[go: up one dir, main page]

JP6902125B2 - Joint structure of structure - Google Patents

Joint structure of structure Download PDF

Info

Publication number
JP6902125B2
JP6902125B2 JP2020014782A JP2020014782A JP6902125B2 JP 6902125 B2 JP6902125 B2 JP 6902125B2 JP 2020014782 A JP2020014782 A JP 2020014782A JP 2020014782 A JP2020014782 A JP 2020014782A JP 6902125 B2 JP6902125 B2 JP 6902125B2
Authority
JP
Japan
Prior art keywords
structures
stress
concrete
deformed reinforcing
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020014782A
Other languages
Japanese (ja)
Other versions
JP2020073775A (en
Inventor
尚隆 佐藤
尚隆 佐藤
亮夫 松井
亮夫 松井
Original Assignee
株式会社淺沼組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015173185A external-priority patent/JP6706038B2/en
Application filed by 株式会社淺沼組 filed Critical 株式会社淺沼組
Priority to JP2020014782A priority Critical patent/JP6902125B2/en
Publication of JP2020073775A publication Critical patent/JP2020073775A/en
Application granted granted Critical
Publication of JP6902125B2 publication Critical patent/JP6902125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

この発明は、コンクリートとモルタル、コンクリートと鋼材、またはコンクリート同士の境界面におけるせん断抵抗を高めた構造体の接合構造に関するものである。 The present invention relates to a joint structure of concrete and mortar, concrete and steel, or a structure having increased shear resistance at the interface between concrete.

一方がコンクリートからなる構造体10と、他方がコンクリート、またはモルタルからなる構造体11とを、図5に示したように、単純に打ち継ぎにより接合した場合、両構造体間で応力伝達がされにくく、地震時にせん断力が作用すると、両構造体の境界面12に相反変位(ズレ)が生じる。 As shown in FIG. 5, when a structure 10 made of concrete on one side and a structure 11 made of concrete or mortar on the other side are simply joined by jointing, stress is transmitted between the two structures. It is difficult, and when a shearing force acts during an earthquake, reciprocal displacement (deviation) occurs on the boundary surface 12 of both structures.

そこで従来は、図6(a)に示したように、両構造体10・11間にダボ13を境界面12と直交するように埋設することによって応力伝達機構を構成していた。また、ダボ13の代わりに、異形鉄筋を境界面と直交配筋したものもあった(特許文献1)。 Therefore, conventionally, as shown in FIG. 6A, the stress transmission mechanism is configured by burying the dowel 13 between the two structures 10 and 11 so as to be orthogonal to the boundary surface 12. Further, instead of the dowel 13, there was also one in which deformed reinforcing bars were arranged orthogonally to the boundary surface (Patent Document 1).

特開2014−227761号公報Japanese Unexamined Patent Publication No. 2014-227761

従来技術において、ダボ13を境界面に対し直交埋設した場合、摩擦接合よりも二つの構造体10・11の相対変位量が小さくなるものの、図6(b)に示したように、ダボ13自身がせん断力によって境界面で曲げ変形を起こすことがあり、二つの構造体10・11の相対変位を確実に防止することはできなかった。 In the prior art, when the dowel 13 is embedded orthogonally to the boundary surface, the relative displacement of the two structures 10/11 is smaller than that of the frictional joint, but as shown in FIG. 6B, the dowel 13 itself However, the shearing force may cause bending deformation at the interface, and it was not possible to reliably prevent the relative displacement of the two structures 10/11.

これに対して特許文献1のものは、アンカーとして一対の異形鉄筋の間に円柱状鋼材による太径部を設けて、該太径部を境界面を跨いで埋設するため、ダボよりも応力伝達性能を向上させることができる。しかし、太径部の断面積は二つ構造体の境界面積と比べれば小さいから、境界面全体で応力伝達を確実に行うには、数多くのアンカーを配筋する必要がある。一方、壁版や床版のように柱や梁に比べて厚みが比較的小さい構造体に当該アンカーを適用すると、せん断力によって壁版等が太径部から付着破壊を起こす恐れが高まる。 On the other hand, in Patent Document 1, a large-diameter portion made of a columnar steel material is provided between a pair of deformed reinforcing bars as an anchor, and the large-diameter portion is buried across the boundary surface, so that stress is transmitted more than a dowel. Performance can be improved. However, since the cross-sectional area of the large diameter portion is smaller than the boundary area of the two structures, it is necessary to arrange a large number of anchors in order to reliably transfer stress over the entire boundary surface. On the other hand, when the anchor is applied to a structure such as a wall slab or a floor slab whose thickness is relatively smaller than that of a column or a beam, there is an increased risk that the wall slab or the like will adhere and break from a large diameter portion due to shearing force.

本発明は上述した課題を解決するためになされたもので、その目的とするところは、二つの構造体にダボや異形鉄筋を境界面に対して直交配設するよりもせん断抵抗を高めた構造体の接合構造を開示することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is a structure having higher shear resistance than arranging dowels or deformed reinforcing bars orthogonally to a boundary surface in two structures. The purpose is to disclose the joint structure of the body.

上述した目的を達成するために本発明では、接接合する二つの構造体のうち一方がコンクリートまたはモルタルからなり、前記二つの構造体の間に、長手方向軸線に沿って設けられたリブと、等間隔に設けられた節を有する異形鉄筋を前記二つの構造体の境界面と平行に配筋し、この異形鉄筋の付着応力及び支圧応力によってせん断抵抗を与えるという手段を用いた。 In order to achieve the above-mentioned object, in the present invention, one of the two structures to be joined is made of concrete or mortar, and a rib provided between the two structures along the longitudinal axis is used. A means was used in which deformed reinforcing bars having knots provided at equal intervals were arranged in parallel with the boundary surface of the two structures, and shear resistance was given by the adhesive stress and bearing stress of the deformed reinforcing bars.

当該手段によれば、異形鉄筋の付着応力及び支圧応力によって、二つの構造体間の応力伝達を行い、両者の境界面において高いせん断抵抗を示すことになる。 According to this means, stress is transmitted between two structures by the adhesive stress and bearing stress of the deformed reinforcing bar, and high shear resistance is exhibited at the interface between the two structures.

これに対して、他方の構造体が鋼材である場合等、一方の構造体と接合する端面が鉄筋コンクリート用棒鋼を軸線方向に切断した半割状異形鉄筋の切断面を接着または溶接等により固着可能な場合は、該他方の構造体の前記端面に前記半割状異形鉄筋の切断面を固着すると共に、該半割状異形鉄筋を前記一方の構造体に埋設する。この場合、半割状異形鉄筋によって一方構造体への応力伝達機構を構成し、鋼材側は接着応力または溶接応力によって応力を伝達する。 On the other hand, when the other structure is made of steel, the end face to be joined to one structure can be fixed by bonding or welding the cut surface of the half-split deformed reinforcing bar obtained by cutting the steel bar for reinforced concrete in the axial direction. In this case, the cut surface of the half-split deformed reinforcing bar is fixed to the end face of the other structure, and the half-split deformed reinforcing bar is embedded in the one structure. In this case, a half-split deformed reinforcing bar constitutes a stress transmission mechanism to one structure, and the steel material side transmits stress by adhesive stress or welding stress.

二つの構造体が、地震時のせん断力の方向と平行するように境界面を形成することによって、異形鉄筋による応力伝達がより確実となり、より高いせん断抵抗を示すことができる。 By forming the interface between the two structures so as to be parallel to the direction of the shear force during an earthquake, stress transmission by the deformed reinforcing bar is more reliable, and higher shear resistance can be exhibited.

本発明によれば、二つの構造体間に境界面と平行して異形鉄筋を配筋したので、異形鉄筋が有する付着応力及び支圧応力によって、構造体間の応力伝達と相対変位防止を確実に行うことができる。 According to the present invention, since the deformed reinforcing bars are arranged in parallel with the boundary surface between the two structures, the stress transmission and the relative displacement prevention between the structures are ensured by the adhesive stress and the bearing stress of the deformed reinforcing bars. Can be done.

本発明を適用する二つの構造体の接合例Example of joining two structures to which the present invention is applied 異形鉄筋の一例を示す説明図Explanatory drawing showing an example of a deformed reinforcing bar 本発明の第一実施形態を示す断面図Sectional drawing which shows 1st Embodiment of this invention 本発明の第二実施形態を示す断面図Sectional drawing which shows the 2nd Embodiment of this invention 従来の接合構造を示す説明図Explanatory drawing showing a conventional joint structure ダボを用いた従来の接合構造を示す説明図Explanatory drawing showing a conventional joining structure using a dowel

以下、本発明の好ましい実施の形態を添付した図面に従って説明する。図1は本発明を適用する二つの構造体の接合例を示したものであり、(a)は床版1と壁版2、(b)壁版2・2同士、(c)床版1・1同士を接合したものである。そして、本発明の接合構造は、床版1・壁版2の接合部に境界面3と平行して異形鉄筋4を配筋することで構成される。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an example of joining two structures to which the present invention is applied. FIG. 1A shows a floor slab 1 and a wall slab 2, (b) wall slabs 2 and 2, and (c) a floor slab 1.・ It is a combination of 1s. The joint structure of the present invention is configured by arranging deformed reinforcing bars 4 in parallel with the boundary surface 3 at the joint portion of the floor slab 1 and the wall slab 2.

用いる異形鉄筋4は、図2に示したように、鉄筋コンクリート用棒鋼の外周に長手方向軸線に沿ってリブ4aを形成すると共に、節4bを等間隔に形成してなる。なお、図例では、半円状の節4bを上半と下半で半ピッチずらして形成したものを示しているが、節は環状のものを等間隔に形成したものであってもよく、また螺旋の節を形成したものであってもよい。 As shown in FIG. 2, the deformed reinforcing bar 4 used has ribs 4a formed on the outer periphery of the steel bar for reinforced concrete along the longitudinal axis, and nodes 4b formed at equal intervals. In the illustrated example, the semicircular knots 4b are formed by shifting the upper half and the lower half by half a pitch, but the knots may be formed by forming circular knots at equal intervals. Further, it may have a spiral node formed.

図3は、本発明の一実施形態を示したもので、一方の構造体5はコンクリートからなり、他方の構造体6もコンクリートからなる。そして、これら二つの構造体5・6の間に、図2に示した異形って筋4bを境界面(接合面)と平行して埋設している。 FIG. 3 shows an embodiment of the present invention, in which one structure 5 is made of concrete and the other structure 6 is also made of concrete. Then, between these two structures 5 and 6, a deformed streak 4b shown in FIG. 2 is embedded in parallel with the boundary surface (joint surface).

当該接合構造によれば、二つの構造体5・6それぞれに相反する向きのせん断力が作用したとき、異形鉄筋4の上半と下半それぞれで、節4b間の付着応力と節4bの支圧応力がせん断力と反対向きに生じ、このせん断抵抗によって構造体5・6間の応力伝達が確実に行われ、また、構造体5・6が境界面で相対変位することを防止することができる。 According to the joint structure, when shear forces in opposite directions act on each of the two structures 5 and 6, the adhesive stress between the nodes 4b and the support of the nodes 4b are applied to the upper half and the lower half of the deformed reinforcing bar 4, respectively. Pressure stress is generated in the direction opposite to the shearing force, and this shearing resistance ensures stress transfer between structures 5 and 6 and prevents structures 5 and 6 from being relatively displaced at the interface. it can.

なお、図3において、構造体5・6の一方または双方をモルタルとした場合も、上述したコンクリート同士の接合と同じ構造とすることができる。 In addition, in FIG. 3, when one or both of the structures 5 and 6 are made of mortar, the same structure as the above-mentioned joining of concrete can be obtained.

図4は、本発明の第二実施形態を示したものであり、一方の構造体5がコンクリートからなり、他方の構造体7を鋼材からなるものとした場合の接合構造である。この場合、鋼材からなる他方構造体7に、図2の異形鉄筋4を埋設することはできにない。したがって、構造体の一方が鋼材である場合には、図2の異形鉄筋4を長手方向軸線に沿って切断した半割状異形鉄筋8を用い、その切断面8aを鋼材からなる他方構造体7に接着すると共に、節8bを有する上半部はコンクリートからなる一方構造体5に埋設する。 FIG. 4 shows a second embodiment of the present invention, which is a joint structure in which one structure 5 is made of concrete and the other structure 7 is made of steel. In this case, the deformed reinforcing bar 4 of FIG. 2 cannot be embedded in the other structure 7 made of a steel material. Therefore, when one of the structures is made of steel, the deformed reinforcing bar 4 of FIG. 2 is cut along the longitudinal axis, and the half-split deformed reinforcing bar 8 is used, and the cut surface 8a is made of steel. The upper half having the knots 8b is made of concrete while being embedded in the structure 5.

当該接合構造によるせん断抵抗は、一方構造体5側では節8b間の付着応力と節8bの支圧応力によって示され、他方構造体7側では切断面8aの接着応力によって示される。 The shear resistance due to the joint structure is indicated by the adhesive stress between the nodes 8b and the bearing stress of the node 8b on the one side of the structure 5, and is indicated by the adhesive stress of the cut surface 8a on the other side of the structure 7.

なお、他方構造体7に対する半割状異形鉄筋8の固着方法は接着に限らず、溶接であってもよい。また、他方の構造体7は鋼材に限らず、一方の構造体5と接合する端面に半割状異形鉄筋8の切断面8aを固着可能であれば、他の建造用資材に適用することもできる。 On the other hand, the method of fixing the half-split deformed reinforcing bar 8 to the structure 7 is not limited to adhesion, but may be welding. Further, the other structure 7 is not limited to a steel material, and can be applied to other construction materials as long as the cut surface 8a of the half-split deformed reinforcing bar 8 can be fixed to the end surface to be joined to the one structure 5. it can.

本発明は、構造体としては壁版と床版を例示することができるが、適用範囲としては、コンクリートとコンクリートまたはモルタルの打ち継ぎ面、既存柱と既存梁によって形成された開口部をRMユニットによって耐震補強する前記開口部と前記RMユニットとの接合面、プレキャスト版同士の接合面、さらには、ひび割れが予測されるコンクリート同士が離間する境界面の接合に利用することができる。 In the present invention, wall slabs and floor slabs can be exemplified as structures, but the scope of application is an RM unit that includes a joint surface between concrete and concrete or mortar, and an opening formed by an existing column and an existing beam. It can be used for joining the joint surface between the opening and the RM unit, the joint surface between the precast plates, and the boundary surface where the concretes expected to be cracked are separated from each other.

1 床版
2 壁版
3 境界面
4 異形鉄筋
4a リブ
4b 節
5 一方の構造体(コンクリート)
6 他方の構造体(コンクリートまたはモルタル)
7 他方の構造体(鋼材)
8 半割状異形鉄筋
1 Floor slab 2 Wall slab 3 Boundary surface 4 Deformed reinforcing bar 4a Rib 4b Section 5 One structure (concrete)
6 The other structure (concrete or mortar)
7 The other structure (steel material)
8 Half-split deformed rebar

Claims (1)

接合する二つの構造体のうち一方がコンクリートまたはモルタルからなり、他方もコンクリートまたはモルタルからなり、前記二つの構造体の境界面を境として、長手方向軸線に沿って設けられたリブと、等間隔に設けられた節を有する異形鉄筋を前記二つの構造体の境界面と平行に配筋し、この異形鉄筋の付着応力及び支圧応力によって前記二つの構造体の間にせん断抵抗を与えたことを特徴とする構造体の接合構造。 One of the two structures to be joined is made of concrete or mortar, and the other is made of concrete or mortar, and is equally spaced from the ribs provided along the longitudinal axis with the boundary surface of the two structures as the boundary. Reinforcing bars with knots provided in the above two structures were arranged parallel to the interface between the two structures, and shear resistance was given between the two structures by the adhesive stress and bearing stress of the deformed reinforcing bars. A joint structure of a structure characterized by.
JP2020014782A 2015-09-02 2020-01-31 Joint structure of structure Active JP6902125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020014782A JP6902125B2 (en) 2015-09-02 2020-01-31 Joint structure of structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015173185A JP6706038B2 (en) 2015-09-02 2015-09-02 Joint structure of structures
JP2020014782A JP6902125B2 (en) 2015-09-02 2020-01-31 Joint structure of structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015173185A Division JP6706038B2 (en) 2015-09-02 2015-09-02 Joint structure of structures

Publications (2)

Publication Number Publication Date
JP2020073775A JP2020073775A (en) 2020-05-14
JP6902125B2 true JP6902125B2 (en) 2021-07-14

Family

ID=70610506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020014782A Active JP6902125B2 (en) 2015-09-02 2020-01-31 Joint structure of structure

Country Status (1)

Country Link
JP (1) JP6902125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7600066B2 (en) 2021-09-29 2024-12-16 鹿島建設株式会社 Compression detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289402U (en) * 1985-11-26 1987-06-08
JPH08144404A (en) * 1994-11-18 1996-06-04 Onoda Autoclaved Light Weight Concrete Co Ltd Structure of butt joint between light-weight cellular concrete panels
JP2732361B2 (en) * 1994-12-12 1998-03-30 旭化成工業株式会社 Slab structure
JP3718556B2 (en) * 1996-03-27 2005-11-24 クリオン株式会社 Rising ALC wall corner mounting structure
JP3358174B2 (en) * 1998-04-27 2002-12-16 旭化成株式会社 Slab structure
US6807787B1 (en) * 2003-02-05 2004-10-26 Stephen Ross System for joining foam components
JP2011117252A (en) * 2009-11-30 2011-06-16 Kenzo Unno Deformed reinforcement having generally rectangular cross section
JP5778483B2 (en) * 2011-05-27 2015-09-16 大和ハウス工業株式会社 Mechanical rebar joint
JP5920774B2 (en) * 2012-03-19 2016-05-18 国立大学法人横浜国立大学 Bonding method and structure of old and new concrete

Also Published As

Publication number Publication date
JP2020073775A (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP5991132B2 (en) Seismic reinforcement structure and construction method
JP4230533B1 (en) Bonding structure of structure and fixing member for shear force transmission used therefor
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP6959609B2 (en) Rapid renewal method for existing wall balustrade
JP7243007B2 (en) Wooden beam joint structure
JP6902125B2 (en) Joint structure of structure
JP2019052424A (en) PCa plate joint structure and construction method thereof
JP6423620B2 (en) Precast beam-column joint structure
JP5508070B2 (en) Joining structure and joining method of steel member and concrete member
JP6706038B2 (en) Joint structure of structures
JP4750155B2 (en) Column and beam joint structure
JP2018053441A (en) Precast concrete floor slab provided with loop-like joint
JP6643851B2 (en) Precast concrete member joining method
JP6368547B2 (en) Joint structure of precast concrete wall and beam
KR100684396B1 (en) Shear Shear Connector
DK2982807T3 (en) Device for connecting two building elements separated by a joint
JP6575035B2 (en) Joint structure and joint hardware of wooden members
JP2022113877A (en) wooden structure
JP6314415B2 (en) Synthetic segment and method for producing synthetic segment
JP5947140B2 (en) Prestressed concrete construction method and prestressed concrete structure
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP2020190103A (en) Precast concrete member joining method
JP6327649B2 (en) Concrete member joint structure and spiral reinforcement for concrete member joint structure
JP4547431B2 (en) Concrete structure
JP6352092B2 (en) Junction structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210618

R150 Certificate of patent or registration of utility model

Ref document number: 6902125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250