[go: up one dir, main page]

JP6903028B2 - Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method - Google Patents

Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method Download PDF

Info

Publication number
JP6903028B2
JP6903028B2 JP2018076708A JP2018076708A JP6903028B2 JP 6903028 B2 JP6903028 B2 JP 6903028B2 JP 2018076708 A JP2018076708 A JP 2018076708A JP 2018076708 A JP2018076708 A JP 2018076708A JP 6903028 B2 JP6903028 B2 JP 6903028B2
Authority
JP
Japan
Prior art keywords
mercury
exhaust gas
adsorbent
concentration
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076708A
Other languages
Japanese (ja)
Other versions
JP2019184455A (en
Inventor
通孝 古林
通孝 古林
博光 橋本
博光 橋本
睦史 加藤
睦史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2018076708A priority Critical patent/JP6903028B2/en
Priority to PCT/JP2019/014827 priority patent/WO2019198597A1/en
Priority to CN201980022546.8A priority patent/CN111919116B/en
Publication of JP2019184455A publication Critical patent/JP2019184455A/en
Application granted granted Critical
Publication of JP6903028B2 publication Critical patent/JP6903028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Treating Waste Gases (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、水銀濃度測定装置、排ガス処理装置および排ガス処理方法に関する。 The present invention relates to a mercury concentration measuring device, an exhaust gas treatment device, and an exhaust gas treatment method.

都市ごみ等の一般廃棄物を焼却した場合に、水銀を含む排ガスが発生することがある。この場合、排ガス中の水銀を除去するため、排ガスに水銀吸着剤が供給される。一方、排ガスに含まれる水銀は、主に、0価である原子状水銀(以下、「0価水銀」という。)、および、塩化水銀等の水銀化合物を構成する2価の水銀(以下、「2価水銀」という。)として存在している。従来、排ガスに含まれる水銀濃度の測定では、取り込んだガス中の2価水銀を0価水銀に還元し、還元後のガスに含まれる0価水銀(以下、排ガスに元から含まれる0価水銀、および、2価水銀を還元して得られる0価水銀をまとめて「全水銀」という。)の濃度を水銀濃度として検出している。しかしながら、2価水銀を0価水銀に還元するにはある程度の時間を要するため、水銀吸着剤の供給量を応答性よく制御することが困難である。そこで、特許文献1では、2価水銀を0価水銀に還元しない状態で、排ガスに含まれる0価水銀の量を検知する検知装置が提案されている。 When general waste such as municipal waste is incinerated, exhaust gas containing mercury may be generated. In this case, a mercury adsorbent is supplied to the exhaust gas in order to remove mercury in the exhaust gas. On the other hand, the mercury contained in the exhaust gas is mainly zero-valent atomic mercury (hereinafter referred to as "zero-valent mercury") and divalent mercury constituting a mercury compound such as mercury chloride (hereinafter referred to as "" It exists as "divalent mercury"). Conventionally, in the measurement of the concentration of mercury contained in exhaust gas, divalent mercury in the taken-in gas is reduced to zero-valent mercury, and zero-valent mercury contained in the reduced gas (hereinafter, zero-valent mercury originally contained in exhaust gas). , And the zero-valent mercury obtained by reducing divalent mercury is collectively referred to as "total mercury"), and the concentration is detected as the mercury concentration. However, since it takes a certain amount of time to reduce divalent mercury to zero-valent mercury, it is difficult to control the supply amount of the mercury adsorbent with good responsiveness. Therefore, Patent Document 1 proposes a detection device that detects the amount of zero-valent mercury contained in exhaust gas without reducing divalent mercury to zero-valent mercury.

国際公開第2016/136714号International Publication No. 2016/136714

ところで、特許文献1の検知装置では、正確な水銀濃度を得ることができず、水銀吸着剤の供給量を適切に(過不足を少なく)制御することが困難である。 By the way, with the detection device of Patent Document 1, it is not possible to obtain an accurate mercury concentration, and it is difficult to appropriately control the supply amount of the mercury adsorbent (with less excess or deficiency).

本発明は上記課題に鑑みなされたものであり、迅速な水銀濃度の測定と、正確な水銀濃度の測定とを選択的に行うことを目的とし、水銀吸着剤の供給量を適切に制御することも目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to selectively measure the mercury concentration rapidly and accurately, and to appropriately control the supply amount of the mercury adsorbent. Is also aimed at.

請求項1に記載の発明は、ガスに含まれる水銀濃度を測定する水銀濃度測定装置であって、ガス流路に取り付けられる第1取込口と、前記第1取込口で取り込まれたガスに含まれる2価水銀を0価水銀に還元する還元部と、前記ガス流路に取り付けられる第2取込口と、0価水銀に基づいて水銀濃度の測定値を取得する濃度取得部と、前記還元部を通過したガス、または、前記第2取込口で取り込まれたガスの一方を選択的に前記濃度取得部に流入させる切替部とを備え、前記第1取込口で取り込まれたガスが前記還元部に常時流入し、前記切替部が、前記還元部を通過したガスの前記濃度取得部への流入と、所定の排出位置への排出とを切り替える。 The invention according to claim 1 is a mercury concentration measuring device for measuring the concentration of mercury contained in a gas, which is a first intake port attached to a gas flow path and a gas taken in by the first intake port. A reduction unit that reduces the divalent mercury contained in the mercury to zero-valent mercury, a second intake port attached to the gas flow path, and a concentration acquisition unit that acquires a measured value of mercury concentration based on the zero-valent mercury. It is provided with a switching unit for selectively flowing one of the gas that has passed through the reduction unit or the gas taken in by the second intake port into the concentration acquisition unit, and is taken in by the first intake port. gas flows constantly to the reduction unit, the switching unit, wherein an inlet to the concentration acquisition portion of the gas passing through the reduced section, you switch a discharge to a predetermined discharge position.

請求項2に記載の発明は、請求項1に記載の水銀濃度測定装置であって、前記第1取込口が、前記第2取込口を兼ねており、前記切替部が、前記第1取込口から前記還元部を経由して前記濃度取得部に接続する第1流路と、前記還元部を迂回して前記第1取込口と前記濃度取得部とを接続する第2流路と、前記濃度取得部に流入するガスの経路を、前記第1流路と前記第2流路とで切り替える流路切替部とを備える。 The invention according to claim 2 is the mercury concentration measuring apparatus according to claim 1, wherein the first intake port also serves as the second intake port, and the switching unit is the first. A first flow path that connects the intake port to the concentration acquisition unit via the reduction unit, and a second flow path that bypasses the reduction unit and connects the first intake port and the concentration acquisition unit. And a flow path switching unit that switches the path of the gas flowing into the concentration acquisition unit between the first flow path and the second flow path.

請求項に記載の発明は、排ガス処理装置であって、排ガスの発生源から外部への排出口に向かって前記排ガスが流れる煙道において、前記排ガスに水銀吸着剤を供給する吸着剤供給部と、前記煙道において前記水銀吸着剤を捕集する吸着剤捕集部と、前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中の0価水銀濃度を測定する0価水銀濃度測定部と、前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を全水銀濃度として測定する全水銀濃度測定部と、前記0価水銀濃度に基づいて前記吸着剤供給部による前記水銀吸着剤の供給量を制御するとともに、所定の場合において、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度に基づく制御から、前記全水銀濃度に基づく制御に切り替える制御部とを備える。 The invention according to claim 3 is an exhaust gas treatment device, which is an adsorbent supply unit that supplies a mercury adsorbent to the exhaust gas in a flue in which the exhaust gas flows from a source of the exhaust gas toward an outlet to the outside. The zero-valent mercury concentration in the exhaust gas is located between the adsorbent collecting portion that collects the mercury adsorbent in the flue and the source and the adsorbent collecting portion in the flue. At a position between the zero-valent mercury concentration measuring unit for measuring the amount of mercury and the source and the adsorbent collecting unit in the flue, the zero-valent mercury originally contained in the exhaust gas and the zero-valent mercury in the exhaust gas. The total mercury concentration measuring unit that measures the total concentration of zero-valent mercury obtained by reducing divalent mercury as the total mercury concentration, and the adsorbent supply unit controls the supply amount of the mercury adsorbent based on the zero-valent mercury concentration. In addition, in a predetermined case, the control unit is provided to switch the control of the supply amount of the mercury adsorbent from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration.

請求項に記載の発明は、請求項に記載の排ガス処理装置であって、前記0価水銀濃度測定部および前記全水銀濃度測定部を兼ねる、請求項1または2に記載の水銀濃度測定装置を備える。 The invention according to claim 4 is the exhaust gas treatment apparatus according to claim 3 , wherein the mercury concentration measurement according to claim 1 or 2 also serves as the zero-valent mercury concentration measuring unit and the total mercury concentration measuring unit. Equipped with a device.

請求項に記載の発明は、請求項またはに記載の排ガス処理装置であって、前記制御部が、前記0価水銀濃度に基づく制御において、前記0価水銀濃度が所定の閾値以上となり、前記水銀吸着剤の供給量を増大した後に、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度に基づく制御から、前記全水銀濃度に基づく制御に切り替える。 The invention according to claim 5 is the exhaust gas treatment apparatus according to claim 3 or 4 , wherein the zero-valent mercury concentration becomes equal to or higher than a predetermined threshold in the control based on the zero-valent mercury concentration. After increasing the supply amount of the mercury adsorbent, the control of the supply amount of the mercury adsorbent is switched from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration.

請求項に記載の発明は、請求項ないしのいずれか1つに記載の排ガス処理装置であって、前記0価水銀濃度が所定の閾値よりも低い場合に、前記吸着剤捕集部により捕集された前記水銀吸着剤を回収吸着剤として貯留する回収吸着剤貯留部と、前記煙道において前記発生源と前記吸着剤捕集部との間の位置に前記回収吸着剤を供給する回収吸着剤供給部とをさらに備え、前記制御部が、前記0価水銀濃度に基づいて前記回収吸着剤供給部による前記回収吸着剤の供給量を制御する。 The invention according to claim 6 is the exhaust gas treatment apparatus according to any one of claims 3 to 5 , wherein when the zero-valent mercury concentration is lower than a predetermined threshold value, the adsorbent collecting unit. The recovered adsorbent is supplied to a position between the recovered adsorbent storage unit that stores the mercury adsorbent collected by the above-mentioned method and the adsorbent collecting portion in the flue. A recovery adsorbent supply unit is further provided, and the control unit controls the supply amount of the recovery adsorbent by the recovery adsorbent supply unit based on the zero-valent mercury concentration.

請求項に記載の発明は、請求項ないしのいずれか1つに記載の排ガス処理装置であって、前記煙道における前記吸着剤捕集部と前記排出口との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を下流側水銀濃度として測定する下流側水銀濃度測定部をさらに備え、前記下流側水銀濃度が所定の閾値以上である場合に、前記制御部において、前記水銀吸着剤の供給量の制御が、前記0価水銀濃度または前記全水銀濃度に基づく制御から、少なくとも前記下流側水銀濃度に基づく制御に切り替えられる。 The invention according to claim 7 is the exhaust gas treatment apparatus according to any one of claims 3 to 6 , at a position between the adsorbent collecting portion and the discharging port in the flue. The downstream mercury concentration measuring unit for measuring the total concentration of the zero-valent mercury originally contained in the exhaust gas and the reduced zero-valent mercury in the exhaust gas as the downstream mercury concentration is further provided. When the downstream mercury concentration is equal to or higher than a predetermined threshold value, the control unit controls the supply amount of the mercury adsorbent at least from the control based on the zero-valent mercury concentration or the total mercury concentration. Switch to concentration-based control.

請求項に記載の発明は、排ガス処理装置における排ガス処理方法であって、前記排ガス処理装置が、排ガスの発生源から外部への排出口に向かって前記排ガスが流れる煙道において、前記排ガスに水銀吸着剤を供給する吸着剤供給部と、前記煙道において前記水銀吸着剤を捕集する吸着剤捕集部と、前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中の0価水銀濃度を測定する0価水銀濃度測定部と、前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を全水銀濃度として測定する全水銀濃度測定部とを備え、前記排ガス処理方法が、前記0価水銀濃度に基づいて前記吸着剤供給部による前記水銀吸着剤の供給量を制御する工程と、所定の場合において、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度に基づく制御から、前記全水銀濃度に基づく制御に切り替える工程とを備える。 The invention according to claim 8 is a method for treating exhaust gas in an exhaust gas treatment device, wherein the exhaust gas treatment device uses the exhaust gas in a flue in which the exhaust gas flows from a source of the exhaust gas toward an outlet to the outside. Positions between the adsorbent supply unit that supplies the mercury adsorbent, the adsorbent collection unit that collects the mercury adsorbent in the flue, and the source and the adsorbent collection unit in the flue. At a position between the zero-valent mercury concentration measuring unit for measuring the zero-valent mercury concentration in the exhaust gas and the source and the adsorbent collecting unit in the flue, the exhaust gas is originally contained in the exhaust gas. The exhaust gas treatment method comprises a total mercury concentration measuring unit that measures the total concentration of zero-valent mercury and the reduced zero-valent mercury in the exhaust gas as the total mercury concentration, and the exhaust gas treatment method is the zero-valent mercury concentration. From the step of controlling the supply amount of the mercury adsorbent by the adsorbent supply unit and the control of the supply amount of the mercury adsorbent in a predetermined case from the control based on the zero-valent mercury concentration, all of the above. It includes a step of switching to control based on mercury concentration.

請求項に記載の発明は、請求項に記載の排ガス処理方法であって、前記排ガス処理装置が、前記煙道における前記吸着剤捕集部と前記排出口との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を下流側水銀濃度として測定する下流側水銀濃度測定部をさらに備え、前記排ガス処理方法が、前記下流側水銀濃度が所定の閾値以上である場合に、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度または前記全水銀濃度に基づく制御から、少なくとも前記下流側水銀濃度に基づく制御に切り替える工程をさらに備える。 The invention according to claim 9 is the exhaust gas treatment method according to claim 8 , wherein the exhaust gas treatment device is located at a position between the adsorbent collecting portion and the discharge port in the flue. The exhaust gas is further provided with a downstream mercury concentration measuring unit that measures the total concentration of the zero-valent mercury originally contained in the exhaust gas and the reduced zero-valent mercury in the exhaust gas as the downstream mercury concentration. When the treatment method is such that the downstream mercury concentration is equal to or higher than a predetermined threshold value, the control of the supply amount of the mercury adsorbent is controlled from the control based on the zero-valent mercury concentration or the total mercury concentration to at least the downstream mercury. It further comprises a step of switching to concentration-based control.

請求項1および2の発明では、迅速な水銀濃度の測定(0価水銀濃度の測定)と、正確な水銀濃度の測定(全水銀濃度の測定)とを選択的に行うことができる。 In the inventions of claims 1 and 2 , rapid measurement of mercury concentration (measurement of zero-valent mercury concentration) and accurate measurement of mercury concentration (measurement of total mercury concentration) can be selectively performed.

請求項ないしの発明では、迅速に得られる0価水銀濃度に基づいて水銀吸着剤の供給量を応答性よく制御するとともに、所定の場合において、全水銀濃度に基づいて水銀吸着剤の供給量を適切に制御することができる。 In the inventions of claims 3 to 9 , the supply amount of the mercury adsorbent is controlled with good responsiveness based on the rapidly obtained zero-valent mercury concentration, and in a predetermined case, the mercury adsorbent is supplied based on the total mercury concentration. The amount can be controlled appropriately.

焼却設備の構成を示す図である。It is a figure which shows the structure of the incinerator. 水銀濃度測定装置の構成を示す図である。It is a figure which shows the structure of the mercury concentration measuring apparatus. 0価水銀濃度の測定時における水銀濃度測定装置を示す図である。It is a figure which shows the mercury concentration measuring apparatus at the time of measuring the zero-valent mercury concentration. 全水銀濃度の測定時における水銀濃度測定装置を示す図である。It is a figure which shows the mercury concentration measuring apparatus at the time of measuring the total mercury concentration. 排ガス処理装置における排ガス処理の流れを示す図である。It is a figure which shows the flow of the exhaust gas treatment in the exhaust gas treatment apparatus. 排ガス処理装置の他の例を示す図である。It is a figure which shows another example of an exhaust gas treatment apparatus. 水銀濃度測定装置の他の例を示す図である。It is a figure which shows another example of the mercury concentration measuring apparatus.

図1は、本発明の一の実施の形態に係る焼却設備1の構成を示す図である。焼却設備1は、都市ごみ等の廃棄物を焼却処理する設備である。焼却設備1は、焼却炉21と、煙道3と、排ガス処理装置4と、煙突22とを備える。焼却炉21では、廃棄物の燃焼と、廃棄物から発生した可燃性ガスの燃焼とが行われる。煙道3は、焼却炉21と煙突22とを接続するガス流路である。排ガス処理装置4は、煙道3に設けられる。煙道3には、図示省略の誘引通風機も設けられる。当該誘引通風機により、焼却炉21にて発生する排ガス(燃焼ガス)が煙道3へと排出され、排ガス処理装置4を介して煙突22へと導かれる。焼却設備1では、焼却炉21を発生源とする排ガスが、焼却炉21から煙突22に向かって煙道3内を流れつつ、排ガス処理装置4により排ガスに対して所定の処理が行われる。煙突22は、排ガスを大気(外部)に排出する排出口を含む。図1では、煙道3を太い実線にて示している。 FIG. 1 is a diagram showing a configuration of an incinerator 1 according to an embodiment of the present invention. The incinerator 1 is an incinerator for incinerating waste such as municipal waste. The incinerator 1 includes an incinerator 21, a flue 3, an exhaust gas treatment device 4, and a chimney 22. In the incinerator 21, the waste is burned and the combustible gas generated from the waste is burned. The flue 3 is a gas flow path connecting the incinerator 21 and the chimney 22. The exhaust gas treatment device 4 is provided in the flue 3. The flue 3 is also provided with an induction ventilator (not shown). The exhaust gas (combustion gas) generated in the incinerator 21 is discharged to the flue 3 by the induced ventilator, and is guided to the chimney 22 via the exhaust gas treatment device 4. In the incinerator 1, the exhaust gas originating from the incinerator 21 flows through the flue 3 from the incinerator 21 toward the chimney 22, and the exhaust gas treatment device 4 performs a predetermined treatment on the exhaust gas. The chimney 22 includes an exhaust port that discharges exhaust gas to the atmosphere (outside). In FIG. 1, the flue 3 is shown by a thick solid line.

排ガス処理装置4は、制御部40と、吸着剤供給部41と、アルカリ薬剤供給部42と、バグフィルタ43と、水銀濃度測定装置45と、下流側水銀濃度測定部46と、塩化水素濃度測定部47とを備える。制御部40は、排ガス処理装置4の全体制御を担う。制御部40は、焼却設備1の制御部を兼ねてもよい。バグフィルタ43は、煙道3に設けられる。煙道3では、バグフィルタ43よりも上流側(焼却炉21側)に、水銀濃度測定装置45、吸着剤供給部41およびアルカリ薬剤供給部42が接続され、バグフィルタ43よりも下流側(煙突22側)に、下流側水銀濃度測定部46および塩化水素濃度測定部47が接続される。煙道3では、脱硝装置等も設けられてもよい。 The exhaust gas treatment device 4 includes a control unit 40, an adsorbent supply unit 41, an alkaline chemical supply unit 42, a bag filter 43, a mercury concentration measuring device 45, a downstream mercury concentration measuring unit 46, and a hydrogen chloride concentration measurement. A unit 47 is provided. The control unit 40 is responsible for overall control of the exhaust gas treatment device 4. The control unit 40 may also serve as a control unit for the incinerator 1. The bug filter 43 is provided in the flue 3. In the flue 3, the mercury concentration measuring device 45, the adsorbent supply unit 41 and the alkaline chemical supply unit 42 are connected to the upstream side (incinerator 21 side) of the bag filter 43, and the downstream side (chimney) of the bag filter 43. The downstream side mercury concentration measuring unit 46 and the hydrogen chloride concentration measuring unit 47 are connected to the 22 side). The flue 3 may also be provided with a denitration device or the like.

水銀濃度測定装置45は、煙道3を流れる排ガスに含まれる水銀濃度を測定する。水銀濃度測定装置45の構成の詳細については後述する。吸着剤供給部41は、煙道3を流れる排ガスに粉状の水銀吸着剤を供給する(吹き込む)。水銀吸着剤は、例えば活性炭である。水銀吸着剤として、活性炭の表面に例えばヨウ素や硫黄を添着した添着活性炭等が用いられてもよい。アルカリ薬剤供給部42は、煙道3を流れる排ガスにアルカリ薬剤を供給する。アルカリ薬剤は、脱塩および脱硫用の薬剤であり、例えば粉状の消石灰(水酸化カルシウム(Ca(OH)))である。消石灰に代えて、または、消石灰と共に、水酸化ドロマイト[Ca(OH)・Mg(OH)]等の他のカルシウム系薬剤(カルシウム含有薬剤)が、アルカリ薬剤として排ガスに供給されてもよい。重曹(NaHCO)等のナトリウム系薬剤(ナトリウム含有薬剤)が、消石灰に代えて用いられてもよい。 The mercury concentration measuring device 45 measures the mercury concentration contained in the exhaust gas flowing through the flue 3. Details of the configuration of the mercury concentration measuring device 45 will be described later. The adsorbent supply unit 41 supplies (blows) a powdery mercury adsorbent to the exhaust gas flowing through the flue 3. The mercury adsorbent is, for example, activated carbon. As the mercury adsorbent, for example, an impregnated activated carbon in which iodine or sulfur is impregnated on the surface of the activated carbon may be used. The alkaline chemical supply unit 42 supplies the alkaline chemical to the exhaust gas flowing through the flue 3. The alkaline agent is an agent for desalting and desulfurization, for example, powdered slaked lime (calcium hydroxide (Ca (OH) 2 )). Other calcium-based agents (calcium-containing agents) such as dolomite hydroxide [Ca (OH) 2 , Mg (OH) 2 ] may be supplied to the exhaust gas as alkaline agents in place of or together with slaked lime. .. Sodium-based agents (sodium-containing agents) such as baking soda (NaHCO 3) may be used in place of slaked lime.

バグフィルタ43は、ろ過式であり、排ガスに含まれる飛灰をろ布により捕集する。また、吸着剤供給部41により供給される水銀吸着剤、および、アルカリ薬剤供給部42により供給される消石灰も、ろ布に捕集される。飛灰、水銀吸着剤および消石灰は、ろ布上に堆積する。バグフィルタ43の内部では、排ガスがろ布を通過する際に、水銀吸着剤が排ガスに含まれる水銀を吸着する。また、排ガスに含まれる酸性ガス(塩化水素、硫黄酸化物等)と消石灰との反応が生じ、当該酸性ガスが除去される。水銀吸着剤における水銀の吸着、および、酸性ガスと消石灰との反応は、煙道3においても生じる。水銀吸着剤が、排ガスに含まれるダイオキシン等をさらに吸着してもよい。 The bug filter 43 is a filtration type, and collects fly ash contained in the exhaust gas with a filter cloth. Further, the mercury adsorbent supplied by the adsorbent supply unit 41 and the slaked lime supplied by the alkaline agent supply unit 42 are also collected by the filter cloth. Fly ash, mercury adsorbent and slaked lime deposit on the filter cloth. Inside the bag filter 43, when the exhaust gas passes through the filter cloth, the mercury adsorbent adsorbs the mercury contained in the exhaust gas. Further, an acid gas (hydrogen chloride, sulfur oxide, etc.) contained in the exhaust gas reacts with slaked lime, and the acid gas is removed. The adsorption of mercury by the mercury adsorbent and the reaction between the acid gas and slaked lime also occur in the flue 3. The mercury adsorbent may further adsorb dioxins and the like contained in the exhaust gas.

バグフィルタ43では、ろ布に堆積した飛灰等(水銀吸着剤、消石灰、消石灰と酸性ガスとの反応物を含む。)が、圧縮ガスを利用した逆洗動作により、払い落とされる。逆洗動作では、排ガスの流れ方向における下流側から上流側に向かって、ろ布に対して圧縮ガス(パルスジェット)が供給される。圧縮ガスは、例えば圧縮空気である。ろ布から払い落とされた飛灰等、すなわち、バグフィルタ43による捕集物は、図示省略の排出処理部に排出される。排出処理部では、捕集物に対してキレート処理等が必要に応じて施される。既述のように、捕集物は水銀吸着剤を含むため、バグフィルタ43は、水銀吸着剤を捕集する吸着剤捕集部と捉えることが可能である。 In the bag filter 43, fly ash and the like (including mercury adsorbent, slaked lime, and a reaction product of slaked lime and acid gas) deposited on the filter cloth are removed by a backwashing operation using a compressed gas. In the backwash operation, compressed gas (pulse jet) is supplied to the filter cloth from the downstream side to the upstream side in the flow direction of the exhaust gas. The compressed gas is, for example, compressed air. Fly ash and the like that have been wiped off from the filter cloth, that is, the collected material by the bag filter 43, is discharged to a discharge processing unit (not shown). In the discharge treatment section, the collected material is subjected to chelation treatment or the like as necessary. As described above, since the collected material contains a mercury adsorbent, the bag filter 43 can be regarded as an adsorbent collecting unit that collects the mercury adsorbent.

図2は、水銀濃度測定装置45の構成を示す図である。水銀濃度測定装置45は、第1取込口51と、第2取込口52と、還元部53と、濃度取得部54と、切替部55とを備える。切替部55は、第1流路551と、第2流路552と、3個の三方弁553〜555と、第1補助流路556と、第2補助流路557とを備える。第1取込口51および第2取込口52は、煙道3に取り付けられる。第1取込口51は、第1流路551により濃度取得部54に接続される。第2取込口52は、第2流路552により濃度取得部54に接続される。詳細には、濃度取得部54の近傍において、第1流路551および第2流路552は三方弁555を介して合流し、1つの流路となる。濃度取得部54は、紫外線吸収法等により、0価水銀(金属水銀)に基づいて水銀濃度の測定値を取得する。水銀濃度の測定値は、制御部40に出力される。 FIG. 2 is a diagram showing the configuration of the mercury concentration measuring device 45. The mercury concentration measuring device 45 includes a first intake port 51, a second intake port 52, a reduction unit 53, a concentration acquisition unit 54, and a switching unit 55. The switching unit 55 includes a first flow path 551, a second flow path 552, three three-way valves 553 to 555, a first auxiliary flow path 556, and a second auxiliary flow path 557. The first intake port 51 and the second intake port 52 are attached to the flue 3. The first intake port 51 is connected to the concentration acquisition unit 54 by the first flow path 551. The second intake port 52 is connected to the concentration acquisition unit 54 by the second flow path 552. Specifically, in the vicinity of the concentration acquisition unit 54, the first flow path 551 and the second flow path 552 merge via the three-way valve 555 to form one flow path. The concentration acquisition unit 54 acquires a measured value of mercury concentration based on zero-valent mercury (metallic mercury) by an ultraviolet absorption method or the like. The measured value of the mercury concentration is output to the control unit 40.

第1流路551では、第1取込口51から三方弁555に向かって順に、フィルタ591、還元部53および三方弁553が設けられる。フィルタ591は、第1取込口51から取り込まれた排ガス(サンプリングガス)に含まれる飛灰を除去する。還元部53は、2価水銀を0価水銀に還元する還元触媒を含む。還元部53は、加熱部531により所定の温度(例えば350〜400℃)に常時加熱される。還元部53には、塩化水素等を除去するスクラバが設けられてもよい。三方弁553には、第1補助流路556の一端が接続される。第1補助流路556の他端は、第1取込口51よりも下流側において煙道3に接続される。三方弁553では、第1流路551を流れるガスの経路が、三方弁555に向かう流路と、第1補助流路556とで切り替えられる。 In the first flow path 551, a filter 591, a reduction section 53, and a three-way valve 553 are provided in this order from the first intake port 51 toward the three-way valve 555. The filter 591 removes fly ash contained in the exhaust gas (sampling gas) taken in from the first intake port 51. The reduction unit 53 includes a reduction catalyst that reduces divalent mercury to zero-valent mercury. The reduction unit 53 is constantly heated to a predetermined temperature (for example, 350 to 400 ° C.) by the heating unit 531. The reducing unit 53 may be provided with a scrubber for removing hydrogen chloride and the like. One end of the first auxiliary flow path 556 is connected to the three-way valve 553. The other end of the first auxiliary flow path 556 is connected to the flue 3 on the downstream side of the first intake port 51. In the three-way valve 553, the path of the gas flowing through the first flow path 551 is switched between the flow path toward the three-way valve 555 and the first auxiliary flow path 556.

第2流路552では、第2取込口52から三方弁555に向かって順に、フィルタ592および三方弁554が設けられる。フィルタ592は、第2取込口52から取り込まれた排ガスに含まれる飛灰を除去する。三方弁554には、第2補助流路557の一端が接続される。第2補助流路557の他端は、第2取込口52よりも下流側において煙道3に接続される。三方弁554では、第2流路552を流れるガスの経路が、三方弁555に向かう流路と、第2補助流路557とで切り替えられる。 In the second flow path 552, the filter 592 and the three-way valve 554 are provided in this order from the second intake port 52 toward the three-way valve 555. The filter 592 removes fly ash contained in the exhaust gas taken in from the second intake port 52. One end of the second auxiliary flow path 557 is connected to the three-way valve 554. The other end of the second auxiliary flow path 557 is connected to the flue 3 on the downstream side of the second intake port 52. In the three-way valve 554, the path of the gas flowing through the second flow path 552 is switched between the flow path toward the three-way valve 555 and the second auxiliary flow path 557.

水銀濃度測定装置45では、煙道3を流れる排ガスに含まれる0価水銀の濃度(以下、「0価水銀濃度」という。)の測定と、当該排ガスに含まれる0価水銀および2価水銀の総濃度(以下、「全水銀濃度」という。)の測定とを選択的に行うことが可能である。図3は、0価水銀濃度の測定時における水銀濃度測定装置45を示す図であり、図4は、全水銀濃度の測定時における水銀濃度測定装置45を示す図である。図3および図4では、各三方弁553〜555を示す3個の三角のうち、2個の三角を塗りつぶすことにより、当該三方弁553〜555により接続される流路を示している。 The mercury concentration measuring device 45 measures the concentration of zero-valent mercury contained in the exhaust gas flowing through the flue 3 (hereinafter referred to as “zero-valent mercury concentration”), and measures the zero-valent mercury and divalent mercury contained in the exhaust gas. It is possible to selectively measure the total concentration (hereinafter referred to as "total mercury concentration"). FIG. 3 is a diagram showing a mercury concentration measuring device 45 at the time of measuring the zero-valent mercury concentration, and FIG. 4 is a diagram showing a mercury concentration measuring device 45 at the time of measuring the total mercury concentration. In FIGS. 3 and 4, two of the three triangles indicating the three-way valves 553 to 555 are filled to show the flow path connected by the three-way valves 553 to 555.

0価水銀濃度の測定では、図3に示すように、第1取込口51から取り込まれて第1流路551を流れる排ガスが、三方弁553により第1補助流路556に導かれ、煙道3へと戻される。また、第2取込口52から取り込まれて第2流路552を流れる排ガスが、三方弁554により三方弁555側へと導かれ、さらに三方弁555により濃度取得部54に導かれる。これにより、濃度取得部54では、排ガスに含まれる2価水銀を0価水銀に還元しない状態で、排ガスに元から含まれる0価水銀の量に基づいて水銀濃度の測定値(すなわち、0価水銀濃度)が取得される。このように、0価水銀濃度の測定では、0価水銀は検出するが、2価水銀は検出しない。したがって、2価水銀を0価水銀に還元するために要する時間を省略して、水銀濃度の測定値を迅速に取得することが可能となる。 In the measurement of the zero-valent mercury concentration, as shown in FIG. 3, the exhaust gas taken in from the first intake port 51 and flowing through the first flow path 551 is guided to the first auxiliary flow path 556 by the three-way valve 553 and smoke. Return to road 3. Further, the exhaust gas taken in from the second intake port 52 and flowing through the second flow path 552 is guided to the three-way valve 555 side by the three-way valve 554, and further guided to the concentration acquisition unit 54 by the three-way valve 555. As a result, the concentration acquisition unit 54 measures the mercury concentration (that is, zero valence) based on the amount of zero-valent mercury originally contained in the exhaust gas without reducing the divalent mercury contained in the exhaust gas to zero-valent mercury. Mercury concentration) is acquired. As described above, in the measurement of the zero-valent mercury concentration, the zero-valent mercury is detected, but the divalent mercury is not detected. Therefore, it is possible to quickly obtain the measured value of the mercury concentration by omitting the time required for reducing the divalent mercury to the zero-valent mercury.

全水銀濃度の測定では、図4に示すように、第2流路552を流れる排ガスが、三方弁554により第2補助流路557に導かれ、煙道3へと戻される。また、第1流路551を流れる排ガスが、三方弁553により三方弁555側へと導かれ、さらに三方弁555により濃度取得部54に導かれる。これにより、濃度取得部54では、排ガス中に元から含まれる0価水銀と、排ガス中の2価水銀が還元された0価水銀との総量に基づいて水銀濃度の測定値(すなわち、全水銀濃度)が取得される。このように、全水銀濃度の測定では、0価水銀および2価水銀の双方を検出するため、水銀濃度の測定値を正確に取得することが可能となる。 In the measurement of the total mercury concentration, as shown in FIG. 4, the exhaust gas flowing through the second flow path 552 is guided to the second auxiliary flow path 557 by the three-way valve 554 and returned to the flue 3. Further, the exhaust gas flowing through the first flow path 551 is guided to the three-way valve 555 side by the three-way valve 555, and further guided to the concentration acquisition unit 54 by the three-way valve 555. As a result, the concentration acquisition unit 54 measures the mercury concentration (that is, total mercury) based on the total amount of the zero-valent mercury originally contained in the exhaust gas and the reduced zero-valent mercury in the exhaust gas. Concentration) is obtained. As described above, in the measurement of the total mercury concentration, both zero-valent mercury and divalent mercury are detected, so that the measured value of the mercury concentration can be accurately obtained.

既述のように、第1取込口51で取り込まれた排ガスは、全水銀濃度の測定時のみならず、0価水銀濃度の測定時においても還元部53に流入する。すなわち、排ガスが煙道3を流れる間、常時、排ガスが還元部53に流入する。したがって、0価水銀濃度の測定から全水銀濃度の測定に切り替えた直後に、濃度取得部54では、全水銀濃度の測定値を安定して取得することが可能である。同様に、第2取込口52で取り込まれた排ガスは、0価水銀濃度の測定時のみならず、全水銀濃度の測定時においても第2流路552に流入する。したがって、排ガスにより第2流路552を常時暖めることができ、全水銀濃度の測定から0価水銀濃度の測定に切り替えた直後に、0価水銀濃度の測定値が不安定となることが防止または抑制される。 As described above, the exhaust gas taken in by the first intake port 51 flows into the reduction unit 53 not only when measuring the total mercury concentration but also when measuring the zero-valent mercury concentration. That is, while the exhaust gas flows through the flue 3, the exhaust gas always flows into the reduction unit 53. Therefore, immediately after switching from the measurement of the zero-valent mercury concentration to the measurement of the total mercury concentration, the concentration acquisition unit 54 can stably acquire the measured value of the total mercury concentration. Similarly, the exhaust gas taken in by the second intake port 52 flows into the second flow path 552 not only when measuring the zero-valent mercury concentration but also when measuring the total mercury concentration. Therefore, the second flow path 552 can be constantly warmed by the exhaust gas, and it is possible to prevent the measured value of the zero-valent mercury concentration from becoming unstable immediately after switching from the measurement of the total mercury concentration to the measurement of the zero-valent mercury concentration. It is suppressed.

図1の下流側水銀濃度測定部46は、バグフィルタ43よりも下流側において、排ガス中の0価水銀および2価水銀の総濃度、すなわち全水銀濃度を測定する。下流側水銀濃度測定部46は、例えば、図2の水銀濃度測定装置45において、第2流路552、第1補助流路556および第2補助流路557を省略した構成を有する。下流側水銀濃度測定部46による測定値は、制御部40に出力される。下流側水銀濃度測定部46の取込口は、例えば煙突22に設けられる。煙道3において、バグフィルタ43と煙突22との間の複数の位置に下流側水銀濃度測定部46の取込口が設けられ、各位置における全水銀濃度が測定されてもよい。以下の説明では、下流側水銀濃度測定部46により測定される全水銀濃度を「下流側水銀濃度」といい、単に「全水銀濃度」という場合は、上流側に配置される水銀濃度測定装置45により測定される全水銀濃度を意味するものとする。 The downstream mercury concentration measuring unit 46 in FIG. 1 measures the total concentration of 0-valent mercury and divalent mercury in the exhaust gas, that is, the total mercury concentration on the downstream side of the bag filter 43. The downstream mercury concentration measuring unit 46 has, for example, in the mercury concentration measuring device 45 of FIG. 2, a configuration in which the second flow path 552, the first auxiliary flow path 556, and the second auxiliary flow path 557 are omitted. The value measured by the downstream mercury concentration measuring unit 46 is output to the control unit 40. The intake port of the downstream mercury concentration measuring unit 46 is provided in, for example, the chimney 22. In the flue 3, intake ports of the downstream mercury concentration measuring unit 46 may be provided at a plurality of positions between the bag filter 43 and the chimney 22, and the total mercury concentration at each position may be measured. In the following description, the total mercury concentration measured by the downstream mercury concentration measuring unit 46 is referred to as "downstream mercury concentration", and when simply referred to as "total mercury concentration", the mercury concentration measuring device 45 arranged on the upstream side It shall mean the total mercury concentration measured by.

塩化水素濃度測定部47は、バグフィルタ43よりも下流側において、排ガス中の塩化水素濃度を測定する。塩化水素濃度の測定では、例えばレーザ光等が利用される。塩化水素濃度の測定値は、制御部40に出力される。ここで、排ガス中の塩化水素は活性炭による水銀吸着を促すことが知られている。したがって、水銀吸着剤として活性炭を用いる場合には、活性炭による水銀吸着を適切に行うため、排ガス中の塩化水素濃度が所定値よりも低下しない範囲にて、消石灰の供給量が塩化水素濃度に基づいて制御(増減)されることが好ましい。 The hydrogen chloride concentration measuring unit 47 measures the hydrogen chloride concentration in the exhaust gas on the downstream side of the bag filter 43. For the measurement of hydrogen chloride concentration, for example, laser light or the like is used. The measured value of the hydrogen chloride concentration is output to the control unit 40. Here, it is known that hydrogen chloride in the exhaust gas promotes mercury adsorption by activated carbon. Therefore, when activated carbon is used as the mercury adsorbent, the amount of slaked lime supplied is based on the hydrogen chloride concentration within the range where the hydrogen chloride concentration in the exhaust gas does not drop below a predetermined value in order to properly adsorb mercury with the activated carbon. It is preferable that the control (increase / decrease) is performed.

図5は、排ガス処理装置4における排ガス処理の流れを示す図である。以下の説明における排ガス処理は、吸着剤供給部41による水銀吸着剤の供給量を制御して、排ガスに含まれる水銀濃度を低下する処理である。実際の排ガス処理装置4では、アルカリ薬剤供給部42による消石灰の供給量の制御も、水銀吸着剤の供給量の制御に並行して行われる。排ガス処理では、原則として、水銀濃度測定装置45による水銀濃度(0価水銀濃度または全水銀濃度)の測定、下流側水銀濃度測定部46による下流側水銀濃度の測定、および、塩化水素濃度測定部47による塩化水素濃度の測定が継続的に行われる。 FIG. 5 is a diagram showing a flow of exhaust gas treatment in the exhaust gas treatment device 4. The exhaust gas treatment in the following description is a treatment for reducing the mercury concentration contained in the exhaust gas by controlling the supply amount of the mercury adsorbent by the adsorbent supply unit 41. In the actual exhaust gas treatment device 4, the control of the supply amount of slaked lime by the alkaline chemical supply unit 42 is also performed in parallel with the control of the supply amount of the mercury adsorbent. In exhaust gas treatment, as a general rule, the mercury concentration (zero-valent mercury concentration or total mercury concentration) is measured by the mercury concentration measuring device 45, the downstream mercury concentration is measured by the downstream mercury concentration measuring unit 46, and the hydrogen chloride concentration measuring unit. The measurement of the hydrogen chloride concentration according to 47 is continuously performed.

排ガス処理装置4における通常の状態では、水銀濃度測定装置45において0価水銀濃度が測定されており、制御部40では、0価水銀濃度(の測定値)に基づいて吸着剤供給部41による水銀吸着剤の供給量が制御される。例えば、0価水銀濃度が比較的高い場合に、水銀吸着剤の供給量が増大され、0価水銀濃度が比較的低い場合に、水銀吸着剤の供給量が減少される。なお、水銀吸着剤が活性炭である場合、活性炭はダイオキシンも吸着するため、排ガスが煙道3を流れる間、所定量以上の水銀吸着剤が煙道3に常時供給されることが好ましい。 In the normal state of the exhaust gas treatment device 4, the zero-valent mercury concentration is measured by the mercury concentration measuring device 45, and the control unit 40 measures mercury by the adsorbent supply unit 41 based on (measured value) of the zero-valent mercury concentration. The amount of adsorbent supplied is controlled. For example, when the zero-valent mercury concentration is relatively high, the supply amount of the mercury adsorbent is increased, and when the zero-valent mercury concentration is relatively low, the supply amount of the mercury adsorbent is decreased. When the mercury adsorbent is activated carbon, the activated carbon also adsorbs dioxin. Therefore, it is preferable that a predetermined amount or more of the mercury adsorbent is constantly supplied to the flue 3 while the exhaust gas flows through the flue 3.

ここで、水銀吸着剤による水銀の吸着は、主としてバグフィルタ43において生じる。また、0価水銀濃度に基づく制御では、バグフィルタ43よりも下流側で得られる下流側水銀濃度は用いられず、バグフィルタ43よりも上流側で得られる0価水銀濃度が用いられる。したがって、0価水銀濃度に基づく制御は、フィードフォワード制御(FF制御)であるといえる。後述する全水銀濃度に基づく制御において同様である。 Here, the adsorption of mercury by the mercury adsorbent mainly occurs in the bag filter 43. Further, in the control based on the zero-valent mercury concentration, the downstream mercury concentration obtained on the downstream side of the bag filter 43 is not used, but the zero-valent mercury concentration obtained on the upstream side of the bag filter 43 is used. Therefore, it can be said that the control based on the zero-valent mercury concentration is feedforward control (FF control). The same applies to the control based on the total mercury concentration described later.

既述のように、0価水銀濃度の測定では、2価水銀の還元に起因するタイムラグが生じない。これにより、0価水銀濃度に基づく制御では、第2取込口52の近傍を流れる排ガスにおける、0価水銀濃度の変化に迅速に対応して、すなわち、応答性よく水銀吸着剤の供給量を制御することが可能となる。制御部40において、制御に用いられる0価水銀濃度は、一定時間における移動平均であってもよい(全水銀濃度および下流側水銀濃度において同様)。 As described above, in the measurement of the zero-valent mercury concentration, there is no time lag due to the reduction of divalent mercury. As a result, in the control based on the zero-valent mercury concentration, the supply amount of the mercury adsorbent can be quickly responded to the change in the zero-valent mercury concentration in the exhaust gas flowing in the vicinity of the second intake port 52, that is, with good responsiveness. It becomes possible to control. In the control unit 40, the zero-valent mercury concentration used for control may be a moving average over a certain period of time (the same applies to the total mercury concentration and the downstream mercury concentration).

水銀を多く含む廃棄物の焼却等により、0価水銀濃度が所定の第1閾値以上となると、制御部40では、0価水銀濃度の測定から全水銀濃度の測定への切替条件が満たされたと判定され(ステップS11)、水銀濃度測定装置45において全水銀濃度の測定に切り替えられる。これにより、制御部40において、水銀吸着剤の供給量の制御が、0価水銀濃度に基づく制御から、全水銀濃度に基づく制御に切り替えられる(ステップS12)。このとき、0価水銀濃度の上昇に伴って、水銀吸着剤の供給量がある程度増大されている。したがって、0価水銀濃度に基づく制御から全水銀濃度に基づく制御への切替は、0価水銀濃度に基づく制御において、水銀吸着剤の供給量を増大した後に行われる。 When the zero-valent mercury concentration exceeds a predetermined first threshold due to incineration of waste containing a large amount of mercury, the control unit 40 satisfies the condition for switching from the measurement of the zero-valent mercury concentration to the measurement of the total mercury concentration. The determination is made (step S11), and the mercury concentration measuring device 45 switches to the measurement of the total mercury concentration. As a result, in the control unit 40, the control of the supply amount of the mercury adsorbent is switched from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration (step S12). At this time, the supply amount of the mercury adsorbent is increased to some extent as the zero-valent mercury concentration increases. Therefore, the switch from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration is performed after increasing the supply amount of the mercury adsorbent in the control based on the zero-valent mercury concentration.

0価水銀濃度の測定から全水銀濃度の測定への切替は、他の切替条件に基づいて行われてもよい。例えば、0価水銀濃度が第1閾値以上となった後、現在の0価水銀濃度と直前の0価水銀濃度(それぞれ移動平均であってもよい。以下同様。)とが比較される。そして、現在の0価水銀濃度が直前の0価水銀濃度よりも低い、すなわち、0価水銀濃度が下降している場合に、切替条件が満たされたと判定される。さらに、0価水銀濃度が第1閾値以上となり、水銀吸着剤の供給量がある程度増大された後、0価水銀濃度が下降し、所定の閾値以下となった場合に、切替条件が満たされたと判定されてもよい。 The switching from the measurement of the zero-valent mercury concentration to the measurement of the total mercury concentration may be performed based on other switching conditions. For example, after the zero-valent mercury concentration becomes equal to or higher than the first threshold value, the current zero-valent mercury concentration and the immediately preceding zero-valent mercury concentration (each may be a moving average; the same applies hereinafter) are compared. Then, when the current zero-valent mercury concentration is lower than the immediately preceding zero-valent mercury concentration, that is, when the zero-valent mercury concentration is decreasing, it is determined that the switching condition is satisfied. Further, when the zero-valent mercury concentration becomes equal to or higher than the first threshold value, the supply amount of the mercury adsorbent is increased to some extent, and then the zero-valent mercury concentration decreases to be equal to or lower than the predetermined threshold value, the switching condition is satisfied. It may be determined.

全水銀濃度に基づく制御では、全水銀濃度が比較的高い場合に、水銀吸着剤の供給量が増大され、全水銀濃度が比較的低い場合に、水銀吸着剤の供給量が減少される。既述のように、全水銀濃度の測定では、正確な水銀濃度が得られるため、全水銀濃度に基づく制御では、水銀吸着剤の供給量を適切に(過不足を少なく)制御することが可能となる。全水銀濃度の測定時には、排ガス中の水銀濃度が高くなっており、比較的多くの水銀吸着剤が必要となる。全水銀濃度に基づいて水銀吸着剤の供給量を適正な量に設定することにより、水銀吸着剤を効率よく利用することができる。 In the control based on the total mercury concentration, the supply amount of the mercury adsorbent is increased when the total mercury concentration is relatively high, and the supply amount of the mercury adsorbent is decreased when the total mercury concentration is relatively low. As described above, since accurate mercury concentration can be obtained by measuring the total mercury concentration, it is possible to appropriately control the supply amount of the mercury adsorbent (with less excess or deficiency) by controlling based on the total mercury concentration. It becomes. When measuring the total mercury concentration, the mercury concentration in the exhaust gas is high, and a relatively large amount of mercury adsorbent is required. By setting the supply amount of the mercury adsorbent to an appropriate amount based on the total mercury concentration, the mercury adsorbent can be used efficiently.

制御部40では、現在の全水銀濃度と直前の全水銀濃度とが比較される。既述のように、現在の全水銀濃度および直前の全水銀濃度のそれぞれは、移動平均として求められてもよい。現在の全水銀濃度が直前の全水銀濃度以上である場合には(ステップS13)、全水銀濃度に基づく制御が継続される。現在の全水銀濃度が直前の全水銀濃度よりも低い場合には、全水銀濃度が下降していると判定される(ステップS13)。現在の全水銀濃度が直前の全水銀濃度よりも一定時間継続して低い場合に、全水銀濃度が下降していると判定されてもよい。 The control unit 40 compares the current total mercury concentration with the immediately preceding total mercury concentration. As described above, each of the current total mercury concentration and the immediately preceding total mercury concentration may be calculated as a moving average. When the current total mercury concentration is equal to or higher than the immediately preceding total mercury concentration (step S13), the control based on the total mercury concentration is continued. When the current total mercury concentration is lower than the immediately preceding total mercury concentration, it is determined that the total mercury concentration is decreasing (step S13). When the current total mercury concentration is continuously lower than the immediately preceding total mercury concentration for a certain period of time, it may be determined that the total mercury concentration is decreasing.

全水銀濃度が下降している場合、下流側水銀濃度が所定の第2閾値と比較される。ここで、0価水銀濃度に基づく制御、および、全水銀濃度に基づく制御では、水銀吸着剤の供給により、通常、下流側水銀濃度は低い状態が保たれる。下流側水銀濃度が第2閾値よりも低い、すなわち、下流側水銀濃度が低い状態が保たれている場合には(ステップS14)、水銀濃度測定装置45において、全水銀濃度の測定から0価水銀濃度の測定に切り替えられる。これにより、水銀吸着剤の供給量の制御が、全水銀濃度に基づく制御から、0価水銀濃度に基づく制御に切り替えられ、通常の状態の制御に戻される(ステップS17)。この場合、後述のフィードバック制御への切替が行われず、フィードフォワード制御が維持される。 When the total mercury concentration is decreasing, the downstream mercury concentration is compared with a predetermined second threshold. Here, in the control based on the zero-valent mercury concentration and the control based on the total mercury concentration, the downstream mercury concentration is usually kept low by the supply of the mercury adsorbent. When the downstream mercury concentration is lower than the second threshold value, that is, when the downstream mercury concentration is kept low (step S14), the mercury concentration measuring device 45 measures the total mercury concentration and determines that the zero-valent mercury. Switch to concentration measurement. As a result, the control of the supply amount of the mercury adsorbent is switched from the control based on the total mercury concentration to the control based on the zero-valent mercury concentration, and is returned to the control in the normal state (step S17). In this case, the feedforward control is maintained without switching to the feedback control described later.

一方、バグフィルタ43のろ布上等、煙道3に存在する水銀吸着剤が多くの水銀を含み、当該水銀吸着剤から水銀が脱離している(水銀吸着剤が破過している)場合等には、下流側水銀濃度と第2閾値との比較において、下流側水銀濃度が第2閾値以上となる(ステップS14)。この場合、制御部40において、水銀吸着剤の供給量の制御が、全水銀濃度に基づく制御から、下流側水銀濃度に基づく制御に切り替えられる(ステップS15)。下流側水銀濃度に基づく制御では、下流側水銀濃度が比較的高い場合に、水銀吸着剤の供給量が増大され、下流側水銀濃度が比較的低い場合に、水銀吸着剤の供給量が減少される。 On the other hand, when the mercury adsorbent existing in the flue 3 contains a large amount of mercury, such as on the filter cloth of the bag filter 43, and the mercury is desorbed from the mercury adsorbent (the mercury adsorbent is broken). For example, in the comparison between the downstream mercury concentration and the second threshold, the downstream mercury concentration becomes equal to or higher than the second threshold (step S14). In this case, the control unit 40 switches the control of the supply amount of the mercury adsorbent from the control based on the total mercury concentration to the control based on the downstream mercury concentration (step S15). In the control based on the downstream mercury concentration, the supply amount of the mercury adsorbent is increased when the downstream mercury concentration is relatively high, and the supply amount of the mercury adsorbent is decreased when the downstream mercury concentration is relatively low. To.

下流側水銀濃度に基づく制御では、バグフィルタ43よりも上流側で得られる0価水銀濃度または全水銀濃度は用いられず、バグフィルタ43よりも下流側で得られる下流側水銀濃度が用いられる。したがって、下流側水銀濃度に基づく制御は、フィードバック制御(FB制御)であるといえる。下流側水銀濃度に基づく制御により、大気に排出される排ガスの水銀濃度を、より確実に低くすることが可能となる。なお、下流側水銀濃度に基づく制御への切替に伴って、水銀濃度測定装置45では、全水銀濃度の測定から0価水銀濃度の測定に切り替えられてもよい。 In the control based on the downstream mercury concentration, the zero-valent mercury concentration or the total mercury concentration obtained on the upstream side of the bag filter 43 is not used, but the downstream mercury concentration obtained on the downstream side of the bag filter 43 is used. Therefore, it can be said that the control based on the downstream mercury concentration is feedback control (FB control). Control based on the mercury concentration on the downstream side makes it possible to more reliably reduce the mercury concentration of the exhaust gas discharged to the atmosphere. In addition, with the switch to the control based on the downstream mercury concentration, the mercury concentration measuring device 45 may switch from the measurement of the total mercury concentration to the measurement of the zero-valent mercury concentration.

バグフィルタ43の上流側の水銀濃度(0価水銀濃度または全水銀濃度)を用いたフィードフォワード制御から、下流側の水銀濃度(下流側水銀濃度)を用いたフィードバック制御への切替は、操作者により手動で行われてもよい。例えば、全水銀濃度に基づく制御の際に、全水銀濃度が下降し、かつ、下流側水銀濃度が第2閾値以上である場合に(ステップS13,S14)、制御部40により、フィードバック制御への切替を促す報知が操作者に対して行われる。切替を促す報知は、例えばディスプレイへの表示、音声の出力等により行われる。排ガス処理装置4では、フィードフォワード制御からフィードバック制御への切替を指示する切替スイッチが設けられており、操作者が、切替を促す報知に応じて切替スイッチを操作することにより、フィードフォワード制御からフィードバック制御への切替が行われる(ステップS15)。 Switching from feed-forward control using the mercury concentration on the upstream side (zero-valent mercury concentration or total mercury concentration) of the bag filter 43 to feedback control using the mercury concentration on the downstream side (downstream mercury concentration) is performed by the operator. May be done manually by. For example, in the case of control based on the total mercury concentration, when the total mercury concentration decreases and the downstream mercury concentration is equal to or higher than the second threshold value (steps S13 and S14), the control unit 40 performs feedback control. A notification prompting the switch is given to the operator. The notification prompting the switching is performed, for example, by displaying on a display, outputting a voice, or the like. The exhaust gas treatment device 4 is provided with a changeover switch for instructing switching from feedforward control to feedback control, and the operator operates the changeover switch in response to a notification prompting the changeover to provide feedback from the feedforward control. Switching to control is performed (step S15).

下流側水銀濃度に基づく制御において、水銀濃度測定装置45により得られる水銀濃度(0価水銀濃度または全水銀濃度)が用いられてもよい。すなわち、ステップS15では、フィードフォワード制御から、フィードフォワード制御およびフィードバック制御を併用した制御に切り替えられてもよい。両者を併用した制御への切替も、手動により行われてよい。 In the control based on the downstream mercury concentration, the mercury concentration (zero-valent mercury concentration or total mercury concentration) obtained by the mercury concentration measuring device 45 may be used. That is, in step S15, the feedforward control may be switched to the control in which the feedforward control and the feedback control are used together. Switching to control using both may be performed manually.

制御部40では、下流側水銀濃度が所定の第3閾値と比較される。第3閾値は、第2閾値と同じであってもよい。下流側水銀濃度が第3閾値以上である場合には(ステップS16)、下流側水銀濃度に基づく水銀吸着剤の供給量の制御が継続される。下流側水銀濃度が第3閾値よりも低くなった場合には(ステップS16)、水銀吸着剤からの水銀の脱離が抑制されていると考えられる。この場合、水銀吸着剤の供給量の制御が、下流側水銀濃度に基づく制御から、0価水銀濃度に基づく制御に切り替えられる(ステップS17)。すなわち、排ガス処理装置4における通常の状態の制御に戻される。なお、現在の下流側水銀濃度と直前の下流側水銀濃度とを比較して、下流側水銀濃度が下降している場合に、水銀吸着剤の供給量の制御が、0価水銀濃度に基づく制御に戻されてもよい。排ガス処理装置4では、排ガスが煙道3を流れている間、図5の処理が継続して行われる。 In the control unit 40, the downstream mercury concentration is compared with a predetermined third threshold value. The third threshold value may be the same as the second threshold value. When the downstream mercury concentration is equal to or higher than the third threshold value (step S16), the control of the supply amount of the mercury adsorbent based on the downstream mercury concentration is continued. When the downstream mercury concentration becomes lower than the third threshold value (step S16), it is considered that the desorption of mercury from the mercury adsorbent is suppressed. In this case, the control of the supply amount of the mercury adsorbent is switched from the control based on the downstream mercury concentration to the control based on the zero-valent mercury concentration (step S17). That is, the control returns to the normal state of the exhaust gas treatment device 4. Comparing the current downstream mercury concentration with the immediately preceding downstream mercury concentration, when the downstream mercury concentration is decreasing, the control of the supply amount of the mercury adsorbent is based on the zero-valent mercury concentration. May be returned to. In the exhaust gas treatment device 4, the treatment of FIG. 5 is continuously performed while the exhaust gas is flowing through the flue 3.

以上に説明したように、水銀濃度測定装置45では、第1取込口51および第2取込口52が煙道3に取り付けられる。また、第1取込口51で取り込まれた排ガスに含まれる2価水銀が還元部53により0価水銀に還元される。そして、還元部53を通過した排ガス、または、第2取込口52で取り込まれた排ガスの一方が、切替部55により選択的に濃度取得部54に流入される。これにより、迅速な水銀濃度の測定(0価水銀濃度の測定)と、正確な水銀濃度の測定(全水銀濃度の測定)とを選択的に行うことができる。また、第1取込口51で取り込まれた排ガスが還元部53に常時流入し、切替部55により、還元部53を通過した排ガスの濃度取得部54への流入と、排出位置である煙道3への排出とが切り替えられる。これにより、0価水銀濃度の測定から全水銀濃度の測定への切り替え後、直ぐに全水銀濃度の測定値を取得することができる。 As described above, in the mercury concentration measuring device 45, the first intake port 51 and the second intake port 52 are attached to the flue 3. Further, the divalent mercury contained in the exhaust gas taken in by the first intake port 51 is reduced to 0-valent mercury by the reducing unit 53. Then, one of the exhaust gas that has passed through the reduction unit 53 or the exhaust gas that has been taken in by the second intake port 52 is selectively flowed into the concentration acquisition unit 54 by the switching unit 55. Thereby, rapid measurement of mercury concentration (measurement of zero-valent mercury concentration) and accurate measurement of mercury concentration (measurement of total mercury concentration) can be selectively performed. Further, the exhaust gas taken in by the first intake port 51 constantly flows into the reduction section 53, and the switching section 55 causes the exhaust gas that has passed through the reduction section 53 to flow into the concentration acquisition section 54 and the flue, which is the discharge position. The discharge to 3 can be switched. As a result, the measured value of the total mercury concentration can be obtained immediately after switching from the measurement of the zero-valent mercury concentration to the measurement of the total mercury concentration.

排ガス処理装置4の制御部40では、0価水銀濃度に基づいて吸着剤供給部41による水銀吸着剤の供給量が制御されるとともに、所定の場合において、水銀吸着剤の供給量の制御が、0価水銀濃度に基づく制御から、全水銀濃度に基づく制御に切り替えられる。その結果、迅速に得られる0価水銀濃度に基づいて水銀吸着剤の供給量を応答性よく制御するとともに、所定の場合において、全水銀濃度に基づいて水銀吸着剤の供給量を適切に(過不足を少なく)制御することができる。また、下流側水銀濃度が所定の閾値以上である場合に、制御部40において、水銀吸着剤の供給量の制御が、全水銀濃度に基づく制御から、下流側水銀濃度に基づく制御に切り替えられる。これにより、大気に排出される排ガスの水銀濃度を、より確実に低くすることができる。 In the control unit 40 of the exhaust gas treatment device 4, the supply amount of the mercury adsorbent by the adsorbent supply unit 41 is controlled based on the zero-valent mercury concentration, and in a predetermined case, the supply amount of the mercury adsorbent is controlled. The control is switched from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration. As a result, the supply amount of the mercury adsorbent is responsively controlled based on the rapidly obtained zero-valent mercury concentration, and the supply amount of the mercury adsorbent is appropriately controlled based on the total mercury concentration in a predetermined case. Can be controlled (less shortage). Further, when the downstream mercury concentration is equal to or higher than a predetermined threshold value, the control unit 40 switches the control of the supply amount of the mercury adsorbent from the control based on the total mercury concentration to the control based on the downstream mercury concentration. As a result, the mercury concentration of the exhaust gas discharged to the atmosphere can be more reliably lowered.

図6は、排ガス処理装置の他の例を示す図である。図6の排ガス処理装置4aでは、図1の排ガス処理装置4に対して、捕集物分配部441、回収灰貯留部442、回収灰供給部443および排出処理部444が追加される。他の構成は、図1と同様であり、同じ構成に同じ符号を付す。なお、図6では、制御部40の図示を省略している。 FIG. 6 is a diagram showing another example of the exhaust gas treatment device. In the exhaust gas treatment device 4a of FIG. 6, a collected material distribution section 441, a recovery ash storage section 442, a recovery ash supply section 443, and an emission treatment section 444 are added to the exhaust gas treatment device 4 of FIG. Other configurations are the same as in FIG. 1, and the same configurations are designated by the same reference numerals. Note that in FIG. 6, the control unit 40 is not shown.

既述のように、バグフィルタ43では、ろ布に堆積した捕集物が逆洗動作により、払い落とされる。捕集物分配部441は、バグフィルタ43から払い落とされた捕集物を、回収灰貯留部442と排出処理部444とに分配する。排出処理部444では、捕集物に対してキレート処理等が必要に応じて施され、その後、捕集物が廃棄される。回収灰貯留部442は、捕集物分配部441により供給された捕集物を回収灰として貯留する。回収灰供給部443は、煙道3においてバグフィルタ43よりも上流側の位置に回収灰を供給する。回収灰には、水銀吸着剤が含まれているため、回収灰は、回収吸着剤と捉えることができる。また、回収灰貯留部442および回収灰供給部443は、それぞれ回収吸着剤貯留部および回収吸着剤供給部である。 As described above, in the bag filter 43, the collected material deposited on the filter cloth is wiped off by the backwashing operation. The collected material distribution unit 441 distributes the collected material discharged from the bug filter 43 to the collected ash storage unit 442 and the discharge processing unit 444. In the discharge processing unit 444, the collected material is subjected to a chelate treatment or the like as necessary, and then the collected material is discarded. The recovered ash storage unit 442 stores the collected material supplied by the collected material distribution unit 441 as recovered ash. The recovered ash supply unit 443 supplies the recovered ash to a position upstream of the bag filter 43 in the flue 3. Since the recovered ash contains a mercury adsorbent, the recovered ash can be regarded as a recovered adsorbent. The recovered ash storage section 442 and the recovered ash supply section 443 are a recovery adsorbent storage section and a recovery adsorbent supply section, respectively.

図6の排ガス処理装置4aでは、0価水銀濃度が所定の閾値よりも低い場合に、バグフィルタ43により捕集された捕集物が回収灰として貯留される。例えば、当該閾値が既述の第1閾値と同じである場合には、0価水銀濃度が第1閾値よりも低く、制御部40により0価水銀濃度に基づく制御が行われている際に、捕集物分配部441により、バグフィルタ43からの捕集物が、回収灰貯留部442に供給される。したがって、水銀の吸着量が比較的少ない水銀吸着剤が、回収灰貯留部442において回収灰として貯留される。一方、0価水銀濃度が第1閾値以上である場合には、捕集物分配部441により、バグフィルタ43からの捕集物が、排出処理部444に供給される。したがって、水銀の吸着量が比較的多い水銀吸着剤が、回収灰に含められることはない。 In the exhaust gas treatment device 4a of FIG. 6, when the zero-valent mercury concentration is lower than a predetermined threshold value, the collected material collected by the bag filter 43 is stored as recovered ash. For example, when the threshold value is the same as the first threshold value described above, the zero-valent mercury concentration is lower than the first threshold value, and when the control unit 40 performs control based on the zero-valent mercury concentration, The collected material distribution unit 441 supplies the collected material from the bag filter 43 to the collected ash storage unit 442. Therefore, the mercury adsorbent having a relatively small amount of mercury adsorbed is stored as recovered ash in the recovered ash storage unit 442. On the other hand, when the zero-valent mercury concentration is equal to or higher than the first threshold value, the collected material distribution unit 441 supplies the collected material from the bag filter 43 to the discharge processing unit 444. Therefore, a mercury adsorbent having a relatively large amount of mercury adsorbed is not included in the recovered ash.

捕集物分配部441における捕集物の分配では、下流側水銀濃度が参照されてもよい。既述のように、下流側水銀濃度が高い状態では、バグフィルタ43のろ布上等に存在する水銀吸着剤が多くの水銀を含み、当該水銀吸着剤から水銀が脱離していると考えられる。したがって、0価水銀濃度が所定の閾値よりも低い場合であっても、下流側水銀濃度が例えば第2閾値以上である場合には、バグフィルタ43からの捕集物が、排出処理部444に供給されることが好ましい。 In the distribution of the collected material in the collected material distribution unit 441, the downstream mercury concentration may be referred to. As described above, when the mercury concentration on the downstream side is high, it is considered that the mercury adsorbent existing on the filter cloth of the bag filter 43 contains a large amount of mercury, and the mercury is desorbed from the mercury adsorbent. .. Therefore, even when the zero-valent mercury concentration is lower than a predetermined threshold value, when the downstream mercury concentration is, for example, the second threshold value or more, the collected material from the bag filter 43 is sent to the discharge processing unit 444. It is preferable to be supplied.

排ガス処理装置4aにおける通常の状態の制御では、吸着剤供給部41による水銀吸着剤の供給量と同様に、回収灰供給部443による回収灰の供給量が、0価水銀濃度に基づいて制御されてもよい。したがって、0価水銀濃度が比較的高い場合に、回収灰の供給量が増大され、0価水銀濃度が比較的低い場合に、回収灰の供給量が減少されてもよい。また、所定の場合には、吸着剤供給部41から新たな水銀吸着剤を優先的に供給するために、回収灰の供給量が減少されてもよい。全水銀濃度に基づく制御、および、下流側水銀濃度に基づく制御では、回収灰の供給量が、水銀吸着剤の供給量と同様にして増減されてもよく、また、吸着剤供給部41から新たな水銀吸着剤を優先的に供給するために、回収灰の供給量が減少されてもよい。 In the control of the normal state in the exhaust gas treatment device 4a, the supply amount of the recovered ash by the recovered ash supply unit 443 is controlled based on the zero-valent mercury concentration in the same manner as the supply amount of the mercury adsorbent by the adsorbent supply unit 41. You may. Therefore, when the zero-valent mercury concentration is relatively high, the supply amount of recovered ash may be increased, and when the zero-valent mercury concentration is relatively low, the supply amount of recovered ash may be decreased. Further, in a predetermined case, the supply amount of the recovered ash may be reduced in order to preferentially supply the new mercury adsorbent from the adsorbent supply unit 41. In the control based on the total mercury concentration and the control based on the downstream mercury concentration, the supply amount of the recovered ash may be increased or decreased in the same manner as the supply amount of the mercury adsorbent, and is newly added from the adsorbent supply unit 41. The supply of recovered ash may be reduced in order to preferentially supply the mercury adsorbent.

以上のように、図6の排ガス処理装置4aでは、0価水銀濃度が所定の閾値よりも低い場合に、バグフィルタ43により捕集された、水銀吸着剤を含む捕集物が回収灰として貯留される。そして、回収灰供給部443による回収灰の煙道3への供給量が、0価水銀濃度に基づいて制御されてもよい。これにより、吸着剤供給部41における水銀吸着剤の消費量を削減しつつ、排ガス中の水銀を除去することができる。 As described above, in the exhaust gas treatment device 4a of FIG. 6, when the zero-valent mercury concentration is lower than a predetermined threshold value, the collected material containing the mercury adsorbent collected by the bag filter 43 is stored as recovered ash. Will be done. Then, the amount of the recovered ash supplied to the flue 3 by the recovered ash supply unit 443 may be controlled based on the zero-valent mercury concentration. As a result, mercury in the exhaust gas can be removed while reducing the consumption of the mercury adsorbent in the adsorbent supply unit 41.

排ガス処理装置4aでは、図6の焼却炉21と吸着剤供給部41との間に、他のバグフィルタが配置されてもよい。この場合、当該他のバグフィルタにより、排ガスに含まれる飛灰が捕集され、バグフィルタ43では、吸着剤供給部41により煙道3に供給された水銀吸着剤が主として捕集される。また、図6の排ガス処理装置4aにおいて、バグフィルタ43、吸着剤供給部41、捕集物分配部441、回収灰貯留部442および回収灰供給部443と同様の組合せが、煙道3におけるバグフィルタ43と煙突22との間に追加されてもよい。 In the exhaust gas treatment device 4a, another bug filter may be arranged between the incinerator 21 of FIG. 6 and the adsorbent supply unit 41. In this case, the fly ash contained in the exhaust gas is collected by the other bug filter, and the mercury adsorbent supplied to the flue 3 by the adsorbent supply unit 41 is mainly collected by the bag filter 43. Further, in the exhaust gas treatment device 4a of FIG. 6, the same combination as the bug filter 43, the adsorbent supply unit 41, the collected material distribution unit 441, the recovered ash storage unit 442, and the recovered ash supply unit 443 is a bug in the flue 3. It may be added between the filter 43 and the chimney 22.

図7は、水銀濃度測定装置の他の例を示す図である。図7の水銀濃度測定装置45aでは、図2の水銀濃度測定装置45における第2取込口52が省略されるとともに、切替部56の構成が相違する。他の構成は、図2の水銀濃度測定装置45と同様であり、同じ構成に同じ符号を付す。 FIG. 7 is a diagram showing another example of the mercury concentration measuring device. In the mercury concentration measuring device 45a of FIG. 7, the second intake port 52 in the mercury concentration measuring device 45 of FIG. 2 is omitted, and the configuration of the switching unit 56 is different. Other configurations are the same as those of the mercury concentration measuring device 45 of FIG. 2, and the same configurations are designated by the same reference numerals.

切替部56は、第1流路561と、第2流路562と、2個の三方弁563,564ととを備える。第1流路561は、第1取込口51と濃度取得部54とを接続する。第1流路561では、第1取込口51から濃度取得部54に向かって順に、フィルタ591、三方弁563、還元部53および三方弁564が設けられる。フィルタ591および還元部53の構成は、上記と同様である。 The switching unit 56 includes a first flow path 561, a second flow path 562, and two three-way valves 563 and 564. The first flow path 561 connects the first intake port 51 and the concentration acquisition unit 54. In the first flow path 561, a filter 591, a three-way valve 563, a reduction section 53, and a three-way valve 564 are provided in this order from the first intake port 51 toward the concentration acquisition section 54. The configuration of the filter 591 and the reducing unit 53 is the same as described above.

第2流路562は、還元部53を経由することなく、三方弁563と三方弁564とを接続する。ここで、第1取込口51と三方弁563との間の流路、および、三方弁564と濃度取得部54との間の流路は、第1流路561および第2流路562により共有されていると捉えられる。したがって、第1流路561は、第1取込口51から還元部53を経由して濃度取得部54に接続し、第2流路562は、還元部53を迂回(バイパス)して第1取込口51と濃度取得部54とを接続する。また、三方弁563,564が、濃度取得部54に流入するガスの経路を、第1流路561と第2流路562とで切り替える流路切替部として動作する。 The second flow path 562 connects the three-way valve 563 and the three-way valve 564 without passing through the reduction section 53. Here, the flow path between the first intake port 51 and the three-way valve 563 and the flow path between the three-way valve 564 and the concentration acquisition unit 54 are formed by the first flow path 561 and the second flow path 562. It is considered to be shared. Therefore, the first flow path 561 is connected to the concentration acquisition unit 54 from the first intake port 51 via the reduction unit 53, and the second flow path 562 bypasses the reduction unit 53 and is the first. The intake port 51 and the concentration acquisition unit 54 are connected. Further, the three-way valves 563 and 564 operate as a flow path switching unit that switches the path of the gas flowing into the concentration acquisition unit 54 between the first flow path 561 and the second flow path 562.

全水銀濃度の測定では、第1取込口51で取り込まれた排ガスが三方弁563により還元部53に導かれ、さらに三方弁564により濃度取得部54に導かれる。これにより、濃度取得部54では、全水銀濃度が取得される。0価水銀濃度の測定では、第1取込口51で取り込まれた排ガスが三方弁563により第2流路562に導かれ、さらに三方弁564により濃度取得部54に導かれる。これにより、第1取込口51で取り込まれた排ガスが、還元部53を通過することなく濃度取得部54に導かれ、濃度取得部54により0価水銀濃度が取得される。 In the measurement of the total mercury concentration, the exhaust gas taken in by the first intake port 51 is guided to the reduction section 53 by the three-way valve 563, and further guided to the concentration acquisition section 54 by the three-way valve 564. As a result, the concentration acquisition unit 54 acquires the total mercury concentration. In the measurement of the zero-valent mercury concentration, the exhaust gas taken in by the first intake port 51 is guided to the second flow path 562 by the three-way valve 563, and further guided to the concentration acquisition unit 54 by the three-way valve 564. As a result, the exhaust gas taken in by the first intake port 51 is guided to the concentration acquisition unit 54 without passing through the reduction unit 53, and the zero-valent mercury concentration is acquired by the concentration acquisition unit 54.

既述のように、図2の水銀濃度測定装置45では、0価水銀濃度の測定の際に、第2取込口52で取り込まれた排ガスが、還元部53を通過することなく濃度取得部54に導かれる。したがって、図7の水銀濃度測定装置45aでは、第1取込口51が、上記第2取込口52を兼ねているといえる。1つの取込口51のみを用いる水銀濃度測定装置45aでは、煙道3において複数の取込口の設置が困難である場合でも、0価水銀濃度の測定と全水銀濃度の測定とを選択的に行うことができる。なお、水銀濃度測定装置45aにおいて、第1取込口51で取り込まれたガスが還元部53に常時流入する構成が採用されてもよい。 As described above, in the mercury concentration measuring device 45 of FIG. 2, when measuring the zero-valent mercury concentration, the exhaust gas taken in by the second intake port 52 does not pass through the reducing unit 53 and is a concentration acquisition unit. Guided to 54. Therefore, in the mercury concentration measuring device 45a of FIG. 7, it can be said that the first intake port 51 also serves as the second intake port 52. In the mercury concentration measuring device 45a using only one intake port 51, even if it is difficult to install a plurality of intake ports in the flue 3, the measurement of the zero-valent mercury concentration and the measurement of the total mercury concentration are selectively performed. Can be done. The mercury concentration measuring device 45a may adopt a configuration in which the gas taken in by the first intake port 51 always flows into the reducing unit 53.

上記水銀濃度測定装置45,45aおよび排ガス処理装置4,4aでは様々な変形が可能である。 The mercury concentration measuring devices 45, 45a and the exhaust gas treatment devices 4, 4a can be variously modified.

排ガス処理装置4,4aにおいて、排ガス中の0価水銀濃度を測定する0価水銀濃度測定部と、排ガス中の全水銀濃度を測定する全水銀濃度測定部とが個別に設けられてもよい。この場合、これらの2つの測定部は、煙道3における焼却炉21とバグフィルタ43との間に配置され、0価水銀濃度および全水銀濃度の双方が常時測定される。制御部40では、通常の状態において、0価水銀濃度に基づいて吸着剤供給部41による水銀吸着剤の供給量が応答性よく制御され、所定の場合において、全水銀濃度に基づいて水銀吸着剤の供給量が適切に制御される。一方、0価水銀濃度測定部および全水銀濃度測定部を兼ねる、図2および図7の水銀濃度測定装置45,45aを用いる場合には、排ガス処理装置4,4aの構成を簡素化することができる。排ガス処理装置4,4aの設計によっては、下流側水銀濃度測定部46において、水銀濃度測定装置45,45aが用いられてもよい。 In the exhaust gas treatment devices 4 and 4a, a zero-valent mercury concentration measuring unit for measuring the zero-valent mercury concentration in the exhaust gas and a total mercury concentration measuring unit for measuring the total mercury concentration in the exhaust gas may be separately provided. In this case, these two measuring units are arranged between the incinerator 21 and the bag filter 43 in the flue 3, and both the zero-valent mercury concentration and the total mercury concentration are constantly measured. In the control unit 40, the supply amount of the mercury adsorbent by the adsorbent supply unit 41 is responsively controlled based on the zero-valent mercury concentration in a normal state, and in a predetermined case, the mercury adsorbent is based on the total mercury concentration. Supply amount is properly controlled. On the other hand, when the mercury concentration measuring devices 45 and 45a of FIGS. 2 and 7 that also serve as the zero-valent mercury concentration measuring unit and the total mercury concentration measuring unit are used, the configuration of the exhaust gas treatment devices 4 and 4a can be simplified. it can. Depending on the design of the exhaust gas treatment devices 4, 4a, the mercury concentration measuring devices 45, 45a may be used in the downstream mercury concentration measuring unit 46.

上記実施の形態では、全水銀濃度に基づく制御から下流側水銀濃度に基づく制御に切り替えられるが、0価水銀濃度に基づく制御中に下流側水銀濃度が第2閾値以上となった場合に、水銀吸着剤の供給量の制御が、下流側水銀濃度に基づく制御に切り替えられてもよい。また、既述のように、下流側水銀濃度に基づく制御において0価水銀濃度または全水銀濃度が参照されてもよい。以上のように、排ガス処理装置4,4aでは、下流側水銀濃度が所定の閾値以上である場合に(好ましくは、0価水銀濃度および全水銀濃度が所定の閾値以下であり、かつ、下流側水銀濃度が所定の閾値以上である場合に)、水銀吸着剤の供給量の制御が、0価水銀濃度または全水銀濃度に基づく制御から、少なくとも下流側水銀濃度に基づく制御に切り替えられればよい。これにより、大気に排出される排ガスの水銀濃度をより確実に低くすることが可能となる。 In the above embodiment, the control based on the total mercury concentration is switched to the control based on the downstream mercury concentration, but when the downstream mercury concentration becomes equal to or higher than the second threshold value during the control based on the zero-valent mercury concentration, mercury Control of the supply amount of the adsorbent may be switched to control based on the downstream mercury concentration. Further, as described above, the zero-valent mercury concentration or the total mercury concentration may be referred to in the control based on the downstream mercury concentration. As described above, in the exhaust gas treatment devices 4 and 4a, when the downstream mercury concentration is equal to or higher than a predetermined threshold (preferably, the zero-valent mercury concentration and the total mercury concentration are equal to or lower than the predetermined threshold and the downstream side is downstream. When the mercury concentration is equal to or higher than a predetermined threshold value), the control of the supply amount of the mercury adsorbent may be switched from the control based on the zero-valent mercury concentration or the total mercury concentration to the control based on at least the downstream mercury concentration. This makes it possible to more reliably reduce the mercury concentration of the exhaust gas discharged to the atmosphere.

吸着剤供給部41は、煙道3において、吸着剤捕集部(バグフィルタ43)よりも上流側、すなわち、焼却炉21と吸着剤捕集部との間のいずれの位置に設けられてもよい。回収吸着剤供給部(回収灰供給部443)、並びに、0価水銀濃度測定部および全水銀濃度測定部(水銀濃度測定装置45,45a)も同様である。また、下流側水銀濃度測定部46は、煙道3における吸着剤捕集部と煙突22の排出口との間のいずれの位置に設けられてもよい。 The adsorbent supply unit 41 may be provided in the flue 3 on the upstream side of the adsorbent collection unit (bug filter 43), that is, at any position between the incinerator 21 and the adsorbent collection unit. Good. The same applies to the recovered adsorbent supply unit (recovered ash supply unit 443), the zero-valent mercury concentration measuring unit, and the total mercury concentration measuring unit (mercury concentration measuring devices 45, 45a). Further, the downstream mercury concentration measuring unit 46 may be provided at any position between the adsorbent collecting unit and the discharge port of the chimney 22 in the flue 3.

排ガス処理装置4,4aは、焼却設備1以外の設備において用いられてもよく、排ガス処理装置4,4aが設けられる設備等によっては、消石灰の供給や下流側水銀濃度に基づく制御が省略されてもよい。また、水銀濃度測定装置45,45aが、排ガス処理装置4,4a以外に用いられてもよく、この場合に、排ガス以外のガスに含まれる水銀濃度が測定されてよい。 The exhaust gas treatment devices 4 and 4a may be used in facilities other than the incinerator facility 1, and depending on the facilities and the like provided with the exhaust gas treatment devices 4 and 4a, the supply of slaked lime and the control based on the mercury concentration on the downstream side are omitted. May be good. Further, the mercury concentration measuring devices 45 and 45a may be used in addition to the exhaust gas treatment devices 4 and 4a, and in this case, the mercury concentration contained in the gas other than the exhaust gas may be measured.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The above-described embodiment and the configurations in each modification may be appropriately combined as long as they do not conflict with each other.

3 煙道
4,4a 排ガス処理装置
21 焼却炉
22 煙突
40 制御部
41 吸着剤供給部
43 バグフィルタ
45,45a 水銀濃度測定装置
46 下流側水銀濃度測定部
51 第1取込口
52 第2取込口
53 還元部
54 濃度取得部
55,56 切替部
442 回収灰貯留部
443 回収灰供給部
551,561 第1流路
552,562 第2流路
553〜555,563,564 三方弁
S11〜S17 ステップ
3 Flue 4, 4a Exhaust treatment device 21 Incinerator 22 Chimney 40 Control unit 41 Adsorbent supply unit 43 Bug filter 45, 45a Mercury concentration measuring device 46 Downstream mercury concentration measuring unit 51 1st intake 52 2nd intake Mouth 53 Reduction unit 54 Concentration acquisition unit 55,56 Switching unit 442 Recovery ash storage section 443 Recovery ash supply section 551,561 First flow path 552,562 Second flow path 553 to 555,563,564 Three-way valve S11 to S17 Step

Claims (9)

ガスに含まれる水銀濃度を測定する水銀濃度測定装置であって、
ガス流路に取り付けられる第1取込口と、
前記第1取込口で取り込まれたガスに含まれる2価水銀を0価水銀に還元する還元部と、
前記ガス流路に取り付けられる第2取込口と、
0価水銀に基づいて水銀濃度の測定値を取得する濃度取得部と、
前記還元部を通過したガス、または、前記第2取込口で取り込まれたガスの一方を選択的に前記濃度取得部に流入させる切替部と、
を備え
前記第1取込口で取り込まれたガスが前記還元部に常時流入し、
前記切替部が、前記還元部を通過したガスの前記濃度取得部への流入と、所定の排出位置への排出とを切り替えることを特徴とする水銀濃度測定装置。
A mercury concentration measuring device that measures the concentration of mercury contained in gas.
The first intake port attached to the gas flow path and
A reducing unit that reduces divalent mercury contained in the gas taken in by the first intake port to zero-valent mercury,
A second intake port attached to the gas flow path and
A concentration acquisition unit that acquires a measured value of mercury concentration based on zero-valent mercury,
A switching unit that selectively causes one of the gas that has passed through the reduction unit and the gas that has been taken in by the second intake port to flow into the concentration acquisition unit.
Equipped with a,
The gas taken in at the first intake port constantly flows into the reducing part, and
The switching unit, the inflow to the concentration acquisition portion of the gas passing through the reduced portion, the discharge mercury concentration measuring device according to claim to switch between a to a predetermined discharge position.
請求項1に記載の水銀濃度測定装置であって、
前記第1取込口が、前記第2取込口を兼ねており、
前記切替部が、
前記第1取込口から前記還元部を経由して前記濃度取得部に接続する第1流路と、
前記還元部を迂回して前記第1取込口と前記濃度取得部とを接続する第2流路と、
前記濃度取得部に流入するガスの経路を、前記第1流路と前記第2流路とで切り替える流路切替部と、
を備えることを特徴とする水銀濃度測定装置。
The mercury concentration measuring device according to claim 1.
The first intake port also serves as the second intake port.
The switching unit
A first flow path connecting from the first intake port to the concentration acquisition unit via the reduction unit, and
A second flow path that bypasses the reduction section and connects the first intake port and the concentration acquisition section.
A flow path switching unit that switches the path of the gas flowing into the concentration acquisition unit between the first flow path and the second flow path,
A mercury concentration measuring device comprising.
排ガス処理装置であって、
排ガスの発生源から外部への排出口に向かって前記排ガスが流れる煙道において、前記排ガスに水銀吸着剤を供給する吸着剤供給部と、
前記煙道において前記水銀吸着剤を捕集する吸着剤捕集部と、
前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中の0価水銀濃度を測定する0価水銀濃度測定部と、
前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を全水銀濃度として測定する全水銀濃度測定部と、
前記0価水銀濃度に基づいて前記吸着剤供給部による前記水銀吸着剤の供給量を制御するとともに、所定の場合において、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度に基づく制御から、前記全水銀濃度に基づく制御に切り替える制御部と、
を備えることを特徴とする排ガス処理装置。
It is an exhaust gas treatment device
In the flue where the exhaust gas flows from the source of the exhaust gas to the exhaust port to the outside, the adsorbent supply unit that supplies the mercury adsorbent to the exhaust gas and the adsorbent supply unit.
An adsorbent collecting unit that collects the mercury adsorbent in the flue,
A zero-valent mercury concentration measuring unit that measures the zero-valent mercury concentration in the exhaust gas at a position between the source and the adsorbent collecting unit in the flue.
At a position between the source and the adsorbent collecting portion in the flue, the zero-valent mercury originally contained in the exhaust gas and the zero-valent mercury obtained by reducing the divalent mercury in the exhaust gas A total mercury concentration measuring unit that measures the total concentration as the total mercury concentration,
The supply amount of the mercury adsorbent by the adsorbent supply unit is controlled based on the zero-valent mercury concentration, and the control of the supply amount of the mercury adsorbent is controlled based on the zero-valent mercury concentration in a predetermined case. To the control unit that switches to control based on the total mercury concentration,
An exhaust gas treatment device characterized by being equipped with.
請求項に記載の排ガス処理装置であって、
前記0価水銀濃度測定部および前記全水銀濃度測定部を兼ねる、請求項1または2に記載の水銀濃度測定装置を備えることを特徴とする排ガス処理装置。
The exhaust gas treatment apparatus according to claim 3.
The exhaust gas treatment apparatus according to claim 1 or 2 , further comprising the zero-valent mercury concentration measuring unit and the total mercury concentration measuring unit.
請求項またはに記載の排ガス処理装置であって、
前記制御部が、前記0価水銀濃度に基づく制御において、前記0価水銀濃度が所定の閾値以上となり、前記水銀吸着剤の供給量を増大した後に、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度に基づく制御から、前記全水銀濃度に基づく制御に切り替えることを特徴とする排ガス処理装置。
The exhaust gas treatment apparatus according to claim 3 or 4.
In the control based on the zero-valent mercury concentration, the control unit controls the supply amount of the mercury adsorbent after the zero-valent mercury concentration becomes equal to or higher than a predetermined threshold value and the supply amount of the mercury adsorbent is increased. An exhaust gas treatment apparatus characterized by switching from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration.
請求項ないしのいずれか1つに記載の排ガス処理装置であって、
前記0価水銀濃度が所定の閾値よりも低い場合に、前記吸着剤捕集部により捕集された前記水銀吸着剤を回収吸着剤として貯留する回収吸着剤貯留部と、
前記煙道において前記発生源と前記吸着剤捕集部との間の位置に前記回収吸着剤を供給する回収吸着剤供給部と、
をさらに備え、
前記制御部が、前記0価水銀濃度に基づいて前記回収吸着剤供給部による前記回収吸着剤の供給量を制御することを特徴とする排ガス処理装置。
The exhaust gas treatment apparatus according to any one of claims 3 to 5.
When the zero-valent mercury concentration is lower than a predetermined threshold value, a recovery adsorbent storage unit that stores the mercury adsorbent collected by the adsorbent collection unit as a recovery adsorbent, and a recovery adsorbent storage unit.
A recovery adsorbent supply unit that supplies the recovery adsorbent to a position between the source and the adsorbent collection unit in the flue.
With more
An exhaust gas treatment apparatus characterized in that the control unit controls the supply amount of the recovered adsorbent by the recovered adsorbent supply unit based on the zero-valent mercury concentration.
請求項ないしのいずれか1つに記載の排ガス処理装置であって、
前記煙道における前記吸着剤捕集部と前記排出口との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を下流側水銀濃度として測定する下流側水銀濃度測定部をさらに備え、
前記下流側水銀濃度が所定の閾値以上である場合に、前記制御部において、前記水銀吸着剤の供給量の制御が、前記0価水銀濃度または前記全水銀濃度に基づく制御から、少なくとも前記下流側水銀濃度に基づく制御に切り替えられることを特徴とする排ガス処理装置。
The exhaust gas treatment apparatus according to any one of claims 3 to 6.
At a position between the adsorbent collecting portion and the exhaust port in the flue, the zero-valent mercury originally contained in the exhaust gas and the zero-valent mercury obtained by reducing the divalent mercury in the exhaust gas. Further equipped with a downstream mercury concentration measuring unit that measures the total concentration as the downstream mercury concentration,
When the downstream mercury concentration is equal to or higher than a predetermined threshold value, the control unit controls the supply amount of the mercury adsorbent at least on the downstream side from the control based on the zero-valent mercury concentration or the total mercury concentration. An exhaust gas treatment device characterized in that it can be switched to control based on mercury concentration.
排ガス処理装置における排ガス処理方法であって、
前記排ガス処理装置が、
排ガスの発生源から外部への排出口に向かって前記排ガスが流れる煙道において、前記排ガスに水銀吸着剤を供給する吸着剤供給部と、
前記煙道において前記水銀吸着剤を捕集する吸着剤捕集部と、
前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中の0価水銀濃度を測定する0価水銀濃度測定部と、
前記煙道における前記発生源と前記吸着剤捕集部との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を全水銀濃度として測定する全水銀濃度測定部と、
を備え、
前記排ガス処理方法が、
前記0価水銀濃度に基づいて前記吸着剤供給部による前記水銀吸着剤の供給量を制御する工程と、
所定の場合において、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度に基づく制御から、前記全水銀濃度に基づく制御に切り替える工程と、
を備えることを特徴とする排ガス処理方法。
This is an exhaust gas treatment method for exhaust gas treatment equipment.
The exhaust gas treatment device
In the flue where the exhaust gas flows from the source of the exhaust gas to the exhaust port to the outside, the adsorbent supply unit that supplies the mercury adsorbent to the exhaust gas and the adsorbent supply unit.
An adsorbent collecting unit that collects the mercury adsorbent in the flue,
A zero-valent mercury concentration measuring unit that measures the zero-valent mercury concentration in the exhaust gas at a position between the source and the adsorbent collecting unit in the flue.
At a position between the source and the adsorbent collecting portion in the flue, the zero-valent mercury originally contained in the exhaust gas and the zero-valent mercury obtained by reducing the divalent mercury in the exhaust gas A total mercury concentration measuring unit that measures the total concentration as the total mercury concentration,
With
The exhaust gas treatment method
A step of controlling the supply amount of the mercury adsorbent by the adsorbent supply unit based on the zero-valent mercury concentration, and a step of controlling the supply amount of the mercury adsorbent.
In a predetermined case, the step of switching the control of the supply amount of the mercury adsorbent from the control based on the zero-valent mercury concentration to the control based on the total mercury concentration, and
An exhaust gas treatment method characterized by comprising.
請求項に記載の排ガス処理方法であって、
前記排ガス処理装置が、
前記煙道における前記吸着剤捕集部と前記排出口との間の位置において、前記排ガス中に元から含まれる0価水銀、および、前記排ガス中の2価水銀が還元された0価水銀の総濃度を下流側水銀濃度として測定する下流側水銀濃度測定部をさらに備え、
前記排ガス処理方法が、
前記下流側水銀濃度が所定の閾値以上である場合に、前記水銀吸着剤の供給量の制御を、前記0価水銀濃度または前記全水銀濃度に基づく制御から、少なくとも前記下流側水銀濃度に基づく制御に切り替える工程をさらに備えることを特徴とする排ガス処理方法。
The exhaust gas treatment method according to claim 8.
The exhaust gas treatment device
At a position between the adsorbent collecting portion and the exhaust port in the flue, the zero-valent mercury originally contained in the exhaust gas and the zero-valent mercury obtained by reducing the divalent mercury in the exhaust gas. Further equipped with a downstream mercury concentration measuring unit that measures the total concentration as the downstream mercury concentration,
The exhaust gas treatment method
When the downstream mercury concentration is equal to or higher than a predetermined threshold, the control of the supply amount of the mercury adsorbent is controlled from the control based on the zero-valent mercury concentration or the total mercury concentration to at least the control based on the downstream mercury concentration. An exhaust gas treatment method characterized by further including a process of switching to.
JP2018076708A 2018-04-12 2018-04-12 Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method Active JP6903028B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018076708A JP6903028B2 (en) 2018-04-12 2018-04-12 Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method
PCT/JP2019/014827 WO2019198597A1 (en) 2018-04-12 2019-04-03 Mercury concentration measuring device, exhaust gas treatment device, and exhaust gas treatment method
CN201980022546.8A CN111919116B (en) 2018-04-12 2019-04-03 Mercury concentration measuring device, exhaust gas treatment device, and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076708A JP6903028B2 (en) 2018-04-12 2018-04-12 Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2019184455A JP2019184455A (en) 2019-10-24
JP6903028B2 true JP6903028B2 (en) 2021-07-14

Family

ID=68163159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076708A Active JP6903028B2 (en) 2018-04-12 2018-04-12 Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method

Country Status (3)

Country Link
JP (1) JP6903028B2 (en)
CN (1) CN111919116B (en)
WO (1) WO2019198597A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269865B2 (en) * 2019-10-21 2023-05-09 日立造船株式会社 Exhaust gas treatment device and exhaust gas treatment method
CN116026649B (en) * 2022-12-05 2024-02-13 华能重庆珞璜发电有限责任公司 Online continuous monitoring system and method for total mercury concentration and form of fixed source flue gas

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB441910A (en) * 1934-03-23 1936-01-29 British Thomson Houston Co Ltd Improvements in and relating to mercury power plants
JPS58849A (en) * 1981-06-22 1983-01-06 Nippon Oil & Fats Co Ltd Novel edible oil and oily nutrient food
US6503470B1 (en) * 1999-03-31 2003-01-07 The Babcock & Wilcox Company Use of sulfide-containing liquors for removing mercury from flue gases
DE10011171A1 (en) * 2000-03-08 2001-09-13 Perkin Elmer Bodenseewerk Zwei Process for detecting mercury in a sample solution comprises a detection device consisting of an atomic spectrometer with a measuring cell, a precious metal enriching device and a control unit for controlling the feed of gaseous mercury
JP2004354067A (en) * 2003-05-27 2004-12-16 Central Res Inst Of Electric Power Ind Method and apparatus for measuring mercury in gas
US7368289B2 (en) * 2003-10-20 2008-05-06 Perma Pure Llc Filter for determination of mercury in exhaust gases
JP2007271460A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and instrument for measuring mercury in coal combustion exhaust gas
US7722843B1 (en) * 2006-11-24 2010-05-25 Srivats Srinivasachar System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems
CN101726474B (en) * 2009-12-11 2011-07-20 宇星科技发展(深圳)有限公司 Method for collecting total atmospheric mercury by series method and on-line analyzer
CN102368065B (en) * 2011-09-26 2014-07-09 上海电力学院 Device for determining mercury content with different forms in coal-burning flue gas and its application
CN103652514A (en) * 2013-12-12 2014-03-26 无锡市善源生物科技有限公司 Method for reducing heavy metal content of rice and products thereof
JP6194840B2 (en) * 2014-03-31 2017-09-13 Jfeエンジニアリング株式会社 Exhaust gas treatment apparatus and method
SG10201709322PA (en) * 2015-02-18 2018-01-30 Jfe Eng Corp Apparatus for treatment of waste gas and method for treating the same
WO2016136714A1 (en) * 2015-02-24 2016-09-01 日立造船株式会社 Apparatus for processing flue gas
CN106248595B (en) * 2016-08-04 2023-06-27 西安热工研究院有限公司 System and method for testing bivalent mercury and zero-valent mercury in flue gas of coal-fired power plant
CN106568897A (en) * 2016-10-27 2017-04-19 浙江大学宁波理工学院 Device and measuring method used for continuous measuring of content of mercury of different valence states in flue gas
CN206411013U (en) * 2017-01-12 2017-08-15 国电环境保护研究院 A kind of on-Line Monitor Device of mercury

Also Published As

Publication number Publication date
CN111919116A (en) 2020-11-10
JP2019184455A (en) 2019-10-24
WO2019198597A1 (en) 2019-10-17
CN111919116B (en) 2022-11-08

Similar Documents

Publication Publication Date Title
KR100899915B1 (en) Exhaust gas purification device
US9289720B2 (en) System and method for treating mercury in flue gas
JP5991677B2 (en) Exhaust gas treatment equipment
JP5961514B2 (en) Fly ash circulation type exhaust gas treatment method
JP6903028B2 (en) Mercury concentration measuring device, exhaust gas treatment device and exhaust gas treatment method
JP5953342B2 (en) Sulphite control to reduce mercury re-emissions
CN107249717A (en) The processing unit of burning and gas-exhausting
AU738245B2 (en) Enhanced control of mercury in a wet scrubber through reduced oxidation air flow
CN106574536A (en) Method for cleaning process off- or engine exhaust gas
KR19990077285A (en) Combustion device for smoke generating facilities
JP2019070471A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN112165981B (en) Exhaust gas treatment device
WO2017197049A1 (en) Sulfite preconditioning systems and methods to reduce mercury concentrations in waste water
KR101570840B1 (en) Apparatus for collecting coating material dusts and VOCS
JP7269865B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP7203711B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP6767055B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
JP7019562B2 (en) Mercury control in seawater flue gas desulfurization system
JP6576304B2 (en) Regeneration method of catalyst precoat filter cloth
WO2020209338A1 (en) Exhaust gas treatment device and exhaust gas treatment method
JP6846778B2 (en) Mercury removal device and method in exhaust gas
JP2019027671A (en) Processing apparatus for flue gas
JP7007653B2 (en) Bug filters, methods for regenerating impregnated activated carbon fiber units and exhaust gas treatment systems
JP2009221922A (en) Exhaust emission control device
CN118103125A (en) Exhaust gas treatment device and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6903028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250