publication No. 2014-125609 特開2014−125610号公報Japanese Unexamined Patent Publication No. 2014-125610 特開2015−157928号公報Japanese Unexamined Patent Publication No. 2015-157928

本発明は、上記問題に鑑みてなされたものであり、その目的は、位相差特性および波長分散特性に優れた樹脂組成物を用いた光学補償フィルムであって、高温高湿下において安定性の高い光学補償フィルムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is an optical compensation film using a resin composition having excellent phase difference characteristics and wavelength dispersion characteristics, which is stable under high temperature and high humidity. The purpose is to provide a high optical compensation film.

本発明者らは、上記課題を解決するために鋭意検討した結果、特定のセルロース系樹脂、特定のエステル系樹脂、および特定の重合体添加剤を含有する樹脂組成物、およびそれを用いた光学補償フィルムが上記課題を解決することを見出し、本発明を完成するに至った。すなわち、本発明は、所定の式で示されるセルロ−ス系樹脂30〜98.99重量%および負の複屈折性を示すエステル系樹脂1〜69.99重量%を含有し、さらに、ポリアルキレンオキシド残基単位を有する分子量(Mw)1000以上の重合体添加剤0.01〜20重量%を含有する樹脂組成物およびそれを用いた光学補償フィルムである。 As a result of diligent studies to solve the above problems, the present inventors have conducted a resin composition containing a specific cellulosic resin, a specific ester resin, and a specific polymer additive, and optics using the same. We have found that the compensating film solves the above problems, and have completed the present invention. That is, the present invention contains 30 to 98.9% by weight of a cellulosic resin represented by a predetermined formula and 1 to 69.99% by weight of an ester resin exhibiting negative birefringence, and further contains a polyalkylene. It is a resin composition containing 0.01 to 20% by weight of a polymer additive having a molecular weight (Mw) of 1000 or more having an oxide residue unit, and an optical compensation film using the same.

以下に、本発明の内容について詳細に説明する。 The contents of the present invention will be described in detail below.

本発明の樹脂組成物は、特定のセルロース系樹脂および負の複屈折性を示すエステル系樹脂を含有し、さらに、特定の重合体添加剤を含有することを特徴とする。 The resin composition of the present invention is characterized by containing a specific cellulosic resin and an ester resin exhibiting negative birefringence, and further containing a specific polymer additive.

本発明の樹脂組成物が含有するセルロース系樹脂は、下記一般式(1)で示される。 The cellulosic resin contained in the resin composition of the present invention is represented by the following general formula (1).

Figure 0006904136
Figure 0006904136

(式中、R、R、Rはそれぞれ独立して水素基または炭素数1〜12の置換基を示す。)
本発明のセルロ−ス系樹脂としては、例えば、セルロ−スエ−テル、セルロ−スエステル、セルロ−スエ−テルエステル等が挙げられる。そして、本発明の樹脂組成物は、これらのセルロ−ス系樹脂を1種または2種以上含有していてもよい。
(In the formula, R 1 , R 2 , and R 3 each independently indicate a hydrogen group or a substituent having 1 to 12 carbon atoms.)
Examples of the cellulosic resin of the present invention include cellulosic ester, cellulosic ester, cellulosic ester and the like. The resin composition of the present invention may contain one or more of these cellulosic resins.

本発明のセルロ−ス系樹脂は、機械特性に優れ、製膜時の成形加工性に優れたものとなることから、ゲル・パ−ミエイション・クロマトグラフィ−(GPC)により測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量(Mn)が1×10〜1×10であることが好ましく、5×10〜2×10であることがさらに好ましい。 Since the polystyrene-based resin of the present invention has excellent mechanical properties and excellent molding processability during film formation, it can be obtained from an elution curve measured by gel permeation chromatography (GPC). preferably the number average molecular weight in terms of polystyrene (Mn) is 1 × 10 3 ~1 × 10 6 , further preferably 5 × 10 3 ~2 × 10 5 .

本発明のセルロ−ス系樹脂としては、負の複屈折性を示すエステル系樹脂との相溶性に優れ、かつ面内位相差Reが大きく、更に延伸加工性に優れるため、セルロ−スエ−テルが好ましい。 The cellulosic resin of the present invention is excellent in compatibility with an ester resin exhibiting negative birefringence, has a large in-plane retardation Re, and is also excellent in drawability. Is preferable.

以下、本発明の光学補償フィルムに用いられるセルロ−ス系樹脂として好ましいセルロ−スエ−テルについて説明する。 Hereinafter, a cellulosic ether preferable as the cellulosic resin used in the optical compensation film of the present invention will be described.

本発明のセルロ−ス系樹脂であるセルロ−スエ−テルは、β−グルコース単位が直鎖状に重合した高分子であり、グルコ−ス単位の2位、3位および6位の水酸基の一部または全部をエ−テル化したポリマ−である。本発明のセルロ−スエ−テルとしては、例えば、メチルセルロ−ス、エチルセルロ−ス、プロピルセルロ−ス等のアルキルセルロ−ス;ヒドロキシエチルセルロ−ス、ヒドロキシプロピルセルロ−ス等のヒドロキシアルキルセルロ−ス;ベンジルセルロ−ス、トリチルセルロ−ス等のアラルキルセルロ−ス;シアノエチルセルロ−ス等のシアノアルキルセルロ−ス;カルボキシメチルセルロ−ス、カルボキシエチルセルロ−ス等のカルボキシアルキルセルロ−ス;カルボキシメチルメチルセルロ−ス、カルボキシメチルエチルセルロ−ス等のカルボキシアルキルアルキルセルロ−ス;アミノエチルセルロ−ス等のアミノアルキルセルロ−ス等が挙げられる。 The cellulosic resin of the present invention is a polymer in which β-glucose units are linearly polymerized, and is one of the hydroxyl groups at the 2, 3, and 6 positions of the glucose units. It is a polymer in which parts or all are etherified. Examples of the cellulosic ether of the present invention include alkyl cellulose such as methyl cellulose, ethyl cellulose, and propyl cellulose; and hydroxyalkyl cellulose such as hydroxyethyl cellulose and hydroxypropyl cellulose. Aralkyl cellose such as benzyl cellose and trityl cellose; cyanoalkyl cellose such as cyanoethyl cellose; carboxyalkyl cellose such as carboxymethyl cellulose and carboxyethyl cellose; carboxymethyl methyl Carboxyalkylalkyl cellulose such as cellulosic and carboxymethylethyl cellulose; aminoalkylcellulosic such as aminoethyl cellulose and the like can be mentioned.

該セルロ−スエ−テルにおけるセルロ−スの水酸基の酸素原子を介して置換している置換度(エ−テル化度)は、2位、3位および6位のそれぞれについて、セルロ−スの水酸基がエ−テル化している割合(100%のエ−テル化は置換度1)を意味し、溶解性、相溶性、延伸加工性の点から、エ−テル基の全置換度DSは、好ましくは1.5〜3.0(1.5≦DS≦3.0)であり、さらに好ましくは1.8〜2.8である。セルロ−スエ−テルは、溶解性、相溶性の点から、炭素数1〜12の置換基を有することが好ましい。炭素数1〜12の置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デカニル基、ドデカニル基、イソブチル基、t−ブチル基、シクロヘキシル基、フェノニル基、ベンジル基、ナフチル基等を挙げることができる。これらの中でも、溶解性、相溶性の点から、炭素数1〜5のアルキル基であるメチル基、エチル基、プロピル基、ブチル基、ペンチル基が好ましい。本発明で用いるセルロ−ス系ポリマ−のエ−テル基は1種類だけでもよいし、2種類以上のエ−テル基を有していてもよい。また、エ−テル基の他にエステル基を有していてもよい。 The degree of substitution (degree of etherification) of the cellulosic hydroxyl group substituted via the oxygen atom in the cellulosic ether is the cellulosic hydroxyl group at the 2-position, 3-position, and 6-position, respectively. Means the rate of etherification (100% etherification is a degree of substitution 1), and the total degree of substitution DS of the ether group is preferable from the viewpoint of solubility, compatibility, and stretchability. Is 1.5 to 3.0 (1.5 ≦ DS ≦ 3.0), more preferably 1.8 to 2.8. The cellulosic ether preferably has a substituent having 1 to 12 carbon atoms from the viewpoint of solubility and compatibility. Examples of the substituent having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decanyl group, a dodecanyl group, an isobutyl group and a t-butyl group. , Cyclohexyl group, phenonyl group, benzyl group, naphthyl group and the like. Among these, a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group, which are alkyl groups having 1 to 5 carbon atoms, are preferable from the viewpoint of solubility and compatibility. The cellulosic polymer used in the present invention may have only one type of ether group or may have two or more types of ether groups. Further, it may have an ester group in addition to the ether group.

セルロ−スエ−テルは一般に、木材又はコットンより得たセルロ−スパルプをアルカリ分解し、アルカリ分解したセルロ−スパルプをエ−テル化することで合成される。アルカリとしては、リチウム,カリウム,ナトリウムなどのアルカリ金属の水酸化物やアンモニアなどが利用できる。前記アルカリ類は一般に、水溶液として使用される。そして、アルカリ性にされたセルロ−スパルプは、セルロ−スエ−テルの種類に応じて用いられるエ−テル化剤と接触されることによりエ−テル化されるものである。エ−テル化剤としては、例えば、塩化メチル、塩化エチル等のハロゲン化アルキル;ベンジルクロライド、トリチルクロライド等のハロゲン化アラルキル;モノクロロ酢酸、モノクロロプロピオン酸等のハロカルボン酸;エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイド等が挙げられ、これらのエ−テル化剤は単独で又は二種以上組み合わせて使用できる。 Cellulose ether is generally synthesized by alkali-decomposing cellulosic pulp obtained from wood or cotton and etherifying the alkali-decomposed cellulosic pulp. As the alkali, hydroxides of alkali metals such as lithium, potassium and sodium, and ammonia can be used. The alkalis are generally used as an aqueous solution. Then, the alkalineized cellulosic pulp is etherified by being contacted with an etherifying agent used depending on the type of cellulosic ether. Examples of the etherifying agent include alkyl halides such as methyl chloride and ethyl chloride; aralkyl halides such as benzyl chloride and trityl chloride; halocarboxylic acids such as monochloroacetic acid and monochloropropionic acid; ethylene oxide, propylene oxide and butylene. Examples thereof include alkylene oxides such as oxides, and these etherifying agents can be used alone or in combination of two or more.

なお、必要であれば、反応終了後、粘度調整のため塩化水素、臭化水素、塩酸、及び硫酸等で解重合処理してもよい。 If necessary, after completion of the reaction, depolymerization treatment may be carried out with hydrogen chloride, hydrogen bromide, hydrochloric acid, sulfuric acid or the like to adjust the viscosity.

本発明の樹脂組成物が含有する負の複屈折性を示すエステル系樹脂(以下、負の複屈折性を示すエステル系樹脂という)は、負の複屈折性を示すエステル残基単位を有する樹脂であれば特に制限はなく、該残基単位としては、例えば、(メタ)アクリル酸エステル残基単位、ケイ皮酸エステル残基単位、フマル酸エステル残基単位等が挙げられ、これらの1種または2種以上が挙げられる。 The ester-based resin exhibiting negative double-refractive properties (hereinafter referred to as ester-based resin exhibiting negative compound refractive properties) contained in the resin composition of the present invention is a resin having an ester residue unit exhibiting negative compound refractive properties. If this is the case, there is no particular limitation, and examples of the residue unit include (meth) acrylic acid ester residue unit, silicate ester residue unit, fumaric acid ester residue unit, and the like. Alternatively, two or more types can be mentioned.

なお、本発明において、複屈折の正負は以下に示すように定義される。 In the present invention, the positive and negative of birefringence are defined as shown below.

負の複屈折とは延伸方向が進相軸方向となるものであり、正の複屈折とは延伸方向の垂直方向が進相軸方向となるものである。つまり、一軸延伸すると延伸軸と直交する軸方向の屈折率が小さく(進相軸:延伸方向の垂直方向)なるものを正の複屈折を示す樹脂、一軸延伸すると延伸軸方向の屈折率が小さく(進相軸:延伸方向)なるものを負の複屈折を示す樹脂という。 Negative birefringence means that the stretching direction is the phase-advancing axis direction, and positive birefringence means that the direction perpendicular to the stretching direction is the phase-advancing axis direction. That is, when uniaxially stretched, the refractive index in the axial direction orthogonal to the stretching axis is small (phase-advancing axis: in the direction perpendicular to the stretching direction), the resin showing positive birefringence, and when uniaxially stretched, the refractive index in the stretching axial direction is small. (Phase-advancing axis: stretching direction) is called a resin exhibiting negative birefringence.

負の複屈折性を示すエステル系樹脂としては、負の複屈折の発現性が大きく、光学補償フィルムの薄膜化が図れるため、下記一般式(2)で示されるケイ皮酸エステル残基単位および/または下記一般式(3)で示されるフマル酸エステル残基単位を含むエステル系樹脂であることが好ましい。 As an ester-based resin exhibiting negative birefringence, negative birefringence is highly expressed and the optical compensation film can be thinned. Therefore, the cinnamic acid ester residue unit represented by the following general formula (2) and the cinnamic acid ester residue unit and / Or an ester resin containing a fumaric acid ester residue unit represented by the following general formula (3) is preferable.

Figure 0006904136
Figure 0006904136

(式中、Rは炭素数1〜12のアルキル基を示す。Xはニトロ基、ブロモ基、ヨード基、シアノ基、クロロ基、スルホン酸基、カルボン酸基、フルオロ基、フェニル基または炭素数1〜12のアルコキシ基を示す。) (In the formula, R 4 represents an alkyl group having 1 to 12 carbon atoms. X is a nitro group, a bromo group, an iodo group, a cyano group, a chloro group, a sulfonic acid group, a carboxylic acid group, a fluoro group, a phenyl group or a carbon. Indicates the number 1 to 12 alkoxy groups.)

Figure 0006904136
Figure 0006904136

(式中、R5、はそれぞれ独立して水素または炭素数1〜12のアルキル基を示す。)
負の複屈折性を示すエステル系樹脂は、負の複屈折性を示すエステル残基単位に係る単量体を100mol%として、該単量体と共重合可能な単量体の残基単位0〜20mol%を含んでいてもよい。
(In the formula, R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 12 carbon atoms.)
The ester resin exhibiting negative birefringence has a monomer residue unit 0 of a monomer copolymerizable with the monomer, with 100 mol% of the monomer related to the ester residue unit exhibiting negative birefringence. It may contain ~ 20 mol%.

負の複屈折性を示すエステル残基単位に係る単量体と共重合可能な単量体の残基単位としては、例えば、スチレン残基、α−メチルスチレン残基などのスチレン類残基;アクリル酸残基;メタクリル酸残基;酢酸ビニル残基、プロピオン酸ビニル残基などのビニルエステル類残基;メチルビニルエ−テル残基、エチルビニルエ−テル残基、ブチルビニルエ−テル残基などのビニルエ−テル残基;N−メチルマレイミド残基、N−シクロヘキシルマレイミド残基、N−フェニルマレイミド残基などのN−置換マレイミド残基;アクリロニトリル残基;メタクリロニトリル残基;ケイ皮酸残基;エチレン残基、プロピレン残基などのオレフィン類残基;ビニルピロリドン残基;ビニルピリジン残基等の1種または2種以上を挙げることができる。 Examples of the residue unit of the monomer copolymerizable with the monomer related to the ester residue unit exhibiting negative birefractive property include styrene residues such as styrene residue and α-methylstyrene residue; Acrylic acid residue; Methacrylic acid residue; Vinyl ester residue such as vinyl acetate residue and vinyl propionate residue; Vinyl ether such as methyl vinyl ether residue, ethyl vinyl ether residue and butyl vinyl ether residue Residues; N-substituted maleimide residues such as N-methylmaleimide residue, N-cyclohexylmaleimide residue, N-phenylmaleimide residue; acrylonitrile residue; methacrylonitrile residue; silicic acid residue; ethylene residue One or more kinds such as olefin residues such as group and propylene residue; vinylpyrrolidone residue; vinylpyridine residue and the like can be mentioned.

負の複屈折性を示すエステル系樹脂は、特に機械特性に優れ、製膜時の成形加工性に優れたものとなることから、ゲル・パ−ミエイション・クロマトグラフィ−(GPC)により測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量(Mn)が1×10〜5×10のものであることが好ましく、5×10〜2×10であることがさらに好ましい。 Ester-based resins that exhibit negative birefringence have particularly excellent mechanical properties and excellent molding processability during film formation. Therefore, an elution curve measured by gel permeation chromatography (GPC). preferably the number average molecular weight in terms of standard polystyrene more obtained (Mn) is of 1 × 10 3 ~5 × 10 6 , further preferably 5 × 10 3 ~2 × 10 5 .

本発明の樹脂組成物におけるセルロ−ス系樹脂と負の複屈折性を示すエステル系樹脂の組成の割合は、セルロ−ス系樹脂30〜98.99重量%および負の複屈折性を示すエステル系樹脂1〜69.99重量%である。セルロ−ス系樹脂が30重量%未満の場合、またはセルロ−ス系樹脂が98.99重量%を超える場合は、位相差の制御が困難である。好ましくは、セルロ−ス系樹脂30〜98.99重量%および負の複屈折性を示すエステル系樹脂10〜69.99重量%であり、さらに好ましくはセルロ−ス系樹脂40〜79.99重量%および負の複屈折性を示すエステル系樹脂20〜59.99重量%である。 The ratio of the composition of the cellulosic resin to the ester resin exhibiting negative birefringence in the resin composition of the present invention is 30 to 98.9% by weight of the cellulosic resin and the ester exhibiting negative birefringence. The base resin is 1 to 69.99% by weight. When the cellulosic resin is less than 30% by weight, or when the cellulosic resin exceeds 98.99% by weight, it is difficult to control the phase difference. It is preferably 30 to 99.99% by weight of the cellulosic resin and 10 to 69.99% by weight of the ester resin exhibiting negative birefringence, and more preferably 40 to 79.99% by weight of the cellulosic resin. % And 20 to 59.99% by weight of the ester resin exhibiting negative birefringence.

負の複屈折性を示すエステル系樹脂の製造方法としては、該エステル系樹脂が得られる限りにおいて如何なる方法により製造してもよく、ラジカル重合を行うことにより製造することができる。 As a method for producing the ester resin exhibiting negative birefringence, any method may be used as long as the ester resin can be obtained, and the ester resin can be produced by radical polymerization.

ラジカル重合の方法としては、例えば、塊状重合法、溶液重合法、懸濁重合法、沈殿重合法、乳化重合法等のいずれもが採用可能である。 As the radical polymerization method, for example, any of a bulk polymerization method, a solution polymerization method, a suspension polymerization method, a precipitation polymerization method, an emulsion polymerization method and the like can be adopted.

ラジカル重合を行う際の重合開始剤としては、例えば、ベンゾイルパ−オキサイド、ラウリルパ−オキサイド、オクタノイルパ−オキサイド、アセチルパ−オキサイド、ジ−t−ブチルパ−オキサイド、t−ブチルクミルパ−オキサイド、ジクミルパ−オキサイド、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパ−オキシ)ヘキサンなどの有機過酸化物;2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−ブチロニトリル)、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレ−ト、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)などのアゾ系開始剤等が挙げられる。 Examples of the polymerization initiator for radical polymerization include benzoylpaoxide, laurylpaoxide, octanoylpaoxide, acetylpaoxide, di-t-butylpaoxide, t-butylcumylperoxide, dicumylperoxide, 2, Organic peroxides such as 5-dimethyl-2,5-di (2-ethylhexanoylpaoxy) hexane; 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis ( 2-Azobisisobutyronitrile), 2,2'-azobisisobutyronitrile, dimethyl-2,2'-azobisisobutylate, 1,1'-azobis (cyclohexane-1-carbonitrile) and other azo systems. Initiators and the like can be mentioned.

そして、溶液重合法または沈殿重合法において使用可能な溶媒として特に制限はなく、例えば、ベンゼン、トルエン、キシレンなどの芳香族溶媒;メタノ−ル、エタノ−ル、プロピルアルコ−ル、ブチルアルコ−ルなどのアルコ−ル系溶媒;シクロヘキサン、ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、ジメチルホルムアミド、酢酸イソプロピル等が挙げられ、これらの混合溶媒をも挙げられる。 The solvent that can be used in the solution polymerization method or the precipitation polymerization method is not particularly limited, and for example, aromatic solvents such as benzene, toluene, and xylene; metanol, ethanol, propyl alcohol, butyl alcohol, and the like. Cyclohexane, dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, isopropyl acetate and the like, and a mixed solvent thereof can also be mentioned.

また、ラジカル重合を行う際の重合温度は、重合開始剤の分解温度に応じて適宜設定することができ、一般的には30〜150℃の範囲で行うことが好ましい。 Further, the polymerization temperature at the time of performing radical polymerization can be appropriately set according to the decomposition temperature of the polymerization initiator, and is generally preferably carried out in the range of 30 to 150 ° C.

本発明の樹脂組成物が含有する重合体添加剤は、ポリアルキレンオキシド残基単位を有する分子量(Mw)1000以上の重合体添加剤である。本発明において、該重合体添加剤がポリアルキレンオキシド残基単位を有することで高温高湿度環境下におけるヘーズの悪化の抑制およびレターデション(Re)の低減抑制が可能となる。また、本発明において、該重合体残基単位の分子量(Mw)が1000未満であるとき、重合体添加物の析出や滲出が起こりやすいものとなり、耐湿熱性の高い光学フィルムが得られない。 The polymer additive contained in the resin composition of the present invention is a polymer additive having a polyalkylene oxide residue unit and a molecular weight (Mw) of 1000 or more. In the present invention, when the polymer additive has a polyalkylene oxide residue unit, it is possible to suppress the deterioration of haze and the reduction of letter depth (Re) in a high temperature and high humidity environment. Further, in the present invention, when the molecular weight (Mw) of the polymer residue unit is less than 1000, precipitation and exudation of the polymer additive are likely to occur, and an optical film having high moisture and heat resistance cannot be obtained.

本発明において、該ポリアルキレンオキシド残基単位としては特に制限はなく、例えば、ポリエチレンオキシド残基単位、ポリプロピレンオキシド残基単位、ポリブチレンオキシド残基単位、ポリエチルエチレンオキシド残基単位、ポリクロロクロロプロピレンオキシド残基単位、ポリブロモプロピレンオキシド残基単位、ポリトリフルオロメチルエチレンオキシド残基単位、ポリシクロヘキセンオキシド残基単位、ポリスチレンオキシド残基単位、ポリメチルエーテルプロピレンオキシド残基単位、ポリ(アリルオキシメチル)オキシラン残基単位、ポリ(2−フェノキシメチル)オキシラン残基単位、ポリヒドロキシプロピレンオキシド残基単位、ポリヒドロキシエチレンオキシド残基単位、ポリヒドロキシブチレンオキシド残基単位、ポリ2−(−メチルアクリロイルオキシメチル)オキシラン残基単位、ポリブタジエンモノオキシド残基単位、ポリブタジエンジオキシド残基単位等が挙げられる。中でもセルロース系樹脂との親和性向上および耐湿熱性向上のため、ポリエチレンオキシド残基単位、ポリプロピレンオキシド残基単位、ポリブチレンオキシド残基単位が好ましく、ポリエチレンオキシド残基単位、ポリプロピレンオキシド残基単位がさらに好ましい。これらは単独で用いても良いし、複数を共重合させても構わない。 In the present invention, the polyalkylene oxide residue unit is not particularly limited, and for example, a polyethylene oxide residue unit, a polypropylene oxide residue unit, a polybutylene oxide residue unit, a polyethylethylene oxide residue unit, and a polychlorochloropropylene. Oxide residue unit, polybromopropylene oxide residue unit, polytrifluoromethylethylene oxide residue unit, polycyclohexene oxide residue unit, polystyrene oxide residue unit, polymethyl ether propylene oxide residue unit, poly (allyloxymethyl) Oxylan residue unit, poly (2-phenoxymethyl) oxylan residue unit, polyhydroxypropylene oxide residue unit, polyhydroxyethylene oxide residue unit, polyhydroxybutylene oxide residue unit, poly2- (-methylacryloyloxymethyl) Examples thereof include an oxylane residue unit, a polybutadiene monooxide residue unit, and a polybutadiene dioxide residue unit. Of these, polyethylene oxide residue units, polypropylene oxide residue units, and polybutylene oxide residue units are preferable, and polyethylene oxide residue units and polypropylene oxide residue units are further used in order to improve affinity with cellulosic resins and improve moisture resistance. preferable. These may be used alone, or a plurality of them may be copolymerized.

本発明の樹脂組成物が含有する重合体添加剤は、本発明の樹脂組成物が含有するセルロース系樹脂と該重合体添加剤との親和性向上および耐湿熱性向上のため、ポリアルキレンオキシド残基単位を50〜100mol%含有する重合体であることが好ましく、70〜100mol%含有する重合体であることがさらに好ましく、90〜100mol%含有する重合体であることが特に好ましい。 The polymer additive contained in the resin composition of the present invention is a polyalkylene oxide residue in order to improve the affinity between the cellulosic resin contained in the resin composition of the present invention and the polymer additive and to improve the heat resistance to moisture and humidity. A polymer containing 50 to 100 mol% of units is preferable, a polymer containing 70 to 100 mol% is more preferable, and a polymer containing 90 to 100 mol% is particularly preferable.

そして、本発明において、該重合体添加剤の構造の50〜100mol%が、ポリエチレンオキシド残基単位、ポリプロピレンオキシド残基単位およびポリブチレンオキシド残基単位からなる群より選択される1種以上である場合に好ましいものとなる。 In the present invention, 50 to 100 mol% of the structure of the polymer additive is one or more selected from the group consisting of polyethylene oxide residue units, polypropylene oxide residue units and polybutylene oxide residue units. It will be preferable in some cases.

また、本発明の樹脂組成物が含有する重合体添加剤は、ヘーズの低下を抑制するのにより好適であるため、分子量が1,000〜10,000であることが好ましく、1,100〜5,000であることがさらに好ましく、1,200〜4,000であることが特に好ましい。 Further, since the polymer additive contained in the resin composition of the present invention is more suitable for suppressing the decrease in haze, the molecular weight is preferably 1,000 to 10,000, and 1,100 to 5 It is more preferably 000, and particularly preferably 1,200 to 4,000.

また、本発明の樹脂組成物が含有する重合体添加剤は、本発明の効果を損なわない範囲で、ポリアルキレンオキシド残基単位を100mol%として、該ポリアルキレンオキシド残基単位に係る単量体と共重合可能な単量体の残基単位0〜50mol%を含んでいてもよい。 Further, the polymer additive contained in the resin composition of the present invention has a polyalkylene oxide residue unit of 100 mol% as long as the effect of the present invention is not impaired, and the monomer related to the polyalkylene oxide residue unit. It may contain 0 to 50 mol% of a residue unit of the monomer copolymerizable with.

該ポリアルキレンオキシド残基単位に係る単量体と、該単量体と共重合可能な単量体との間の結合としては、例えば、エステル結合、炭酸エステル結合、チオエステル結合、リン酸エステル結合、硫酸エステル結合、硝酸エステル結合、エーテル結合、ウレタン結合等が挙げられる。 Examples of the bond between the monomer related to the polyalkylene oxide residue unit and the monomer copolymerizable with the monomer include an ester bond, a carbonic acid ester bond, a thioester bond, and a phosphate ester bond. , Sulfate ester bond, nitrate ester bond, ether bond, urethane bond and the like.

該ポリアルキレンオキシド残基単位に係る単量体と共重合可能な単量体としては、特に限定されるものではなく、例えば、炭化水素化合物、ハロゲン化物、エステル化合物、エーテル化合物、ヒドロキシ化合物、カルボン酸化合物、硫黄化合物、窒素化合物、リン酸化合物等が挙げられ、これらは単独で用いても良いし、複数を共重合させてもかまわない。これらのうち、本発明の樹脂組成物が含有するセルロース系樹脂と重合体添加剤との親和性向上、ならびに該添加剤の析出および滲出の防止により好適であるため、炭化水素化合物、エステル化合物、エーテル化合物、ヒドロキシ化合物、カルボン酸化合物が好ましい。 The monomer copolymerizable with the monomer related to the polyalkylene oxide residue unit is not particularly limited, and is, for example, a hydrocarbon compound, a halide, an ester compound, an ether compound, a hydroxy compound, or a carboxylic acid. Examples thereof include acid compounds, sulfur compounds, nitrogen compounds, phosphoric acid compounds and the like, and these may be used alone or may be copolymerized in plurality. Of these, the hydrocarbon compound, the ester compound, and the like, because they are more suitable for improving the affinity between the cellulosic resin contained in the resin composition of the present invention and the polymer additive and preventing the precipitation and exudation of the additive. Ether compounds, hydroxy compounds and carboxylic acid compounds are preferable.

また、該重合体添加剤は直鎖状でもよく、分岐状でもよい。 Further, the polymer additive may be linear or branched.

本発明の具体的な重合体添加剤としては、例えば、PEG−1000(分子量Mw:1,000)(ADEKA社製)、PEG−1540(分子量Mw:1,540)(ADEKA社製)、PEG−4000(分子量Mw:4,000)(ADEKA社製)、PEG−6000(分子量Mw:6,000)(ADEKA社製)等のポリエチレンオキシド;アデカプルロニックシリーズL−40(分子量Mw:1,200)(ADEKA社製)、L−43(分子量Mw:1,200)(ADEKA社製)、L−44(分子量Mw:1,200)(ADEKA社製)、L−61(分子量Mw:1,750)(ADEKA社製)、L−62(分子量Mw:1,750)(ADEKA社製)、L−64(分子量Mw:1,750)(ADEKA社製)、P−65(分子量Mw:1,750)(ADEKA社製)、F−68(分子量Mw:1,750)(ADEKA社製)、L−71(分子量Mw:2,050)(ADEKA社製)、L−72(分子量Mw:2,050)(ADEKA社製)、P−75(分子量Mw:2,050)(ADEKA社製)、P−77(分子量Mw:2,050)(ADEKA社製)、L−101(分子量Mw:3,250)(ADEKA社製)等のポリエチレンポリプロピレンオキシド;ユニオールD−1000(分子量Mw:1,000)(日油社製)、ユニオールD−1200(分子量Mw:1,200)(日油社製)、ユニオールD−2000(分子量Mw:2,000)(日油社製)等のポリプロピレンオキシド;ユニルーブMB−22(分子量Mw:1,400)(日油社製)、ユニルーブMB−38(分子量Mw:1,900)(日油社製)等のポリオキシプロピレンブチルエーテル;ユニルーブ60MB−16I(分子量Mw:1,300)(日油社製)、ユニルーブ60MB−26I(分子量Mw:1,700)(日油社製)等のポリオキシエチレンポリオキシプロピレンブチルエーテル;ユニルーブ50DE−25(分子量Mw:1,750)(日油社製)、ユニルーブ75DE−25(分子量Mw:1,400)(日油社製)等のポリエチレンポリピロピレンオキシド;プロノン#102(分子量Mw:1,250)(日油社製)、プロノン#104(分子量Mw:1,670)(日油社製)等の分岐状ポリエチレンポリピロピレンオキシド;ユニオールPB−1000(分子量Mw:1,000)(日油社製)等のポリブチレンオキシドなどが挙げられる。 Specific polymer additives of the present invention include, for example, PEG-1000 (molecular weight Mw: 1,000) (manufactured by ADEKA), PEG-1540 (molecular weight Mw: 1,540) (manufactured by ADEKA), PEG. Polyethylene oxides such as -4000 (Molecular Weight Mw: 4,000) (Molecular Weight Mw: 4,000), PEG-6000 (Molecular Weight Mw: 6,000) (Molecular Weight Mw: 6,000); ) (Made by ADEKA), L-43 (Molecular weight Mw: 1,200) (Made by ADEKA), L-44 (Molecular weight Mw: 1,200) (Made by ADEKA), L-61 (Molecular weight Mw: 1, 750) (Made by ADEKA), L-62 (Molecular weight Mw: 1,750) (Made by ADEKA), L-64 (Molecular weight Mw: 1,750) (Made by ADEKA), P-65 (Molecular weight Mw: 1) , 750) (Made by ADEKA), F-68 (Molecular weight Mw: 1,750) (Made by ADEKA), L-71 (Molecular weight Mw: 2,050) (Made by ADEKA), L-72 (Molecular weight Mw: 2,050) (made by ADEKA), P-75 (molecular weight Mw: 2,050) (made by ADEKA), P-77 (molecular weight Mw: 2,050) (made by ADEKA), L-101 (molecular weight Mw) : 3,250) (manufactured by ADEKA) and other polyethylene polypropylene oxides; Uniol D-1000 (molecular weight Mw: 1,000) (manufactured by Nichiyu), Uniol D-1200 (molecular weight Mw: 1,200) (Nippon Oil) Polypropylene oxide such as Uniol D-2000 (Molecular Weight Mw: 2,000) (Molecular Weight Mw: 2,000) (Molecular Weight Mw: 2,000); Unilube MB-22 (Molecular Weight Mw: 1,400) (Molecular Weight Mw: 1,400), Unilube MB-38 Polyoxypropylene butyl ether (molecular weight Mw: 1,900) (manufactured by Nichiyu Co., Ltd.); Unilube 60MB-16I (molecular weight Mw: 1,300) (manufactured by Nichiyu Co., Ltd.), Unilube 60MB-26I (molecular weight Mw: 1,) 700) Polyoxyethylene polyoxypropylene butyl ether (manufactured by Nichiyu Co., Ltd.); Unilube 50DE-25 (molecular weight Mw: 1,750) (Molecular weight Mw: 1,750), Unilube 75DE-25 (molecular weight Mw: 1,400) ( Polyethylene polypyrropylene oxides (manufactured by Nichiyu), etc .; Pronon # 102 (molecular weight Mw: 1,250) (Molecular weight Mw: 1,250) (Molecular weight Mw: 1,670) (Molecular weight Mw: 1,670) (Nippon Oil), etc. Branched polyethylene polypyrropylene oxide; Uniol PB-1000 (molecular weight M) Examples thereof include polybutylene oxides such as w: 1,000) (manufactured by NOF CORPORATION).

本発明の樹脂組成物における重合体添加剤の割合は0.01〜20重量%であり、さらに好ましくは0.1〜15重量%、特に好ましくは0.3〜10重量%である。本発明において、重合体添加剤の割合が0.01重量%未満であるとき、機械的性質向上、柔軟性を付与、耐湿熱性向上、レタ−デ−ション調整、波長分散調整等が困難となり、20重量%より大きいとき、重合体添加剤の析出や滲出が起こりやすい。 The proportion of the polymer additive in the resin composition of the present invention is 0.01 to 20% by weight, more preferably 0.1 to 15% by weight, and particularly preferably 0.3 to 10% by weight. In the present invention, when the ratio of the polymer additive is less than 0.01% by weight, it becomes difficult to improve mechanical properties, impart flexibility, improve moisture and heat resistance, adjust retardation, adjust wavelength dispersion, and the like. When it is larger than 20% by weight, precipitation and exudation of the polymer additive are likely to occur.

本発明の樹脂組成物は、発明の主旨を超えない範囲で、その他ポリマ−、界面活性剤、高分子電解質、導電性錯体、顔料、染料、帯電防止剤、アンチブロッキング剤、滑剤等を含有していてもよい。 The resin composition of the present invention contains other polymers, surfactants, polymer electrolytes, conductive complexes, pigments, dyes, antistatic agents, antiblocking agents, lubricants, etc., as long as the gist of the invention is not exceeded. May be.

本発明の樹脂組成物は、熱安定性を向上させるために酸化防止剤を含有していても良い。酸化防止剤としては、例えば、ヒンダ−ドフェノ−ル系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ラクトン系酸化防止剤、アミン系酸化防止剤、ヒドロキシルアミン系酸化防止剤、ビタミンE系酸化防止剤、その他酸化防止剤が挙げられ、これら酸化防止剤はそれぞれ単独でもよく、2種以上を組み合わせてもよい。 The resin composition of the present invention may contain an antioxidant in order to improve thermal stability. Antioxidants include, for example, hindered phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, lactone-based antioxidants, amine-based antioxidants, hydroxylamine-based antioxidants, and vitamins. Examples thereof include E-based antioxidants and other antioxidants, and these antioxidants may be used alone or in combination of two or more.

本発明の樹脂組成物は、耐候性を高めるためヒンダ−ドアミン系光安定剤や紫外線吸収剤を含有していてもよい。紫外線吸収剤としては、例えば、ベンゾトリアゾ−ル、ベンゾフェノン、トリアジン、ベンゾエ−ト等が挙げられる。 The resin composition of the present invention may contain a hindered amine-based light stabilizer or an ultraviolet absorber in order to enhance weather resistance. Examples of the ultraviolet absorber include benzotriazol, benzophenone, triazine, benzoate and the like.

本発明の樹脂組成物は、セルロ−ス系樹脂と負の複屈折性を示すエステル系樹脂、重合体添加剤(以下、樹脂等という)をブレンドすることにより得ることができる。ブレンドの方法としては、溶融ブレンド、溶液ブレンド等の方法を用いることができる。溶融ブレンド法とは、加熱により樹脂等を溶融させて混練することにより製造する方法である。溶液ブレンド法とは樹脂等を溶剤に溶解しブレンドする方法である。溶液ブレンドに用いる溶剤としては、例えば、塩化メチレン、クロロホルムなどの塩素系溶剤;トルエン、キシレンなどの芳香族溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、プロパノール等のアルコール溶剤;ジオキサン、テトラヒドロフラン等のエーテル溶剤;ジメチルホルムアミド、N−メチルピロリドン等を用いることができる。樹脂等を溶剤に溶解したのちブレンドすることも可能であり、各樹脂の粉体、ペレット等を混練後、溶剤に溶解させることも可能である。得られたブレンド樹脂溶液を貧溶剤に投入し、混合物を析出させることも可能であり、またブレンド樹脂溶液のまま光学補償フィルムの製造に用いることも可能である。 The resin composition of the present invention can be obtained by blending a cellulosic resin with an ester resin exhibiting negative birefringence and a polymer additive (hereinafter referred to as a resin or the like). As a blending method, a method such as melt blending or solution blending can be used. The melt blending method is a method of producing by melting a resin or the like by heating and kneading the resin or the like. The solution blending method is a method in which a resin or the like is dissolved in a solvent and blended. Examples of the solvent used for the solution blend include chlorine-based solvents such as methylene chloride and chloroform; aromatic solvents such as toluene and xylene; alcohol solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol and propanol; dioxane and tetrahydrofuran. Et al. Ether solvent; dimethylformamide, N-methylpyrrolidone and the like can be used. It is also possible to dissolve the resin or the like in a solvent and then blend it, and it is also possible to knead the powder, pellets or the like of each resin and then dissolve it in the solvent. It is also possible to put the obtained blended resin solution into a poor solvent to precipitate a mixture, and it is also possible to use the blended resin solution as it is in the production of an optical compensation film.

本発明の樹脂組成物は、光学補償フィルムとして用いるのに好適であり、該光学補償フィルムは、優れた位相差特性および優れた波長分散特性を有することを特徴とする。 The resin composition of the present invention is suitable for use as an optical compensation film, and the optical compensation film is characterized by having excellent retardation characteristics and excellent wavelength dispersion characteristics.

本発明の樹脂組成物を用いた光学補償フィルムの位相差特性は、目的とする光学補償フィルムにより異なるものであり、例えば、1)下記式(1)で示されるレタ−デ−ション(Re)が好ましくは50〜300nm、さらに好ましくは100〜300nm、特に好ましくは120〜280nmであって、下記式(2)で示されるNz係数が好ましくは0.3〜1.0、さらに好ましくは0.4〜0.8であるもの、2)レタ−デ−ション(Re)が好ましくは0〜20nm、さらに好ましくは0〜5nm、下記式(3)で示される面外位相差(Rth)が好ましくは−400〜20nm、さらに好ましくは−150〜10nm、特に好ましくは−120〜0nmであるもの等が挙げられる。このときの位相差特性は全自動複屈折計(王子計測機器株式会社製、商品名KOBRA−21ADH)を用い、測定波長589nmの条件で測定されるものである。 The phase difference characteristic of the optical compensation film using the resin composition of the present invention differs depending on the target optical compensation film. For example, 1) the retardation (Re) represented by the following formula (1) Is preferably 50 to 300 nm, more preferably 100 to 300 nm, particularly preferably 120 to 280 nm, and the Nz coefficient represented by the following formula (2) is preferably 0.3 to 1.0, still more preferably 0. Those having a value of 4 to 0.8, 2) the retardation (Re) is preferably 0 to 20 nm, more preferably 0 to 5 nm, and the out-of-plane phase difference (Rth) represented by the following formula (3) is preferable. Is −400 to 20 nm, more preferably −150 to 10 nm, and particularly preferably −120 to 0 nm. The phase difference characteristic at this time is measured using a fully automatic birefringence meter (manufactured by Oji Measuring Instruments Co., Ltd., trade name KOBRA-21ADH) under the condition of a measurement wavelength of 589 nm.

これらは、従来のセルロ−ス系樹脂からなる光学補償フィルムでは発現が困難な位相差特性を有している。 These have retardation characteristics that are difficult to develop with an optical compensation film made of a conventional cellulosic resin.

Re=(ny−nx)×d (1)
Nz=(ny−nz)/(ny−nx) (2)
Rth=[(nx+ny)/2−nz]×d (3)
(式中、nxはフィルム面内の進相軸方向の屈折率を示し、nyはフィルム面内の遅相軸方向の屈折率を示し、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
本発明の光学フィルムの波長分散特性としては、色ずれ抑制のため、好ましくは0.60<Re(450)/Re(550)<1.05であり、さらに好ましくは0.70<Re(450)/Re(550)<1.02であり、特に好ましくは0.75<Re(450)/Re(550)<1.00である。
Re = (ny-nx) x d (1)
Nz = (ny-nz) / (ny-nx) (2)
Rth = [(nx + ny) /2-nz] × d (3)
(In the formula, nx indicates the refractive index in the phase-advancing axis direction in the film surface, ny indicates the refractive index in the slow-phase axial direction in the film surface, nz indicates the refractive index outside the film surface, and d indicates the refractive index of the film. Indicates the thickness.)
The wavelength dispersion characteristic of the optical film of the present invention is preferably 0.60 <Re (450) / Re (550) <1.05, more preferably 0.70 <Re (450), in order to suppress color shift. ) / Re (550) <1.02, and particularly preferably 0.75 <Re (450) / Re (550) <1.00.

本発明のセルロ−ス系樹脂を使用した場合、単独では、低波長分散の光学フィルムを提供することができる。このフィルムに、延伸方向に対して負の複屈折性を示すエステル系樹脂をブレンドした樹脂組成物は、一般的に逆波長分散性を示す光学フィルムを提供することができるものである。 When the cellulosic resin of the present invention is used, it is possible to provide an optical film having a low wavelength dispersion by itself. A resin composition obtained by blending this film with an ester-based resin exhibiting negative birefringence with respect to the stretching direction can generally provide an optical film exhibiting reverse wavelength dispersibility.

これらの位相差特性および波長分散特性を同時に満足することは、一般にセルロ−ス系樹脂を用いた光学補償フィルムでは発現が困難であるが、本発明に係る樹脂組成物を用いた光学補償フィルムはこれらの特性を同時に満足するものである。 It is generally difficult to simultaneously satisfy these retardation characteristics and wavelength dispersion characteristics with an optical compensation film using a cellulosic resin, but an optical compensation film using the resin composition according to the present invention has. It satisfies these characteristics at the same time.

本発明の樹脂組成物を用いた光学補償フィルムは、フィルムの取扱い性及び光学部材の薄膜化への適合性の観点から、厚みが5〜200μmであることが好ましく、10〜100μmがさらに好ましく、20〜80μmが特に好ましく、10〜60μmがもっとも好ましい。 The optical compensation film using the resin composition of the present invention preferably has a thickness of 5 to 200 μm, more preferably 10 to 100 μm, from the viewpoint of the handleability of the film and the compatibility of the optical member with thinning. 20 to 80 μm is particularly preferable, and 10 to 60 μm is most preferable.

本発明の樹脂組成物を用いた光学補償フィルムは、画像表示装置の光量低下を避けるため、フィルムにしたときの透過率が好ましくは85%以上、さらに好ましくは90%以上である。 The optical compensation film using the resin composition of the present invention has a transmittance of preferably 85% or more, more preferably 90% or more when formed into a film in order to avoid a decrease in the amount of light of the image display device.

本発明の樹脂組成物を用いた光学補償フィルムは、ヘーズが好ましくは3%以下、さらに好ましくは1.5%以下である。前記範囲にヘーズを制御することにより、位相差フィルムとして表示装置に組み込んだ際に高コントラストの画像が得られる。 The optical compensation film using the resin composition of the present invention has a haze of preferably 3% or less, more preferably 1.5% or less. By controlling the haze within the above range, a high-contrast image can be obtained when incorporated into a display device as a retardation film.

本発明の樹脂組成物を用いた光学補償フィルムは、高温高湿度の環境における画面表示装置の光量低下をさけ、高コントラストの画像を維持するため、60℃相対湿度90%環境下120時間後におけるヘーズが3%以下であり、かつ、60℃相対湿度90%環境下120時間後におけるレタ−デ−ション(Re)の変化率ΔReが10%以下であることが好ましい。 The optical compensation film using the resin composition of the present invention avoids a decrease in the amount of light of the screen display device in a high temperature and high humidity environment and maintains a high contrast image after 120 hours in an environment of 60 ° C. and 90% relative humidity. It is preferable that the haze is 3% or less and the rate of change ΔRe of the retardation (Re) after 120 hours in an environment of 60 ° C. and 90% relative humidity is 10% or less.

本発明の樹脂組成物を用いた光学補償フィルムの製造方法は、特に限定されるものではないが、既存のセルロース系樹脂で工業的手法が確立しているため、溶融製膜法または溶液製膜法により製造することが好ましい。 The method for producing an optical compensation film using the resin composition of the present invention is not particularly limited, but since an industrial method has been established for existing cellulosic resins, a melt film forming method or a solution film forming method is used. It is preferably manufactured by the method.

溶液製膜法における溶液製膜とは、樹脂溶液(一般にはドープと称する。)を支持基板上に流延した後、加熱することにより溶媒を蒸発させて光学補償フィルムを得る方法である。流延する方法としては、例えば、Tダイ法、ドクターブレード法、バーコーター法、ロールコーター法、リップコーター法等が用いられ、工業的には、ダイからドープをベルト状またはドラム状の支持基板に連続的に押し出す方法が一般的に用いられている。また、用いられる支持基板としては、例えば、ガラス基板、ステンレスやフェロタイプ等の金属基板、ポリエチレンテレフタレート等のプラスチック基板などがある。高度に表面性、光学均質性の優れた基板を工業的に連続製膜するには、表面を鏡面仕上げした金属基板が好ましく用いられる。溶液製膜法において、厚み精度、表面平滑性に優れた光学補償フィルムを製造する際には、樹脂溶液の粘度は極めて重要な因子であり、樹脂溶液の粘度は樹脂の濃度、分子量、溶媒の種類に依存するものである。 The solution film forming method in the solution film forming method is a method in which a resin solution (generally referred to as a doping) is cast on a support substrate and then heated to evaporate the solvent to obtain an optical compensation film. As a method of casting, for example, a T-die method, a doctor blade method, a bar coater method, a roll coater method, a lip coater method and the like are used, and industrially, a belt-shaped or drum-shaped support substrate is used to dope from a die. A method of continuously extruding is generally used. Further, examples of the support substrate used include a glass substrate, a metal substrate such as stainless steel and a ferrotype, and a plastic substrate such as polyethylene terephthalate. A metal substrate having a mirror-finished surface is preferably used for industrial continuous film formation of a substrate having highly excellent surface properties and optical homogeneity. In the solution film forming method, the viscosity of the resin solution is an extremely important factor in producing an optical compensation film having excellent thickness accuracy and surface smoothness, and the viscosity of the resin solution is the concentration, molecular weight, and solvent of the resin. It depends on the type.

本発明の樹脂組成物を用いた光学補償フィルムを製造する際の樹脂溶液の粘度は、各成分の分子量、濃度、溶媒の種類で調整可能である。樹脂溶液の粘度としては特に制限はないが、フィルム塗工性をより容易にするため、好ましくは100〜10000cps、さらに好ましくは300〜5000cps、特に好ましくは500〜3000cpsである。 The viscosity of the resin solution when producing an optical compensation film using the resin composition of the present invention can be adjusted by adjusting the molecular weight, concentration, and type of solvent of each component. The viscosity of the resin solution is not particularly limited, but is preferably 100 to 10000 cps, more preferably 300 to 5000 cps, and particularly preferably 500 to 3000 cps in order to facilitate film coatability.

該溶液製膜法においては、セルロース系樹脂が溶解し流延、製膜できて、その目的が達成できる限りは、溶媒は特に限定されない。経済性の観点から、好ましい溶媒としては、非塩素系有機溶剤、塩素系有機溶媒等の有機溶媒を挙げることができる。 In the solution film forming method, the solvent is not particularly limited as long as the cellulosic resin can be dissolved, cast and formed, and the object can be achieved. From the viewpoint of economy, preferred solvents include organic solvents such as non-chlorine-based organic solvents and chlorine-based organic solvents.

本発明で用いられる非塩素系有機溶媒としては、特に制限がないが、製膜に適した沸点であることから、炭素原子数が3〜12のエステル系溶媒、炭素原子数が3〜12のケトン系溶媒、炭素原子数が3〜12のエーテル系溶媒、炭素原子数が5〜12の炭化水素系溶媒、またはこれらの混合物が好ましい。 The non-chlorine-based organic solvent used in the present invention is not particularly limited, but is an ester-based solvent having 3 to 12 carbon atoms and 3 to 12 carbon atoms because it has a boiling point suitable for film formation. A ketone solvent, an ether solvent having 3 to 12 carbon atoms, a hydrocarbon solvent having 5 to 12 carbon atoms, or a mixture thereof is preferable.

炭素原子数が3〜12のエステル系溶媒の例としては、ギ酸エチル、ギ酸プロピル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸ペンチル等が挙げられる。炭素原子数が3〜12のケトン系溶媒の例としては、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。炭素原子数が3〜12のエーテル系溶媒の例としては、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトール等が挙げられる。炭素原子数が5〜12の炭化水素の例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、シクロヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、ベンゼン、トルエン、キシレン等が挙げられる。 Examples of ester solvents having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, and pentyl acetate. Examples of the ketone solvent having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone. Examples of ether solvents having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetol. Examples of hydrocarbons having 5 to 12 carbon atoms include pentane, hexane, cyclohexane, heptane, cycloheptane, octane, nonane, decane, undecane, dodecane, benzene, toluene, xylene and the like.

本発明で用いられる塩素系有機溶媒としては特に制限がない。また、該塩素系有機溶媒に塩素系有機溶媒以外の有機溶媒を混合させた混合溶媒であってもよい。塩素系溶媒の例としては、クロロメタン、ジクロロメタン、クロロホルム、四塩化炭素、クロロエチレン、トリクロロエチレン、テトラクロロエチレン等が挙げられる。 The chlorine-based organic solvent used in the present invention is not particularly limited. Further, it may be a mixed solvent in which an organic solvent other than the chlorine-based organic solvent is mixed with the chlorine-based organic solvent. Examples of chlorine-based solvents include chloromethane, dichloromethane, chloroform, carbon tetrachloride, chloroethylene, trichlorethylene, tetrachlorethylene and the like.

本発明においてセルロース系樹脂、負の複屈折性を示すエステル系樹脂および重合体添加物の濃度は、溶解、製膜が可能な限り特に限定されない。セルロース系樹脂、負の複屈折性を示すエステル系樹脂および重合体添加物の溶解を実施する方法は、溶解する段階で所定の濃度になるように実施してもよく、また予め低濃度溶液として作製した後に濃縮工程で所定の高濃度溶液に調整してもよい。さらに、予めセルロース系樹脂及び負の複屈折性を示すエステル系樹脂の高濃度の樹脂溶液とした後に、重合体添加物や種々の添加物を添加することで所定の低濃度の樹脂溶液としてもよい。 In the present invention, the concentrations of the cellulosic resin, the ester resin exhibiting negative birefringence, and the polymer additive are not particularly limited as much as possible for dissolution and film formation. The method for dissolving the cellulosic resin, the ester resin exhibiting negative birefractive properties, and the polymer additive may be carried out so as to have a predetermined concentration at the stage of dissolution, or as a low-concentration solution in advance. After preparation, it may be adjusted to a predetermined high-concentration solution in a concentration step. Further, after preparing a high-concentration resin solution of a cellulosic resin and an ester-based resin exhibiting negative birefringence in advance, a polymer additive or various additives can be added to obtain a predetermined low-concentration resin solution. Good.

本発明の樹脂組成物を用いた光学補償フィルムの製造方法は、レターデーションを発現する方法としてとくに制約はないが、セルロース系樹脂の分子鎖を効果的に配向させ高いレターデーションを発現させるため、一軸延伸またはアンバランス二軸延伸することが好ましい。光学補償フィルムを延伸する方法としては、ロール延伸による縦一軸延伸法やテンター延伸による横一軸延伸法、これらの組み合わせによるアンバランス逐次二軸延伸法やアンバランス同時二軸延伸法等を用いることができる。 The method for producing an optical compensation film using the resin composition of the present invention is not particularly limited as a method for expressing retardation, but in order to effectively orient the molecular chains of the cellulosic resin and express high retardation, Uniaxial stretching or unbalanced biaxial stretching is preferable. As a method for stretching the optical compensation film, a longitudinal uniaxial stretching method by roll stretching, a horizontal uniaxial stretching method by tenter stretching, an unbalanced sequential biaxial stretching method by a combination of these, an unbalanced simultaneous biaxial stretching method, or the like can be used. it can.

延伸する前の未延伸フィルムの厚みは、延伸処理のし易さおよび光学部材の薄膜化への適合性の観点から、5〜200μmが好ましく、5〜150μmがさらに好ましく、5〜100μmが特に好ましい。 The thickness of the unstretched film before stretching is preferably 5 to 200 μm, more preferably 5 to 150 μm, and particularly preferably 5 to 100 μm from the viewpoint of ease of stretching treatment and compatibility with thinning of the optical member. ..

また、延伸後の光学補償フィルムの厚みは、画像表示装置の薄型化のため、5〜100μmが好ましく、5〜50μmがさらに好ましく、5〜40μmが特に好ましい。 The thickness of the optical compensation film after stretching is preferably 5 to 100 μm, more preferably 5 to 50 μm, and particularly preferably 5 to 40 μm in order to reduce the thickness of the image display device.

延伸の温度は特に制限はないが、良好な位相差特性が得られることから、好ましくは50〜200℃、さらに好ましくは100〜200℃である。一軸延伸の延伸倍率は特に制限はないが、良好な位相差特性が得られることから、1.05〜4.0倍が好ましく、1.1〜3.5倍がさらに好ましい。アンバランス二軸延伸の延伸倍率は特に制限はないが、光学特性に優れることから長さ方向には1.05〜4.0倍が好ましく、1.1〜3.5倍がさらに好ましい。延伸温度、延伸倍率によりレターデーションを制御することができる。 The stretching temperature is not particularly limited, but is preferably 50 to 200 ° C., more preferably 100 to 200 ° C., because good phase difference characteristics can be obtained. The draw ratio of uniaxial stretching is not particularly limited, but 1.05 to 4.0 times is preferable, and 1.1 to 3.5 times is more preferable, because good retardation characteristics can be obtained. The draw ratio of unbalanced biaxial stretching is not particularly limited, but is preferably 1.05 to 4.0 times in the length direction, and more preferably 1.1 to 3.5 times in the length direction because of its excellent optical characteristics. The retardation can be controlled by the stretching temperature and the stretching ratio.

本発明の樹脂組成物を用いた光学補償フィルムにおいては、セルロース樹脂の含有率、含有するセルロース樹脂の総置換度、置換基の2位、3位、及び6位の置換度分布、並びに延伸倍率によってレターデーションを調整することができる。 In the optical compensation film using the resin composition of the present invention, the content of the cellulose resin, the total degree of substitution of the cellulose resin contained, the degree of substitution distribution at the 2, 3, and 6 positions of the substituents, and the draw ratio. The lettering can be adjusted by.

本発明の樹脂組成物を用いた光学補償フィルムは、必要に応じて他樹脂を含むフィルムと積層することができる。他樹脂としては、例えば、ポリエーテルサルフォン、ポリアリレート、ポリエチレンテレフタレート、ポリナフタレンテレフタレート、ポリカーボネート、環状ポリオレフィン、マレイミド系樹脂、フッ素系樹脂、ポリイミド等が挙げられる。また、液晶層やハードコート層、ガスバリア層、屈折率を制御した層(低反射層)を積層することも可能である。 The optical compensation film using the resin composition of the present invention can be laminated with a film containing another resin, if necessary. Examples of other resins include polyether sulfone, polyarylate, polyethylene terephthalate, polynaphthalene terephthalate, polycarbonate, cyclic polyolefin, maleimide-based resin, fluorine-based resin, and polyimide. It is also possible to laminate a liquid crystal layer, a hard coat layer, a gas barrier layer, and a layer having a controlled refractive index (low reflection layer).

本発明の樹脂組成物を用いた光学補償フィルムは、液晶表示装置用、有機EL表示装置用等の用途に用いられる偏光板において、好適に用いられる。また、該偏光板は画像表示装置として好適に用いられる。 The optical compensation film using the resin composition of the present invention is preferably used in a polarizing plate used for applications such as a liquid crystal display device and an organic EL display device. Further, the polarizing plate is suitably used as an image display device.

本発明の樹脂組成物を用いた光学補償フィルムは、偏光板、液晶表示装置、有機EL表示装置等に好適に用いることができ、優れた表示性能および高温高湿下における高い安定性を発揮することができる。 The optical compensation film using the resin composition of the present invention can be suitably used for polarizing plates, liquid crystal display devices, organic EL display devices, etc., and exhibits excellent display performance and high stability under high temperature and high humidity. be able to.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例により示す諸物性は、以下の方法により測定した。 The physical properties shown in the examples were measured by the following methods.

<位相差特性の測定>
試料傾斜型自動複屈折計(王子計測機器製、商品名:KOBRA−WR)を用いて波長589nmの光を用いて位相差フィルムの位相差特性を測定した。
<位相差フィルムの光線透過率およびヘーズの測定>
作成したフィルムの光線透過率およびヘーズは、ヘーズメーター(日本電色工業製、商品名:NDH2000)を使用し、光線透過率の測定はJIS K 7361−1(1997版)に、ヘーズの測定はJIS−K 7136(2000年版)に、それぞれ準拠して測定した。
<耐熱耐湿試験>
恒温恒湿器(ヤマト科学株式会社製、商品名:IG400)を用いて60℃相対湿度90%の高温高湿環境下とし、120時間後のレターデーション、ヘーズを調べる(以下、「耐湿熱試験」という)ことで耐湿熱性の測定をした。
<Measurement of phase difference characteristics>
The retardation characteristic of the retardation film was measured using light having a wavelength of 589 nm using a sample tilt type automatic birefringence meter (manufactured by Oji Measuring Instruments, trade name: KOBRA-WR).
<Measurement of light transmittance and haze of retardation film>
For the light transmittance and haze of the produced film, use a haze meter (manufactured by Nippon Denshoku Industries, Ltd., trade name: NDH2000), measure the light transmittance with JIS K 7361-1 (1997 version), and measure the haze. Measurements were made in accordance with JIS-K 7136 (2000 version).
<Heat and moisture resistance test>
Using a thermo-hygrostat (manufactured by Yamato Kagaku Co., Ltd., trade name: IG400) in a high-temperature and high-humidity environment with a relative humidity of 90% at 60 ° C. "), And the humidity and heat resistance was measured.

合成例1(負の複屈折性を示すエステル系樹脂(1)(フマル酸ジイソプロピル/フマル酸モノエチル系樹脂)の合成)
容量75mLのガラスアンプルにフマル酸ジイソプロピル42g、フマル酸モノエチル7.7gおよび重合開始剤であるtert−ブチルパーオキシピバレート0.66gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル重合をした。重合反応終了後、アンプルから重合物を取出し、テトラヒドロフラン200gで溶解させた。このポリマー溶液を4Lのヘキサン中に滴下して析出させた後、80℃で10時間真空乾燥することにより、負の複屈折性を示すエステル系樹脂(1)27gを得た。得られた負の複屈折性を示すエステル系樹脂(1)の数平均分子量は53,000であった。
Synthesis Example 1 (Synthesis of ester resin (1) showing negative birefringence (diisopropyl fumarate / monoethyl fumarate))
42 g of diisopropyl fumarate, 7.7 g of monoethyl fumarate and 0.66 g of tert-butylperoxypivalate as a polymerization initiator were placed in a glass ampoule having a capacity of 75 mL, and after repeating nitrogen substitution and depressurization, the mixture was melted under reduced pressure. did. This ampoule was placed in a constant temperature bath at 55 ° C. and held for 24 hours for radical polymerization. After completion of the polymerization reaction, the polymer was taken out from the ampoule and dissolved in 200 g of tetrahydrofuran. This polymer solution was added dropwise to 4 L of hexane to precipitate, and then vacuum dried at 80 ° C. for 10 hours to obtain 27 g of an ester resin (1) exhibiting negative birefringence. The number average molecular weight of the obtained ester resin (1) exhibiting negative birefringence was 53,000.

合成例2(負の複屈折性を示すエステル系樹脂(2)(フマル酸モノエチル/フマル酸ジイソプロピル/4−メトキシケイ皮酸n−プロピル系樹脂)の合成)
攪拌機、冷却管、窒素導入管及び温度計を備えた1リットル反応器に、蒸留水600g、分散剤であるヒドロキシプロピルメチルセルロース(信越化学製、商品名メトローズ60SH−50)3.4g、フマル酸ジイソプロピル212.3g、フマル酸モノエチル52.9g、4−メトキシケイ皮酸n−プロピル134.7g及び油溶性ラジカル開始剤である2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン(T10=66℃)20.3gを入れ、窒素バブリングを1時間行なった後、400rpmで攪拌しながら昇温を開始、一段階目を60℃で24時間保持した後、二段階目を73℃で48時間保持することによりラジカル懸濁重合を行なった。重合反応の終了後、反応器より内容物を回収し、重合物をろ別し、蒸留水2000gで6回洗浄を行った後、メタノール/水混合溶剤(重量比80/20)の2000gで6回洗浄し、80℃で12時間真空乾燥することにより負の複屈折性を示すエステル系樹脂(2)282g(収率70%)を得た。得られた負の複屈折性を示すエステル系樹脂(2)の数平均分子量は41,000であった。
Synthesis Example 2 (Synthesis of ester resin (2) exhibiting negative birefringence (monoethyl fumarate / diisopropyl fumarate / n-propyl 4-methoxycinnamate))
A 1-liter reactor equipped with a stirrer, a cooling tube, a nitrogen introduction tube and a thermometer, 600 g of distilled water, 3.4 g of hydroxypropylmethyl cellulose (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Metrose 60SH-50), diisopropyl fumarate. 212.3 g, monoethyl fumarate 52.9 g, n-propyl 4-methoxysilicate 114.7 g and oil-soluble radical initiator 2,5-dimethyl-2,5-di (2-ethylhexanoyl peroxy) ) Hexane (T 10 = 66 ° C.) 20.3 g was added, nitrogen bubbling was performed for 1 hour, then the temperature was started while stirring at 400 rpm, the first stage was held at 60 ° C. for 24 hours, and then the second stage. Radical suspension polymerization was carried out by holding the mixture at 73 ° C. for 48 hours. After completion of the polymerization reaction, the contents were recovered from the reactor, the polymer was filtered off, washed 6 times with 2000 g of distilled water, and then 6 with 2000 g of a mixed solvent of methanol / water (weight ratio 80/20). The mixture was washed once and vacuum dried at 80 ° C. for 12 hours to obtain 282 g (yield 70%) of an ester resin (2) exhibiting negative polyrefractive properties. The number average molecular weight of the obtained ester resin (2) exhibiting negative birefringence was 41,000.

実施例1
セルロース系樹脂としてエチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)21.7gと、合成例1により得られた負の複屈折性を示すエステル系樹脂(1)14.4gと、重合体添加剤としてポリエチレンポリプロピレンオキシド共重合体(ADEKA社製 プルロニック L−61 分子量Mw:1750)1.9gとをトルエン/アセトン=8/2(重量比)溶液に溶解して18重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃の後140℃にて2段乾燥した後、幅150mmのフィルム(樹脂組成物)を得た(セルロース系樹脂:57重量%、負の複屈折性を示すエステル系樹脂:38重量%、重合体添加剤:5重量%)。得られたフィルムは光線透過率95%、ヘーズ0.8%、レタ−デ−ション(Re)3nm、面外位相差−154nm、耐湿熱試験後のヘーズは1.2%であった。
Example 1
As a cellulosic resin, ethyl cellulose (ETHOCEL standard (ETHOCEL standard) 100 manufactured by Dow Chemical Co., Ltd., molecular weight Mn = 55,000, molecular weight Mw = 176,000, Mw / Mn = 3.2, total substitution degree DS = 2.5) 21.7 g, 14.4 g of the negative compound refractive ester resin (1) obtained in Synthesis Example 1, and a polyethylene polypropylene oxide copolymer as a polymer additive (Pluronic L-61 molecular weight manufactured by ADEKA). Mw: 1750) 1.9 g was dissolved in a toluene / acetone = 8/2 (weight ratio) solution to obtain an 18% by weight resin solution, which was spilled onto a polyethylene terephthalate film with a coater and dried at a drying temperature of 60 ° C. and then 140. After two-stage drying at ° C., a film (resin composition) having a width of 150 mm was obtained (cellulosic resin: 57% by weight, ester resin exhibiting negative compound refractive property: 38% by weight, polymer additive: 5% by weight). The obtained film had a light transmittance of 95%, a haze of 0.8%, a retardation (Re) of 3 nm, an out-of-plane retardation of -154 nm, and a haze after a moisture resistance test of 1.2%.

また、得られたフィルムを50mm角に切り出した後、125℃で2.0倍に一軸延伸し(延伸後の厚み30μm)、光学補償フィルムを得た。 Further, the obtained film was cut into a 50 mm square and then uniaxially stretched 2.0 times at 125 ° C. (thickness after stretching: 30 μm) to obtain an optical compensation film.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

Figure 0006904136
Figure 0006904136

得られた光学補償フィルムのΔReは小さく、ヘーズは低く、耐湿熱性の高いものであった。 The obtained optical compensation film had a small ΔRe, a low haze, and high moisture and heat resistance.

実施例2
重合体添加剤としてポリエチレンポリプロピレンオキシド共重合体(ADEKA社製 プルロニック L−61 分子量Mw:1750)の代わりにポリプロピレンオキシド(日油社製 ユニオールD2000 分子量Mw:2000)1.9gを用いたこと以外は実施例1と同様にして、光学補償フィルムを得た(セルロース系樹脂:57重量%、負の複屈折性を示すエステル系樹脂:38重量%、重合体添加剤:5重量%)。
Example 2
Except for the fact that 1.9 g of polypropylene oxide (Uniol D2000 molecular weight Mw: 2000 manufactured by Nichiyu Co., Ltd.) was used instead of the polyethylene polypropylene oxide copolymer (Pluronic L-61 molecular weight Mw: 1750 manufactured by ADEKA) as the polymer additive. An optical compensation film was obtained in the same manner as in Example 1 (cellulosic resin: 57% by weight, ester resin exhibiting negative birefractive property: 38% by weight, polymer additive: 5% by weight).

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られた光学補償フィルムのΔReは小さく、ヘーズは低く、耐湿熱性の高いものであった。 The obtained optical compensation film had a small ΔRe, a low haze, and high moisture and heat resistance.

実施例3
実施例1で用いたエチルセルロース22.0gと合成例2により得られた負の複屈折性を示すエステル系樹脂(2)14.8gと重合体添加剤としてポリエチレンポリプロピレンオキシド共重合体(日油社製 ユニルーブ60MB−16I 分子量Mw:1300)1.1gとをトルエン/アセトン=8/2(重量比)溶液に溶解して18重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃の後140℃にて2段乾燥した後、幅150mmのフィルム(樹脂組成物)を得た(セルロース系樹脂:58重量%、負の複屈折性を示すエステル系樹脂:39重量%、重合体添加剤:3重量%)。
Example 3
22.0 g of ethyl cellulose used in Example 1, 14.8 g of an ester resin (2) exhibiting negative birefractive properties obtained in Synthesis Example 2, and a polyethylene polypropylene oxide copolymer as a polymer additive (Nippon Oil Co., Ltd.) Unilube 60MB-16I Polymer weight Mw: 1300) 1.1 g was dissolved in a toluene / acetone = 8/2 (weight ratio) solution to make an 18% by weight resin solution, which was then poured onto a polyethylene terephthalate film by a coater and dried. After a temperature of 60 ° C. and then two-stage drying at 140 ° C., a film (resin composition) having a width of 150 mm was obtained (cellulose resin: 58% by weight, ester resin exhibiting negative compound refractive property: 39% by weight). , Polymer additive: 3% by weight).

また、得られたフィルムを50mm角に切り出した後、所定の延伸温度で2.0倍に一軸延伸し(延伸後の厚み30μm)、光学補償フィルムを得た。 Further, the obtained film was cut into 50 mm squares and then uniaxially stretched 2.0 times at a predetermined stretching temperature (thickness after stretching 30 μm) to obtain an optical compensation film.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られた光学補償フィルムのΔReは小さく、ヘーズは低く、耐湿熱性の高いものであった。 The obtained optical compensation film had a small ΔRe, a low haze, and high moisture and heat resistance.

実施例4
実施例1で用いたエチルセルロース29.8gと合成例2により得られた負の複屈折性を示すエステル系樹脂(2)119.9gと重合体添加剤としてポリエチレンポリプロピレンオキシド共重合体(ADEKA社製 プルロニック L−71 分子量Mw:2050)2.6gとをトルエン/アセトン=8/2(重量比)溶液に溶解して18重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃の後140℃にて2段乾燥した後、幅150mmのフィルム(樹脂組成物)を得た(セルロース系樹脂:57重量%、負の複屈折性を示すエステル系樹脂:38重量%、重合体添加剤:5重量%)。
Example 4
29.8 g of ethyl cellulose used in Example 1, 119.9 g of an ester resin (2) exhibiting negative birefractive properties obtained in Synthesis Example 2, and a polyethylene polypropylene oxide copolymer (manufactured by ADEKA) as a polymer additive. Pluronic L-71 molecular weight Mw: 2050) 2.6 g was dissolved in a toluene / acetone = 8/2 (weight ratio) solution to obtain an 18% by weight resin solution, which was then poured onto a polyethylene terephthalate film by a coater and dried at a drying temperature. After two-stage drying at 140 ° C. after 60 ° C., a film (resin composition) having a width of 150 mm was obtained (cellulose resin: 57% by weight, ester resin exhibiting negative compound refractive property: 38% by weight, Polymer additive: 5% by weight).

また、得られたフィルムを50mm角に切り出した後、所定の延伸温度で2.0倍に一軸延伸し(延伸後の厚み30μm)、光学補償フィルムを得た。 Further, the obtained film was cut into 50 mm squares and then uniaxially stretched 2.0 times at a predetermined stretching temperature (thickness after stretching 30 μm) to obtain an optical compensation film.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られた光学補償フィルムのΔReは小さく、ヘーズは低く、耐湿熱性の高いものであった。 The obtained optical compensation film had a small ΔRe, a low haze, and high moisture and heat resistance.

比較例1
実施例1で用いたエチルセルロース22.7gと合成例1により得られた負の複屈折性を示すエステル系樹脂(1)15.0gと重合体添加剤としてフタル酸ジイソデシル(DIDP 分子量Mw:447)2.8gとをトルエン/アセトン=8/2(重量比)溶液に溶解して18重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃の後140℃にて2段乾燥した後、幅150mmのフィルム(樹脂組成物)を作製した。
Comparative Example 1
22.7 g of ethyl cellulose used in Example 1, 15.0 g of an ester resin (1) exhibiting negative birefractive properties obtained in Synthesis Example 1, and diisodecyl phthalate (DIDP molecular weight Mw: 447) as a polymer additive. 2.8 g was dissolved in a toluene / acetone = 8/2 (weight ratio) solution to obtain an 18% by weight resin solution, which was spilled onto a polyethylene terephthalate film with a coater, and dried at 60 ° C. and then at 140 ° C. for 2 After the step drying, a film (resin composition) having a width of 150 mm was prepared.

また、得られたフィルムを50mm角に切り出した後、所定の延伸温度で2.0倍に一軸延伸し(延伸後の厚み30μm)、光学補償フィルムを得た。 Further, the obtained film was cut into 50 mm squares and then uniaxially stretched 2.0 times at a predetermined stretching temperature (thickness after stretching 30 μm) to obtain an optical compensation film.

得られた光学補償フィルムのΔReは大きくヘーズは高く、耐湿熱性の低いものであった。 The ΔRe of the obtained optical compensation film was large, the haze was high, and the moisture and heat resistance was low.

比較例2
実施例1で用いたエチルセルロース23.1gと合成例2により得られた負の複屈折性を示すエステル系樹脂(2)15.4gと添加剤としてアジピン酸ジイソデシル(DIDA 分子量Mw:427)2.0gとをトルエン/アセトン=8/2(重量比)溶液に溶解して18重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃の後140℃にて2段乾燥した後、幅150mmのフィルム(樹脂組成物)を得た。
Comparative Example 2
2.3.1 g of ethyl cellulose used in Example 1, 15.4 g of an ester resin (2) exhibiting negative birefractive properties obtained in Synthesis Example 2, and diisodecyl adipate (DIDA molecular weight Mw: 427) as an additive. 0 g is dissolved in a toluene / acetone = 8/2 (weight ratio) solution to obtain an 18% by weight resin solution, which is spilled onto a polyethylene terephthalate film with a coater and dried in two stages at a drying temperature of 60 ° C. and then at 140 ° C. After that, a film (resin composition) having a width of 150 mm was obtained.

また、得られたフィルムを50mm角に切り出した後、所定の延伸温度で2.0倍に一軸延伸し(延伸後の厚み30μm)、光学補償フィルムを得た。 Further, the obtained film was cut into 50 mm squares and then uniaxially stretched 2.0 times at a predetermined stretching temperature (thickness after stretching 30 μm) to obtain an optical compensation film.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られた光学補償フィルムのΔReは大きくヘーズは高く、耐湿熱性の低いものであった。 The ΔRe of the obtained optical compensation film was large, the haze was high, and the moisture and heat resistance was low.

比較例3
添加剤としてアジピン酸ジイソデシル(DIDA 分子量Mw:427)の代わりにアクリル系添加剤(東亞合成社製、ARUFON UP−1021 分子量Mw:1,600)2.0を用いたこと以外は比較例2と同様にして、光学補償フィルムを得た。
Comparative Example 3
Comparative Example 2 and Comparative Example 2 except that an acrylic additive (ARUFON UP-1021 molecular weight Mw: 1,600) 2.0 manufactured by Toagosei Co., Ltd. was used instead of diisodecyl adipate (DIDA molecular weight Mw: 427) as an additive. Similarly, an optical compensation film was obtained.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られたフィルムのΔReは大きくヘーズは高く、耐湿熱性の低いものであった。 The ΔRe of the obtained film was large, the haze was high, and the moisture and heat resistance was low.

比較例4
実施例1で用いたエチルセルロース22.7gと合成例2により得られた負の複屈折性を示すエステル系樹脂(2)15.0gと添加剤としてアジピン酸ポリエステル系可塑剤(DIC社製、ポリサイザー W−1020−EL 分子量Mw:1,000)2.8gとをトルエン/アセトン=8/2(重量比)溶液に溶解して18重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃の後140℃にて2段乾燥した後、幅150mmのフィルム(樹脂組成物)を作製した。
Comparative Example 4
22.7 g of ethyl cellulose used in Example 1, 15.0 g of an ester resin (2) exhibiting negative birefractive properties obtained in Synthesis Example 2, and a polyester adipate plasticizer (manufactured by DIC, Polysizer) as an additive. 2.8 g of W-1020-EL molecular weight Mw: 1,000) was dissolved in a toluene / acetone = 8/2 (weight ratio) solution to obtain an 18% by weight resin solution, which was then poured onto a polyethylene terephthalate film by a coater. After drying in two stages at 140 ° C. after a drying temperature of 60 ° C., a film (resin composition) having a width of 150 mm was prepared.

また、得られたフィルムを50mm角に切り出した後、所定の延伸温度で2.0倍に一軸延伸し(延伸後の厚み30μm)、光学補償フィルムを得た。 Further, the obtained film was cut into 50 mm squares and then uniaxially stretched 2.0 times at a predetermined stretching temperature (thickness after stretching 30 μm) to obtain an optical compensation film.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られた光学補償フィルムのΔReは大きくヘーズは高く、耐湿熱性の低いものであった。 The ΔRe of the obtained optical compensation film was large, the haze was high, and the moisture and heat resistance was low.

比較例5
添加剤としてアジピン酸ポリエステル系可塑剤(DIC社製、ポリサイザー W−1020−EL 分子量Mw:1,000)の代わりにポリエチレンオキシド(分子量Mw:600)2.8gを用いたこと以外は比較例4と同様にして、光学補償フィルムを得た。
Comparative Example 5
Comparative Example 4 except that 2.8 g of polyethylene oxide (molecular weight Mw: 600) was used instead of the polyester adipate plasticizer (Polysizer W-1020-EL molecular weight Mw: 1,000 manufactured by DIC) as an additive. An optical compensation film was obtained in the same manner as above.

得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性、耐湿熱性を測定した。その結果を表1に合わせて示す。 The light transmittance, haze, retardation characteristic, wavelength dispersion characteristic, and moist heat resistance of the obtained optical compensation film were measured. The results are shown in Table 1.

得られた光学補償フィルムのΔReは小さいが、添加剤の析出が見られ、耐湿熱性の低いものであった。 Although the ΔRe of the obtained optical compensation film was small, precipitation of additives was observed, and the moisture and heat resistance was low.

Claims (6)

下記一般式(1)で示される構造単位を有するセルロ−スエーテル30〜98.99重量%と、下記一般式(2)で示されるケイ皮酸エステル残基単位および/または下記一般式(3)で示されるフマル酸エステル残基単位を含む負の複屈折性を示すエステル系樹脂1〜69.99重量%を含有し、さらに、ポリアルキレンオキシド残基単位を有する分子量(Mw)1000以上の重合体添加剤0.01〜20重量%を含有することを特徴とする樹脂組成物。
Figure 0006904136
(式中、R、R、Rはそれぞれ独立して水素または炭素数1〜12の置換基を示す。)
Figure 0006904136
(式中、R は炭素数1〜12のアルキル基を示す。Xはニトロ基、ブロモ基、ヨード基、シアノ基、クロロ基、スルホン酸基、カルボン酸基、フルオロ基、フェニル基または炭素数1〜12のアルコキシ基を示す。)
Figure 0006904136
(式中、R 、R はそれぞれ独立して水素または炭素数1〜12のアルキル基を示す。)
Cellulose having a structural unit represented by the following general formula (1) - Graphics and ether 30 to 98.99 wt%, cinnamic acid ester residue unit and / or the following general formula represented by the following general formula (2) (3 ) Containing 1 to 69.99% by weight of an ester-based resin exhibiting negative birefractive properties, including a fumaric acid ester residue unit, and having a polyalkylene oxide residue unit having a molecular weight (Mw) of 1000 or more. A resin composition containing 0.01 to 20% by weight of a polymer additive.
Figure 0006904136
(In the formula, R 1 , R 2 , and R 3 each independently indicate hydrogen or a substituent having 1 to 12 carbon atoms.)
Figure 0006904136
(In the formula, R 4 represents an alkyl group having 1 to 12 carbon atoms. X is a nitro group, a bromo group, an iodo group, a cyano group, a chloro group, a sulfonic acid group, a carboxylic acid group, a fluoro group, a phenyl group or a carbon. Indicates the number 1 to 12 alkoxy groups.)
Figure 0006904136
(In the formula, R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 12 carbon atoms.)
重合体添加剤の構造の50〜100mol%が、ポリエチレンオキシド残基単位、ポリプロピレンオキシド残基単位およびポリブチレンオキシド残基単位からなる群より選択される1種以上であることを特徴とする請求項1に記載の樹脂組成物。 A claim, wherein 50 to 100 mol% of the structure of the polymer additive is at least one selected from the group consisting of polyethylene oxide residue units, polypropylene oxide residue units and polybutylene oxide residue units. The resin composition according to 1. 請求項1または2に記載の樹脂組成物を用いてなり、下記式(1)で示されるレタ−デ−ション(Re)が50〜300nmで、下記式(2)で示されるNz係数が0.3〜1.0であり、かつ、450nmにおけるレタ−デ−ションと550nmにおけるレタ−デ−ションの比Re(450)/Re(550)が0.60<Re(450)/Re(550)<1.05であることを特徴とする光学補償フィルム。
Re=(ny−nx)×d (1)
Nz=(ny−nz)/(ny−nx) (2)
(式中、nxはフィルム面内の進相軸方向の屈折率を示し、nyはフィルム面内の遅相軸方向の屈折率を示し、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
The resin composition according to claim 1 or 2 is used, the retardation (Re) represented by the following formula (1) is 50 to 300 nm, and the Nz coefficient represented by the following formula (2) is 0. .3 to 1.0, and the ratio of the retardation at 450 nm to the retardation at 550 nm Re (450) / Re (550) is 0.60 <Re (450) / Re (550). ) <1.05, an optical compensation film.
Re = (ny-nx) x d (1)
Nz = (ny-nz) / (ny-nx) (2)
(In the formula, nx indicates the refractive index in the phase-advancing axis direction in the film surface, ny indicates the refractive index in the slow-phase axial direction in the film surface, nz indicates the refractive index outside the film surface, and d indicates the refractive index of the film. Indicates the thickness.)
請求項1または2に記載の樹脂組成物を用いてなり、下記式(1)で示されるレタ−デ−ション(Re)が0〜20nmで、下記式(3)で示される面外位相差(Rth)が−400〜20nmであることを特徴とする光学補償フィルム。
Re=(ny−nx)×d (1)
Rth=[(nx+ny)/2−nz]×d (3)
(式中、nxはフィルム面内の進相軸方向の屈折率を示し、nyはフィルム面内の遅相軸方向の屈折率を示し、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
Using the resin composition according to claim 1 or 2 , the retardation (Re) represented by the following formula (1) is 0 to 20 nm, and the out-of-plane phase difference represented by the following formula (3). An optical compensation film having (Rth) of −400 to 20 nm.
Re = (ny-nx) x d (1)
Rth = [(nx + ny) /2-nz] × d (3)
(In the formula, nx indicates the refractive index in the phase-advancing axis direction in the film surface, ny indicates the refractive index in the slow-phase axial direction in the film surface, nz indicates the refractive index outside the film surface, and d indicates the refractive index of the film. Indicates the thickness.)
60℃相対湿度90%環境下120時間後におけるヘーズが3%以下であり、かつ、60℃相対湿度90%環境下120時間後におけるレタ−デ−ション(Re)の変化率ΔReが10%以下であることを特徴とする請求項3または4に記載の光学補償フィルム。 The haze after 120 hours in an environment of 60 ° C. and 90% relative humidity is 3% or less, and the rate of change ΔRe of the retardation (Re) after 120 hours in an environment of 60 ° C. and 90% relative humidity is 10% or less. The optical compensation film according to claim 3 or 4 , wherein the optical compensation film is characterized by the above. 請求項3乃至5いずれか一項に記載の光学補償フィルムを用いた偏光板。 A polarizing plate using the optical compensation film according to any one of claims 3 to 5.
JP2017144691A 2017-07-26 2017-07-26 Resin composition and optical compensation film using it Active JP6904136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144691A JP6904136B2 (en) 2017-07-26 2017-07-26 Resin composition and optical compensation film using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144691A JP6904136B2 (en) 2017-07-26 2017-07-26 Resin composition and optical compensation film using it

Publications (2)

Publication Number Publication Date
JP2019026677A JP2019026677A (en) 2019-02-21
JP6904136B2 true JP6904136B2 (en) 2021-07-14

Family

ID=65477626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144691A Active JP6904136B2 (en) 2017-07-26 2017-07-26 Resin composition and optical compensation film using it

Country Status (1)

Country Link
JP (1) JP6904136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523281B2 (en) * 2020-08-17 2024-07-26 富士フイルム株式会社 Polymer, polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate and image display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192411B2 (en) * 2000-07-12 2008-12-10 コニカミノルタホールディングス株式会社 Protective film for polarizing plate
JP4240799B2 (en) * 2000-10-18 2009-03-18 コニカミノルタホールディングス株式会社 Optical cellulose ester film, method for producing the same, and polarizing plate
JP6572532B2 (en) * 2014-10-15 2019-09-11 東ソー株式会社 Resin composition and optical compensation film using the same
JP6048556B2 (en) * 2014-11-26 2016-12-21 東ソー株式会社 Resin composition and optical compensation film using the same

Also Published As

Publication number Publication date
JP2019026677A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6048446B2 (en) Resin composition and optical compensation film using the same
US10126478B2 (en) Resin composition and optical compensation film using same
JP6572532B2 (en) Resin composition and optical compensation film using the same
KR20060053215A (en) Stretched cellulose ester film, polarizing plate and liquid crystal display device using the same
JP6136254B2 (en) Resin composition and optical compensation film using the same
JP6048556B2 (en) Resin composition and optical compensation film using the same
JP6136253B2 (en) Resin composition and optical compensation film using the same
JP6904137B2 (en) Resin composition and optical compensation film using it
JP5920052B2 (en) Resin composition and optical compensation film using the same
WO2016060115A1 (en) Resin composition and optical compensation film using same
JP6870374B2 (en) Resin composition and optical compensation film using it
JP6904136B2 (en) Resin composition and optical compensation film using it
JP6848338B2 (en) Resin composition and optical compensation film using it
JP2018163291A (en) Manufacturing method of optical film
JP6808939B2 (en) Resin composition and optical compensation film using it
JP6897084B2 (en) Optical compensation film and its manufacturing method
JP7287183B2 (en) Resin composition and film made of the same
JP7127327B2 (en) Cellulose resin composition and optical film using the same
JP6237366B2 (en) Polymer for optical compensation film
WO2017122563A1 (en) Optical compensation film and method for producing same
JP6229561B2 (en) Polymer for optical compensation film
JP2023152307A (en) Resin composition and optical film using the same
JP2021143302A (en) Resin composition and retardation film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R151 Written notification of patent or utility model registration

Ref document number: 6904136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151